TY  - JOUR
ID  - antequera2017
T1  - Appearance-Invariant Place Recognition by Discriminatively Training a Convolutional Neural Network
A1  - Lopez-Antequera, Manuel
A1  - Gomez-Ojeda, Ruben
A1  - Petkov, Nicolai
A1  - Gonzalez-Jimenez, Javier
JA  - Pattern Recognition Letters
Y1  - 2017
VL  - 92
SP  - 89
EP  - 95
SN  - 0167-8655
UR  - http://www.sciencedirect.com/science/article/pii/S0167865517301381
M2  - doi: 10.1016/j.patrec.2017.04.017
KW  - Place Recognition
KW  - Robotics
N2  - Abstract Visual place recognition is the task of automatically recognizing a previously visited location through its appearance, and plays a key role in mobile robotics and autonomous driving applications. The difficulty of recognizing a revisited location increases with appearance variations caused by weather, illumination or point of view changes. In this paper we present a convolutional neural network (CNN) embedding to perform place recognition, even under severe appearance changes. The network maps images to a low dimensional space where images from nearby locations map to points close to each other, despite differences in visual appearance caused by the aforementioned phenomena. In order for the network to learn the desired invariances, we train it with triplets of images selected from datasets which present a challenging variability in visual appearance. Our proposal is validated through extensive experimentation that reveals better performance than state-of-the-art methods. Importantly, though the training phase is computationally demanding, its online application is very efficient.
M1  - img_url=http%3A%2F%2Fmapir.isa.uma.es%2Fmlopez%2Fthumbs%2Fantequera2017.png
M1  - rank_indexname=
M1  - rank_pos_in_category=59
M1  - rank_num_in_category=130
M1  - rank_cat_name=COMPUTER%20SCIENCE%2C%20ARTIFICIAL%20INTELLIGENCE
M1  - impact_factor=1.586
ER  -