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nológi
o, 29071 Málaga, SpainAbstra
tThis paper presents a mutual-information based optimization algorithm for improv-ing pie
ewise-linear (PWL) image registration. PWL-registration te
hniques, whi
hare well-suited for registering images of the same s
ene with relative lo
al distor-tions, divide the images in 
onjugate triangular pat
hes that are individually mappedthrough a�ne transformations. For this pro
ess to be a

urate, ea
h pair of 
or-responding image triangles must be the proje
tions of a planar surfa
e in spa
e;otherwise, the registration in
urs in errors that appear in the resultant registeredimage as lo
al distortions (distorted shapes, broken lines, et
.). Given an initialtriangular mesh onto the images, we propose an optimization algorithm that, byswapping edges, modi�es the mesh topology looking for an improvement in the reg-istration. For dete
ting the edges to be swapped we employ a 
ost fun
tion basedon the mutual information (MI), a metri
 for registration 
onsisten
y more robustto image radiometri
 di�eren
es than other well-known metri
s su
h as normalized
ross 
orrelation (NCC). The proposed method has been su

essfully tested withdi�erent sets of test images, both syntheti
 and real, a
quired from di�erent anglesand lighting 
onditions.Key words: Image registration, pie
ewise-linear fun
tions, mesh optimization,greedy sear
h, and mutual information
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1 Introdu
tionImage registration is a 
ru
ial stage in many 
omputer vision appli
ations likeimage fusion, 
hange dete
tion, mosai
king, 3D s
ene re
onstru
tion, et
. Inthis pro
ess one image remains �xed (the �xed or referen
e image) whereasthe other (the moving or input image), a
quired on a di�erent time, from adi�erent viewpoint and/or using a di�erent sensor, is spatially transformeduntil �tting with the �rst one. A broad variety of mapping fun
tions hasbeen reported in the literature in
luding polynomial [1℄, radial basis fun
tions[2℄, pie
ewise-linear [3℄ or -
ubi
 [4℄ fun
tions, multi-quadri
 fun
tions [5℄, B-splines fun
tions [6℄, et
. (see [7℄ for a survey).Of parti
ular signi�
an
e is the 
ase of pie
ewise-linear (PWL) fun
tions,whi
h are espe
ially suitable for registering images of polyhedral s
enes (typ-i
al in indoor and urban environments), sin
e they divide the images intotriangles whi
h are individually registered through a�ne transformations (see�g. 1(a)). For PWL registration to perform a

urately every pair of 
orre-sponding triangles must lie on proje
tions of a 3D planar surfa
e, otherwise,the registration may generate undesirable artifa
ts, su
h as broken lines, whi
hdiminish the registration quality (see �g. 1(a)).Current implementations of PWL image registration in
luded in s
ienti�
 im-age pro
essing software pa
kages su
h as Matlab [8℄, Image Registration Soft-ware [9℄ (from Image Fusion Systems Resear
h) or in remote sensing ones likeENVI/IDL [10℄, ERDAS [11℄, et
., generate the 
onjugate triangular meshesfrom a set of 
orresponden
e pairs by means of some triangulation te
hnique,typi
ally the Delaunay's re�nement method [12℄, whi
h produ
es triangles ofbalan
ed size and shape, but whi
h are not optimal for 
overing as manyplanar pat
hes as possible.In this paper, we propose a method to modify the topology of a given initialtriangular mesh by iteratively swapping its edges in order to improve the reg-istration of a pair of images. We state this pro
ess as a greedy sear
h [13℄ that,at ea
h step, fo
uses on a parti
ular quadrilateral and swap its 
entral edge(shared by the two adja
ent triangles) if the resultant triangles yield a bet-ter registration 
onsisten
y. Though a global minimum is not guaranteed, the2
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ewise-linear registration pro
ess to be su

essful, the trianglesmust be proje
tions of one single plane surfa
e of the s
ene, as the triangle {1, 2, 5} in(b); otherwise broken lines are produ
ed and the registration 
onsisten
y de
reases,as in (a).algorithm 
onverges to an optimized mesh whi
h produ
es a highly a

uratePWL-registration between the images. A by-produ
t of su
h improvement isthe possibility of ba
k-proje
ting the triangular mesh to spa
e and to re
on-stru
t an uns
aled 3D model of the s
ene. Noti
e that, although the proposedmethod is espe
ially suited for polyhedral s
enes, it 
an be also appli
able to
urved surfa
es. In that 
ase, the method tries to �nd the triangular mesh thatbetter approximate the surfa
e, whi
h is obviously limited by the geometri
alrealization (i. e. sele
ted verti
es) of the mesh.A key aspe
t of our proposal is that of measuring how good the registrationof a pair of 
onjugate quadrilateral image pat
hes is. In this work we proposethe use of the mutual information (MI) asso
iated to the intensity values ofthe pat
hes as a measure of their registration 
onsisten
y [14,15℄. Unlike otherwell-known metri
s su
h as normalized 
ross-
orrelation (NCC) [16℄ or sumof square di�eren
es (SSD) [17℄, MI 
an 
ope with non-linear di�eren
es inthe image radiometry and, 
onsequently results in 
lear advantage in manyappli
ations of registration.Next, a review of the most representative te
hniques of mesh optimizationis given, pla
ing spe
ial emphasis in those proposed within the image regis-3
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tration �eld. In se
tion 3, several assumptions and de�nitions, as well as theformulation used in subsequent se
tions, are presented. Se
tion 4 des
ribesthe proposed method, the 
onsisten
y estimation fun
tion and the optimiza-tion pro
ess. In se
tion 5, we present and dis
uss some experimental results.Finally, some 
on
lusions are outlined.2 Related worksThe generation of optimal triangular meshes is a problem of signi�
an
e ina variety of �elds su
h as obje
t modelling, surfa
e approximation, image
ompression, image re
onstru
tion, et
. Though its ultimate goal is to ap-proximate, as well as possible, some data by a pie
ewise planar fun
tion, the
on
rete goal of a mesh optimization te
hnique varies with the type of prob-lem. Thus, in obje
t modelling the optimization is aimed at generating 3Dtriangular meshes that properly represent the 3D shape of a s
ene or obje
tusing the minimum number of triangles. In image pro
essing we �nd inter-esting appli
ations where the so-
alled Data-Dependent-Triangulation (DDT)approa
h is used to approximate the intensity fun
tion, either to redu
e theamount of data of an image (as in image 
ompression [18℄), or to �t a 
ontin-uous pie
ewise-planar surfa
e upon the dis
rete image samples (image inter-polation [19℄).Mesh optimization te
hniques 
an be 
lassi�ed a

ording to di�erent perspe
-tives: the me
hanism used for modifying the mesh (i. e. type and s
ope of thea
tions), the metri
 for evaluating the goodness of a given mesh modi�
a-tion (energy or 
ost fun
tions), and the pro
edure for a

omplishing the meshre�nement.A

ording to the type and s
ope of the a
tions applied to modify the mesh,we en
ounter te
hniques where (see �g. 2):(1) only the topologi
al realization is modi�ed, by swapping edges [20,17,16,19℄,(2) only the geometri
al realization is modi�ed, by re�ning the vertex 
oor-dinates (approa
h mostly employed in image registration) [21,22,23,24℄,and(3) both the topologi
al and geometri
al realization are simultaneously re-4
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�ned, by splitting, 
ollapsing, and/or swapping edges and re�ning thevertex 
oordinates [25,26,27,28℄.
i

l

Initial mesh

l
k

j Internal edge

ii

lll

actions

edge split edge collapse edge swap

kkk hh

j jFigure 2. Edge-based a
tions employed to modify the topologi
al/geometri
al real-ization of a given mesh.Many of these methods were developed in the �eld of geometri
 modelling tosimplify and re�ne an initial very-detailed 3D mesh obtained upon a dense setof verti
es provided by a 3D sensor, for example, a laser range �nder [25,26℄.Similar methods have been also used for 3D s
ene re
onstru
tion [17,28,20℄,generation of 
ompatible meshes (i. e. isomorphi
 meshes of the interiors of twopolygons with 
orresponden
e between their verti
es) for 
onstru
ting sweptvolumes [29,30,31℄ and in di�erent appli
ations of the DDT 
on
ept to imagepro
essing [18,19,32℄.Unlike these methods, whi
h apply on 3D meshes, in pie
ewise-linear imageregistration we are provided with two 
onjugate 2D triangular meshes whi
hmust be modi�ed in an attempt to maximize their image registration 
onsis-ten
y. An example of this is the work in [21℄, whi
h relo
ates the mesh verti
es(the mesh topology remains �xed) in order to 
ompensate for the a�ne mo-tion in video streaming. Vertex 
oordinate re�nement, though being suitablefor smooth image distortions, does not provide enough 
orre
tion power to a
-
ommodate the possibly important geometri
 di�eren
es between the imageswhen they are a
quired from very di�erent angles, as happens in the exampleof �g. 1.Typi
ally, topologi
al mesh optimization te
hniques are formulated as mini-mization (or maximization) pro
esses that range from random sear
hes [20℄ tomore 
omplex pro
edures based on simulated annealing [33℄, bayesian sto
has-5
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ti
 models [28℄, variational approa
hes 2 [34℄, et
.Whatever the applied optimization te
hnique, one of the key points is that ofde�ning a 
onvenient 
ost or energy fun
tion to evaluate the enhan
ement inthe re�ned mesh if 
ertain a
tion is applied. Whereas in other �elds (obje
tmodelling, surfa
e �tting, image interpolation, et
.) measuring the quality of amesh 
an be a

omplished upon the available 3D points, in image registrationwe must rely only on the radiometri
 similarity between the referen
e andregistered image. So far, several metri
s have been used for this purpose: sumof square di�eren
es (SSD) [17℄, normalized 
ross-
orrelation (NCC) [16℄, andsome templates based on image di�eren
es [20℄.None of these measurements are invariant to non-linear radiometri
 di�eren
esbetween images, as it may be the 
ase of having images 
aptured by di�erent
ameras, or the same 
amera but with very di�erent lighting 
onditions, whi
hprovokes shadows, intensity saturations, re�e
tions, et
. In this paper, we pro-pose an optimization pro
ess driven by a 
ost fun
tion based on the mutualinformation (MI) of the images being registered. The implemented algorithmrelies on a greedy sear
h that modi�es the mesh topology by applying edgeswap operations that entail an in
rease in the MI. Though MI has been used asan image registration 
onsisten
y metri
 in some works [35,36,37,38,39℄, thisis the �rst time it has been integrated into a mesh optimization framework forpie
ewise-linear registration.3 Assumptions and de�nitionsIn this work we suppose that the s
ene proje
tion onto the sensor 
an beapproximated by a paraperspe
tive transformation, also 
alled a�ne or par-allel 
amera [40℄. This simpli�
ation is assumable in those 
omputer visionsetups where the perspe
tive e�e
ts are negligible, that is, parallel lines inspa
e almost keep their parallelism in image. A�ne proje
tion leads to a greatredu
tion in 
omplexity in many vision problems. In parti
ular, for image reg-istration, it implies that 3 points in 
orresponden
e (instead of the 4 ones
2 In www.itk.org, we 
an �nd a broad variety of 
ode whi
h implements numerousof these te
hniques su
h as potential yields, elasti
 bodies, et
.6
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required for its general form) su�
e to estimate the homography (also 
alleda�nity under this assumption) whi
h maps points from one image pat
h toanother [41℄. Thus, when performing an a�ne mapping between two 
onju-gate image triangles, they must perfe
tly mat
h; otherwise, the triangles areproje
tions of a non-planar surfa
e. Next, we introdu
e the notation employedin this work as well as some useful de�nitions.A triangular mesh is a pie
ewise-linear stru
ture 
onsisting of triangular fa
esput together along their edges and verti
es. Formally, a mesh is a pair M =

(K, V ), where V = {vi, i = 1, . . . , m∣vi ∈ ℝ
2} is a set of vertex positionswhi
h de�nes the shape of the mesh in ℝ

2 and K is a topologi
al spa
e, 
alledsimpli
ial 
omplex, whi
h determines the 
onne
tivity of the verti
es, edgesand fa
es. A simpli
ial 
omplex K 
onsists of a set of verti
es {1, . . . , m}together with a set of non-empty subsets of the verti
es, 
alled the simpli
esof K: the 0-simpli
es {i} ∈ K are verti
es, the 1-simpli
es {i, j} ∈ K areedges, and the 2-simpli
es {i, j, k} ∈ K are triangles or fa
ets [42,26℄.For a given simpli
ial 
omplex K (see �g. 3), the topologi
al realization, de-noted by ∣K∣, results of identifying the verti
es {1, . . . , m} with the standardbasis ve
tors {e1, . . . , em} of ℝm. Let � : ℝm 7→ ℝ
2 be the linear mappingthat sends the i -th standard basis ve
tor ei ∈ ℝ

m to vi ∈ ℝ
2. The geometri
alrealization of M is given by �V (∣K∣), where we write the subs
ript V in �V tomake expli
it that it is spe
i�ed by that parti
ular vertex set. The map �V is
alled an embedding if it is 1-1, that is, if �V (∣K∣) is not self-interse
ting.Thus, to refer to any point within a part s of the mesh (s ⊆ K), we employ thenotation p ∈ �V (∣s∣) ∈ ℝ

2. For example, p ∈ �V (∣t∣) refers to one point withinthe triangle t = {i, j, k} ∈ K; p ∈ �V (∣q∣) refers to one point within a quadri-lateral of M 
onsisting of two adja
ent triangles q = {{i, j, k}, {i, j, l}} ∈ K,and so on.In addition to the above general de�nitions, we introdu
e the following par-ti
ular ones, of interest for stating our method in the next se
tion:
∙ An edge {i, j} ∈ K is external or boundary if it is a subset of only one fa
ein K, and internal or shared otherwise.
∙ Given an internal edge e = {i, j} ∈ K, we de�ne the following fun
tions(see �g. 4): 7
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yFigure 3. Example of mesh representation: a mesh 
onsisting of one fa
e.
⋅ quad({i, j}, K) = {{i, j, l}, {i, j, k}} whi
h delivers the two triangles thatshare the edge e. We will also refer to these triangles as the �trianglesasso
iated to the edge e�.
⋅ bound({i, j}, K) = {{i, l}, {l, j}, {j, k}, {k, i}} whi
h gives the four edgesof the quadrilateral.

∙ Let M = (K, V ) and M ′ = (K, V ′) be the triangular meshes de�ned ontotwo images to register. M and M ′ have the same topologi
al realization s ⊆

K (they are isomorphi
) and present di�erent geometri
 realizations, givenby the set of verti
es' pairs {(vi, v′i), i = 1, . . . , n∣vi ∈ V, v′i ∈ V }. We de�nethe pie
ewise-linear transformation as the embedding f : �V (∣s∣) 7→ �V ′(∣s∣)whi
h geometri
ally maps a point p = (x, y)⊤ ∈ �V (∣s∣) to another point
p′ = (x′, y′)⊤ ∈ �V ′(∣s∣) as follows:

p′ = f �V (∣s∣) (p) =

⎧

⎨

⎩

f�V (∣t1∣) (p) if p ∈ �V (∣t1∣)

f�V (∣t2∣) (p) if p ∈ �V (∣t2∣)...
f�V (∣tm∣) (p) if p ∈ �V (∣tm∣)

(1)
where m is the number of triangles, and fi : �V (∣ti∣) 7→ �V ′ (∣ti∣) is an a�nemapping estimated from the geometri
al realization of the three verti
es of8
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ti ∈ s in both meshes, whi
h 
an be expressed by the transformation:
p′ = f�V (∣ti∣) (p) ≡

⎧

⎨

⎩

x′ = ai,1 + ai,2 x+ ai,3 y

y′ = bi,1 + bi,2 x+ bi,3 y

(2)being ai,j and bi,j, with j = 1, 2, 3, the a�ne transformation 
oe�
ients.Noti
e that on
e f �V (∣s∣) (for 
larity, f s from now on) has been applied
�V (∣s∣) = �V ′(∣s∣), that is, the 
orresponding fa
es of both meshes mustoverlap perfe
tly (remember that �V (∣s∣) represents all the points �pixels�within the mesh given by the simpli
ial s).

∙ An edge {i, j} ∈ K is said to be 3D-
ompatible if it lies on a proje
tion ofa 3D plane surfa
e, and 3D-in
ompatible otherwise. Sin
e 3D s
ene infor-mation is not available, we assume that edge 3D-in
ompatibility manifestsas an error in the pie
ewise-linear registration of its �asso
iated fa
es�: thelarger the error, the higher the 3D-in
ompatibility of the edge.
Edge swapping:  !  ! ˆswap byi j K k l K" "

Triangular face
External edge

K̂

Edge swapping:  !  !swap , by ,i j K k l K" "

K

Triangular face

i

l

i

l

 !# $  !  ! !quad , , , , , , ,i j K i j l i j k%

j

k

Internal edge
j

k

 !# $  !  ! !ˆquad , , , , , , ,k l K i k l j l k%

 !# $  !# $  !  !  !  ! !ˆbound , , bound , , , , , , , , ,i j K k l K i l l j j k k i% %Figure 4. The topologi
al a
tion of swapping an edge when all pre
onditions, asexplained in se
tion 4.2, are veri�ed. Figure also illustrates the topology elementsthat take part in a pie
ewise-linear image registration pro
ess. Observe that afterapplying the swapping a
tion the boundary of the quadrilateral does not 
hange.4 Des
ription of the proposed methodThe method presented in this paper modi�es the 
onne
tivity of the 
onju-gate meshes by iteratively swapping the mesh edge that leads to the greatestimprovement in the image registration 
onsisten
y. This pro
edure only af-fe
ts the mesh 
onne
tivity sin
e the number of verti
es and their 
oordinates9
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remain without modi�
ation.4.1 Mutual information as a metri
 for registration 
onsisten
yThe metri
 we employ for measuring the registration 
onsisten
y is the mutualinformation (MI) [43℄. MI measures the statisti
al dependen
y or informationredundan
y of two random variables. Unlike other similarity measures su
h asthe sum of square di�eren
es (SSD) or the normalized 
ross-
orrelation (NCC)whi
h allow for a fun
tional relationship between the gray-levels of the imagepat
hes to register, the MI responses to their statisti
al relationship, whi
h
an be estimated from the joint entropy. The advantage of this metri
 is thatit is more robust to possible image radiometri
 di�eren
es that are di�
ult(or impossible) to model by a fun
tion, whi
h happens to be the 
ase of noise,shadows and spe
ular re�e
tions or those stemmed from images a
quired fromdi�erent angles, with di�erent sensors or at di�erent moments in time [36℄.Mathemati
ally, the MI of two equal-sized 3 image pat
hes A and B 
an bewritten as:
MI (A,B) = H (A) +H (B)−H (A,B) (3)where H(A) and H(B) are the entropies of A and B, and H(A,B) their jointentropy:
H (A,B) =−

∑

a,b

PA,B (a, b) log2 PA,B (a, b)

H (A) =−
∑

a

PA (a) log2 PA (a) (4)
H (B) =−

∑

b

PB (b) log2 PB (b)being PA(a), PB(b) and PA,B(a, b) the probability distribution fun
tions esti-mated from the intensity joint histogram ℎ of A and B

3 Noti
e that the requirement that the two image pat
hes have the same size alwaysholds sin
e the moving image triangle is mapped to the referen
e one, having thenthe same number of pixels. 10
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PA,B (a, b) =
1

N
ℎA,B (a, b)

PA (a) =
∑

b

PA,B (a, b) (5)
PB (b) =

∑

a

PA,B (a, b)where
ℎA,B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ℎ(0, 0) ℎ(0, 1) . . . ℎ(0,M − 1)

ℎ(1, 0) ℎ(1, 1) . . . ℎ(1,M − 1)

. . . . . . . . . . . .

ℎ(M − 1, 0) ℎ(M − 1, 1) . . . ℎ(M − 1,M − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6)
N is the number of pixels in the image pat
h, and M is the number of his-togram bins, respe
tively.The value ℎA,B(a, b), a ∈ [0,M − 1], b ∈ [0,M − 1], is the number of 
orre-sponding pairs having the intensity value a in the �rst image and the intensityvalue b in the se
ond one. In the 
ase of 8-bit gray-s
ale images, the originalvalue of M is 256; however, in pra
ti
e, it is 
onvenient to use a lower value(e. g. 128, 64, 32, ...), for three reasons:(1) to make more reliable the estimation of the joint probability from thejoint histogram when N is not very large (i. e. the joint histogram needsto be representative enough);(2) to make the pro
ess less time 
onsuming, that is, less terms in the sumof equation (3); and(3) to provide the method robustness against intensity noise.In our implementation, given that the size of the image pat
hes is usually inthe range between some hundreds and a few thousands (triangles too smallare previously dis
arded from the initial mesh provided by the Delaunay trian-gulation), we have used 16 gray-level bins. An alternative way of over
omingthe problem of small triangles is to use non-parametri
 estimation methodsas the Parzen window, though it entails a higher 
omputational 
ost (readermay refer to [15℄ for more detail about this approa
h).11
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Observe from (4) that, when all the intensity values of the two images areindependent one from another (that is, without 
orrelation) the argument ofthe logarithm be
omes one, and the MI a
hieves its minimum at zero (MIis always non-negative). To illustrate how the joint histogram 
aptures theidea of statisti
al dependen
y, �g. 5 shows the joint histograms of two pairs ofequal-sized, syntheti
 images of just four gray-levels ea
h. When one of them isrotated, the joint histogram exhibits more dispersion than when they overlapperfe
tly.
Input image (B) Registered image (B’)

a) b)

,A B
h

, 'A B
h

Join histogram

estimation

Reference image (A)

Image B’

Image B

Image A

Image AFigure 5. Joint histograms of two pairs of syntheti
 images: (a) a misaligned pair, and(b) a perfe
tly overlapped pair. Observe that the joint histogram (of 32 gray-levels)presents less dispersion when the images are aligned. Noti
e that this fa
t is inde-pendent of the intensity values of the two images being identi
al or not.Finally, with the purpose of illustrating the performan
e of the MI in 
ompar-ison to the NCC we have 
ondu
ted the two experiments shown in �g. 6. Inthese experiments we evaluate the similarity of two image quadrilaterals of asyntheti
 
ube sensed from di�erent points of view using both MI and NCC.The image triangles are given by the two possible topologi
al 
on�gurations ofthe verti
es {1, 2, 3, 4}. In the �rst experiment (�g. 6(a)), the 
ube sides havebeen randomly 
oloured, whereas in the se
ond one (�g. 6(b)), the position ofthe 
ube respe
t to the illumination sour
e has been 
hanged. We see how theMI outputs a larger value when the topologi
al 
on�guration is 3D-
ompatible,while the NCC fails. These simple examples show the e�e
tiveness of the MIwhen applied to image pairs with non-fun
tional radiometri
 
hanges, in 
on-12
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trast to NCC, whi
h 
an manage image intensity di�eren
es but only if theyfollow a linear fun
tion (that is, intensity shift and/or 
ontrast s
aling).
Normalized cross correlation vs. Mutual information

input reference input reference

MI1 =

0.3047

NCC1 =

-0.5803

MI1 =

0.1426

NCC1 =

-0.2820

w
a

p
 a

c
ti
o

n

MI2 =

0 6905

MI2 =

0 6694

S
w

b)a)

0.6905

NCC2 =

-0.9264

0.6694

NCC2 =

-0.8865Figure 6. Two experiments illustrating the suitability of the Mutual Information (MI)as a 
onsisten
y measure for image registration. The �gures show the MI in 
ompar-ison to the Normalized Cross-Correlation (NCC) when (a) the obje
t is 
oloured ina di�erent manner and (b) the illumination of the s
ene is 
hanged. The measuresare 
omputed from the image triangles given by the two possible topologi
al real-izations of the verti
es {1, 2, 3, 4}. Observe how the NCC fails in both experiments,giving lower values in topologi
al 
on�gurations 
ompatible with the s
ene. On the
ontrary, the MI delivers a 
lear improvement in both 
ases.4.2 Che
king edges to swapWe take advantage of the robustness of the MI for 
he
king the 3D-
ompatibilityof the mesh edges. Thus, given the images I and I ′ to register and their 
orre-sponding meshes de�ned by M = (K, V ) and M ′ = (K, V ′), we determine the3D-
ompatibility of an edge {i, j} ∈ K by 
omputing the registration 
onsis-ten
y of the quadrilaterals s = quad({i, j}, K) and ŝ = quad({k, l}, K̂), thatis, before (!s) and after (!ŝ) the edge swap, respe
tively (see �g. 4). Formally,that improvement is measured by:
Δ! ({i, j}) = MI (I (r) , I ′ (f ŝ (r)))

︸ ︷︷ ︸

!ŝ

−MI (I (r) , I ′ (f s (r)))
︸ ︷︷ ︸

!s

(7)where r refers to the pixels 
ontained in �V (∣s∣) (or �V (∣ŝ∣), sin
e both ge-ometri
al realizations are identi
al). Thus, I(r) represents the quadrilateralregion of the referen
e-image de�ned by s, and I ′(f s(r)) and I ′(f ŝ(r)) the13
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transformations of its input-image 
ounterparts a

ording to the two possibletopologi
al 
on�gurations s and ŝ, before and after the edge swap, respe
tively.
Patch reversal

i i

K

Invalid 

action!!!

j

k

l
j

k

l

action!!!

 !  ! !, , , , ,s i j l i k j K" #Figure 7. A pat
h reversal produ
ed by a edge swap a
tion in a 
on
ave quadrilateral.Before evaluating the 3D-
ompatibility of any edge, say {i, j} ∈ K, it mustbe 
he
ked if it veri�es the following pre
onditions:(1) {i, j} must be an internal edge,(2) the resultant swapped edge is a new one ({k, l} /∈ K), and(3) the a
tion does not produ
e a pat
h reversal in K̂. A pat
h reversal is amesh in
onsisten
y produ
ed when the shared edge of two adja
ent fa
es,whi
h make up a 
on
ave quadrilateral, is swapped (see �g. 7).On
e these pre
onditions are met, the swap of the edge is a

epted ifΔ!({i, j}) >

0, that is, when it leads to some in
rease in the MI.In pra
ti
e, we only a

ept an a
tion to be applied if the in
rease is above agiven threshold �. The aim of this threshold is to prevent the appli
ation ofa
tions on quads that lie on proje
tions of planar surfa
es and, be
ause of theimage resampling and the 
omputational errors, may yield small 
onsisten
ydi�eren
es that should not be 
onsidered as true improvements. As 
onse-quen
e of this threshold, a
tions that entail real registration improvementsless than � will not be dete
ted.The estimation of the MI (and so, the estimation of Δ!) is sensitive to thenumber samples (i. e. the number of pixels in the quadrilateral), to the numberof output bins, and, in the 
ase of the registration pro
ess, to the resamplingfun
tion used (i. e. nearest neighbour, bilinear, or bi
ubi
); sin
e it does notexist an analyti
al expression that relates Δ! with these parameters, we haveexperimentally analysed the behaviour of ∣Δ!∣ when applied to quadrilateralsthat lie on proje
tions of planar surfa
es in order to properly 
hoose the valueof � (the reader 
an �nd a brief des
ription of this experiment in �g. 8). From14
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this study, we have veri�ed that ∣Δ!∣ keeps below 0.008. A

ording to thisresult, we have set the value of � to 0.01.
15

Number of bins = 16, Resampling function = bilinear

10

15

5

0 1 2 3 4 5 6 7 8

x 10
-3

0

| !|Figure 8. Histogram of the ∣Δ!∣ values obtained from swap a
tions on planar sur-fa
es, whi
h ideally should output a zero value. To a

omplish the experiment, wehave sele
ted 100 pairs of image quads of planar surfa
es (20 of them manually se-le
ted and the other 80 ones obtained by modifying the original size of the sele
tedones); next, the value of ∣Δ!∣ is 
omputed for ea
h pair, leaving the number of binsand the resampling fun
tion �xed. Noti
e that these parameters do not 
hange alongthe optimization pro
ess, so we only analyse the in�uen
e of the number of sampleson the estimation of the MI.4.3 Mesh optimizationThe overall optimization pro
ess 
an be formulated as a greedy sear
h [44℄,whi
h starts with two 
orresponding triangular meshes M and M ′ resulting,for example, from the appli
ation of a Delaunay's triangulation method overa set of the 
onjugate points identi�ed in both images (either manually orby automati
 methods [45℄). Though greedy sear
h may fall in lo
al maxi-mums, its 
omputational 
ost is signi�
atively lower than other optimizationalternatives based on geneti
 algorithms or simulated annealing.Formally, the optimization pro
ess 
an be expressed as �nding the simpli
ial
omplex K̂ that maximizes the registration 
onsisten
y of the whole images,that iŝ
K = argmax

K
MI (I (m) , I ′ (f K (m))) (8)where m = �V (∣K∣) represents all image pixels within the mesh given by K.To generate the two isomorphi
 meshes M = (K, V ) and M ′ = (K, V ′):15
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(1) the referen
e-image point set V is triangulated by means of some trian-gulation te
hnique, then, the topologi
al ∣K∣ and geometri
al realization
�V (∣K∣) are generated;(2) the 
onjugate mesh �V ′(∣K∣) is generated by mapping ∣K∣ to the 
or-responding input-image point set V ′. Though �V (∣K∣) is an embedding,
�V ′(∣K∣) may not be, sin
e self-interse
tions in �V ′(∣K∣) (so 
alled pat
hreversals) may appear be
ause of o

lusions or large 
amera displa
e-ments (see �g. 9(a)). Therefore, the assumption that the expression (1) isa one-to-one mapping is not true. To over
ome su
h in
onsisten
ies, weanalyze the initial topology applying the following modi�
ations:(a) if one of the edges of the pat
h reversal is external, the triangle that
ontains it is removed, as shown in �g. 9(b);(b) if, on the 
ontrary, none of the edges is external, we swap the sharededge of the two a�e
ted triangles, as shown in �g. 9(
).
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a) b) c)

Reference image

Input image

Initial topology
Removing patch reversal

in external edges

Removing patch reversal

in internal edges

Figure 9. Topologi
al 
hanges proposed for solving the pat
h reversals in the initialmeshes. (a) The initial meshes and the two situations where pat
h reversal o

urs.(b) Solution for a pat
h reversal of an external edge: the triangle that 
ontains theexternal edge {7, 9} is removed. (
) Pat
h reversal of an internal edge: the internaledge {2, 6} shared by the two a�e
ted triangles is swapped.On
e the mesh has been 
he
ked for pat
h reversals, ea
h edge of the meshis analyzed following the greedy sear
h depi
ted in algorithm 1. It starts by
reating a sorted list (in des
ending order) of the improvement in registration16
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onsisten
y Δ! for all the edges of the mesh. Noti
e that for properly sortingthe list, the values of MI in (7) must be normalized, so, we employ the nor-malized mutual information (NMI) (reader may refer to [14℄ for other possibleMI normalized variants), mathemati
ally:
NMI (A,B) =

MI (A,B)

H (A,B)
(9)This list is 
omputationally expensive to generate, but this is done just on
e,at the beginning. At ea
h iteration of the optimization pro
ess, the �rst edgeof the 
urrent list is swapped, and the list is updated by 
he
king only thoseedges a�e
ted by the swapping a
tion (its boundary). It is 
lear that su
himprovement in the lo
al 
onsisten
y leads to an improvement in the globalone. The algorithm stops when the list is empty, that is, when all the meshedges have been explored and no further improvement 
an be a
hieved byswapping a
tions.Unlike other optimization te
hniques employed in 3D s
ene re
onstru
tion, asthe random sear
h formulated in [20℄, this pro
edure guarantees the iterativeimprovement of the image registration 
onsisten
y up to the degree that thegeometri
al realization of the mesh tolerates. Noti
e that, without relo
atingthe verti
es and, possibly, introdu
ing additional ones, the mesh may be notgood enough to 
ompletely avoid 3D-in
ompatible edges. Fig. 10 illustratesthe proposed optimization method when applied to an initial topologi
al 
on-�guration 
ontaining several 3D-in
ompatible edges 4 .5 Experimental resultsThis se
tion shows some experimental results that illustrate the performan
eof our approa
h. We 
ompare it to other two methods [17,20℄, whi
h also em-ploy both swap a
tions for exploring the sear
h spa
e and image similarityfun
tions for driving the sear
h pro
ess. One is the work by Morris & Kanade[17℄ whi
h aims at dete
ting in
onsisten
ies in a 3D mesh by measuring the

4 Illustrative videos 
an also be downloaded from http://babel.isa.uma.es/mapir/index.php/theoreti
al/46-mesh-optimization-paper.17
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Algorithm 1 Given two images I and I ′ to register, and two initial triangularmeshes on them de�ned by M = (K, V ) and M ′ = (K, V ′), determine anew topologi
al realization by iteratively swapping edges whi
h improve the
onsisten
y of PWL image registration.1: // Build a sorted list (indexed by edge) with the Δ! of ea
h edge2: Δ!_list ⇐ ∅3: for all {i, j} ∈ K do4: if {i, j} veri�es the pre
onditions then5: Δ!_list[{i, j}] ⇐ Δ!({i, j}) // from expression (7)6: end if7: end for8: sort Δ!_list in des
ending order9:10: // Iterate while there exist an edge swap that improves the 
onsisten
y11: while the �rst element of Δ!_list > � do12: swap its 
orresponding edge, say {i, j} ∈ K by {k, l} ∈ K̂13: Δ!_list[{i, j}] ⇐ ∅ // remove {i, j} from the list14: // Update Δ!_list with the Δ! of the boundary edges of {i, j}15: for all {m,n} ∈ bound({i, j}, K) do16: if {m,n} veri�es the pre
onditions then17: Δ!_list[{m,n}] ⇐ !({m,n}) // from expression (7)18: end if19: end for20: sort Δ!_list in des
ending order21:22: // Update de topologi
al realization23: K ⇐ K̂24: end while
similarity of the image pat
hes that results from proje
ting it onto the im-ages. It applies a greedy sear
h driven by the sum of square di�eren
es ofthe whole images (a global approa
h). The other one is the work by Nakatujiet al. [20℄ whi
h proposes a random sear
h that pursues the re�nement ofthe topologi
al realization of two 
onjugate 2D meshes for an optimal 3D im-age re
onstru
tion. For dete
ting 3D-in
ompatible edges the authors employa square template of �xed size that is 
orrelated with the image pat
hes (alo
al approa
h). Sin
e the implementation of these methods are not availableonline we have implemented them in Matlab following the indi
ations of bothpapers as faithfully as possible. We have also in
luded a 
omparison of theproposed method using both MI and NCC-based 
ost fun
tions.18
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Action 3Action 2

Figure 10. Illustration of the optimization pro
ess. The initial mesh shows a topolog-i
al 
on�guration 
ontaining several 3D-in
ompatible edges (edges {9, 14}, {14, 17}and {7, 10}). As depi
ted in the algorithm 1, when the edge {14, 17} is swapped(se
ond a
tion), its adja
ent edges are 
onsidered again for swapping, whi
h leadsto the edge {9, 14} to be swapped (third a
tion).5.1 Datasets and methodologyWe have employed images belonging to the ALOI library [46℄, whi
h in
ludesreal images of a broad variety of obje
ts, as well as syntheti
 images generatedfrom VRML models and real images of urban s
enes (e. g. building fa
ades).The purpose of sele
ting this diversity of images is to test the method underdi�erent types of illumination, image 
ontents, and observation poses.The 
onjugate points (CP) that de�ne the geometri
al realization of the meshhave been obtained in two ways: manually and automati
ally. For the latterthe following pro
edure has been implemented: the Harris 
orner dete
tor [47℄identi�es distin
tive feature points in the referen
e image, and then the Lu
as-Kanade feature tra
ker [48℄ dete
ts their 
orresponding points in the inputimage. For both, the manual and automati
 
ase, given the set of original
onjugate points, the a�ne epipolar geometry of the two images was robustlyestimated applying the MAPSAC algorithm [49℄, whi
h allowed us to dis
ardspurious pairs. 19
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Although 
onsistently mat
hed, some of the identi�ed CPs give rise to 3D-in
ompatible edges on
e the Delaunay's triangulation algorithm [12℄ is appliedon them (as in �g. 1). The obje
tive of our optimization method is to 
orre
t,as mu
h as possible, those situations. Whether this improvement is a
hievedor not is assessed in two di�erent ways:a) by evaluating the goodness of the image registration, that is, by measuringthe MI of the 
omplete referen
e and registered images (expression 8),andb) by 
he
king if the uns
aled 3D s
ene re
onstru
ted from the two resultingmeshes is more a

urate than that obtained from the initial ones. Inthe event that 3D s
ene stru
ture was known, it 
ould be used for thatevaluation. Otherwise, as it is the 
ase here, we make the evaluation byvisual inspe
tion.Fig. 11(a-f) shows some of the test images employed in this work, as well asthe initial meshes generated from the identi�ed CP sets (automati
ally in the
ases (
,f), and manually for the rest).5.2 ResultsFigures 11(g-l) show the �nal meshes obtained when running our methodfor the image pairs shown in �g. 11(a-f). The e�e
tiveness of the method inthese experiments is demonstrated in �g. 12, and table 1. In the �rst, theimprovement in the global (whole image) registration 
onsisten
y is displayedalong the di�erent swapping a
tions. Table 1 shows the per
entage of 3D-
ompatible edges (determined by visual inspe
tion) whi
h are not boundaryedges, that is, the mesh 
orre
tness. The algorithm stops, in less than 25iterations for all these 
ases, when all the mesh edges have been explored andno further improvement 
an be done by applying swap a
tions.Noti
e that, during the optimization pro
ess, there are a
tions that appar-ently do not improve the image registration 
onsisten
y (revealed as small�at stret
hes in the 
urves of �g. 12(b,
,f)). We say �apparently�, sin
e infa
t su
h an improvement exists (otherwise the a
tion is not applied) but its
ontribution to the global registration 
onsisten
y is small. A

ording to the20
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Images and initial meshes

a)

b)

c)

d)

e)

f)

Final mesh

g)

h)

i)

j)

k)

l)Figure 11. (a-f) Pairs of real images of polyhedron s
enes and their 
orrespondingDelaunay triangular meshes. (g-l) Optimized triangular meshes provided by ourmethod. Observe how the proposed pro
ess swaps those edges whi
h go from oneplane surfa
e to another. 21
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algorithm 1, despite produ
ing a small improvement, these a
tions are the best
andidates at ea
h iteration, leading to topologi
al 
on�gurations that in sub-sequent iterations substantially improve the 
onsisten
y. This situation is typ-i
al in those 
on�gurations where several adja
ent edges are 3D-in
ompatible,as for example, the image pair shown in �g. 11(b).
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e) f)Figure 12. Results of the experimental tests for ea
h of the image pairs shown in �g.11(a-d)). The plots show a signi�
ant improvement in the registration 
onsisten
yfor all analyzed pairs. Noti
e that in plots (b),(
), and (f) there are some iterationswhere the registration 
onsisten
y seems to remain steady after applying a swappinga
tion. This is be
ause the swapped edges lie on proje
tions of almost-plane surfa
esof the s
ene.Table 1 summarizes the 
orre
tness, and the 
omputational time for ea
h of22
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the 
ompared methods. We 
an see that the performan
e of the three methodsde
rease for the same image pair, parti
ularly, the method of Morris & Kanade,whi
h employs the SSD of the whole images as 
ost fun
tion (less robust toillumination 
hanges than MI). Another drawba
k of their approa
h is its high
omputational 
ost, with prohibitive times for large number of edges (as forexample, for the image pair of �g. 11(
)). A similar behaviour is observed inthe method of Nakatuji et al., where the 
ost of 
omputing the a�nities formapping the 
orresponding image pat
hes to the template also slows down theoptimization pro
ess. When the 
onjugate points do not lie on the verti
es oredges of the polyhedral s
ene (whi
h happens in pra
ti
e), the methods ofMorris & Kanade and Nakatuji et al. present an important de
rease of theire�e
tiveness: the number of a
tions signi�
atively grows and the 
orre
tnessde
reases. This fa
t 
an be 
learly observed in the results for the image pairshown in �g. 11(
).

23
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Table1 Meshdata,n
umberofapp
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It should be remarked the robustness of our method to 
hanges in illumination,as 
an be appre
iated in the results for the image pair of the �g. 11(b), a pair ofurban s
enes a
quired under very di�erent lighting 
onditions. These 
hangesgo also unnoti
ed for the NCC variant of the proposed method (see the 
olumn2 of the table 1). The 
omputational 
ost (per a
tion) of both variants are quitesimilar.Finally, with the aim of illustrating the possibility of generating 
onsistent3D re
onstru
tions from a pair of registered 
onjugate images, we have re
on-stru
ted an uns
aled 3D surfa
e of the sensed s
ene by proje
ting ba
k the twomeshes 6 (see �g. 13). Apart from its interest in 3D s
ene re
onstru
tion, itallows us to 
he
k the e�e
tiveness of the proposed pro
edure by 
ontrastingthe 3D models asso
iated to the initial and re�ned meshes. Our analysis haslimited to visually 
ontrasting the initial and optimal 3D re
onstru
tions.6 Con
lusionsImage registration is an essential step in a broad variety of image pro
ess-ing appli
ations where the �nal result 
omes from the 
ombination of severalsour
es, as for example 
hange dete
tion, image fusion, 3D s
ene re
onstru
-tion, et
.In this paper we have proposed a te
hnique for automati
ally optimizing the
onjugate triangular meshes employed by a pie
ewise-linear registration pro-
ess: having more suitable meshes means that the registration is more a

urate.To a
hieve that, we iteratively modify the 
onne
tivity of both meshes throughedge swapping a
tions. The fun
tion employed for evaluating the edge to beswapped is based on the mutual information, whi
h is notoriously more robustthan other well-known metri
s su
h as NCC or SSD, sin
e it is less sensitive to
hanges in lighting 
onditions or noise. The optimization pro
edure is formu-lated as a greedy sear
h whi
h �nishes when the mesh topology 
an no longerbe re�ned, that is, when all mesh edges have been su

essfully 
he
ked and nofurther improvement is possible through edge swap a
tions.
6 For example, by applying the fa
torization algorithm for a�ne re
onstru
tionproposed in [41℄ (pag. 437). 25
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The proposed method has been su

essfully tested with di�erent image pairsof urban s
enes, polyhedral obje
ts, both real and syntheti
, whi
h have beena
quired from di�erent angles and/or under di�erent lighting 
onditions. Themethod outperforms two previously published approa
hes, whi
h also employswapping a
tions for exploring the sear
h spa
e and image similarity fun
tionsfor driving the sear
h pro
ess.

a) b)Figure 13. 3D s
ene re
onstru
tions generated from two pairs of 
onjugate meshes:(a) the initial meshes and (b) the re�ned ones. In plots (a) we 
an observe someartifa
ts (e. g. broken lines), in pla
es where 3D-in
ompatible edges exist. Theseartifa
ts disappear when these edges are 
onveniently swapped, as shown in plots(b). 26

draft version

Journal of Mathematical Imaging and Vision, vol. 37, no. 2, pp. 166–182, 2010.



Referen
es[1℄ J. González, G. Ambrosio, V. Arévalo, Automati
 Urban Change Dete
tion fromthe IRS-1D PAN, in: IEEE-ISPRS Joint Workshop on Remote Sensing and DataFusion over Urban Areas, Rome, Italy, 2001, pp. 320�323.[2℄ F. Bookstein, Prin
ipal Warps: Thin-Plate-Splines and the De
omposition ofDeformations, IEEE Transa
tions on Pattern Analysis and Ma
hine Intelligen
e11 (6) (1989) 567�585.[3℄ A. Goshtasby, Pie
ewise Linear Mapping Fun
tions for Image Registration,Pattern Re
ognition 19 (6) (1986) 459�466.[4℄ A. Goshtasby, Pie
ewise Cubi
 Mapping Fun
tions for Image Registration,Pattern Re
ognition 20 (5) (1987) 525�533.[5℄ M. Ehlers, D. Fogel, High-Pre
ision Geometri
 Corre
tion of Airborne RemoteSensing Revisited: The Multiquadri
 Interpolation, in: SPIE: Image and SignalPro
essing for Remote Sensing, Vol. 2315, 1994, pp. 814�824.[6℄ J. Kybi
, M. Unser, Fast Parametri
 Elasti
 Image Registration, IEEETransa
tions on Image Pro
essing 12 (11) (2003) 1427�1442.[7℄ B. Zitová, J. Flusser, Image Registration Methods: A Survey, Image and VisionComputing 21 (11) (2003) 977�1000.[8℄ The Mathworks, http://www.mathworks.
om.[9℄ Image Fusion Systems Resear
h, Transformation Fun
tions for ImageRegistration, Te
h. rep., IFSR Te
hni
al Report (2003).URL Availableonlineat:http://www.imgfsr.
om/ifsr_tf.pdf(a

essed27/04/2007)[10℄ ITT Visual Information Solutions, http://www.ittvis.
om/envi.[11℄ Lei
a Geosystems, http://gi.lei
a-geosystems.
om.[12℄ J. Shew
huk, Le
ture Notes on Delaunay Mesh Generation, Te
h. Rep. 3,University of California at Berkeley (1999).[13℄ T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introdu
tion to Algorithms, 2ndEdition, MIT Press, 2001. 27

draft version

Journal of Mathematical Imaging and Vision, vol. 37, no. 2, pp. 166–182, 2010.



[14℄ F. Maes, A. Collignon, D. Vandermeulen, G. Mar
hal, P. Suetens, MultimodalityImage Registration by Maximization of Mutual Information, IEEE Transa
tionson Medi
al Imaging 16 (2) (1997) 187�198.[15℄ P. Viola, W. Wells, Alignment by Maximization of Mutual Information,International Journal of Computer Vision 24 (2) (1997) 137�154.[16℄ J. Perrier, G. Agin, P. Cohen, Image-Based View Synthesis for Enhan
edPer
eption in Teleoperation, in: SPIE: Enhan
ed and Syntheti
 Vision, Vol.4023, 2000, pp. 332�338.[17℄ D. Morris, T. Kanade, Image-Consistent Surfa
e Triangulation, in: IEEEInternational Conferen
e on Computer Vision and Pattern Re
ognition(CVPR'00), Hilton Head, SC, USA, 2000, pp. 332�338.[18℄ B. Lehner, G. Umlauf, B. Hamann, Image Compression using Data-DependentTriangulations, 3rd International Symposium on Visual Computing (ISVC'07),Part I 4841 (2007) 351�362.[19℄ X. Yu, B. Bryan, T. Sederberg, Image Re
onstru
tion using Data-DependentTriangulation, Computer Graphi
s and Appli
ations 21 (3) (2001) 62�68.[20℄ A. Nakatuji, Y. Sugaya, K. Kanatani, Mesh Optimization using an In
onsisten
yDete
tion Template, in: IEEE International Conferen
e on Computer Vision(ICCV'05), Vol. 2, Beijing, China, 2005, pp. 1148�1153.[21℄ M. Servais, T. Vla
hos, T. Davies, Bi-Dire
tional A�ne Motion Compensationusing a Content-Based, Non-Conne
ted, Triangular Mesh, in: EuropeanConferen
e on Visual Media Produ
tion (CVMP'04), London, UK, 2004, pp.49�58.[22℄ B. Yip, J. Jin, Image Registration Using Triangular Mesh, Advan
es inMultimedia Information Pro
essing 3331 (2004) 298�303.[23℄ D. S
hlesinger, B. Fla
h, A. Shekhovtsov, A Higher Order MRF-Model forStereo-Re
onstru
tion, Pattern Re
ognition 3175 (2004) 440�446.[24℄ B. Matuszewski, J. Shen, L. Shark, Elasti
 Image Mat
hing with EmbeddedRigid Stru
tures using Spring-Mass System, in: IEEE International Conferen
eon Image Pro
essing, Vol. 2, 2003, pp. 937�940.[25℄ H. Hoppe, Progressive Meshes, Computer Graphi
s 30 (Annual Conferen
eSeries) (1996) 99�108. 28

draft version

Journal of Mathematical Imaging and Vision, vol. 37, no. 2, pp. 166–182, 2010.



[26℄ H. Hoppe, T. DeRose, T. Du
hamp, J. M
Donald, W. Stuetzle, MeshOptimization, Computer Graphi
s 27 (Annual Conferen
e Series) (1993) 19�26.[27℄ P. de Bruin, P. van Meeteren, F. Vos, A. Vossepoel, F. Post, A

urate and HighQuality Triangle Models from 3D Grey S
ale Images, Medi
al Image Computingand Computer-Assisted Intervention (MICCAI'02), Part II 2489 (2002) 348�355.[28℄ G. Vogiatzis, P. Torr, R. Cipolla, Bayesian Sto
hasti
 Mesh Optimisation for 3DRe
onstru
tion, in: British Conferen
e on Ma
hine Vision (BMVC'03), Norwi
h,UK, 2003, pp. 711�718.[29℄ V. Surazhsky, C. Gotsman, High quality 
ompatible triangulations, in:Pro
eedings of 11th International Meshing Roundtable, 2002, pp. 183�192.[30℄ V. Surazhsky, C. Gotsman, High Quality Compatible Triangulations,Engineering with Computers 20 (2) (2004) 147�156.[31℄ Y. Wang, C. C. L. Wang, M. M. F. Yuen, Dupli
ate-skins for 
ompatible meshmodelling, in: SPM '06: Pro
eedings of the 2006 ACM symposium on Solid andphysi
al modeling, ACM, New York, NY, USA, 2006, pp. 207�217.[32℄ S. Battiato, G. Gallo, G. Messina, SVG Rendering of Real Images UsingData Dependent Triangulation, in: Computer graphi
s (SCCG'04), 20th SpringConferen
e on, ACM, New York, NY, USA, 2004, pp. 185�192.[33℄ L. S
humaker, Computing Optimal Triangulations using Simulated Annealing,Computer Aided Geometri
 Design 10 (3-4) (1993) 329�345.[34℄ National Library of Medi
ine Insight Segmentation and Registration Toolkit,http://www.itk.org.[35℄ A. Cole-Rhodes, K. Johnson, J. LeMoigne, I. Zavorin, MultiresolutionRegistration of Remote Sensing Imagery by Optimization of Mutual Informationusing a Sto
hasti
 Gradient, IEEE Transa
tions on Image Pro
essing 12 (12)(2003) 1495�1511.[36℄ H. Chen, P. Varshney, M. Arora, Performan
e of Mutual Information SimilarityMeasure for Registration of Multitemporal Remote Sensing Images, IEEETransa
tions on Geos
ien
e and Remote Sensing 41 (11) (2003) 2445�2454.[37℄ H. Xie, L. Pier
e, F. Ulaby, Mutual Information Based Registration of SARImages, in: IEEE International Conferen
e on Geos
ien
e and Remote SensingSymposium (IGARSS'03), Vol. 6, 2003, pp. 4028�4031.29

draft version

Journal of Mathematical Imaging and Vision, vol. 37, no. 2, pp. 166–182, 2010.



[38℄ J. Inglada, A. Giros, On the Possibility of Automati
 Multisensor ImageRegistration, IEEE Transa
tions on Geos
ien
e and Remote Sensing 42 (10)(2004) 2104�2120.[39℄ J. Kern, M. Patti
his, Robust Multispe
tral Image Registration Using Mutual-Information Models, IEEE Transa
tions on Geos
ien
e and Remote Sensing45 (5) (2007) 1494�1505.[40℄ G. Xu, Z. Zhang, Epipolar Geometry in Stereo, Motion, and Obje
t Re
ognition:A Uni�ed Approa
h, 1st Edition, Kluwer A
ademi
 Publishers, Norwell, MA,USA, 1996.[41℄ R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, 2ndEdition, Cambridge University Press, Cambridge, UK, 2004.[42℄ E. Spanier, Algebrai
 Topology, 1st Edition, M
Graw-Hill, New York, NY, USA,1966.[43℄ T. Cover, J. Thomas, Elements of Information Theory, 1st Edition, John Wiley& Sons, In
., New York, NY, USA, 1991.[44℄ G. Strang, Introdu
tion to Applied Mathemati
s, 1st Edition, Wellesley-Cambridge Press, Wellesley, MA, USA, 1986.[45℄ V. Arévalo, J. Gonzalez, An Experimental Evaluation of Non-Rigid RegistrationTe
hniques on Qui
kBird Satellite Imagery, International Journal of RemoteSensing 29 (2) (2008) 513�527.[46℄ J. Geusebroek, G. Burghouts, A. Smeulders, The Amsterdam Library of Obje
tImages, International Journal of Computer Vision 61 (1) (2005) 103�112.[47℄ C. Harris, M. Stephens, A Combined Corner and Edge Dete
tor, in: Alvey VisionConferen
e, Vol. 4, Man
hester, UK, 1988, pp. 147�151.[48℄ J. Bouguet, Pyramidal Implementation of the Lu
as-Kanade Feature Tra
ker.Des
ription of the Algorithm, Te
h. rep., Intel Corporation, In Mi
ropro
essorResear
h Labs (1999).URL Availableonlineat:http://robots.stanford.edu/
s223b04/algo_tra
king.pdf(a

essed26/06/2006)[49℄ P. Torr, A Stru
ture and Motion Toolkit in Matlab: Intera
tive Adventures inS and M, Te
h. Rep. MSR-TR-2002-56, Mi
rosoft Resear
h (2002).URL Availableonlineat:ftp://ftp.resear
h.mi
rosoft.
om/pub/TR/TR-2002-56.ps(a

essed27/03/2007)30

draft version

Journal of Mathematical Imaging and Vision, vol. 37, no. 2, pp. 166–182, 2010.




