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1 IntrodutionImage registration is a ruial stage in many omputer vision appliations likeimage fusion, hange detetion, mosaiking, 3D sene reonstrution, et. Inthis proess one image remains �xed (the �xed or referene image) whereasthe other (the moving or input image), aquired on a di�erent time, from adi�erent viewpoint and/or using a di�erent sensor, is spatially transformeduntil �tting with the �rst one. A broad variety of mapping funtions hasbeen reported in the literature inluding polynomial [1℄, radial basis funtions[2℄, pieewise-linear [3℄ or -ubi [4℄ funtions, multi-quadri funtions [5℄, B-splines funtions [6℄, et. (see [7℄ for a survey).Of partiular signi�ane is the ase of pieewise-linear (PWL) funtions,whih are espeially suitable for registering images of polyhedral senes (typ-ial in indoor and urban environments), sine they divide the images intotriangles whih are individually registered through a�ne transformations (see�g. 1(a)). For PWL registration to perform aurately every pair of orre-sponding triangles must lie on projetions of a 3D planar surfae, otherwise,the registration may generate undesirable artifats, suh as broken lines, whihdiminish the registration quality (see �g. 1(a)).Current implementations of PWL image registration inluded in sienti� im-age proessing software pakages suh as Matlab [8℄, Image Registration Soft-ware [9℄ (from Image Fusion Systems Researh) or in remote sensing ones likeENVI/IDL [10℄, ERDAS [11℄, et., generate the onjugate triangular meshesfrom a set of orrespondene pairs by means of some triangulation tehnique,typially the Delaunay's re�nement method [12℄, whih produes triangles ofbalaned size and shape, but whih are not optimal for overing as manyplanar pathes as possible.In this paper, we propose a method to modify the topology of a given initialtriangular mesh by iteratively swapping its edges in order to improve the reg-istration of a pair of images. We state this proess as a greedy searh [13℄ that,at eah step, fouses on a partiular quadrilateral and swap its entral edge(shared by the two adjaent triangles) if the resultant triangles yield a bet-ter registration onsisteny. Though a global minimum is not guaranteed, the2
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 !, 0.24MI A B "Figure 1. For a pieewise-linear registration proess to be suessful, the trianglesmust be projetions of one single plane surfae of the sene, as the triangle {1, 2, 5} in(b); otherwise broken lines are produed and the registration onsisteny dereases,as in (a).algorithm onverges to an optimized mesh whih produes a highly auratePWL-registration between the images. A by-produt of suh improvement isthe possibility of bak-projeting the triangular mesh to spae and to reon-strut an unsaled 3D model of the sene. Notie that, although the proposedmethod is espeially suited for polyhedral senes, it an be also appliable tourved surfaes. In that ase, the method tries to �nd the triangular mesh thatbetter approximate the surfae, whih is obviously limited by the geometrialrealization (i. e. seleted verties) of the mesh.A key aspet of our proposal is that of measuring how good the registrationof a pair of onjugate quadrilateral image pathes is. In this work we proposethe use of the mutual information (MI) assoiated to the intensity values ofthe pathes as a measure of their registration onsisteny [14,15℄. Unlike otherwell-known metris suh as normalized ross-orrelation (NCC) [16℄ or sumof square di�erenes (SSD) [17℄, MI an ope with non-linear di�erenes inthe image radiometry and, onsequently results in lear advantage in manyappliations of registration.Next, a review of the most representative tehniques of mesh optimizationis given, plaing speial emphasis in those proposed within the image regis-3
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tration �eld. In setion 3, several assumptions and de�nitions, as well as theformulation used in subsequent setions, are presented. Setion 4 desribesthe proposed method, the onsisteny estimation funtion and the optimiza-tion proess. In setion 5, we present and disuss some experimental results.Finally, some onlusions are outlined.2 Related worksThe generation of optimal triangular meshes is a problem of signi�ane ina variety of �elds suh as objet modelling, surfae approximation, imageompression, image reonstrution, et. Though its ultimate goal is to ap-proximate, as well as possible, some data by a pieewise planar funtion, theonrete goal of a mesh optimization tehnique varies with the type of prob-lem. Thus, in objet modelling the optimization is aimed at generating 3Dtriangular meshes that properly represent the 3D shape of a sene or objetusing the minimum number of triangles. In image proessing we �nd inter-esting appliations where the so-alled Data-Dependent-Triangulation (DDT)approah is used to approximate the intensity funtion, either to redue theamount of data of an image (as in image ompression [18℄), or to �t a ontin-uous pieewise-planar surfae upon the disrete image samples (image inter-polation [19℄).Mesh optimization tehniques an be lassi�ed aording to di�erent perspe-tives: the mehanism used for modifying the mesh (i. e. type and sope of theations), the metri for evaluating the goodness of a given mesh modi�a-tion (energy or ost funtions), and the proedure for aomplishing the meshre�nement.Aording to the type and sope of the ations applied to modify the mesh,we enounter tehniques where (see �g. 2):(1) only the topologial realization is modi�ed, by swapping edges [20,17,16,19℄,(2) only the geometrial realization is modi�ed, by re�ning the vertex oor-dinates (approah mostly employed in image registration) [21,22,23,24℄,and(3) both the topologial and geometrial realization are simultaneously re-4

draft version

Journal of Mathematical Imaging and Vision, vol. 37, no. 2, pp. 166–182, 2010.



�ned, by splitting, ollapsing, and/or swapping edges and re�ning thevertex oordinates [25,26,27,28℄.
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j jFigure 2. Edge-based ations employed to modify the topologial/geometrial real-ization of a given mesh.Many of these methods were developed in the �eld of geometri modelling tosimplify and re�ne an initial very-detailed 3D mesh obtained upon a dense setof verties provided by a 3D sensor, for example, a laser range �nder [25,26℄.Similar methods have been also used for 3D sene reonstrution [17,28,20℄,generation of ompatible meshes (i. e. isomorphi meshes of the interiors of twopolygons with orrespondene between their verties) for onstruting sweptvolumes [29,30,31℄ and in di�erent appliations of the DDT onept to imageproessing [18,19,32℄.Unlike these methods, whih apply on 3D meshes, in pieewise-linear imageregistration we are provided with two onjugate 2D triangular meshes whihmust be modi�ed in an attempt to maximize their image registration onsis-teny. An example of this is the work in [21℄, whih reloates the mesh verties(the mesh topology remains �xed) in order to ompensate for the a�ne mo-tion in video streaming. Vertex oordinate re�nement, though being suitablefor smooth image distortions, does not provide enough orretion power to a-ommodate the possibly important geometri di�erenes between the imageswhen they are aquired from very di�erent angles, as happens in the exampleof �g. 1.Typially, topologial mesh optimization tehniques are formulated as mini-mization (or maximization) proesses that range from random searhes [20℄ tomore omplex proedures based on simulated annealing [33℄, bayesian stohas-5
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ti models [28℄, variational approahes 2 [34℄, et.Whatever the applied optimization tehnique, one of the key points is that ofde�ning a onvenient ost or energy funtion to evaluate the enhanement inthe re�ned mesh if ertain ation is applied. Whereas in other �elds (objetmodelling, surfae �tting, image interpolation, et.) measuring the quality of amesh an be aomplished upon the available 3D points, in image registrationwe must rely only on the radiometri similarity between the referene andregistered image. So far, several metris have been used for this purpose: sumof square di�erenes (SSD) [17℄, normalized ross-orrelation (NCC) [16℄, andsome templates based on image di�erenes [20℄.None of these measurements are invariant to non-linear radiometri di�erenesbetween images, as it may be the ase of having images aptured by di�erentameras, or the same amera but with very di�erent lighting onditions, whihprovokes shadows, intensity saturations, re�etions, et. In this paper, we pro-pose an optimization proess driven by a ost funtion based on the mutualinformation (MI) of the images being registered. The implemented algorithmrelies on a greedy searh that modi�es the mesh topology by applying edgeswap operations that entail an inrease in the MI. Though MI has been used asan image registration onsisteny metri in some works [35,36,37,38,39℄, thisis the �rst time it has been integrated into a mesh optimization framework forpieewise-linear registration.3 Assumptions and de�nitionsIn this work we suppose that the sene projetion onto the sensor an beapproximated by a paraperspetive transformation, also alled a�ne or par-allel amera [40℄. This simpli�ation is assumable in those omputer visionsetups where the perspetive e�ets are negligible, that is, parallel lines inspae almost keep their parallelism in image. A�ne projetion leads to a greatredution in omplexity in many vision problems. In partiular, for image reg-istration, it implies that 3 points in orrespondene (instead of the 4 ones
2 In www.itk.org, we an �nd a broad variety of ode whih implements numerousof these tehniques suh as potential yields, elasti bodies, et.6
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required for its general form) su�e to estimate the homography (also alleda�nity under this assumption) whih maps points from one image path toanother [41℄. Thus, when performing an a�ne mapping between two onju-gate image triangles, they must perfetly math; otherwise, the triangles areprojetions of a non-planar surfae. Next, we introdue the notation employedin this work as well as some useful de�nitions.A triangular mesh is a pieewise-linear struture onsisting of triangular faesput together along their edges and verties. Formally, a mesh is a pair M =

(K, V ), where V = {vi, i = 1, . . . , m∣vi ∈ ℝ
2} is a set of vertex positionswhih de�nes the shape of the mesh in ℝ

2 and K is a topologial spae, alledsimpliial omplex, whih determines the onnetivity of the verties, edgesand faes. A simpliial omplex K onsists of a set of verties {1, . . . , m}together with a set of non-empty subsets of the verties, alled the simpliesof K: the 0-simplies {i} ∈ K are verties, the 1-simplies {i, j} ∈ K areedges, and the 2-simplies {i, j, k} ∈ K are triangles or faets [42,26℄.For a given simpliial omplex K (see �g. 3), the topologial realization, de-noted by ∣K∣, results of identifying the verties {1, . . . , m} with the standardbasis vetors {e1, . . . , em} of ℝm. Let � : ℝm 7→ ℝ
2 be the linear mappingthat sends the i -th standard basis vetor ei ∈ ℝ

m to vi ∈ ℝ
2. The geometrialrealization of M is given by �V (∣K∣), where we write the subsript V in �V tomake expliit that it is spei�ed by that partiular vertex set. The map �V isalled an embedding if it is 1-1, that is, if �V (∣K∣) is not self-interseting.Thus, to refer to any point within a part s of the mesh (s ⊆ K), we employ thenotation p ∈ �V (∣s∣) ∈ ℝ

2. For example, p ∈ �V (∣t∣) refers to one point withinthe triangle t = {i, j, k} ∈ K; p ∈ �V (∣q∣) refers to one point within a quadri-lateral of M onsisting of two adjaent triangles q = {{i, j, k}, {i, j, l}} ∈ K,and so on.In addition to the above general de�nitions, we introdue the following par-tiular ones, of interest for stating our method in the next setion:
∙ An edge {i, j} ∈ K is external or boundary if it is a subset of only one faein K, and internal or shared otherwise.
∙ Given an internal edge e = {i, j} ∈ K, we de�ne the following funtions(see �g. 4): 7

draft version

Journal of Mathematical Imaging and Vision, vol. 37, no. 2, pp. 166–182, 2010.



Simplicial complex K

Face:

Edges:

Vertices:

{1,2,3}

{1,2}, {2,3}, {3,1}

{1}, {2}, {3}

and

x
3

 
2

 2
v

Topological realization Geometrical realizationsK
V 'V 

y
1
v

3
v

3
e

p
V 

! "V K 

1
e

2
e

b

x
2
'v

! "K 

! " ! "
V K

p p
 

' = f

a)

1
'v

3
'v

'p

b)

! "'V K 

'V 

yFigure 3. Example of mesh representation: a mesh onsisting of one fae.
⋅ quad({i, j}, K) = {{i, j, l}, {i, j, k}} whih delivers the two triangles thatshare the edge e. We will also refer to these triangles as the �trianglesassoiated to the edge e�.
⋅ bound({i, j}, K) = {{i, l}, {l, j}, {j, k}, {k, i}} whih gives the four edgesof the quadrilateral.

∙ Let M = (K, V ) and M ′ = (K, V ′) be the triangular meshes de�ned ontotwo images to register. M and M ′ have the same topologial realization s ⊆

K (they are isomorphi) and present di�erent geometri realizations, givenby the set of verties' pairs {(vi, v′i), i = 1, . . . , n∣vi ∈ V, v′i ∈ V }. We de�nethe pieewise-linear transformation as the embedding f : �V (∣s∣) 7→ �V ′(∣s∣)whih geometrially maps a point p = (x, y)⊤ ∈ �V (∣s∣) to another point
p′ = (x′, y′)⊤ ∈ �V ′(∣s∣) as follows:

p′ = f �V (∣s∣) (p) =

⎧

⎨

⎩

f�V (∣t1∣) (p) if p ∈ �V (∣t1∣)

f�V (∣t2∣) (p) if p ∈ �V (∣t2∣)...
f�V (∣tm∣) (p) if p ∈ �V (∣tm∣)

(1)
where m is the number of triangles, and fi : �V (∣ti∣) 7→ �V ′ (∣ti∣) is an a�nemapping estimated from the geometrial realization of the three verties of8
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ti ∈ s in both meshes, whih an be expressed by the transformation:
p′ = f�V (∣ti∣) (p) ≡

⎧

⎨

⎩

x′ = ai,1 + ai,2 x+ ai,3 y

y′ = bi,1 + bi,2 x+ bi,3 y

(2)being ai,j and bi,j, with j = 1, 2, 3, the a�ne transformation oe�ients.Notie that one f �V (∣s∣) (for larity, f s from now on) has been applied
�V (∣s∣) = �V ′(∣s∣), that is, the orresponding faes of both meshes mustoverlap perfetly (remember that �V (∣s∣) represents all the points �pixels�within the mesh given by the simpliial s).

∙ An edge {i, j} ∈ K is said to be 3D-ompatible if it lies on a projetion ofa 3D plane surfae, and 3D-inompatible otherwise. Sine 3D sene infor-mation is not available, we assume that edge 3D-inompatibility manifestsas an error in the pieewise-linear registration of its �assoiated faes�: thelarger the error, the higher the 3D-inompatibility of the edge.
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 !# $  !# $  !  !  !  ! !ˆbound , , bound , , , , , , , , ,i j K k l K i l l j j k k i% %Figure 4. The topologial ation of swapping an edge when all preonditions, asexplained in setion 4.2, are veri�ed. Figure also illustrates the topology elementsthat take part in a pieewise-linear image registration proess. Observe that afterapplying the swapping ation the boundary of the quadrilateral does not hange.4 Desription of the proposed methodThe method presented in this paper modi�es the onnetivity of the onju-gate meshes by iteratively swapping the mesh edge that leads to the greatestimprovement in the image registration onsisteny. This proedure only af-fets the mesh onnetivity sine the number of verties and their oordinates9
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remain without modi�ation.4.1 Mutual information as a metri for registration onsistenyThe metri we employ for measuring the registration onsisteny is the mutualinformation (MI) [43℄. MI measures the statistial dependeny or informationredundany of two random variables. Unlike other similarity measures suh asthe sum of square di�erenes (SSD) or the normalized ross-orrelation (NCC)whih allow for a funtional relationship between the gray-levels of the imagepathes to register, the MI responses to their statistial relationship, whihan be estimated from the joint entropy. The advantage of this metri is thatit is more robust to possible image radiometri di�erenes that are di�ult(or impossible) to model by a funtion, whih happens to be the ase of noise,shadows and speular re�etions or those stemmed from images aquired fromdi�erent angles, with di�erent sensors or at di�erent moments in time [36℄.Mathematially, the MI of two equal-sized 3 image pathes A and B an bewritten as:
MI (A,B) = H (A) +H (B)−H (A,B) (3)where H(A) and H(B) are the entropies of A and B, and H(A,B) their jointentropy:
H (A,B) =−

∑

a,b

PA,B (a, b) log2 PA,B (a, b)

H (A) =−
∑

a

PA (a) log2 PA (a) (4)
H (B) =−

∑

b

PB (b) log2 PB (b)being PA(a), PB(b) and PA,B(a, b) the probability distribution funtions esti-mated from the intensity joint histogram ℎ of A and B

3 Notie that the requirement that the two image pathes have the same size alwaysholds sine the moving image triangle is mapped to the referene one, having thenthe same number of pixels. 10
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PA,B (a, b) =
1

N
ℎA,B (a, b)

PA (a) =
∑

b

PA,B (a, b) (5)
PB (b) =

∑

a

PA,B (a, b)where
ℎA,B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ℎ(0, 0) ℎ(0, 1) . . . ℎ(0,M − 1)

ℎ(1, 0) ℎ(1, 1) . . . ℎ(1,M − 1)

. . . . . . . . . . . .

ℎ(M − 1, 0) ℎ(M − 1, 1) . . . ℎ(M − 1,M − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6)
N is the number of pixels in the image path, and M is the number of his-togram bins, respetively.The value ℎA,B(a, b), a ∈ [0,M − 1], b ∈ [0,M − 1], is the number of orre-sponding pairs having the intensity value a in the �rst image and the intensityvalue b in the seond one. In the ase of 8-bit gray-sale images, the originalvalue of M is 256; however, in pratie, it is onvenient to use a lower value(e. g. 128, 64, 32, ...), for three reasons:(1) to make more reliable the estimation of the joint probability from thejoint histogram when N is not very large (i. e. the joint histogram needsto be representative enough);(2) to make the proess less time onsuming, that is, less terms in the sumof equation (3); and(3) to provide the method robustness against intensity noise.In our implementation, given that the size of the image pathes is usually inthe range between some hundreds and a few thousands (triangles too smallare previously disarded from the initial mesh provided by the Delaunay trian-gulation), we have used 16 gray-level bins. An alternative way of overomingthe problem of small triangles is to use non-parametri estimation methodsas the Parzen window, though it entails a higher omputational ost (readermay refer to [15℄ for more detail about this approah).11
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Observe from (4) that, when all the intensity values of the two images areindependent one from another (that is, without orrelation) the argument ofthe logarithm beomes one, and the MI ahieves its minimum at zero (MIis always non-negative). To illustrate how the joint histogram aptures theidea of statistial dependeny, �g. 5 shows the joint histograms of two pairs ofequal-sized, syntheti images of just four gray-levels eah. When one of them isrotated, the joint histogram exhibits more dispersion than when they overlapperfetly.
Input image (B) Registered image (B’)

a) b)

,A B
h

, 'A B
h

Join histogram

estimation

Reference image (A)

Image B’

Image B

Image A

Image AFigure 5. Joint histograms of two pairs of syntheti images: (a) a misaligned pair, and(b) a perfetly overlapped pair. Observe that the joint histogram (of 32 gray-levels)presents less dispersion when the images are aligned. Notie that this fat is inde-pendent of the intensity values of the two images being idential or not.Finally, with the purpose of illustrating the performane of the MI in ompar-ison to the NCC we have onduted the two experiments shown in �g. 6. Inthese experiments we evaluate the similarity of two image quadrilaterals of asyntheti ube sensed from di�erent points of view using both MI and NCC.The image triangles are given by the two possible topologial on�gurations ofthe verties {1, 2, 3, 4}. In the �rst experiment (�g. 6(a)), the ube sides havebeen randomly oloured, whereas in the seond one (�g. 6(b)), the position ofthe ube respet to the illumination soure has been hanged. We see how theMI outputs a larger value when the topologial on�guration is 3D-ompatible,while the NCC fails. These simple examples show the e�etiveness of the MIwhen applied to image pairs with non-funtional radiometri hanges, in on-12
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trast to NCC, whih an manage image intensity di�erenes but only if theyfollow a linear funtion (that is, intensity shift and/or ontrast saling).
Normalized cross correlation vs. Mutual information

input reference input reference
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-0.5803
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-0.9264

0.6694

NCC2 =

-0.8865Figure 6. Two experiments illustrating the suitability of the Mutual Information (MI)as a onsisteny measure for image registration. The �gures show the MI in ompar-ison to the Normalized Cross-Correlation (NCC) when (a) the objet is oloured ina di�erent manner and (b) the illumination of the sene is hanged. The measuresare omputed from the image triangles given by the two possible topologial real-izations of the verties {1, 2, 3, 4}. Observe how the NCC fails in both experiments,giving lower values in topologial on�gurations ompatible with the sene. On theontrary, the MI delivers a lear improvement in both ases.4.2 Cheking edges to swapWe take advantage of the robustness of the MI for heking the 3D-ompatibilityof the mesh edges. Thus, given the images I and I ′ to register and their orre-sponding meshes de�ned by M = (K, V ) and M ′ = (K, V ′), we determine the3D-ompatibility of an edge {i, j} ∈ K by omputing the registration onsis-teny of the quadrilaterals s = quad({i, j}, K) and ŝ = quad({k, l}, K̂), thatis, before (!s) and after (!ŝ) the edge swap, respetively (see �g. 4). Formally,that improvement is measured by:
Δ! ({i, j}) = MI (I (r) , I ′ (f ŝ (r)))

︸ ︷︷ ︸

!ŝ

−MI (I (r) , I ′ (f s (r)))
︸ ︷︷ ︸

!s

(7)where r refers to the pixels ontained in �V (∣s∣) (or �V (∣ŝ∣), sine both ge-ometrial realizations are idential). Thus, I(r) represents the quadrilateralregion of the referene-image de�ned by s, and I ′(f s(r)) and I ′(f ŝ(r)) the13
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transformations of its input-image ounterparts aording to the two possibletopologial on�gurations s and ŝ, before and after the edge swap, respetively.
Patch reversal

i i
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action!!!

j

k

l
j

k

l

action!!!

 !  ! !, , , , ,s i j l i k j K" #Figure 7. A path reversal produed by a edge swap ation in a onave quadrilateral.Before evaluating the 3D-ompatibility of any edge, say {i, j} ∈ K, it mustbe heked if it veri�es the following preonditions:(1) {i, j} must be an internal edge,(2) the resultant swapped edge is a new one ({k, l} /∈ K), and(3) the ation does not produe a path reversal in K̂. A path reversal is amesh inonsisteny produed when the shared edge of two adjaent faes,whih make up a onave quadrilateral, is swapped (see �g. 7).One these preonditions are met, the swap of the edge is aepted ifΔ!({i, j}) >

0, that is, when it leads to some inrease in the MI.In pratie, we only aept an ation to be applied if the inrease is above agiven threshold �. The aim of this threshold is to prevent the appliation ofations on quads that lie on projetions of planar surfaes and, beause of theimage resampling and the omputational errors, may yield small onsistenydi�erenes that should not be onsidered as true improvements. As onse-quene of this threshold, ations that entail real registration improvementsless than � will not be deteted.The estimation of the MI (and so, the estimation of Δ!) is sensitive to thenumber samples (i. e. the number of pixels in the quadrilateral), to the numberof output bins, and, in the ase of the registration proess, to the resamplingfuntion used (i. e. nearest neighbour, bilinear, or biubi); sine it does notexist an analytial expression that relates Δ! with these parameters, we haveexperimentally analysed the behaviour of ∣Δ!∣ when applied to quadrilateralsthat lie on projetions of planar surfaes in order to properly hoose the valueof � (the reader an �nd a brief desription of this experiment in �g. 8). From14
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this study, we have veri�ed that ∣Δ!∣ keeps below 0.008. Aording to thisresult, we have set the value of � to 0.01.
15

Number of bins = 16, Resampling function = bilinear

10

15

5

0 1 2 3 4 5 6 7 8

x 10
-3

0

| !|Figure 8. Histogram of the ∣Δ!∣ values obtained from swap ations on planar sur-faes, whih ideally should output a zero value. To aomplish the experiment, wehave seleted 100 pairs of image quads of planar surfaes (20 of them manually se-leted and the other 80 ones obtained by modifying the original size of the seletedones); next, the value of ∣Δ!∣ is omputed for eah pair, leaving the number of binsand the resampling funtion �xed. Notie that these parameters do not hange alongthe optimization proess, so we only analyse the in�uene of the number of sampleson the estimation of the MI.4.3 Mesh optimizationThe overall optimization proess an be formulated as a greedy searh [44℄,whih starts with two orresponding triangular meshes M and M ′ resulting,for example, from the appliation of a Delaunay's triangulation method overa set of the onjugate points identi�ed in both images (either manually orby automati methods [45℄). Though greedy searh may fall in loal maxi-mums, its omputational ost is signi�atively lower than other optimizationalternatives based on geneti algorithms or simulated annealing.Formally, the optimization proess an be expressed as �nding the simpliialomplex K̂ that maximizes the registration onsisteny of the whole images,that iŝ
K = argmax

K
MI (I (m) , I ′ (f K (m))) (8)where m = �V (∣K∣) represents all image pixels within the mesh given by K.To generate the two isomorphi meshes M = (K, V ) and M ′ = (K, V ′):15

draft version

Journal of Mathematical Imaging and Vision, vol. 37, no. 2, pp. 166–182, 2010.



(1) the referene-image point set V is triangulated by means of some trian-gulation tehnique, then, the topologial ∣K∣ and geometrial realization
�V (∣K∣) are generated;(2) the onjugate mesh �V ′(∣K∣) is generated by mapping ∣K∣ to the or-responding input-image point set V ′. Though �V (∣K∣) is an embedding,
�V ′(∣K∣) may not be, sine self-intersetions in �V ′(∣K∣) (so alled pathreversals) may appear beause of olusions or large amera displae-ments (see �g. 9(a)). Therefore, the assumption that the expression (1) isa one-to-one mapping is not true. To overome suh inonsistenies, weanalyze the initial topology applying the following modi�ations:(a) if one of the edges of the path reversal is external, the triangle thatontains it is removed, as shown in �g. 9(b);(b) if, on the ontrary, none of the edges is external, we swap the sharededge of the two a�eted triangles, as shown in �g. 9().
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Figure 9. Topologial hanges proposed for solving the path reversals in the initialmeshes. (a) The initial meshes and the two situations where path reversal ours.(b) Solution for a path reversal of an external edge: the triangle that ontains theexternal edge {7, 9} is removed. () Path reversal of an internal edge: the internaledge {2, 6} shared by the two a�eted triangles is swapped.One the mesh has been heked for path reversals, eah edge of the meshis analyzed following the greedy searh depited in algorithm 1. It starts byreating a sorted list (in desending order) of the improvement in registration16
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onsisteny Δ! for all the edges of the mesh. Notie that for properly sortingthe list, the values of MI in (7) must be normalized, so, we employ the nor-malized mutual information (NMI) (reader may refer to [14℄ for other possibleMI normalized variants), mathematially:
NMI (A,B) =

MI (A,B)

H (A,B)
(9)This list is omputationally expensive to generate, but this is done just one,at the beginning. At eah iteration of the optimization proess, the �rst edgeof the urrent list is swapped, and the list is updated by heking only thoseedges a�eted by the swapping ation (its boundary). It is lear that suhimprovement in the loal onsisteny leads to an improvement in the globalone. The algorithm stops when the list is empty, that is, when all the meshedges have been explored and no further improvement an be ahieved byswapping ations.Unlike other optimization tehniques employed in 3D sene reonstrution, asthe random searh formulated in [20℄, this proedure guarantees the iterativeimprovement of the image registration onsisteny up to the degree that thegeometrial realization of the mesh tolerates. Notie that, without reloatingthe verties and, possibly, introduing additional ones, the mesh may be notgood enough to ompletely avoid 3D-inompatible edges. Fig. 10 illustratesthe proposed optimization method when applied to an initial topologial on-�guration ontaining several 3D-inompatible edges 4 .5 Experimental resultsThis setion shows some experimental results that illustrate the performaneof our approah. We ompare it to other two methods [17,20℄, whih also em-ploy both swap ations for exploring the searh spae and image similarityfuntions for driving the searh proess. One is the work by Morris & Kanade[17℄ whih aims at deteting inonsistenies in a 3D mesh by measuring the

4 Illustrative videos an also be downloaded from http://babel.isa.uma.es/mapir/index.php/theoretial/46-mesh-optimization-paper.17
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Algorithm 1 Given two images I and I ′ to register, and two initial triangularmeshes on them de�ned by M = (K, V ) and M ′ = (K, V ′), determine anew topologial realization by iteratively swapping edges whih improve theonsisteny of PWL image registration.1: // Build a sorted list (indexed by edge) with the Δ! of eah edge2: Δ!_list ⇐ ∅3: for all {i, j} ∈ K do4: if {i, j} veri�es the preonditions then5: Δ!_list[{i, j}] ⇐ Δ!({i, j}) // from expression (7)6: end if7: end for8: sort Δ!_list in desending order9:10: // Iterate while there exist an edge swap that improves the onsisteny11: while the �rst element of Δ!_list > � do12: swap its orresponding edge, say {i, j} ∈ K by {k, l} ∈ K̂13: Δ!_list[{i, j}] ⇐ ∅ // remove {i, j} from the list14: // Update Δ!_list with the Δ! of the boundary edges of {i, j}15: for all {m,n} ∈ bound({i, j}, K) do16: if {m,n} veri�es the preonditions then17: Δ!_list[{m,n}] ⇐ !({m,n}) // from expression (7)18: end if19: end for20: sort Δ!_list in desending order21:22: // Update de topologial realization23: K ⇐ K̂24: end while
similarity of the image pathes that results from projeting it onto the im-ages. It applies a greedy searh driven by the sum of square di�erenes ofthe whole images (a global approah). The other one is the work by Nakatujiet al. [20℄ whih proposes a random searh that pursues the re�nement ofthe topologial realization of two onjugate 2D meshes for an optimal 3D im-age reonstrution. For deteting 3D-inompatible edges the authors employa square template of �xed size that is orrelated with the image pathes (aloal approah). Sine the implementation of these methods are not availableonline we have implemented them in Matlab following the indiations of bothpapers as faithfully as possible. We have also inluded a omparison of theproposed method using both MI and NCC-based ost funtions.18
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Figure 10. Illustration of the optimization proess. The initial mesh shows a topolog-ial on�guration ontaining several 3D-inompatible edges (edges {9, 14}, {14, 17}and {7, 10}). As depited in the algorithm 1, when the edge {14, 17} is swapped(seond ation), its adjaent edges are onsidered again for swapping, whih leadsto the edge {9, 14} to be swapped (third ation).5.1 Datasets and methodologyWe have employed images belonging to the ALOI library [46℄, whih inludesreal images of a broad variety of objets, as well as syntheti images generatedfrom VRML models and real images of urban senes (e. g. building faades).The purpose of seleting this diversity of images is to test the method underdi�erent types of illumination, image ontents, and observation poses.The onjugate points (CP) that de�ne the geometrial realization of the meshhave been obtained in two ways: manually and automatially. For the latterthe following proedure has been implemented: the Harris orner detetor [47℄identi�es distintive feature points in the referene image, and then the Luas-Kanade feature traker [48℄ detets their orresponding points in the inputimage. For both, the manual and automati ase, given the set of originalonjugate points, the a�ne epipolar geometry of the two images was robustlyestimated applying the MAPSAC algorithm [49℄, whih allowed us to disardspurious pairs. 19
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Although onsistently mathed, some of the identi�ed CPs give rise to 3D-inompatible edges one the Delaunay's triangulation algorithm [12℄ is appliedon them (as in �g. 1). The objetive of our optimization method is to orret,as muh as possible, those situations. Whether this improvement is ahievedor not is assessed in two di�erent ways:a) by evaluating the goodness of the image registration, that is, by measuringthe MI of the omplete referene and registered images (expression 8),andb) by heking if the unsaled 3D sene reonstruted from the two resultingmeshes is more aurate than that obtained from the initial ones. Inthe event that 3D sene struture was known, it ould be used for thatevaluation. Otherwise, as it is the ase here, we make the evaluation byvisual inspetion.Fig. 11(a-f) shows some of the test images employed in this work, as well asthe initial meshes generated from the identi�ed CP sets (automatially in theases (,f), and manually for the rest).5.2 ResultsFigures 11(g-l) show the �nal meshes obtained when running our methodfor the image pairs shown in �g. 11(a-f). The e�etiveness of the method inthese experiments is demonstrated in �g. 12, and table 1. In the �rst, theimprovement in the global (whole image) registration onsisteny is displayedalong the di�erent swapping ations. Table 1 shows the perentage of 3D-ompatible edges (determined by visual inspetion) whih are not boundaryedges, that is, the mesh orretness. The algorithm stops, in less than 25iterations for all these ases, when all the mesh edges have been explored andno further improvement an be done by applying swap ations.Notie that, during the optimization proess, there are ations that appar-ently do not improve the image registration onsisteny (revealed as small�at strethes in the urves of �g. 12(b,,f)). We say �apparently�, sine infat suh an improvement exists (otherwise the ation is not applied) but itsontribution to the global registration onsisteny is small. Aording to the20
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Images and initial meshes

a)

b)

c)

d)

e)

f)

Final mesh

g)

h)

i)

j)

k)

l)Figure 11. (a-f) Pairs of real images of polyhedron senes and their orrespondingDelaunay triangular meshes. (g-l) Optimized triangular meshes provided by ourmethod. Observe how the proposed proess swaps those edges whih go from oneplane surfae to another. 21
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algorithm 1, despite produing a small improvement, these ations are the bestandidates at eah iteration, leading to topologial on�gurations that in sub-sequent iterations substantially improve the onsisteny. This situation is typ-ial in those on�gurations where several adjaent edges are 3D-inompatible,as for example, the image pair shown in �g. 11(b).
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the ompared methods. We an see that the performane of the three methodsderease for the same image pair, partiularly, the method of Morris & Kanade,whih employs the SSD of the whole images as ost funtion (less robust toillumination hanges than MI). Another drawbak of their approah is its highomputational ost, with prohibitive times for large number of edges (as forexample, for the image pair of �g. 11()). A similar behaviour is observed inthe method of Nakatuji et al., where the ost of omputing the a�nities formapping the orresponding image pathes to the template also slows down theoptimization proess. When the onjugate points do not lie on the verties oredges of the polyhedral sene (whih happens in pratie), the methods ofMorris & Kanade and Nakatuji et al. present an important derease of theire�etiveness: the number of ations signi�atively grows and the orretnessdereases. This fat an be learly observed in the results for the image pairshown in �g. 11().
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It should be remarked the robustness of our method to hanges in illumination,as an be appreiated in the results for the image pair of the �g. 11(b), a pair ofurban senes aquired under very di�erent lighting onditions. These hangesgo also unnotied for the NCC variant of the proposed method (see the olumn2 of the table 1). The omputational ost (per ation) of both variants are quitesimilar.Finally, with the aim of illustrating the possibility of generating onsistent3D reonstrutions from a pair of registered onjugate images, we have reon-struted an unsaled 3D surfae of the sensed sene by projeting bak the twomeshes 6 (see �g. 13). Apart from its interest in 3D sene reonstrution, itallows us to hek the e�etiveness of the proposed proedure by ontrastingthe 3D models assoiated to the initial and re�ned meshes. Our analysis haslimited to visually ontrasting the initial and optimal 3D reonstrutions.6 ConlusionsImage registration is an essential step in a broad variety of image proess-ing appliations where the �nal result omes from the ombination of severalsoures, as for example hange detetion, image fusion, 3D sene reonstru-tion, et.In this paper we have proposed a tehnique for automatially optimizing theonjugate triangular meshes employed by a pieewise-linear registration pro-ess: having more suitable meshes means that the registration is more aurate.To ahieve that, we iteratively modify the onnetivity of both meshes throughedge swapping ations. The funtion employed for evaluating the edge to beswapped is based on the mutual information, whih is notoriously more robustthan other well-known metris suh as NCC or SSD, sine it is less sensitive tohanges in lighting onditions or noise. The optimization proedure is formu-lated as a greedy searh whih �nishes when the mesh topology an no longerbe re�ned, that is, when all mesh edges have been suessfully heked and nofurther improvement is possible through edge swap ations.
6 For example, by applying the fatorization algorithm for a�ne reonstrutionproposed in [41℄ (pag. 437). 25
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The proposed method has been suessfully tested with di�erent image pairsof urban senes, polyhedral objets, both real and syntheti, whih have beenaquired from di�erent angles and/or under di�erent lighting onditions. Themethod outperforms two previously published approahes, whih also employswapping ations for exploring the searh spae and image similarity funtionsfor driving the searh proess.

a) b)Figure 13. 3D sene reonstrutions generated from two pairs of onjugate meshes:(a) the initial meshes and (b) the re�ned ones. In plots (a) we an observe someartifats (e. g. broken lines), in plaes where 3D-inompatible edges exist. Theseartifats disappear when these edges are onveniently swapped, as shown in plots(b). 26
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