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Abstract

This paper presents a mutual-information based optimization algorithm for improv-
ing piecewise-linear (PWL) image registration. PWL-registration techniques, which
are well-suited for registering images of the same scene with relative local distor-
tions, divide the images in conjugate triangular patches that are individually mapped
through affine transformations. For this process to be accurate, each pair of cor-
responding image triangles must be the projections of a planar surface in space;
otherwise, the registration incurs in errors that appear in the resultant registered
image as local distortions (distorted shapes, broken lines, etc.). Given an initial
triangular mesh onto the images, we propose an optimization algorithm that, by
swapping edges, modifies the mesh topology looking for an improvement in the reg-
istration. For detecting the edges to be swapped we employ a cost function based
on the mutual information (MI), a metric for registration consistency more robust
to image radiometric differences than other well-known metrics such as normalized
cross correlation (NCC). The proposed method has been successfully tested with
different sets of test images, both synthetic and real, acquired from different angles

and lighting conditions.
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1 Introduction draft version

Image registration is a crucial stage in many computer vision applications like
image fusion, change detection, mosaicking, 3D scene reconstruction, etc. In
this process one image remains fixed (the fized or reference image) whereas
the other (the moving or input image), acquired on a different time, from a
different viewpoint and/or using a different sensor, is spatially transformed
until fitting with the first one. A broad variety of mapping functions has
been reported in the literature including polynomial 1], radial basis functions
[2], piecewise-linear 3] or -cubic [4] functions, multi-quadric functions [5], B-

splines functions [6], etc. (see [7] for a survey).

Of particular significance is the case of piecewise-linear (PWL) functions,
which are especially suitable for registering images of polyhedral scenes (typ-
ical in indoor and urban environments), since they divide the images into
triangles which are individually registered through affine transformations (see
fig. 1(a)). For PWL registration to perform accurately every pair of corre-
sponding triangles must lie on projections of a 3D planar surface, otherwise,
the registration may generate undesirable artifacts, such as broken lines, which

diminish the registration quality (see fig. 1(a)).

Current implementations of PWL image registration included in scientific im-
age processing software packages such as Matlab [8], Image Registration Soft-
ware [9] (from Image Fusion Systems Research) or in remote sensing ones like
ENVI/IDL [10], ERDAS [11], etc., generate the conjugate triangular meshes
from a set of correspondence pairs by means of some triangulation technique,
typically the Delaunay’s refinement method [12|, which produces triangles of
balanced size and shape, but which are not optimal for covering as many

planar patches as possible.

In this paper, we propose a method to modify the topology of a given initial
triangular mesh by iteratively swapping its edges in order to improve the reg-
istration of a pair of images. We state this process as a greedy search [13] that,
at each step, focuses on a particular quadrilateral and swap its central edge
(shared by the two adjacent triangles) if the resultant triangles yield a bet-

ter registration consistency. Though a global minimum is not guaranteed, the
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Figure 1. For a piecewise-linear registration process to be successful, the triangles
must be projections of one single plane surface of the scene, as the triangle {1,2,5} in
(b); otherwise broken lines are produced and the registration consistency decreases,
as in (a).

algorithm converges to an optimized mesh which produces a highly accurate
PWL-registration between the images. A by-product of such improvement is
the possibility of back-projecting the triangular mesh to space and to recon-
struct an unscaled 3D model of the scene. Notice that, although the proposed
method is especially suited for polyhedral scenes, it can be also applicable to
curved surfaces. In that case, the method tries to find the triangular mesh that
better approximate the surface, which is obviously limited by the geometrical

realization (i.e. selected vertices) of the mesh.

A key aspect of our proposal is that of measuring how good the registration
of a pair of conjugate quadrilateral image patches is. In this work we propose
the use of the mutual information (MI) associated to the intensity values of
the patches as a measure of their registration consistency [14,15]. Unlike other
well-known metrics such as normalized cross-correlation (NCC) [16] or sum
of square differences (SSD) [17], MI can cope with non-linear differences in
the image radiometry and, consequently results in clear advantage in many

applications of registration.

Next, a review of the most representative techniques of mesh optimization

is given, placing special emphasis in those proposed within the image regis-
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tration field. In section 3, several assymfdgns and definitions, as well as the
formulation used in subsequent sections, are presented. Section 4 describes
the proposed method, the consistency estimation function and the optimiza-
tion process. In section 5, we present and discuss some experimental results.

Finally, some conclusions are outlined.

2 Related works

The generation of optimal triangular meshes is a problem of significance in
a variety of fields such as object modelling, surface approximation, image
compression, image reconstruction, etc. Though its ultimate goal is to ap-
proximate, as well as possible, some data by a piecewise planar function, the
concrete goal of a mesh optimization technique varies with the type of prob-
lem. Thus, in object modelling the optimization is aimed at generating 3D
triangular meshes that properly represent the 3D shape of a scene or object
using the minimum number of triangles. In image processing we find inter-
esting applications where the so-called Data-Dependent-Triangulation (DDT)
approach is used to approximate the intensity function, either to reduce the
amount of data of an image (as in image compression [18]), or to fit a contin-
uous piecewise-planar surface upon the discrete image samples (image inter-
polation [19]).

Mesh optimization techniques can be classified according to different perspec-
tives: the mechanism used for modifying the mesh (i.e. type and scope of the
actions), the metric for evaluating the goodness of a given mesh modifica-
tion (energy or cost functions), and the procedure for accomplishing the mesh

refinement.

According to the type and scope of the actions applied to modify the mesh,

we encounter techniques where (see fig. 2):

(1) only the topological realization is modified, by swapping edges [20,17,16,19|,

(2) only the geometrical realization is modified, by refining the vertex coor-
dinates (approach mostly employed in image registration) [21,22,23,24|,
and

(3) both the topological and geometrical realization are simultaneously re-
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fined, by splitting, collapsing, apdd oasewapping edges and refining the
vertex coordinates [25,26,27,28|.

Initial mesh

edge split edge collapse edge swap

Figure 2. Edge-based actions employed to modify the topological/geometrical real-
ization of a given mesh.

Many of these methods were developed in the field of geometric modelling to
simplify and refine an initial very-detailed 3D mesh obtained upon a dense set
of vertices provided by a 3D sensor, for example, a laser range finder [25,26].
Similar methods have been also used for 3D scene reconstruction [17,28,20],
generation of compatible meshes (i. e. isomorphic meshes of the interiors of two
polygons with correspondence between their vertices) for constructing swept
volumes [29,30,31] and in different applications of the DDT concept to image
processing [18,19,32].

Unlike these methods, which apply on 3D meshes, in piecewise-linear image
registration we are provided with two conjugate 2D triangular meshes which
must be modified in an attempt to maximize their image registration consis-
tency. An example of this is the work in [21], which relocates the mesh vertices
(the mesh topology remains fixed) in order to compensate for the affine mo-
tion in video streaming. Vertex coordinate refinement, though being suitable
for smooth image distortions, does not provide enough correction power to ac-
commodate the possibly important geometric differences between the images
when they are acquired from very different angles, as happens in the example
of fig. 1.

Typically, topological mesh optimization techniques are formulated as mini-
mization (or maximization) processes that range from random searches [20] to

more complex procedures based on simulated annealing [33|, bayesian stochas-
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tic models |28], variational approacheg s adotc.

Whatever the applied optimization technique, one of the key points is that of
defining a convenient cost or energy function to evaluate the enhancement in
the refined mesh if certain action is applied. Whereas in other fields (object
modelling, surface fitting, image interpolation, etc.) measuring the quality of a
mesh can be accomplished upon the available 3D points, in image registration
we must rely only on the radiometric similarity between the reference and
registered image. So far, several metrics have been used for this purpose: sum
of square differences (SSD) [17], normalized cross-correlation (NCC) [16], and

some templates based on image differences [20].

None of these measurements are invariant to non-linear radiometric differences
between images, as it may be the case of having images captured by different
cameras, or the same camera but with very different lighting conditions, which
provokes shadows, intensity saturations, reflections, etc. In this paper, we pro-
pose an optimization process driven by a cost function based on the mutual
information (MI) of the images being registered. The implemented algorithm
relies on a greedy search that modifies the mesh topology by applying edge
swap operations that entail an increase in the MI. Though MI has been used as
an image registration consistency metric in some works [35,36,37,38,39|, this
is the first time it has been integrated into a mesh optimization framework for

piecewise-linear registration.

3 Assumptions and definitions

In this work we suppose that the scene projection onto the sensor can be
approximated by a paraperspective transformation, also called affine or par-
allel camera [40]. This simplification is assumable in those computer vision
setups where the perspective effects are negligible, that is, parallel lines in
space almost keep their parallelism in image. Affine projection leads to a great
reduction in complexity in many vision problems. In particular, for image reg-

istration, it implies that 3 points in correspondence (instead of the 4 ones

2 In www.itk.org, we can find a broad variety of code which implements numerous
of these techniques such as potential yields, elastic bodies, etc.
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required for its general form) suffice tgasmte the homography (also called
affinity under this assumption) which maps points from one image patch to
another [41]. Thus, when performing an affine mapping between two conju-
gate image triangles, they must perfectly match; otherwise, the triangles are
projections of a non-planar surface. Next, we introduce the notation employed

in this work as well as some useful definitions.

A triangular mesh is a piecewise-linear structure consisting of triangular faces
put together along their edges and vertices. Formally, a mesh is a pair M =
(K,V), where V. = {v;,i = 1,...,m|v; € R?*} is a set of vertex positions
which defines the shape of the mesh in R? and K is a topological space, called
simplicial complex, which determines the connectivity of the vertices, edges
and faces. A simplicial compler K consists of a set of vertices {1,...,m}
together with a set of non-empty subsets of the vertices, called the simplices
of K: the O-simplices {i} € K are vertices, the l-simplices {i,j} € K are
edges, and the 2-simplices {i, j, k} € K are triangles or facets [42,26].

For a given simplicial complex K (see fig. 3), the topological realization, de-
noted by | K|, results of identifying the vertices {1,..., m} with the standard
basis vectors {ei,...,e,} of R™. Let ¢ : R™ +— R? be the linear mapping
that sends the i-th standard basis vector e; € R™ to v; € R?. The geometrical
realization of M is given by ¢y (| K|), where we write the subscript V' in ¢y to
make explicit that it is specified by that particular vertex set. The map ¢y is
called an embedding if it is 1-1, that is, if ¢ (] K]) is not self-intersecting.

Thus, to refer to any point within a part s of the mesh (s C K), we employ the
notation p € ¢y (|s|) € R% For example, p € ¢y (|t|) refers to one point within
the triangle t = {i,7,k} € K; p € ¢y (|g|) refers to one point within a quadri-
lateral of M consisting of two adjacent triangles ¢ = {{4, j, k}, {i,7,1}} € K,

and so on.

In addition to the above general definitions, we introduce the following par-

ticular ones, of interest for stating our method in the next section:

e An edge {i,j} € K is external or boundary if it is a subset of only one face
in K, and internal or shared otherwise.

e Given an internal edge e = {i,j} € K, we define the following functions
(see fig. 4):
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Simplicial comglex K
dratt version

Vertices: {1}, {2}, {3}
Edges: {1,2},{2,3}, 3,1}
Face: {1,2,3}

Topological realization |K| Geometrical realizations ¢, and ¢,.

R3

Figure 3. Example of mesh representation: a mesh consisting of one face.

- quad({i, 7}, K) = {{i, 4,1}, {¢, J, k}} which delivers the two triangles that
share the edge e. We will also refer to these triangles as the “triangles
associated to the edge e”.

- bound({i, 7}, K) = {{4,1},{l, 7}, {J, k}, {k,i}} which gives the four edges
of the quadrilateral.

o Let M = (K,V) and M’ = (K,V’) be the triangular meshes defined onto
two images to register. M and M’ have the same topological realization s C
K (they are isomorphic) and present different geometric realizations, given
by the set of vertices’ pairs {(v;,v}),i = 1,...,n|v; € V v, € V}. We define
the piecewise-linear transformation as the embedding f : ¢v (|s|) — ¢v+(|s])
which geometrically maps a point p = (z,y)" € ¢v(|s|) to another point
p = (2,y)" € ¢y (]s]) as follows:

fovqun (p) if p € ov ([ta])

fov(n) (p) if p € v (Jta])
P =Foqsn (P) = P . o (1)

fov(tm)) () if p € Oy (|tm])

where m is the number of triangles, and f; : ¢v (|t;]) — &y (|¢;]) is an affine

mapping estimated from the geometrical realization of the three vertices of
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t; € s in both meshes, which can begxpressed by the transformation:

. ¥ =a;1+ a2+ a3y
P = fovqun (p) = (2)
Y =b1+bor+bsy

being a;; and b;;, with j = 1,2, 3, the affine transformation coefficients.
Notice that once fy () (for clarity, f, from now on) has been applied
ov(|s]) = évi(|s|), that is, the corresponding faces of both meshes must
overlap perfectly (remember that ¢y (|s|) represents all the points —pixels—
within the mesh given by the simplicial s).

e An edge {i,j} € K is said to be 8D-compatible if it lies on a projection of
a 3D plane surface, and $D-incompatible otherwise. Since 3D scene infor-
mation is not available, we assume that edge 3D-incompatibility manifests
as an error in the piecewise-linear registration of its “associated faces” the

larger the error, the higher the 3D-incompatibility of the edge.
Edge swapping: swap{i, j} € K by {k,/} K

4

. External edge
Triangular face 4
4 :

k,;},k) ={{i.k.1}.{J.1k}}

y
Internal edge

bound ({i, j}, K ) = bound ({k, 1}, K ) = {{i.0} {1, j} L jo K} (i}

Figure 4. The topological action of swapping an edge when all preconditions, as
explained in section 4.2, are verified. Figure also illustrates the topology elements
that take part in a piecewise-linear image registration process. Observe that after
applying the swapping action the boundary of the quadrilateral does not change.

4 Description of the proposed method

The method presented in this paper modifies the connectivity of the conju-
gate meshes by iteratively swapping the mesh edge that leads to the greatest
improvement in the image registration consistency. This procedure only af-

fects the mesh connectivity since the number of vertices and their coordinates
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remain without modification. draft version

4.1  Mutual information as a metric for registration consistency

The metric we employ for measuring the registration consistency is the mutual
information (MI) [43]. MI measures the statistical dependency or information
redundancy of two random variables. Unlike other similarity measures such as
the sum of square differences (SSD) or the normalized cross-correlation (NCC)
which allow for a functional relationship between the gray-levels of the image
patches to register, the MI responses to their statistical relationship, which
can be estimated from the joint entropy. The advantage of this metric is that
it is more robust to possible image radiometric differences that are difficult
(or impossible) to model by a function, which happens to be the case of noise,
shadows and specular reflections or those stemmed from images acquired from

different angles, with different sensors or at different moments in time [36].

Mathematically, the MI of two equal-sized® image patches A and B can be

written as:

MI (A, B) = H (A) + H (B) — H (A, B) (3)
where H(A) and H(B) are the entropies of A and B, and H(A, B) their joint
entropy:

H(A,B)=->_Pap(a,b)log, Pap(a,b)

a,b
H(A)==3_ Pa(a)log, Pa(a) (4)

H(B)==2_Ps(b)log, Pg ()

being P4(a), Pg(b) and P4 g(a,b) the probability distribution functions esti-
mated from the intensity joint histogram h of A and B

3 Notice that the requirement that the two image patches have the same size always
holds since the moving image triangle is mapped to the reference one, having then
the same number of pixels.

10
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1 .
PA,B (a, b) = N hA,B (a, b) draft version

PA(CL)ZZPAB(CL,Z)) (5)

PB (b) :ZPA7B (a, b)
where

1(0,0) h0,1) ... h(0,M—1)

s h(1,0) h(1,1) ... h(1,M—1) | 6

AWM —1,0) (M —1,1) ... h(M —1,M — 1)

N is the number of pixels in the image patch, and M is the number of his-

togram bins, respectively.

The value ha g(a,b), a € [0,M — 1], b € [0, M — 1], is the number of corre-
sponding pairs having the intensity value a in the first image and the intensity
value b in the second one. In the case of 8-bit gray-scale images, the original

value of M is 256; however, in practice, it is convenient to use a lower value
(e.g. 128, 64, 32, ...), for three reasons:

(1) to make more reliable the estimation of the joint probability from the
joint histogram when N is not very large (i.e. the joint histogram needs
to be representative enough);

(2) to make the process less time consuming, that is, less terms in the sum
of equation (3); and

(3) to provide the method robustness against intensity noise.

In our implementation, given that the size of the image patches is usually in
the range between some hundreds and a few thousands (triangles too small
are previously discarded from the initial mesh provided by the Delaunay trian-
gulation), we have used 16 gray-level bins. An alternative way of overcoming
the problem of small triangles is to use non-parametric estimation methods
as the Parzen window, though it entails a higher computational cost (reader

may refer to [15] for more detail about this approach).

11
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Observe from (4) that, when all the jutepsidy values of the two images are
independent one from another (that is, without correlation) the argument of
the logarithm becomes one, and the MI achieves its minimum at zero (MI
is always non-negative). To illustrate how the joint histogram captures the
idea of statistical dependency, fig. 5 shows the joint histograms of two pairs of
equal-sized, synthetic images of just four gray-levels each. When one of them is
rotated, the joint histogram exhibits more dispersion than when they overlap
perfectly.

Input image (B) Reference image (A) Registered image (B’)

& Join histogram
estimation

Figure 5. Joint histograms of two pairs of synthetic images: (a) a misaligned pair, and
(b) a perfectly overlapped pair. Observe that the joint histogram (of 32 gray-levels)
presents less dispersion when the images are aligned. Notice that this fact is inde-
pendent of the intensity values of the two images being identical or not.

Finally, with the purpose of illustrating the performance of the MI in compar-
ison to the NCC we have conducted the two experiments shown in fig. 6. In
these experiments we evaluate the similarity of two image quadrilaterals of a
synthetic cube sensed from different points of view using both MI and NCC.
The image triangles are given by the two possible topological configurations of
the vertices {1,2,3,4}. In the first experiment (fig. 6(a)), the cube sides have
been randomly coloured, whereas in the second one (fig. 6(b)), the position of
the cube respect to the illumination source has been changed. We see how the
MI outputs a larger value when the topological configuration is 3D-compatible,
while the NCC fails. These simple examples show the effectiveness of the MI

when applied to image pairs with non-functional radiometric changes, in con-

12
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trast to NCC, which can manage imaggqinteysity differences but only if they

follow a linear function (that is, intensity shift and/or contrast scaling).

input

Normalized cross correlation vs. Mutual information

reference

input

reference

Mit = Mit =
0.3047 0.1426
s NCC1 = NCC1 =
3 -0.5803 -0.2820
©
S
D)
MI2 = MI2 =
0.6905 0.6694
NCC2 = NCC2 =
-0.9264 -0.8865

b)

Figure 6. Two experiments illustrating the suitability of the Mutual Information (MI)
as a consistency measure for image registration. The figures show the MI in compar-
ison to the Normalized Cross-Correlation (NCC) when (a) the object is coloured in
a different manner and (b) the illumination of the scene is changed. The measures
are computed from the image triangles given by the two possible topological real-
izations of the vertices {1,2,3,4}. Observe how the NCC fails in both experiments,
giving lower values in topological configurations compatible with the scene. On the
contrary, the MI delivers a clear improvement in both cases.

4.2  Checking edges to swap

We take advantage of the robustness of the MI for checking the 3D-compatibility
of the mesh edges. Thus, given the images I and I’ to register and their corre-
sponding meshes defined by M = (K,V) and M’ = (K, V"), we determine the
3D-compatibility of an edge {7,j} € K by computing the registration consis-
tency of the quadrilaterals s = quad({i, 5}, K) and § = quad({k,(}, f(), that
is, before (w,) and after (w;) the edge swap, respectively (see fig. 4). Formally,

that improvement is measured by:

Aw({i,g}) = MI(I(r), I'(f5(r) = MII(r),I'(F,(r)) (7)

Ws Ws

where 7 refers to the pixels contained in ¢y (|s|) (or ¢y (]§]), since both ge-
ometrical realizations are identical). Thus, I(r) represents the quadrilateral
region of the reference-image defined by s, and I'(f (r)) and I'(f;(r)) the

13
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transformations of its input-image coynferpadts according to the two possible

topological configurations s and 3, before and after the edge swap, respectively.

Patch reversal

K]

Invalid
action!!!

s={{i.il bkt e K
Figure 7. A patch reversal produced by a edge swap action in a concave quadrilateral.

Before evaluating the 3D-compatibility of any edge, say {i,7} € K, it must

be checked if it verifies the following preconditions:

(1) {i,7} must be an internal edge,

(2) the resultant swapped edge is a new one ({k,[l} ¢ K), and

(3) the action does not produce a patch reversal in K. A patch reversal is a
mesh inconsistency produced when the shared edge of two adjacent faces,

which make up a concave quadrilateral, is swapped (see fig. 7).

Once these preconditions are met, the swap of the edge is accepted if Aw({i,5}) >

0, that is, when it leads to some increase in the MI.

In practice, we only accept an action to be applied if the increase is above a
given threshold §. The aim of this threshold is to prevent the application of
actions on quads that lie on projections of planar surfaces and, because of the
image resampling and the computational errors, may yield small consistency
differences that should not be considered as true improvements. As conse-
quence of this threshold, actions that entail real registration improvements
less than ¢ will not be detected.

The estimation of the MI (and so, the estimation of Aw) is sensitive to the
number samples (i. e. the number of pixels in the quadrilateral), to the number
of output bins, and, in the case of the registration process, to the resampling
function used (i.e. nearest neighbour, bilinear, or bicubic); since it does not
exist an analytical expression that relates Aw with these parameters, we have
experimentally analysed the behaviour of |[Aw| when applied to quadrilaterals
that lie on projections of planar surfaces in order to properly choose the value

of § (the reader can find a brief description of this experiment in fig. 8). From

14
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this study, we have verified that |Awyzkeerpnbelow 0.008. According to this

result, we have set the value of d to 0.01.

Number of bins = 16, Resampling function = bilinear

15

|Aw| x 1 0'3

Figure 8. Histogram of the |Aw| values obtained from swap actions on planar sur-
faces, which ideally should output a zero value. To accomplish the experiment, we
have selected 100 pairs of image quads of planar surfaces (20 of them manually se-
lected and the other 80 ones obtained by modifying the original size of the selected
ones); next, the value of |Aw| is computed for each pair, leaving the number of bins
and the resampling function fixed. Notice that these parameters do not change along
the optimization process, so we only analyse the influence of the number of samples
on the estimation of the MI.

4.8  Mesh optimization

The overall optimization process can be formulated as a greedy search [44],
which starts with two corresponding triangular meshes M and M’ resulting,
for example, from the application of a Delaunay’s triangulation method over
a set of the conjugate points identified in both images (either manually or
by automatic methods [45]). Though greedy search may fall in local maxi-
mums, its computational cost is significatively lower than other optimization

alternatives based on genetic algorithms or simulated annealing.

Formally, the optimization process can be expressed as finding the simplicial
complex K that maximizes the registration consistency of the whole images,
that is

A

K = argmax MI (I (m), I'(f x (m))) (8)

where m = ¢y (] K|) represents all image pixels within the mesh given by K.

To generate the two isomorphic meshes M = (K, V) and M’ = (K, V"):

15
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(1) the reference-image point set V ig.hviagggilated by means of some trian-
gulation technique, then, the topological |K| and geometrical realization
ov(|K|) are generated,

(2) the conjugate mesh ¢/ (|K|) is generated by mapping |K| to the cor-
responding input-image point set V’. Though ¢y (|K]|) is an embedding,
¢v/(|K|) may not be, since self-intersections in ¢y (|K|) (so called patch
reversals) may appear because of occlusions or large camera displace-
ments (see fig. 9(a)). Therefore, the assumption that the expression (1) is
a one-to-one mapping is not true. To overcome such inconsistencies, we
analyze the initial topology applying the following modifications:

(a) if one of the edges of the patch reversal is external, the triangle that
contains it is removed, as shown in fig. 9(b);
(b) if, on the contrary, none of the edges is external, we swap the shared

edge of the two affected triangles, as shown in fig. 9(c).

Removing patch reversal Removing patch reversal

Initial topology in external edges in internal edges

Reference image

Figure 9. Topological changes proposed for solving the patch reversals in the initial
meshes. (a) The initial meshes and the two situations where patch reversal occurs.
(b) Solution for a patch reversal of an external edge: the triangle that contains the
external edge {7,9} is removed. (c) Patch reversal of an internal edge: the internal
edge {2,6} shared by the two affected triangles is swapped.

Once the mesh has been checked for patch reversals, each edge of the mesh
is analyzed following the greedy search depicted in algorithm 1. It starts by

creating a sorted list (in descending order) of the improvement in registration

16

Journal of Mathematical Imaging and Vision, vol. 37, no. 2, pp. 166-182, 2010.



consistency Aw for all the edges of thggmeshionNotice that for properly sorting
the list, the values of MI in (7) must be normalized, so, we employ the nor-
malized mutual information (NMI) (reader may refer to [14] for other possible

MI normalized variants), mathematically:

MI (A, B)

NMI (A, B) = H (AD)

(9)

This list is computationally expensive to generate, but this is done just once,
at the beginning. At each iteration of the optimization process, the first edge
of the current list is swapped, and the list is updated by checking only those
edges affected by the swapping action (its boundary). It is clear that such
improvement in the local consistency leads to an improvement in the global
one. The algorithm stops when the list is empty, that is, when all the mesh
edges have been explored and no further improvement can be achieved by

swapping actions.

Unlike other optimization techniques employed in 3D scene reconstruction, as
the random search formulated in [20], this procedure guarantees the iterative
improvement of the image registration consistency up to the degree that the
geometrical realization of the mesh tolerates. Notice that, without relocating
the vertices and, possibly, introducing additional ones, the mesh may be not
good enough to completely avoid 3D-incompatible edges. Fig. 10 illustrates
the proposed optimization method when applied to an initial topological con-

figuration containing several 3D-incompatible edges?.

5 Experimental results

This section shows some experimental results that illustrate the performance
of our approach. We compare it to other two methods [17,20], which also em-
ploy both swap actions for exploring the search space and image similarity
functions for driving the search process. One is the work by Morris & Kanade

[17] which aims at detecting inconsistencies in a 3D mesh by measuring the

4 Tllustrative videos can also be downloaded from http://babel.isa.uma.es/
mapir/index.php/theoretical/46-mesh-optimization-paper.
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Algorithm 1 Given two images I andidk tersiegister, and two initial triangular
meshes on them defined by M = (K,V) and M’ = (K,V’), determine a
new topological realization by iteratively swapping edges which improve the
consistency of PWL image registration.

1: // Build a sorted list (indexed by edge) with the Aw of each edge

2: Aw_list =0

3: for all {i,j} € K do

sort Aw_list in descending order

4: if {i,j} verifies the preconditions then

5: Aw_list[{i,j}] < Aw({i,j}) // from expression (7)
6: end if

7: end for

8:

9:

10: // Iterate while there exist an edge swap that improves the consistency
11: while the first element of Aw list > ¢ do

12:  swap its corresponding edge, say {i,j} € K by {k,l} € K

13:  Aw_list[{i,j}] < 0 // remove {i,j} from the list

14:  // Update Aw_list with the Aw of the boundary edges of {7, j}

15:  for all {m,n} € bound({i,j}, K) do

16: if {m,n} verifies the preconditions then

17: Aw_list[{m,n}] < w({m,n}) // from expression (7)
18: end if

19: end for

20:  sort Aw_list in descending order

21:

22:  // Update de topological realization

23: K< K

24: end while

similarity of the image patches that results from projecting it onto the im-
ages. It applies a greedy search driven by the sum of square differences of
the whole images (a global approach). The other one is the work by Nakatuji
et al. [20] which proposes a random search that pursues the refinement of
the topological realization of two conjugate 2D meshes for an optimal 3D im-
age reconstruction. For detecting 3D-incompatible edges the authors employ
a square template of fixed size that is correlated with the image patches (a
local approach). Since the implementation of these methods are not available
online we have implemented them in Matlab following the indications of both
papers as faithfully as possible. We have also included a comparison of the

proposed method using both MI and NCC-based cost functions.
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Initial mesh

Action 1

Figure 10. Illustration of the optimization process. The initial mesh shows a topolog-
ical configuration containing several 3D-incompatible edges (edges {9,14}, {14,17}
and {7,10}). As depicted in the algorithm 1, when the edge {14,17} is swapped
(second action), its adjacent edges are considered again for swapping, which leads
to the edge {9,14} to be swapped (third action).

5.1 Datasets and methodology

We have employed images belonging to the ALOI library [46|, which includes
real images of a broad variety of objects, as well as synthetic images generated
from VRML models and real images of urban scenes (e.g. building facades).
The purpose of selecting this diversity of images is to test the method under

different types of illumination, image contents, and observation poses.

The conjugate points (CP) that define the geometrical realization of the mesh
have been obtained in two ways: manually and automatically. For the latter
the following procedure has been implemented: the Harris corner detector [47]
identifies distinctive feature points in the reference image, and then the Lucas-
Kanade feature tracker [48] detects their corresponding points in the input
image. For both, the manual and automatic case, given the set of original
conjugate points, the affine epipolar geometry of the two images was robustly
estimated applying the MAPSAC algorithm [49], which allowed us to discard

spurious pairs.
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Although consistently matched, someygf thesidentified CPs give rise to 3D-
incompatible edges once the Delaunay’s triangulation algorithm [12] is applied
on them (as in fig. 1). The objective of our optimization method is to correct,
as much as possible, those situations. Whether this improvement is achieved

or not is assessed in two different ways:

a) by evaluating the goodness of the image registration, that is, by measuring
the MI of the complete reference and registered images (expression 8),
and

b) by checking if the unscaled 3D scene reconstructed from the two resulting
meshes is more accurate than that obtained from the initial ones. In
the event that 3D scene structure was known, it could be used for that
evaluation. Otherwise, as it is the case here, we make the evaluation by

visual inspection.

Fig. 11(a-f) shows some of the test images employed in this work, as well as
the initial meshes generated from the identified CP sets (automatically in the

cases (c,f), and manually for the rest).

5.2 Results

Figures 11(g-1) show the final meshes obtained when running our method
for the image pairs shown in fig. 11(a-f). The effectiveness of the method in
these experiments is demonstrated in fig. 12, and table 1. In the first, the
improvement in the global (whole image) registration consistency is displayed
along the different swapping actions. Table 1 shows the percentage of 3D-
compatible edges (determined by visual inspection) which are not boundary
edges, that is, the mesh correctness. The algorithm stops, in less than 25
iterations for all these cases, when all the mesh edges have been explored and

no further improvement can be done by applying swap actions.

Notice that, during the optimization process, there are actions that appar-
ently do not improve the image registration consistency (revealed as small
flat stretches in the curves of fig. 12(b,c,f)). We say “apparently”, since in
fact such an improvement exists (otherwise the action is not applied) but its

contribution to the global registration consistency is small. According to the
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Images and initial meshes

Figure 11. (a-f) Pairs of real images of polyhedron scenes and their corresponding
Delaunay triangular meshes. (g-1) Optimized triangular meshes provided by our
method. Observe how the proposed process swaps those edges which go from one
plane surface to another.
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algorithm 1, despite producing a smallgpapsepgment, these actions are the best
candidates at each iteration, leading to topological configurations that in sub-
sequent iterations substantially improve the consistency. This situation is typ-
ical in those configurations where several adjacent edges are 3D-incompatible,

as for example, the image pair shown in fig. 11(b).
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Figure 12. Results of the experimental tests for each of the image pairs shown in fig.
11(a-d)). The plots show a significant improvement in the registration consistency
for all analyzed pairs. Notice that in plots (b),(c), and (f) there are some iterations
where the registration consistency seems to remain steady after applying a swapping
action. This is because the swapped edges lie on projections of almost-plane surfaces
of the scene.

Table 1 summarizes the correctness, and the computational time for each of
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the compared methods. We can see that#hggperformance of the three methods
decrease for the same image pair, particularly, the method of Morris & Kanade,
which employs the SSD of the whole images as cost function (less robust to
illumination changes than MI). Another drawback of their approach is its high
computational cost, with prohibitive times for large number of edges (as for
example, for the image pair of fig. 11(c)). A similar behaviour is observed in
the method of Nakatuji et al., where the cost of computing the affinities for
mapping the corresponding image patches to the template also slows down the
optimization process. When the conjugate points do not lie on the vertices or
edges of the polyhedral scene (which happens in practice), the methods of
Morris & Kanade and Nakatuji et al. present an important decrease of their
effectiveness: the number of actions significatively grows and the correctness
decreases. This fact can be clearly observed in the results for the image pair
shown in fig. 11(c).
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It should be remarked the robustness of guemgthod to changes in illumination,
as can be appreciated in the results for the image pair of the fig. 11(b), a pair of
urban scenes acquired under very different lighting conditions. These changes
go also unnoticed for the NCC variant of the proposed method (see the column
2 of the table 1). The computational cost (per action) of both variants are quite

similar.

Finally, with the aim of illustrating the possibility of generating consistent
3D reconstructions from a pair of registered conjugate images, we have recon-
structed an unscaled 3D surface of the sensed scene by projecting back the two
meshes® (see fig. 13). Apart from its interest in 3D scene reconstruction, it
allows us to check the effectiveness of the proposed procedure by contrasting
the 3D models associated to the initial and refined meshes. Our analysis has

limited to visually contrasting the initial and optimal 3D reconstructions.

6 Conclusions

Image registration is an essential step in a broad variety of image process-
ing applications where the final result comes from the combination of several
sources, as for example change detection, image fusion, 3D scene reconstruc-

tion, etc.

In this paper we have proposed a technique for automatically optimizing the
conjugate triangular meshes employed by a piecewise-linear registration pro-
cess: having more suitable meshes means that the registration is more accurate.
To achieve that, we iteratively modify the connectivity of both meshes through
edge swapping actions. The function employed for evaluating the edge to be
swapped is based on the mutual information, which is notoriously more robust
than other well-known metrics such as NCC or SSD, since it is less sensitive to
changes in lighting conditions or noise. The optimization procedure is formu-
lated as a greedy search which finishes when the mesh topology can no longer
be refined, that is, when all mesh edges have been successfully checked and no

further improvement is possible through edge swap actions.

6 For example, by applying the factorization algorithm for affine reconstruction
proposed in [41] (pag. 437).
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The proposed method has been succegsfalbiidgsted with different image pairs
of urban scenes, polyhedral objects, both real and synthetic, which have been
acquired from different angles and/or under different lighting conditions. The
method outperforms two previously published approaches, which also employ
swapping actions for exploring the search space and image similarity functions

for driving the search process.

Figure 13. 3D scene reconstructions generated from two pairs of conjugate meshes:
(a) the initial meshes and (b) the refined ones. In plots (a) we can observe some
artifacts (e.g. broken lines), in places where 3D-incompatible edges exist. These
artifacts disappear when these edges are conveniently swapped, as shown in plots

(b).
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