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ABSTRACT:

This paper presents a procedure to robustly distribute control point (CP) pairs in high-resolution satellite images as a preliminary step
for accurate image registration. The proper distribution of the CPs is achieved by means of a quadtree decomposition of a coarse digital
terrain model (DTM) of the sensed region. This technique parcels up the image according to its relief variance yielding almost planar
pieces of land. A corner detector is then employed to identify key points in the reference image and an affinity-based feature tracker
that searches for their corresponding corner in the rarget one. This search is executed in every parcel, selecting (at-least) one CP,
ensuring thus denser distributions in rugged regions than in flat ones. Additionally, robustness to mismatches is attained by exploiting
the intrinsic affine epipolar geometry of the two images. The proposed method has been successfully tested with a broad variety of

panchromatic high-resolution images of the city of the Rincén de la Victoria (Malaga, Spain).

1 INTRODUCTION

Image registration is the process of spatially fitting two images of
the same scene acquired on different dates, from different view-
points, and/or using different sensors. Image registration is re-
quired in a variety of applications, like, image fusion, 3D scene
reconstruction, and multi-temporal analysis (i. e. natural disaster
monitoring, urban change detection, etc.). See (Schowengerdt,
2007) for a comprehensive survey.

Image registration is typically accomplished by (automatically
or manually) identifying common features, called control points
(CP) pairs, in the involved images. Through such CPs it is pos-
sible to estimate the underlying geometrical transformation be-
tween the considered images, which is used to spatially transform
(register) the target image. The accuracy of this process is, then,
strongly tied to:

1. the type of geometrical transformation considered for the
registration (affine, projective, piecewise linear, thin-plate-
spline, etc.), which should account for the relative geometric
differences between the images, and

2. the distribution of CPs over the images, which should take
into account the nature of their differences.

A correct combination of both aspects is crucial to guarantee the
accuracy of the registration: while only two pairs of CPs suffice
to perfectly overlap images of a flat terrain (since they may only
differ in shift, scale and rotation), a large number of them will be
necessary to capture the geometric difference between images of
high-relief surfaces acquired from different viewing angles, re-
quiring, also, complex (so-called elastic) transformations. While
elastic transformations have been broadly studied in the remote
sensing field (see (Arévalo and Gonzalez, 2008), for example),

the proper distribution of the CP pairs has not been addressed
indeed. This paper focuses on this issue.

In the absence of information about the relief of the imaged sur-
face, the more effective (but surely not more efficient') approach
is the straightforward solution of distributing regularly as many
CPs as possible all over the images (Arévalo and Gonzalez, 2008).
However, when some information about the terrain profile is avail-
able, a more elaborated algorithm can help us to decide their ap-
propriate distribution on the images.

This paper presents an automatic method to distribute CPs for the
accurate registration of high-resolution satellite images. Exploit-
ing the terrain profile information provided by a coarse digital
terrain model (DTM) of the imaged scene, our approach gener-
ates a minimal distribution of CPs, achieving significant speedup
in the CPs extraction, without jeopardizing accuracy in the regis-
tration.

Our method is intended to be applied to basic high-resolution
satellite imagery, that is, products that are only featured with cor-
rections for radiometric distortions and adjustments for internal
sensor geometry, optical and sensor distortions. As the effect of
the terrain is not compensated, two images of a rugged region
acquired from different viewpoints may present severe local geo-
metric differences. Main providers, as it is the case of GeoEye or
DigitalGlobe?, distribute several of these products, as the Ikonos
Ortho Kit, QuickBird Orthoready, etc., which are significatively
cheaper than geometrically corrected ones.

The rest of this paper is organized as follows. In section 2, we
describe in detail the proposed method. In section 3, some ex-
perimental results are presented. Finally, some conclusions and
future work are outlined.

1The reader can refer to (Fonseca and Kenney, 1999) for an interesting
control-point assessment for image registration.

2The reader can refer to the websites http://wuw.geoeye.com/
and http://www.digitalglobe. com for further information.
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Figure 1: Scheme of the proposed method. Please refer to the section 2 for a detailed description.

2 DESCRIPTION OF THE PROPOSED METHOD

The proposed method combines techniques adapted from the com-
puter vision field to divide the images according to their estimated
relative distortions and to robustly distribute CPs pairs follow-
ing the obtained partitioning. Figure 1 schematically shows an
overview of our approach.

In a nutshell, the proposed method consists of three steps: 1) the
extraction of the CP candidates, 2) the detection of mismatches
(we take advantage of the affine epipolar geometry of the images
to robustly deal with this stage), and finally 3) the selection of the
CPs according to the distribution obtained from the DTM.

2.1 Extraction and Matching of the CPs

This stage is accomplished in two steps: first, a corner detec-
tor (Harris and Stephens, 1988) is applied to identify distinctive
points in the reference image and then, a feature tracker searches
for their correspondences in the target image, assuming local affin-
ity deformations (Lucas and Kanade, 1981). Our implementation
of the feature tracker relies on a variant of the sum of square
differences (SSD) which provides robustness to image brightness
differences through a local linear radiometric correction (Fonseca
and Kenney, 1999).

We also achieve image scale invariance by means of a Gaussian
pyramid decomposition (Burt and Adelson, 1983) of the image
pair. This technique, broadly used in image processing, consists
of creating a series of images down-scaled by convolving the im-
age with a Gaussian kernel (a low-pass filtering). Thus, a stack of
successively smaller images is created, where each pixel contains
the local gaussian-weighted average that corresponds to a pixel
neighbourhood on a higher level of the pyramid.

More formally, let the 2D original image be denoted by I(z,y).
The Gaussian pyramid decomposition of I(z,y) can be recur-
sively defined as follow

I(z,y)

Gl (l’, y) =
m=—2n=-—2

1

where w(m,n) is the gaussian kernel (identical at all levels).

This technique allows the feature tracker to cope with large dis-
placements between corresponding corners.
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2.2 Detecting Mismatches and Refining the Coordinates of
the CPs

The intrinsic affine epipolar geometry of two views is exploited
for attaining robustness to mismatches (the so-called outliers)
and, collaterally, refining the coordinates of the extracted CPs
(Torr, 2002). To this aim we employ the RANdom SAmple Con-
sensus algorithm (Fischler and Bolles, 1981), a robust estimator
which exploits the redundancy of samples to provide a robust es-
timate of the parameters of a model which fits to the majority of
them.

The final step of the RANSAC consists of re-estimating the model
but only considering the inliers. In our case, this step is accom-
plished by minimizing the symmetric epipolar error from which
we derive the Maximum Likelihood (ML) estimate of the affine
epipolar matrix, F' a, and refine the coordinates of the CPs. In this
process, we assume that the image point localizations are affected
by Gaussian noise.

The ML estimate is obtained by minimizing® the following cost
function based on geometric image distances:

min d (xi,%5)% + d (xi,%})* 2)
{Faxixi} i

where as usual x; <— x are the measured correspondences, and
%; and % are the estimated “true” correspondences that satisfy
% Fa%} = 0 exactly for the estimated affine epipolar matrix.

2.3 Distribution of the CPs According to the Image Distor-
tions

The proper distribution of the CPs is regulated by means of a
quadtree decomposition of a medium-resolution DTM of the sensed
scene. This decomposition uses the relief variance to parcels up
the image in almost planar plots of land. The algorithm 1 depicts
this process.

An illustrative example of a coastal city surrounded by mountains
is shown in figure 2. Upon a DTM of 20 m. of spatial resolution
of this region provided by the “Consejeria de Medio Ambiente”
of the “Junta de Andalucia” (Spain) (figure 2-b), our method gen-
erates a quadtree decomposition according to the relief of the dif-
ferent parts: a region is divided in 4 equal pieces, when elevation

3Minimizing expression (2) is equivalent to fitting the hyperplane f
to the set of points X; = (z;,yi,2},y;) " in R*. The refined points
Xi = (:%i,?;i,i:gléé)T
be expressed as (XZT, 1)f = 0 (i. e. the equation of a point in R* on the
plane f) where f = (a, b, ¢,d, )T (Hartley and Zisserman, 2004).

satisfy the equation )A(ZTFAfcg = 0 which may
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Figure 2: a) Two images of the coastal city of the Rincén de la Victoria (Mdlaga-Spain). b) Digital terrain model (DTM) of the region
of interest. ¢) Quadtree decomposition of the DTM. Each parcel will contain a CP for posterior image registration.

differences are above 10 m. (i.e. ¢t = 10). By doing so, high-
relief areas, which provoke large image distortions, will be more
intensively decomposed (figure 2-c). If a subdivision operation
gives rise to four regions whose size is less than a square of 25
pixels of side (i.e. s = 25), it is rejected. This means that the
smallest cell size, for this example, will be bigger than 25 pixels
and smaller than 50.

Algorithm 1 Quadtree decomposition of the DTM.

1: // Ro contains the coordinates of the regions to be analyzed
2: Ry <= {coord(DTM)} // Ry is initialized with the

3: // coordinates of the DTM

4: /I R will contain the coordinates of the final regions

5§ R<0

6: for all » € Rg do

7: v <= DTIM(r) /Il r = {x,y, width, height}

8: ifsize(r) > s and (max(v) — min(v)) > ¢ then

9: // quad divides r into 4 equal pieces and returns

10: // their coordinates

11: Ro < {Ro U quad(r)}

12:  else

13: // r is not divided and it is stored in R
14: R<{RUr}

15:  endif

16:  // r is removed from Ry

17: Ro<{Ro—r}

18: end for

Finally, the selection of the final CP set is accomplished as fol-

lows: for each parcel of the decomposition, we check the number
of detected CP pairs and, if this number is greater than one, we
select the CP pair that exhibits the best score in the matching pro-
cess, that is, the CP pair with the minor SSD value.

3 EXPERIMENTAL RESULTS

The benefits of the proposed method has been successfully ver-
ified by elastically registering a number of panchromatic (Or-
thoready) QuickBird image pairs (0.6 m./pixel), as the one shown
in figure 2-a. The multitemporal series considered in our tests
present significant relative geometric distortions induced by the
off-nadir observation of no-planar regions as well as radiometric
changes. The reader can found more details on satellite posi-
tioning data and the acquisition dates in (Arévalo and Gonzalez,
2008).

The registration process is accomplished by means of radial ba-
sis functions (RBF). Radial basis functions are scattered data in-
terpolation methods where the spatial transformation is a linear
combination of radially symmetric basis functions (second term
of (3)), each of them centered on a particular CP, typically com-
bined with a global affine transformation (first term of (3)). Math-
ematically
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where
ry =1 y') = (&, 55) | “)
being %; <— X the refined CPs.

The type of basis function, g, determines the influence of each
CP on the RBF, that is, the CP scope. So, the accuracy of the
registration depends extremely on the distribution of CPs on the
image. In this work we employ the thin plate spline (TPS) func-
tion g(r;) = r3logry (Bookstein, 1989), which is perhaps the
RBF most widely employed for elastic registration.

To evaluate the method performance, we have compared the reg-
istration accuracy obtained using the resultant CP set with respect
to uniform and random CP distributions. The uniform distribu-
tion is obtained by selecting CPs according to a regular grid of
squared cells of 50 pixels of side, while the random distribution
is obtained by arbitrarily selecting the same number of CPs than
the uniform one.

The results of the comparison, displayed in figure 3, show how
the proposed method yields better results in terms of accuracy.
The accuracy of the registration process has been assessed com-
paring the geometric errors (RMSE and CE90%) of a set of inde-
pendent control points (ICPs) manually identified, achieving on
average RMS errors under 1.4 m. with CPs distributed according
to the DTM information.
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Figure 3: Accuracy of the proposed method compared to uni-
form and random distribution of CP considering a) RMSE and b)
CE90%.

Observe that the results of the uniform distribution and our ap-
proach are similar, since the smallest squared cell generated by
our approach has the same size that the one considered in the uni-
form distribution. The number of CP required in our approach,
however, is, on average, around 37% lower. The benefits of our

approach are clear, specially, when the CP extraction must be
manually performed.

4 CONCLUSIONS

This paper presents a technique to distribute the CP pairs accord-
ing the relative image distortions, more severe in rugged terrains,
and proposes an automatic procedure to robustly extract CPs in
two images by applying computer vision techniques. The exper-
imental results reveal the advantage of employing our method, in
comparison with other two strategies (uniform and random dis-
tributions) implemented in most of popular commercial packages
of remote sensing like ERDAS, ENVI and PCI.
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