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Abstract. Simultaneous Localization and Mapping (SLAM) is a cen-
tral problem for autonomous mobile robotics. Monocular SLAM is one
of the ways to tackle the problem, where the only input information are
the images from a moving camera. Current approaches for this prob-
lem have achieved a good balance between accuracy and density of the
map, however, they are not suited for large scale. In this paper, we
present a dynamic mapping strategy where the metric map is divided
into regions with highly connected observations, resulting in a topologi-
cal structure which permits the efficient augmentation and optimization
of the map. For that, a graph representation where the nodes represent
keyframes, and their connections are a measure of their overlapping, is
continuously rearranged. The experiments show that this hybrid metric-
topological approach outperforms the efficiency and scalability of previ-
ous approaches.

Keywords: Monocular SLAM, metric-topological mapping, map parti-
tioning

1 Introduction

Monocular SLAM is an appealing way of solving the localization and mapping
problem in mobile robotics because cameras are inexpensive, compact, easy to
calibrate and consume low power. During the last years monocular SLAM has
advanced notably with the use of parallel processing and efficient algorithms
for data association and map optimization. It has made possible that current
state-of-the-art approaches can operate accurately in some large scale scenarios,
facilitating its application in a wide range of areas such as augmented reality,
scene reconstruction and, particularly, mobile robotics.

The increasingly larger maps that are now possible with monocular SLAM are
fundamental to cope with a wider range of real autonomous robotics applications.
Such ability to operate in large scale brings the need of appropriate strategies for
managing the map. Applying abstraction (as humans do) is an effective way of
dealing with the huge amount of detail present in large metric maps. The result
of such abstraction process is the so-called metric-topological map, consisting of
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a two-layer representation, one containing pure geometrical information and a
second one containing higher level symbolic information [25].

The benefit of a metric-topological arrangement is twofold: on the one hand,
it offers a natural integration with symbolic planning that permits a robot to
reason about the world and to execute high level tasks [10]. On the other hand,
the efficiency and scalability of the SLAM process itself are improved by limiting
the scope of localization and mapping to the region of the environment where the
robot is operating. Also, loop closure and relocalisation can be more efficiently
solved using topological information [20, 1, 9].

In this work, we present an online submapping technique which creates a
topological representation of the world from the metric map being built by a
monocular SLAM technique1. The key idea of our proposal is to cluster in the
same submap those keyframes with higher observation overlap. This presents
some important advantages over other approaches (as it will be explained latter
on). The generated map consists of a topological structure composed of nodes
representing local metric maps and arcs representing relative geometric transfor-
mations among the so-called submaps. In this paper, we will focus on the benefits
of such a hybrid map for improving the efficiency and scalability of conventional
(metric) monocular SLAM, concretely PTAM [12].

Next, we discuss some relevant related work and explain in detail the advan-
tages of our approach. We then describe our partitioning procedure and show
how it is combined with the SLAM process (PTAM). The experiments and their
results are presented next, and finally, we expose the conclusions of our work.

2 Related Works

2.1 Construction of the Metric Map

Many solutions have been presented to build metric maps with monocular SLAM
since Davison [5] presented the first real-time solution for the problem in 2003.
Two main strategies have been applied since then: Bayesian filtering (following
the work of Davison) and Bundle Adjustment (BA) on keyframes, as introduced
in [12]. The latter represents the base for the current state of the art since it
allows handling denser maps and generally offers a better ratio accuracy/cost
[24].

BA, traditionally used as an offline method for Structure from Motion (SfM),
is now widely used in visual SLAM thanks to the introduction of parallel process-
ing and efficient algorithms which exploit the sparse structure of the problem.
Its application to visual SLAM was inspired by real time visual odometry and
tracking [18], where the most recent camera poses where optimized to achieve
accurate localization. In such line, PTAM selects keyframes and applies BA in a
fixed size window, around the last keyframe incorporated, to obtain good metric

1 A preliminary version of this paper was presented in the “10th International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO), Reykjav́ık
(Iceland), 2013” [8].
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maps and accurate localization. Then, once the local optimization is performed,
a low priority global BA is run to improve the map consistency. This approach
is extended in [11] by combining it with relative bundle adjustment -RBA- [22],
allowing fixed-time, consistent exploration. An improvement of the latter to ex-
ploit the problem’ sparse structure was recently presented by [4].

The work of [23] is also related to RBA, they propose a double window
optimization: a first window as in PTAM and a second one including the periph-
ery of the first to improve consistency by optimizing a pose-graph. Despite the
impressive results obtained, such unique map solution has intrinsic limitations
for managing maps of real large environments. To avoid such a limitation, we
propose a topological arrangement in local metric maps.

2.2 Dividing the Map

Map division has been addressed in a number of works. Some relevant examples
are: the Atlas framework [15], where a new local map is started whenever lo-
calization performs poorly in the current local map, or the hierarchical SLAM
presented in [7], where sensed features are integrated into the current local map
until a given number of them is reached. However, none of these provides a math-
ematically grounded solution based on the particular perception of the scene.

In [6], the map is divided in nodes where the landmarks are represented in a
local coordinate frame and, these landmarks are updated using an information
filter. This method uses the common features between adjacent nodes to calcu-
late their relative pose. A different approach called Tectonic-SAM [17] uses a
“divide and conquer” approach with locally optimized submaps in a Smoothing
and Mapping framework (SAM). This approach is improved in [16] to build a
hierarchy of multiple-level submaps using nested dissection.

Other works employ “graph cut” to divide the map according to a mea-
surable property of the map observations. On that mathematical sound basis,
[26] addresses the problem of automatic construction of a hierarchical map from
images; [2] generates metric-topological maps using a range scanner, and gener-
alizes the approach for other sensors; and [19] splits the map within a Bayesian
monocular SLAM framework to reduce the problem complexity.

Our method, which also relies on graph cut, differs from the above works
in the way the graph is constructed, which is specifically tailored for BA-based
monocular SLAM. Our approach resembles also the stereo-SLAM framework of
[14] who divide the map keyframes into groups (called segments) according to
their geodesic distances in the graph. On the contrary, our map partitioning
is independent of the keyframe positions, and is only based on observations
acquired from the scene. Concretely, the map is split where there are less shared
observations, minimizing the loss of information and therefore, enforcing the
coherency and consistency of the submaps.
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3 Map Partitioning

Splitting a map into locally metric consistent and globally coherent regions pro-
vides some relevant advantages for SLAM. Next, we explain the benefits of such
map structure (subsection 3.1), and describe our proposal to obtain this metric-
topological arrangement of the map (subsection 3.2).

3.1 SLAM Improvements through Hybrid Mapping

The advantages of applying a coherent map partition in monocular SLAM are
diverse: a) all the metric data in each submap can be referred to a local coor-
dinate system, what reduces error accumulation and numerical instability; b)
localization can be achieved more efficiently since only those map points in the
nearer regions are reprojected to estimate the camera position; c) this map struc-
ture permits to approximate the global BA by the individual optimization of the
different submaps, thus reducing the computational cost of the optimization pro-
cess. This last advantage is of special relevance due to the demanding nature of
BA, whose complexity ranges from linear to cubic in the number of keyframes
depending on the particular point-keyframe structure [13]. Next, we explain the
details of this approximation for the global optimization.

Having a map of n landmarks obtained from observations at m keyframes,
bundle adjustment can be expressed as

min
aj ,bi

n∑
i=1

m∑
j=1

vij d(Q(aj , bi), xij)
2 (1)

where

– d(x,x′) denotes the Euclidean distance between the image points represented
by vectors x and x′,

– aj is the pose of camera at keyframe j and bi the position of landmark i,
– Q(aj , bi) is the predicted projection of landmark i on the image associated

to keyframe j,
– xij represents the observation of the i-th 3D landmark on the image of

keyframe j and,
– vij stands for a binary variable that equals 1 if landmark i is visible in

keyframe j and 0 otherwise.

Lets now consider that the map is divided into N submaps, each submap,
say k, containing mk keyframes and nk landmarks, with k = {1, . . . , N}. Then,
(1) can be rewritten as

min
al
j ,b

l
i

N∑
k=1

N∑
l=1

 nk∑
i=1

ml∑
j=1

vklij d(Q(alj ,b
k
i ), xkl

ij )2

 (2)

where the combination of subscript i and superscript k refers to the i-th landmark
of the k-th submap (e.g., bk

i ), and similarly l over j refers to the j-th keyframe of
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the l-th submap (e.g., alj). Taking into account the observations shared between
submaps, this expression can be written as

min
al
j ,b

k
i

N∑
k=1


N∑
l=1
l 6=k

nk∑
i=1

ml∑
j=1

vklij d(Q(alj , b
k
i ), xkl

ij )2

︸ ︷︷ ︸
A

+

nk∑
i=1

mk∑
j=1

vkkij d(Q(akj , b
k
i ), xkk

ij )2︸ ︷︷ ︸
B


(3)

where the term A stands for the reprojection error of those landmarks ob-
served from keyframes of different submaps and the term B corresponds to
the reprojection error of those landmarks observed form keyframes within the
same submap. Both concepts are illustrated in figure 1.b. The first establishes
the inter-connection between submaps which is represented by arcs connecting
keyframes of different submaps (e.g. arc linking KF-2 and KF-11) and the second
sets the intra-connection of the submap which includes the submaps inner arcs
(e.g. arc linking KF-1 and KF-2).

If we are able to divide the map in such a way that the different submaps
have few common observations, and assuming that the reprojection errors are
independent of the map division, then A becomes negligible with respect to B.
Thus, the global optimization can be approximated by

N∑
k=1

 min
ak
j ,b

k
i

nk∑
i=1

mk∑
j=1

vij d(Q(aj , bi), xij)
2

 (4)

This approximation is equivalent to optimize each submap independently,
which leads to a significant reduction of computational burden. In fact, this
approximation is equivalent to the original expression (1) when there are no
connections between submaps.

3.2 Map Partitioning Method

The approach proposed here to divide the map into coherent regions consists
in grouping together those keyframes that observe the same features from the
environment. For that, we consider the map as a graph whose nodes represent
keyframes and the weight of the arcs are a measure of the common observations
between them. There are two critical issues in this partitioning approach: first,
the computation of the arc weights; and second, the criterion adopted to perform
the partition itself. As for the first, the arc weights are assigned according to the
Sensed-Space-Overlap (SSO), following our previous work [3], particularized for
landmark observations. This simple but effective measure represents the infor-
mation shared by two keyframes. It is calculated with the relation between the
number of common landmark observations and the total number of landmarks
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Fig. 1. a) Common observations between two keyframes. This is used to calculate the
Sensed Space Overlap (SSO) (see equation 5). b) Graph-representation of the map
where each node represents a keyframe and the arcs are weighed with the SSO calcu-
lated between keyframes (thicker arcs mean higher SSO). c) Example of SSO matrix,
in which the brightness of the element ij represents the SSO between the keyframes i
and j.

observed in both keyframes (see figure 1.a). This is expressed as

SSO (kfA, kfB) =

∑
vAi · vBi∑

vAi +
∑

vBi −
∑

vAi · vBi
(5)

where vAi and vBi , similarly to the definitions of the previous section, are binary
variables that equal 1 if landmark i is observed in the keyframes kfA and kfB ,
respectively.

Regarding the criterion for partitioning the graph, we follow previous works
[26, 2, 19] that apply the minimum normalized-cut (min-Ncut), originally intro-
duced in [21]. The min-Ncut has the desirable property of generating balanced
clusters of highly interconnected nodes, in our case clusters of keyframes that
cover the same part of the environment. Figure 1 illustrates this concept: figure
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Fig. 2. Topological representation of the concept of submap vicinity.

1.a shows the common observations in a pair of keyframes whose arc weight is
calculated with the SSO (see equation 5), and figure 1.b shows a map division
into three submaps as produced by the min-Ncut procedure. Notice that the
pairs of keyframes with higher SSO (thicker arcs) are grouped together. Figure
1.c shows the symmetrical SSO matrix corresponding to a different, larger map,
where the keyframes are arranged according the min-Ncut to give rise to three
groups of keyframes or submaps (matrix blocks).

It is important to notice that, in order to guarantee a scalable system when
applying map partitioning to visual SLAM, the size of the submaps (i.e. number
of keyframes) must be kept bounded. This requirement is not demonstrated
mathematically here, but it is intuitive to see that as the camera explores new
parts of the scene, the new keyframes will have low SSO values (if any) with
distant ones in the map. Therefore, the min-NCut will produce new partitions
when the system explores unobserved regions of the environment. This can be
more clearly understood with the following example: lets consider the case where
there are features that are always observed (e.g. the horizon when travelling by
train, or when zooming in the scene, or traversing a corridor with the camera
pointing in the movement direction) as the new keyframes are selected, they will
introduce new features and therefore will reduce the minimum normalized-cut,
resulting in the eventual partition of the map. The last two examples represent
another advantage of our partition method, which produces natural multi-scale
maps when the camera zooms. This insight is supported by all the experiments
we have carried out during this work.

4 Dynamic division of PTAM’s metric map

This section outlines the combination of our partition procedure and Parallel
Tracking and Mapping (PTAM) [12]. PTAM is a monocular SLAM algorithm
which performs online BA on keyframes, separating the tracking and mapping
stages in two different threads to permit efficient real-time performance. This
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Fig. 3. Keyframe selection heuristics. a) PTAM’s separation condition. b) and c)
Keyframe acceptance and rejection heuristics, respectively, for large scale mapping.
The thresholds used in our experiments for accept kf and reject kf are 0.2 and 0.7
respectively.

technique requires an initial map before it starts working automatically. Such
initial map is acquired with a Structure from Motion procedure that involves user
intervention to select two views with sufficient parallax. Once the initial map has
been created, the system analyses the images retrieved by the camera to self-
localize in the map, while the map is continuously optimized and augmented with
new keyframes and landmarks. Such keyframes are selected according to some
simple heuristics (see [12] for more details), and new landmarks are extracted
through epipolar search between each new keyframe and its nearest keyframe in
the map.

4.1 Keyframes selection in large environments

The keyframe selection criteria becomes an important aspect when PTAM is
employed to build maps of large spaces. PTAM was designed for small environ-
ments (e.g. an office), where it works adequately with a hand-held camera which
is waved sideways. PTAM employs a heuristic rule to select a new keyframe
when there is a minimum separation between the current frame and the nearest
keyframe in the map (i.e. Euclidean distance divided by the mean depth of the
scene). This condition selects valid keyframes when the camera is moved side-
ways. But unlike in PTAM, we wish to explore big scenes and to construct large
maps without being restricted to move sideways. Therefore, we have adapted
this heuristic to select a keyframe when it provides useful information for map-
ping, by adding two more restrictions to the previous one for camera movement.
Consequently, the current frame (CF ) is selected as a new keyframe when:

– There exists a nearby keyframe which meets PTAM’s separation condi-
tion with CF and which shares some information about the scene (SSO >
accept kf).
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Fig. 4. Tracking and mapping threads of PTAM. Blue boxes correspond to the embed-
ded stages to perform the map partitioning.

– There is not a nearby keyframe which does not meet PTAM’s separation
condition with CF and which shares much information about the scene
(SSO > reject kf).

Figure 3 shows the adapted heuristics to select keyframes in large scale.
PTAM’s separation condition is shown in figure 3.a, where a keyframe is accepted
when the Euclidean distance to the nearest keyframe divided by the mean depth
of the scene is over some defined threshold. Figure 3.b shows the new acceptance
condition, which selects the current frame if there exist at least one keyframe
that fulfills PTAM’s separation and whose SSO > accept kf (KF1-CF). Figure
3.c shows the rejection condition, which rejects the current frame if there exist
at least one keyframe that does not fulfil PTAM’s separation and whose SSO >
reject kf (KF2-CF).

So, the acceptance condition prevents taking a new keyframe which shares
little or no information with the map, while the rejection condition avoids se-
lecting keyframes that are too similar to those already in the map. Hence, the
combination of these two conditions permits selecting keyframes that provide
new information to the map relaxing the movement constraints for nimble ex-
ploration of the scene.

4.2 Combination of Map Partitioning and PTAM

A scheme of the proposed partitioning method interacting with PTAM is
depicted in figure 4. Our submapping procedure takes action in both of PTAM
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Algorithm 1 Map Partitioning

M and KF are a submap and a keyframe respectively. SSO M is the matrix
containing the SSO values between all pairs of keyframes in the vicinity V . The
current map is the submap being tracked. num KF is a keyframes counter and
N part is a parameter to control when the partition is to be reevaluated. A keyframe’s
match map is the submap where it will be added, and a keyframe’s match KF is the
keyframe used to find point correspondences.

After new keyframe new KF is selected

1: num KF + +
2: Select match map and match KF
3: if match map ! = current map then
4: num KF = 0
5: end
6: Extract new map-points
7: Add a new row and a new column to SSO M
8: for all submaps Mi ∈ V do
9: for all keyframes KFj of Mi do

10: SSO M ← SSO(new KF,KFj)
11: end
12: end
13: if (num KF % N part) == 0 then
14: Evaluate partition
15: if partition is modified then
16: Lock tracking thread
17: for all submaps Mi ∈ V do
18: Restructure Mi

19: end
20: Unlock tracking thread
21: Update SSO M
22: end
23: end

threads. In the tracking thread, it selects the current submap and the nearest
keyframe to the estimated pose after a new image is analyzed. In the mapping
thread, after a new keyframe is selected and new landmarks are detected in
it, the SSO is evaluated with respect to all the keyframes of the vicinity. Such
vicinity includes all the submaps directly connected to the current submap (see
figure 2).

The partitioning procedure comes into play after the SSO has been updated,
then, the min-Ncut is evaluated, and if it results in a different partition, the
map is rearranged. This procedure is described in algorithm 1. This partitioning
method is applied dynamically as the map enlarges and may create new submaps
as well as merge existing submaps to maintain coherency by grouping keyframes
with high overlap. The result is a metric-topological map, where two different
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Fig. 5. Experimental set up: laptop with attached camera.

topological areas will be connected by a rigid transformation if there are common
observations between them.

The partitioning process, including SSO computation, min-NCut evaluation
and map rearrangement depends on the number of keyframes and landmarks in
the vicinity, taking up to 100 ms. in our experiments, which supposes a short
time in comparison with the map optimization time.

4.3 Experimental Results

In this section we present some experiments which show the advantages, in terms
of efficiency and scalability, of using the proposed metric-topological arrange-
ment of the map instead of a single metric map. The experiments have been
carried out using a Philips SPC640NC webcam, connected by USB to a linux-
based laptop with an Intel Core2 Duo 2.4 GHz processor, 2Gb of memory and a
nVidia GeForce-9400 graphics card. Figure 5 shows the set up of our monocular
SLAM system.

A first experiment is aimed to illustrate the increase of efficiency in localiza-
tion at frame rate. For that, we compare the time needed to project map points
into the current frame with and without partitioning as the map grows. Both
tests have been performed in the same environment, building maps composed
of about 45000 points and 1000 keyframes, distributed in 52 submaps for the
partitioning case. Figure 6 shows that the time with a unique map grows lin-
early with the number of map points, whereas with submapping, this time is
bounded since only those points in submaps close to the camera are evaluated.
This improvement in efficiency becomes more relevant when the map grows non-
stop (note that this process is performed with each new frame captured by the
camera).

The goal of a second experiment is to quantify the efficiency in the global
optimization of the map with our submapping approximation. For that, we have
run BA offline after every new keyframe is selected from a recorded video (that
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is, sequential SfM), measuring the times of each BA completion with and without
partitioning. At the end of these tests, the maps created were composed of about
22000 points and 400 keyframes, distributed in 9 submaps for the partitioning
case. In order to compare both alternatives in the same conditions, we have
included the time of partition management in the BA time for the partitioning
test. Figure 7 shows the optimization times vs. the number of keyframes of the
whole map for both cases.

As expected, for the case without partitioning, the computational cost follows
an increasing polynomial trend with the number of keyframes. Conversely, when
applying map partitioning, the computational burden is bounded since the BA is
applied only on the current submap. For this case, we can observe some abrupt
changes in the cost which are produced when the reference submap (the one
where the system is localized) switches to a neighbor of different size. Figures
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8.a and 8.b show the maps built with both alternatives (different colors represent
different submaps in 8.b). We can verify visually their high similarity, and their
good alignment, as a result of the continuous optimization previous to the map
partition.

Additionally, we are interested in comparing the accuracy of the generated
metric map. Due to the lack of a reliable metric to evaluate the maps quality,
we have compared visually the different maps considering as ground truth the
map obtained offline in the previous experiment (figure 8.a), which is the most
accurate we can get. In the map obtained with PTAM (figure 8.c), we can appre-
ciate some regions with depth errors and many outliers (e.g. landmarks detected
behind physical walls). These inconsistencies are consequence of the premature
interruption of global BA that happens when a new keyframe is selected, what
leads to data association errors and the subsequent accuracy decrease with the
map size. On the contrary, the map obtained with our approach (figure 8.d)
presents no inconsistencies and considerably less outliers than the unique map
solution (figure 8.c). This results from the higher efficiency of the submap lo-
cal optimization, which optimizes regions with highly correlated observations to
produce locally accurate submaps.

The results shown in this section have been supported in several tests per-
formed under different conditions: exploring different rooms, re-visiting previous
maps, traversing a corridor, zooming to get more detail of the scene, etc. The
reader may refer to http://youtu.be/-zK05EcOjX4 for a video that illustrates
the operation of our submapping approach with PTAM in different environ-
ments.

5 Conclusions

This article presents an online submapping method which transforms a metric
map into a metric-topological arrangement of it. This hybrid metric-topological
structure improves the scalability of monocular SLAM in two aspects: first, the
system rules out unnecessary metric information to perform more efficiently;
second, it permits to use an approximation of BA to reduce computational cost
while maintaining map consistency. Besides, the topological arrangement of the
map is useful for other tasks, as loop closure, global localization or navigation.
Experiments have demonstrated the potential of our approach to obtain efficient
map representation in large environments. Future work will focus on exploiting
the topological structure of the map for tasks as loop closure and relocalisation.
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Fig. 8. Top view of maps generated in our experiments. All the maps are composed
of more than 400 keyframes and 22.000 landmarks. The different colors in b) and d)
represent different submaps.
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