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Abstract
Many applications in the fields of mobile robotics and
autonomous vehicles employ two or more 2D laser
rangefinders (LRFs) for different purposes: navigation,
obstacle detection, 3D mapping or SLAM. The extrin-
sic calibration between such sensors (i.e. finding their
relative poses) is required to exploit effectively all the
sensor measurements and to perform data fusion. In the
literature, most works employing several LRFs obtain
their extrinsic calibration from manual measurements
or from ad-hoc solutions. In this paper we present a new
method to obtain such calibration easily and robustly
by scanning perpendicular planes (typically corners en-
countered in structured scenes), from which geometric
constraints are inferred. This technique can be applied
to a rig with any number of LRFs in almost any geo-
metric configuration (a minimum of two LRFs whose
scanning planes are not parallel is required). Experi-
mental results are presented with synthetic and real data
to validate our proposal. A C++ implementation of this
method and a dataset are also provided.

Keywords: Extrinsic calibration, sensor fusion, 2D
laser rangefinder

1 INTRODUCTION
The extrinsic calibration of several 2D laser rangefind-
ers or LIDAR is of very practical interest for au-
tonomous vehicles and for mobile robotics. Such cal-
ibration is required to put all the measurements in a
common reference frame, which is a prerequisite to per-
form other tasks as localization, mapping or naviga-
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Figure 1: Observation of a corner structure by a rig with
two LRFs.

tion. Combinations of LRFs have been employed for
3D mapping in outdoor (Borrmann et al., 2008; Bar-
ber et al., 2008; Haala et al., 2008) and indoor envi-
ronments (Thrun et al., 2000), and also for safe naviga-
tion (Victorino et al., 2003). This calibration problem
becomes more relevant with the advent of autonomous
cars (Thrun et al., 2006; Campbell et al., 2010; Bohren
et al., 2008; Petrovskaya and Thrun, 2009; Miller et al.,
2011; Leonard et al., 2008), where the information pro-
vided by such sensors is essential to avoid possible col-
lisions.

This paper presents a novel solution for the general
problem of extrinsic calibration of 2D LRFs, which
is based on the observation of perpendicular planes.
These planes may be already present in the environ-
ment (something common in structured scenes), as it
is the case in our experiments, or they may constitute a
calibration pattern built for this purpose. The calibra-
tion is constrained by imposing co-planarity and per-
pendicularity constraints on the line segments extracted



by the different laser scanners. A rough approximation
of the sensor relative poses must be provided, which
can be guessed from simple visual inspection of the rig.
This method can be used to calibrate any set of rigidly
jointed LRFs where there are at least two sensors with
non-parallel scanning planes.

In summary, the necessary conditions for our method
to work are:

• the LRF rig observes at least two perpendicular
planes from two different viewing directions

• not all the LRFs scan parallel planes, in other
words, the measurement planes of at least two sen-
sors must intersect

1.1 Related works
Among the robotic systems found in the literature that
employ a combination of LRFs, only a few of them re-
port a calibration technique (Huang et al., 2010; Blanco
et al., 2009; Gao and Spletzer, 2010). Many other works
like (Thrun et al., 2006; Miller et al., 2011; Camp-
bell et al., 2010; Bohren et al., 2008; Petrovskaya and
Thrun, 2009), do not report any calibration process, so,
it is reasonable to suppose that they obtain the sensor’s
relative poses from manual measurements on their set-
ups, like in (Blanco-Claraco et al., 2014). Such proce-
dures are prone to errors that may severely affect the
performance of mapping and navigation methods, es-
pecially when the laser scanners have a long working
range, so that small rotation errors can produce signifi-
cant distortions in the map (Miller et al., 2011; Leonard
et al., 2008). Apart from the limitations in accuracy,
measuring the sensors relative poses by hand is also te-
dious and time consuming.

Generally, the preferred strategy to calibrate extero-
ceptive sensors is to use their own measurements to es-
tablish some kind of data association between their ob-
servations. The extrinsic calibration of 2D range scan-
ners in arbitrary poses proves to be more difficult than
for RGB or depth cameras, since distinctive features are
significantly more scarce in the first. This problem has
been tackled in some particular scenarios, but the solu-
tions reported share one or more of the next limitations:
they need supervised data association in controlled con-
ditions, they need external information (extra sensors, a
pattern or landmarks placed manually in the environ-
ment), or they are specific for a particular configuration
of the sensor rig. For example, vertical posts of traffic
signs are segmented and matched in a supervised way in

(Huang et al., 2010). In (Gao and Spletzer, 2010), a so-
lution is presented based on the matching of reflecting
landmarks that are manually placed in the environment.
Without using particular targets, calibration is achieved
in (Blanco et al., 2009) by making use of the vehicle’s
odometry to maximize the fitting of the 3D point clouds
built from the different LRFs, what requires extra sen-
sors (cameras or precision GPS) to improve the accu-
racy of the vehicle’s odometry.

Another approach consists of matching the trajecto-
ries of dynamic objects (or people) in the scene (Schenk
et al., 2012), (Glas et al., 2010). For that, the trajec-
tory of one, or several objects, is tracked independently
by each LRF, and these trajectories are registered to
constraint the sensor’s relative poses. This solution is
suitable for static systems where all the LRFs scan a
common space (nearly in the same plane), but it is not
valid to calibrate LRFs in arbitrary poses. Our previ-
ous approach (Fernández-Moral et al., 2015) makes use
of planar surfaces from the environment, but it requires
at least three LRFs observing simultaneously the same
plane, and presents further restrictions in its applicabil-
ity with respect to the method presented here. Also, a
broader description of several methods to calibrate the
extrinsic parameters of different kinds of range sensors
can be found in (Fernández-Moral, 2014).

Ego-motion has been used in combination with
wheel odometry to determine the intrinsic parameters of
the odometry together with the relative pose of a laser
sensor with respect to the robot’s frame (Censi et al.,
2013). However, this strategy is only applicable when
the laser scanner moves in its own plane of measure-
ment (typically, planar movement of a vehicle with an
horizontal LRF), otherwise the laser ego-motion can-
not be estimated. This last work addresses a different,
but complementary problem to the one tackled here.
Therefore, a combination of this technique with the one
proposed here would be interesting in many problems
to calibrate several LRFs with respect to the vehicle’s
frame, what is required in the field of autonomous cars.

1.2 Contribution
This paper presents, to the best of our knowledge, the
first general approach to calibrate a set of LRFs in arbi-
trary positions (with a minimum of 2 LRFs scanning
non-parallel planes). This solution only requires ob-
serving perpendicular planes from any structured scene.
The observability of the problem, formulated as a max-
imum likelihood estimation, is analysed from the rank
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of the Fisher Information Matrix, and a minimal solu-
tion using a single observation of the rig is presented.
The convergence of the method is also studied. A C++
implementation of this method is also provided together
with a testing dataset12.

In comparison to previous approaches, our method is
applicable to almost any geometric configuration of the
sensors; it is accurate and fast, indeed, the calibration
can be achieved from a single observation; and finally,
our method provides an estimation of the calibration un-
certainty.

In the following section we describe the calibration
method using constraint equations derived from the co-
planarity and perpendicularity of the observed planes
(section 2). Section 3 addresses the optimization prob-
lem stated upon these constraints within a probabilis-
tic framework that takes into account the precision of
the sensor measurements. We analyse the observability
conditions (section 4) and study the convergence region
for the solution (section 5). Experimental results are
presented to validate our approach with both simulated
and real data (section 6). Finally, a discussion on our
method’s applicability is presented (section 7) and the
conclusions are outlined (section 8).

2 CALIBRATION APPROACH

Our proposal for finding the extrinsic calibration (i.e.
relative poses) between two or more LRFs relies on es-
tablishing geometric constraints from the simultaneous
observation of pairs of perpendicular planes (see figure
1). For readability, let us define a corner as a pair of
perpendicular planar surfaces, not necessarily intersect-
ing3. Then, the geometric constraints are inferred from:
1) the co-planarity of the observed line segments lying
on each face of the corner, and 2) the perpendicularity
of both planar surfaces. An overview of the calibration
procedure is depicted in figure 2 showing its different
stages, which are detailed below.

1https://github.com/EduFdez/mrpt/tree/
LRF-calib/apps/LRF-calib/

2https://github.com/EduFdez/mrpt/blob/
LRF-calib/share/mrpt/datasets/3LRFs_dataset_
demo.rawlog

3This procedure of calibration can make use of pairs of oblique
(non-parallel) planes, not requiring perpendicularity. However, by
considering only perpendicular corners we facilitate both the read-
ability of this paper and its implementation and application since any
structured scene contains perpendicular planes.
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Figure 2: Calibration procedure.

2.1 Gathering observations
The first process is to collect data in an environment
which contains physical corners. A minimum of two
corner observations from different orientations are re-
quired to calibrate a pair of LRFs as it is described in
section 4. In order to take such observations, either the
sensor rig can be rotated with respect to the scene, or
a calibration pattern made with 2 perpendicular planes
can be rotated in front of the sensor rig. This last may
be useful when it is difficult (or impossible) to move
the sensor rig. In this paper we follow the first option
to carry out our experiments, as we see it is the most
convenient in most practical situations. It implies to
segment lines from the raw data to generate corner can-
didates, which are evaluated later on according to some
constraint equations to obtain the required corner obser-
vations (COs) as explained below.

We would like to remark that the rig can be cali-
brated from a single observation when three perpendic-
ular planes are visible by the sensors, as it is shown in
figure 4. However, it is preferable to take more observa-
tions to compensate for the noise in the measurements,
thus increasing the accuracy of the calibration.

2.2 Line representation and segmentation
The planar structures of the environment are sampled
by the LRFs as line segments. These lines can be ex-
tracted from the scans provided by each LRF in a num-
ber of ways (Nguyen et al., 2005). Here we have im-
plemented a segmentation method based on RANSAC
(Fischler and Bolles, 1981), although other approaches
like those based on region growing (Borges and Aldon,
2000) or on Hough transform (Forsberg et al., 1995)
may also be applied. The RANSAC procedure searches
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for the parameters {A,B,C} of a 2D line which maxi-
mize the number of points pi = (xi,yi)

T supporting the
model

|Axi +Byi +C| ≤ ε (1)

being ε a threshold used to differentiate between inliers
and outliers. An advantage of using RANSAC is that
unconnected collinear segments are automatically clus-
tered as the same line, simplifying the subsequent opti-
mization process.

The segmented lines are represented in 2D in the
LRF’s reference system by the normalized direction
vector l = (lx, ly)T and an arbitrary point of the line (see
figure 3). For such a point we have chosen the centroid
of the line’s inliers c = (cx,cy)

T since it has less un-
certainty to belong to the line than any measured point.
These parameters and their covariances are estimated
assuming unbiased, identically distributed (i.i.d.) Gaus-
sian noise in the LRF measurements. In the literature,
it is often assumed a model where the noise only af-
fects the range measurements, with exact bearing direc-
tions (Arras and Siegwart, 1998; Diosi and Kleeman,
2003). However, such model introduces linearization
errors that produces biased estimates of the line param-
eters. To avoid this, a common approach (see (Arras
and Siegwart, 1998; Diosi and Kleeman, 2003)) that we
follow here is to approximate the covariance of each
point pi in Euclidean coordinates as Σpi = σ2

i I. Then,
the maximum likelihood estimation of the centroid c is
calculated as

c =
1
N

N

∑
i=1

pi (2)

and its covariance Σc is given by

Σc =

[
σ2

N 0
0 σ2

N

]
(3)

The line direction vector l is obtained as the eigenvec-
tor corresponding to the largest eigenvalue of the point
dispersion matrix M

M =
N

∑
i=1

(pi− c)(pi− c)T (4)

and its covariance Σl = H+ is calculated following
(Pathak et al., 2010) as the Moore-Penrose generalized
inverse of

H =
1

σ2

N

∑
i=1

[
y2

i −yixi
−xiyi x2

i

]
(5)
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Figure 3: A rig of 3 LRFs in different orientations (i.e.
the z axis of each LRF are linearly independent).

In the rest of the paper the lines are represented in
3D in the LRF reference system (see figure 3) by set-
ting the z component of the line parameters and their
covariances to zero.

2.3 Corner constraints
Let S1 and S2 be two rigidly jointed LRFs, each one
observing two line segments {La

1,L
b
1} and {La

2,L
b
2}

from two perpendicular planes Πa and Πb. Let
[R1|t1], [R2|t2] ∈ SE(3) be the LRFs poses with re-
spect to a common reference frame, with the rotations
R ∈ SO(3) represented as 3×3 matrices and the trans-
lations t ∈ R3.

2.3.1 Co-planarity constraint

a co-planarity constraint is inferred for the lines seg-
mented by two LRFs that observe the same plane, for
instance, the lines {La

1,L
a
2} on the plane Πa in figure 1.

Both line direction vectors and the vector joining any
two points pa

1 and pa
2 of the observed lines, all referred

to the same coordinate system, form a matrix of defi-
cient rank as they are all parallel to the plane Πa. There-
fore, the determinant of that matrix, which is equal to
the mixed triple product of the 3 vectors, must be zero.
This is expressed as

(R1la1×R2la2) · (R1pa
1 + t1−R2pa

2− t2) = 0 (6)

This condition can also be interpreted as a statement for
the perpendicularity between the plane’s normal vector
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na = R1la1×R2la2 and any vector joining a pair of points
from the scanned lines. For such points, we make use
of the centroids ca

1 and ca
2, simplifying the optimization

procedure presented later on.

2.3.2 Orthogonality constraint

another constraint can be stated for the relative rotation
of a pair of LRFs that observe a corner defined by the
perpendicular planes Πa and Πb, so that

na ·nb = (R1la1×R2la2) · (R1lb1×R2lb2) = 0 (7)

Notice that the first constraint affects only the obser-
vation of a plane, while the second one implies the ob-
servation of a corner. Regarding the calibration prob-
lem, the former involves the relative rotation and trans-
lation of the sensors, while the latter affects only the
rotation.

2.4 From corner candidates to corner ob-
servations (COs)

Let us call CO the corner observed by a pair of rigidly
jointed LRFs. Specifically, a CO is described by the
set: CO = { j,La

j ,L
b
j ,k,L

a
k ,L

b
k}, where j and k are the in-

dices of the LRFs, a and b refer to the respective corner
faces (orthogonal planes), and the lines are represented
by La

j = {ca
j , laj ,Σa

c j
,Σa

l j
}.

Detecting a CO is not trivial when the relative poses
of the sensors are not known, as it is the case here. In-
deed, since the information provided by the LRF mea-
surements is purely geometric, we can only know that
two pairs of lines observed by two LRFs come from
a corner once we know the sensor’s calibration. As-
suming that corners are visible by the LRFs, the result-
ing problem implies detecting the COs and estimating
the calibration simultaneously. This can be tackled in
a hypothesize-and-test framework, where many corner
candidates (potential COs) are generated from the rig
observations by grouping sets of two pairs of lines seen
by a pair of LRFs.

After a number of observations are taken from dif-
ferent poses of the sensor rig, inconsistent corner can-
didates are ruled out robustly using RANSAC (Fischler
and Bolles, 1981) taking into account the restrictions
in equations (6-7). For that, a candidate extrinsic cali-
bration is calculated from a minimum set of randomly
selected corner candidates (as explained in the next sec-
tion). Then, the number of corner candidates consistent

with such calibration is evaluated. This process is re-
peated iteratively searching for the maximum consen-
sus of corner candidates. The result of this process is
the largest set of consistent candidates (inliers), which
are the COs from which the calibration is computed.
Empirically, we have verified that the correct calibra-
tion always corresponds to the largest number of inliers,
even when the number of outliers (wrong corner candi-
dates) is considerably larger than the number of inliers
(ninliers/noutliers ∼ 0.1). This situation where the num-
ber of outliers is much larger than that of inliers results
in a slow calibration process, however, it is not critical
since this can be done offline.

It is worth mentioning that if we have a rough knowl-
edge of the sensors relative poses, which is very com-
mon in practice, some constraints can be set for the se-
lection of COs so that less outliers are selected at a first
instance. Such restrictions are not applied here for the
sake of generality.

The process to obtain the COs can perform automati-
cally from the streaming data of the sensors (see for ex-
ample Extension 1 or the video at http://youtu.
be/v6Ls9NZWOZM). Errors derived from the motion
of the sensor rig are neglected here since the rig’s veloc-
ity is small with respect to the acquisition time. In order
to decide when should we stop gathering COs, a con-
vergence condition for the maximum uncertainty (co-
variance) of the resulting calibration is set to stop this
process automatically (Fernández-Moral et al., 2014).
Finally, once the COs are obtained, the calibration is
computed (last step in figure 2) as detailed in the fol-
lowing section.

3 PROBLEM FORMULATION
Let us consider a set of COs gathered with a rig of
m LRFs {S1, ...,S j, ...,Sm}. Without loss of general-
ity, the sensor S1 is chosen as the reference coordi-
nate frame, so that each LRF S j is located with a rel-
ative transformation [R j|t j] ∈ SE(3) with respect to
S1. Then, we want to estimate the optimal {R, t} =
{[R2|t2], ..., [R j|t j], ..., [Rm|tm]} that minimize the errors
of the constraints in eqs. 6-7, assuming independence
between the COs and that the measurements are af-
fected by unbiased Gaussian noise as modelled in sec-
tion 2.2.

The above problem is formulated as the maximum
likelihood estimation (MLE) of the relative poses {R, t}
for the given COs, which is calculated from the maxi-
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mization of the log-likelihood

argmax
{R,t}

(
ln

N

∏
i=1

p(COi|{R, t})

)
(8)

where the likelihood of {R, t} for the i-th CO is calcu-
lated from the constraints presented above (eqs. 6-7). It
is expressed as the multiplication of the likelihood for
each constraint, two co-planarity constraints from eq. 6
(one per plane in the corner) that affect the estimate of
both rotation and translation and one constraint from eq.
7 that affects only the estimate of the relative rotation.
Thus, for a given COi observed by the LRFs j and k, we
have:

p(COi|{R, t}) =
p(COa

i |R j, t j,Rk, tk)· p(COb
i |R j, t j,Rk, tk)· p(COab

i |R j,Rk)
(9)

with the superindices a and b referring to the co-
planarity constraints inferred from each plane, and the
superindex ab referring to the perpendicularity condi-
tion. As verified experimentally through Monte Carlo
simulations in appendix A, the above probabilities fol-
low Gaussian distributions. Concretely, the first two el-
ements of the right term in eq. 9 are given by

p(COa
i |R j, t j,Rk, tk) =

1√
2πσa

i
exp
(
−1

2
e2

i
(σa

i )
2

)
=

1√
2πσa

i
exp

(
−
(na

jk · (R jca
j + t j−Rkca

k− tk))
2

2(σa
i )

2

)
(10)

with
na

jk = R jlaj ×Rklak (11)

being σa
i the standard deviation of the error ei (eq. 6).

The expression of the probability from the co-planarity
constraint of the plane Πb is the same with the exception
of the superindices. On the other hand, the probability
inferred from eq. 7 is given by

p(COab
i |R j,Rk) =

1√
2πσab

i
exp

(
−
(na

jk ·nb
jk)

2

2(σab
i )2

)
(12)

being σab
i the standard deviation of the error of (eq. 7).

Both standard deviations (σa
i and σab

i ) are computed
through linearisation from a first order Taylor approx-
imation of the error functions. Their derivation is de-
tailed in the appendix B.

When these standard deviations are constant with re-
spect to the model parameters, the solution of the MLE
in (8) coincides with that of the weighted, non-linear
least squares problem expressed as

argmin
{R,t}

N

∑
i=1

(
ω

a
i (n

a
jk · (R jca

j + t j−Rkca
k− tk))

2+

ω
b
i (n

b
jk · (R jcb

j + t j−Rkcb
k− tk))

2+

ω
ab
i (na

jk ·nb
jk)

2
)

(13)

where ωx
i (the superindex x stands for a, b or ab) is the

weight of the corresponding residual from COi

ω
x
i =

1
(σ x

i )
2 (14)

This problem is reformulated using Lie algebra
(Fernández-Madrigal and Claraco, 2013) to represent
the poses with a minimal parameterization on a mani-
fold. For that, the rotations are represented as the com-
position of a guessed rotation and a rotation increment
represented with the exponential map (eµ j R j), with the
rotation increment eµ j ∈ SO(3). The translations are
also represented as the sum of a guessed translation plus
an increment (t j +∆t j), both in R3. The resulting non-
linear least squares problem is solved iteratively using
Levenberg-Marquardt

[µk
2 ∆tk

2, ...,µ
k
m ∆tk

m]
T =−(H +λ diag(H))−1g (15)

being λ the Levenberg-Marquardt’s damping factor. H
is the Hessian (a symmetric matrix of dimension 6(m−
1)) and g is the Gradient (a column vector of dimension
6(m−1)) of the cost function, which are calculated as

H =
N

∑
i=1

JT
i ωiJi , g =

N

∑
i=1

JT
i ωiri (16)

where N is the number of constraints of this optimiza-
tion, being ri the residual and Ji the Jacobian for each
constraint (remember that each CO provides three con-
straints). The Jacobian Ja

i corresponding to the con-
straint from eq. 6 is calculated as

Ja
i =[...;(laW

j × (laW
k × (caW

j − caW
k ))+R jca

j ×na
jk︸ ︷︷ ︸

Jµ j

; na
jk︸︷︷︸

J∆t j

; ...;

...;−(laW
k × (laW

j × (caW
j − caW

k ))−Rkca
k×na

jk︸ ︷︷ ︸
Jµk

;−na
jk︸︷︷︸

J∆tk

; ...]T

(17)
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where the superindex W refers to the common reference
frame, so that4

laW
j = R jlaj , laW

k = Rklak

caW
j = R jca

j + t j , caW
k = Rkca

k + tk

This Jacobian (a row vector of dimension 6(m− 1))
contains four blocks of 1× 3 vectors corresponding to
the derivatives of the residual with respect to µ j, ∆t j
and µk, ∆tk, respectively.

On the other hand, the Jacobian Jab
i of the residual

from eq. 7 is given by

Jab
i = [..; lbW

j × (lbW
k ×na

jk)+ laW
j × (laW

k ×nb
jk)︸ ︷︷ ︸

Jµ j

; ...

...;−lbW
k × (lbW

j ×na
jk)− laW

k × (laW
j ×nb

jk)︸ ︷︷ ︸
Jµk

; ...]T (18)

The two blocks of 1× 3 vectors of this Jacobian cor-
respond to the derivatives of the residual with respect
to µ j and µk respectively, being zero the blocks corre-
sponding to the rest of elements in {R, t}.

This optimization is solved iteratively

Rk+1
j = eµk

j Rk
j , tk+1

j = ∆tk
j + tk

j , j ∈ [2,m] (19)

from an initial guess for the sensor relative poses, which
may be obtained from a rough measurement of the rig.
Once the problem is solved, the covariance of the result-
ing calibration is calculated as the inverse of the Hes-
sian of the cost function in (13) (Fernández-Madrigal
and Claraco, 2013).

4 OBSERVABILITY
The problem of estimating the relative poses has 6(m−
1) DoF, with m being the number of LRFs. From the
formulation presented in the previous section, we have
seen that each CO leads to three constraints for the rel-
ative poses of the corresponding pair of LRFs. There-
fore, at least 2(m− 1) COs are needed to provide as
many equations as unknowns for solving the problem.

We are also interested in knowing how these observa-
tions should be taken in order to provide the necessary
information to solve the calibration. The analysis of the

4For clarity, the CO index i will be omitted in subsequent opera-
tions that affect only to the same CO.

Figure 4: Observation of a corner with three perpendic-
ular planes by two LRFs.

observability of calibration problems provides valuable
information about the procedure to gather such data
(Martinelli, 2011; Censi et al., 2013). Such analysis is
carried out here by studying the rank of the Fisher In-
formation Matrix (FIM) of the estimation problem(see
appendix C). The key concept here is that when the
FIM is singular, the information carried by the data (ob-
servations) is not sufficient and the problem is under-
constrained ({R|t} is unobservable). We wish to iden-
tify these situations of unobservability in order to avoid
them in practice.

From the Monte Carlo simulation carried out in 8.1,
the probabilities in eqs. 10 and 12 can be assumed
to follow Gaussian distributions. Thus, following ap-
pendix C, the FIM can be expressed as

FIM = JT
ΩJ (20)

where J is a matrix concatenating the Jacobians Ji of the
different constraints, and Ω is a diagonal matrix con-
taining the weights ωi of such constraints. Since Ω is
diagonal with all the elements being positive, the rank
of FIM is given by the rank of J

rank(FIM) = rank(JT J) = rank(J) (21)

Therefore, the problem has a solution when

rank(J) = 6(m−1) (22)

By analysing the structure of the different Jacobians
Ji for each CO, we can notice that a CO provides three
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linearly independent rows for J when a corner is ob-
served in a new orientation (eqs. 17 and 18). To get
a deeper insight into this, consider a block of the Jaco-
bian in eq. 18, for instance Jµ j . Each corner observa-
tion in a new, linearly independent direction, expressed
by na

jk × nb
jk, contributes to constrain the problem for

µ j. For the Jacobian in eq. 17, it can be verified that
each plane observation providing a linearly independent
n jk results in a linearly independent Ji which constrains
both the relative rotation and the relative translation be-
tween the sensors S j and Sk. Therefore, two observa-
tions of a corner from different orientations suffice to
solve the calibration of a pair of sensors. Moreover, a
single observation of a corner with three perpendicular
planes (as shown in figure 4), provides enough infor-
mation to solve the problem since it contains already 3
independent normal vectors of the plane, and 3 inde-
pendent orthogonal constraints.

An interesting case of unobservability occurs for pla-
nar movement of a sensor rig, when all the visible
planes are perpendicular to the plane of movement. In
such case, it can be clearly seen that there is a free de-
gree of freedom for the translation since the rank of the
matrix concatenating the plane’s normal vectors will al-
ways be deficient. This situation arises for a vehicle
with an horizontal LRF which only observes vertical
planes. In order to calibrate such system, the scene
should contain oblique planes, or the rig should be tilted
in order to take observations from non-vertical planes.

Finally, the ratio η = µ6(m−1)/µ1 between the small-
est and largest eigenvalues of the FIM is also an in-
dicator of how well distributed the measurements are
along the different directions (DoF) of the domain (η =
condition number−1). So, in the best case η = 1 which
means that all plane observations are equally distributed
in the space, while when η → 0, the system becomes
ill-conditioned.

5 CONVERGENCE
Considering that the calibration is observable, another
important issue is to know if the solution converges to
the correct value. This problem is not trivial for a non-
linear optimization whose domain is not convex, con-
taining local minima, as it is the case here. The local
convexity of the error function around the solution de-
pends on a number of parameters including: the con-
figuration of the sensor rig, the amount of corner obser-
vations and their positions, and the noise in the sensor

measurements. Thus, a mathematical condition for the
convergence cannot be established in general.

However, given a configuration of the rig and a set
of observations (COs), we can sample the optimization
domain to conduct a qualitative analysis of its convex-
ity. In figure 5 we display the residual error of eq. (13)
for a rig with two LRFs which observe 20 COs from dif-
ferent orientations. The error is shown with respect to
the six parameters of the calibration by grouping pairs
of DoFs in rotation and translation. The first row of
figure 5 shows three sections of the sphere of possible
rotations5, corresponding to the planes x− y, y− z and
z− x, while the second row shows the translation do-
main, where each DoF takes values in [0.5, -0.5] meters
around their true value which is at the center {0,0} of
each graph. The resulting residuals are shown with a 2D
heat map with the contour lines. In all the graphs, we
see clearly a minimum at the correct calibration. We
observe that there are local minima in the orientation
domain, what implies that the initial values for the rela-
tive rotation must be given in a local region around the
solution. On the other hand, the problem is convex for
the translation as it is inferred from the formulation (the
error depends linearly on the translation), therefore, the
result does not depend on its initialization.

To give a further insight on this topic, we show the
percentage of convergence of the test above with re-
spect to the initial rotation offset measured in degrees.
A test is said to converge when the rotation error with
respect to the groundtruth is lower than 1◦ and the trans-
lation error is below 1 cm. In this experiment, the ini-
tial rotation is given by RInit = Ro f f setRgroundtruth with
RInit ,Ro f f set ,Rgroundtruth ∈ SO(3). The domain of all
possible initializations for the rotation is represented
by a sphere τ ∈ so(3) where Ro f f set = eτ with radius
r = norm(τ), r ∈ [0,π]. With this experiment we check
the ”convergence rings” around the true solution. Such
convergence rings represent spherical surfaces (fixed ra-
dius) in S2. A discretization with 1 degree sampling is
employed for [θ ,φ ] ∈ S2 in each spherical surface. The
results of this experiment are shown in figure 7, where
each bar represents the rate of convergence in a surface
of possible rotations of a given angular offset. In anal-
ogy to the graph of figure 5, where the contour maps
represent planar sections of the sphere of possible ro-
tations, here the bars represent different spherical sur-
faces (different modules of the rotation offset). As we

5Note that the domain for the rotation in the Lie algebra so(3) is a
sphere of radius r = π
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can see, the further the initializations are from the true
solution, the more reduced the convergence rate is.

The tests above have been repeated for a number of
rig configurations and for different sets of COs, where
the results are qualitatively similar. For all such tests,
we observe a similar trend for the error surfaces and

the convergence rates, indicating that there is at least
one local minimum for the error function at the correct
solution, and that there are local and global minima dis-
tributed in the domain. A particularly interesting case of
wrong convergence occurs when the relative rotation of
a pair of LRFs is initialized in a way that their scanning
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planes coincide. Note that there exists a global mini-
mum for such set of parameters, where the error will be
zero no matter the COs. Initializing the calibration near
such global minima can drive the optimization to wrong
calibration.

Another interesting point is to know if the calibration
can be performed only from plane observations since,
in fact, co-planarity constraints already restrict both the
rotation and the translation of the relative poses in the
rig. Several tests have indicated that this form of cali-
bration is not possible because the cost function is not
locally convex near the solution, and thus the problem
cannot be properly constrained. As shown in figure 6,
the introduction of the orthogonality constraint (eq. 7)
makes the correct solution lie on a local minimum. Fig-
ure 6 shows the convergence error maps of different cost
functions from: a) co-planarity constraints, b) orthogo-
nality constraints, and c) a combination of both, which
is actually the sum of the previous two. Note how these
two functions complement well making the correct cal-
ibration lie on a local minimum.

In summary, the region of convergence in which we
can provide a valid initial rotation depends on the par-
ticular configuration of the sensor rig. Therefore, a
closed domain to guarantee convergence cannot be de-
fined. From an engineering point of view, we observed
that such convergence region is wide enough to provide
good initial values for the relative poses from simple
visual inspection of the rig.

6 EXPERIMENTS

A number of experiments has been carried out to vali-
date the present approach from both simulated and real

LRF rigs.

6.1 Simulation
In our simulation environment, a rig consisting of two
non-parallel LRFs is placed at different distances and
orientations with respect to a corner in order to gather
measurements from several poses. The sensors are
modelled according to the parameters of the Hokuyo
UTM-30LX rangefinder, and the observations are gen-
erated with unbiased, uncorrelated Gaussian noise with
σ = 0.03 m. The line features and their covariances are
extracted from these synthetic observations. The cal-
ibration is estimated for the cases of weighted (MLE)
and unweighted optimization (standard least squares)
for a varying number of COs. The average errors of the
calibration with respect to the true poses are obtained
from a Monte Carlo simulation with 105 trials for ev-
ery set of COs. For each test, the initial relative pose is
uniformly generated around the groundtruth at distance
d ∈ [0,1m] and at an angle |τ| ∈ [0,π/4]. The average
errors of the relative rotation and translation are shown
in figure 8 in degrees and millimeters, respectively. We
observe that these errors diminish asymptotically with
the number of COs. Also, we see how the MLE solution
that takes into account the covariance of the measure-
ments is consistently more accurate than the solution
which ignores that information. This test was repeated
for several configurations of the LRF rig (different rel-
ative poses between the sensors) obtaining similar re-
sults.

We also study the bias and covariance of our method
from the above Monte Carlo simulation by analysing
the distribution of the calibration results. The six di-
mensional errors of the calibrated poses are shown in
figure 9, by grouping pairs of DoF for the rotation and
the translation, respectively. This figure shows the dis-
tribution of the 105 samples around the groundtruth (at
the intersection of the two lines), the 2σ confidence el-
lipses of Monte Carlo, and the one corresponding to
the estimated covariance of one sample through the
Cramér-Rao Bound (see appendix C). Note that the bias
(difference between the center of the Monte Carlo el-
lipses and the groundtruth) and the covariance of the
solution are very small as they are in the order of mil-
limetres and 10−3 radians for the translation and ro-
tation respectively. Also, the CRB covariance, which
is the best covariance we may obtain from the sensor
measurements when all the assumptions are correct, is
very close to the true covariance given by Monte Carlo,
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Figure 8: Calibration error of 2 LRFs with and without covariance weighting, represented by the norms of the
rotation (left) and translation (right) error vectors.

which implies that our estimator is highly efficient.
Finally, we examine the problem of calibrating sev-

eral LRFs, where the corner observations relate pairs of
sensors. This problem is solved as the optimization of
a graph of constraints, similar to the problem of pose
graph SLAM (Grisetti et al., 2010). To give some in-
sight on this, we simulate the observation of a number
of corners by a rig with 4 LRFs. The relative poses
of these were randomly generated around the reference
sensor LRF1 which is located at the reference of coor-
dinates. Figure 10.a) shows the average rotation errors
of the lasers LRF2, LRF3 and LRF4 with respect to
the number of corner observations. We compare these
errors with those obtained from the calibration of the
different pairs (1-2, 1-3 and 1-4) shown in fig. 10.b).
As expected, using all the information available (full
graph optimization) results in less error than pair-wise
calibration.

6.2 Real data
We have also validated the proposed calibration method
in real case scenarios employing: 1) a rig with three
LRFs and 2) the sensors mounted on two autonomous
cars. The characteristics of the calibrated LRFs are
shown in table 1.

Test rig
In the first case, the test rig is composed of 3 Hokuyo
UTM-30LX (see figure 11). The LRF recordings of

Table 1: Characteristics of the LRFs calibrated in this
paper.

Hokuyo UTM-30LX Sick LMS 291-S05
Range (m) [0, 60] [0, 80]

σ (m) 0.03 0.01
Resolution 0.25 ◦ 0.25 ◦

Field of view 270 ◦ 180 ◦

Figure 11: Test LRF rig with three Hokuyo UTM-
30LX.

this experiment are publicly available at www.mrpt.
org/LRF-calib_dataset. The sensors’ synchro-
nization effect is neglected in this test since the rig is
smoothly waved at a low velocity while the LRFs scan
at a frame rate of 40 Hz (see Extension 1 or the video
at http://youtu.be/v6Ls9NZWOZM). The accu-
racy of the resulting calibration cannot be estimated di-
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Figure 9: Error distribution and 2σ covariance ellipses of the calibration of two LRFs from a Monte Carlo simu-
lation with 105 samples. The 2σ covariance ellipses from the Cramér-Rao Bound (CRB) of one of these samples
is also drawn, centred at the groundtruth.

rectly since a groundtruth for the sensors relative poses
is not available. Instead, we evaluate the accuracy of the
method by checking that the pose composition from cal-
ibrating the different pairs closes a loop (R12R23R31 = I
and t12 + t23 + t31 =~0).

In this test we validate our approach using a vary-
ing amount of COs, which are obtained at different ori-
entations of the rig while it moves as it is shown in
the video. The initial poses required by our method
are given around a guess obtained from visual check
of the rig, in a range of [0, 40] degrees for the rotation
and [0, 1] meters for the translation, with respect to the
correct calibration (several initializations are tested to
check the robustness of our method). Table 2 shows the

results of this test for different numbers of COs, from a
minimum of 2 COs to 100 COs. The first three columns
show the average residuals of the calibration of each
pair of sensors, and the last two columns show the aver-
age deviation with respect to the loop closure condition
of the three independent calibrations. From this table,
we observe that, as expected, the average residuals and
the loop closure deviations decrease with the number of
COs.

In this experiment, we have also calibrated the three
LRFs by optimizing the full graph of constraints be-
tween them, so that the above loop closure condition
is guaranteed. This way, the calibration should be more
accurate since it uses all the information available. Ta-
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Table 2: Average residual and total deviation of the cal-
ibration for a varying amount of COs

COs res12 res23 res31 R dev (deg) t dev (cm)
2 2.74 3.81 1.41 1.03 5.31

20 1.48 1.70 1.25 0.63 1.72
40 1.46 1.66 1.23 0.51 0.54
60 1.39 1.66 1.22 0.49 0.34
80 1.33 1.62 1.22 0.48 0.29
100 1.32 1.62 1.21 0.47 0.27
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Figure 12: Maximum eigenvalue of the calibration co-
variance with respect to the number of COs.

ble 3 shows the deviation of the relative pose between
each pair of sensors and this global calibration.

The covariance of the resulting calibration depends
on the information provided by the COs. In general,

Table 3: Deviations between global calibration and the
calibration of each pair for a varying amount of COs

COs Rotation Dev. (deg) Translation Dev. (cm)
r12 r23 r31 t12 t23 t31

2 0.84 0.54 0.65 1.21 1.03 0.83
20 0.41 0.40 0.52 1.10 0.93 0.72
40 0.40 0.36 0.50 0.96 0.91 0.74
60 0.39 0.35 0.43 0.89 0.79 0.65
80 0.33 0.33 0.29 0.88 0.68 0.66

100 0.32 0.34 0.27 0.73 0.67 0.61

providing more COs contributes to reduce the uncer-
tainty of the solution. This is confirmed in figure 12,
which displays the maximum eigenvalue of the calibra-
tion covariance with respect to the number of COs for
the experiment above. We observe how such value of
the variance decreases asymptotically with the number
of COs. This feature is relevant since it allows the user
to set the maximum uncertainty for the calibration, so
that the process of gathering COs stops after such limit
is reached.

Autonomous car datasets

We have also validated our method by calibrating the
sensors mounted on two different autonomous vehicles,
using two publicly available datasets6,7. For the dataset
in (Blanco-Claraco et al., 2014), the vehicle has five

6http://www.mrpt.org/MalagaUrbanDataset
7http://grandchallenge.mit.edu/wiki/index.php?title=PublicData
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(a)

(b)

Figure 13: A semi-autonomous car which incorporates
several laser rangefinders at different orientations. b)
Scheme of the sensors.

LRFs in total, three Hokuyo UTM-30LX and two Sick
LMS 291-S05, whose configuration is shown in figure
13. The Sick sensors scan horizontal planes, and there-
fore, the calibration cannot be fully constrained unless
they observe non-vertical planes (for that, either the rig
must be tilted or the scene should contain oblique planes
like shop awnings, otherwise there is only one linearly
independent CO visible by the Sick LRFs). This situa-
tion does not occur in the dataset, so, only the Hokuyo
sensors are considered. Note that two of these three sen-
sors (labeled as Hokuyo2 and Hokuyo3) scan the same
vertical plane, however they can still be calibrated since
the sensor Hokuyo1 has a different orientation. For cali-
bration, we have chosen an extract of the dataset8 where

8http://www.youtube.com/watch?v=qZMlc5UeUpE

Mission 1, 15m3s, Front!Left Camera

corner

Figure 14: Snapshot of the corner observed by the lasers
2 and 4 of the MIT’s autonomous vehicle Talos during
the 2007 Darpa Urban Challenge.

the car travels through some streets with buildings at
the sides. The corner observations where selected in a
supervised way because the clutter in the scene (other
cars, trees, etc.) introduces a huge amount of wrong
correspondences that prevents a correct corner detec-
tion. Our method could be applied however automati-
cally when there is less clutter, like in the previous ex-
periment.

The calibration was computed from 12 COs taking
the extrinsic parameters provided with the dataset for
the initialization which, according to the authors, were
manually measured from the rig. All the corners se-
lected for this calibration come from the floor and a
wall, which are assumed to be perpendicular. The aver-
age angle between these planes for the 12 corners after
calibration was 89.4 degrees, with a standard deviation
of 0.68, while, by using the calibration provided with
the dataset the average angle was 85.9 degrees, with a
standard deviation of 5.6. Also, the visualization of the
calibrated laser scans for both cases shows that our es-
timation is clearly more accurate since the intersection
of the scanning planes produces coincident points, and
the straight segments observed by each laser lie on the
scene planes. On the contrary, such visual alignment is
not so good for the calibration proposed in the dataset.

The second dataset used here (Huang et al., 2010)
corresponds to the recordings of a car which partici-
pated in the Darpa Challenge, which has 13 LRFs. The
dataset was taken in open outdoor spaces which are
scarce in corner structures. At some point of the video
sequence however, the car passes near a building where
a pair of LRFs observe two corners (see figure 14).
Such corners are seen at the time 15m03s of the dataset
”2007-11-03-log-uce-scrubbed.mission1”, by the lasers
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2 and 4. From this single observation we perform cal-
ibration using different initializations for their relative
pose. Such initializations were randomly generated
around the calibration proposed in the dataset, in a sim-
ilar way to the previous experiments. In this case, the
lines were segmented using a parameter independent
line fitting method (Prasad et al., 2011), which works
better given the low angular resolutions of the sensors in
the dataset (1/4 of the maximum resolution). The esti-
mated pose differs from the one reported by the authors
by ∼ 0.8 ◦ in the rotation and ∼ 20 cm in the transla-
tion. It is hard to say which calibration is more accurate
in terms of the rotation, while for the case of the trans-
lation, the calibration provided with the dataset looks
more accurate according to the visualization of the re-
constructed laser scans. We attribute this difference to
the COs obtained (only 2) and to the curvature of one
of the observed ”planes” (the floor). Also, the observa-
tions are not simultaneous since the scans were taken
with no synchronization while the car moves at a con-
siderable speed, contributing to increase the calibration
error.

There are several ways to improve the calibration ob-
tained for this practical example. The first thing would
be to take observations in a more structured scenario,
like in a city, or just in front of a wall (a wall with the
floor constitute a corner). In this way, a bigger number
of observations could be taken to compensate for dif-
ferent sources of error. Finally, taking synchronized (or
still) observations will also help to obtain more accurate
results.

Table 4: MIT Dataset calibration from a single obser-
vation with different initializations.

Av Rot deviation 0.79 ◦

Rot presission 0.02 ◦

Av Trans deviation 23.2 cm
Trans presission 3.65 cm

7 DISCUSSION

This section presents to the reader some practical in-
formation about how our method can be applied. The
most convenient case is when we can move freely the
LRF rig, so that we can gather the data in a scenario
with large, clearly visible corner structures. This case
is shown in our experiments with the test rig. In some

cases we might need to tilt manually the robot where
the rig is already mounted on, as it is shown in the
accompanying video demonstration. This procedure is
common when the scanning plane of one sensor is par-
allel to the floor. Whereas this may be less practical
for large vehicles, it could be very useful for robotic
wheelchairs or small service robots, which constitute
a growing class of applications which require precise
sensor calibration for navigating in real-world environ-
ments.

For the case when moving the rig is not practical, a
good option may be building a corner pattern which can
be waved manually in front of the sensors to provide
them the corner observations. This may also be the
option to calibrate an static rig (impossible to move),
unless it observes already a corner with three perpen-
dicular planes like the one shown in figure 4, in which
case the rig can be calibrated without the need to build
a pattern. Depending on the sensor setup (dimensions
and weight of the system), and on the particular envi-
ronment, gathering the measurements and/or produc-
ing a specific calibration pattern (with two perpendic-
ular planes) may be more or less inconvenient. But we
reckon that in most scenarios, this is still more practical
than taking manual measurements on the sensor set-up
or engineering a specific ad-hoc solution.

It is also worth to mention that the only actual case
where our method cannot be applied is when the mea-
surement planes of all the sensors are parallel. This
means that two parallel sensors can still be calibrated
if there is a third sensor scanning a plane which is not
parallel to them. This case is common for experimental
autonomous cars, which besides having some parallel
LRFs have also other ones in different non-parallel ori-
entations, what allow to calibrate the system without
need of an extra LRF with the only purpose of calibra-
tion.

Regarding the effort needed for calibration, we ob-
serve that in most cases the biggest effort comes from
taking the rig to an amenable place (in many cases the
current working environment is fine) and taking a few
seconds of measurements to take enough corner obser-
vations. The most relevant time cost of applying our
method comes from the fact of taking the different mea-
surements (the computation time is in the order of mil-
liseconds for about 100 COs). The optimal amount of
COs may be chosen by the user according to the accu-
racy he requires, the particular noise model of his sen-
sors, and the facility to take observations of corners in
different viewing orientations. As a rule of thumb, we
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have checked that some tens of COs provide a solution
very close to the maximum accuracy and may suffice in
practice.

8 CONCLUSIONS
We have presented, to the best of our knowledge, the
first general solution to calibrate the extrinsic parame-
ters of a rig of 2D range scanners. The method relies
on the observation of perpendicular planes to constraint
the relative poses of the different LRFs. This prob-
lem is solved in a probabilistic framework that takes
into account the uncertainty in the measurements of
the sensors, and as a result, it also provides the un-
certainty of the estimated calibration. The observabil-
ity and the convergence conditions for the problem are
studied, showing that there exists a minimal solution
which only requires a single observation from the LRF
rig.

The calibration method proposed here presents im-
portant advantages with respect to previous approaches,
since it is applicable to almost any sensor configuration,
it is easy to use and easy to automatize, while being ro-
bust and accurate. Also, its probabilistic formulation
allows to calibrate different models of sensors, as each
error is weighted according to its uncertainty. We have
conducted several experiments to validate our approach,
both with synthetic and real data, which have demon-
strated the claimed features of our proposal.

APPENDIX

8.1 Gaussian error model
It is common to assume Gaussian error models in
robotics. This section verifies such assumption for the
error models employed here. In the simulation exper-
iments carried out in this work, the depth measure-
ments are generated with additive Gaussian noise of
zero mean, and no error in the bearing, although, the
covariances of the measured points are assigned as diag-
onal matrices (eq. 3) in Euclidean coordinates (a com-
mon practice in most of the related works (Arras and
Siegwart, 1998; Diosi and Kleeman, 2003)). Moreover,
several operations are applied to Gaussian random vari-
ables in the error model, so that the resulting distribu-
tion is not necessarily Gaussian. In this appendix sec-
tion, we conduct some Monte Carlo simulation with 105

samples, to check how the planarity error is distributed

(eq. 6) and the perpendicularity error (eq. 7) of a corner
observation for different normal errors in the measure-
ments. These errors are simulated for three different
corners at different orientations, and for three rig con-
figurations with two LRFs (nine evaluations are shown).
The results of these simulations are shown in figure 15
together with a χ2 goodness of fit test, confirming that
both errors follow normal distributions of zero mean.
This test has been repeated for different resolutions of
the LRFs, obtaining similar results.

8.2 Propagation of uncertainty
The solution presented in this paper propagates the un-
certainty of the sensor measurements to the resulting
calibration. For that, the covariance of different func-
tions must be estimated. This is systematically done
through linearization, so that the covariance Σy of

y = f (x) (23)

is computed as
Σy ≈ JxΣxJT

x (24)

being Jx =
∂ f (x)

∂x the Jacobian of f (x). This is an approx-
imation when f (x) is not linear, otherwise the formula
is exact.

In order to compute the variance for the error func-
tion in eq. 10

r jk = R jl j×Rklk︸ ︷︷ ︸
n jk

·(R jc j + tj− R̂kck− tk︸ ︷︷ ︸
d

)

the linearization above is applied, resulting in

σ
2
i ' nT

jkσdn jk +dT
Σn jk d (25)

Σn jk = [R jl j]xRkΣlk RT
2 [R jl j]

T
x +[Rklk]xR jΣl j R

T
j [Rklk]Tx

(26)
σ

2
di
=R jΣc j R

T
j +[c j]xΣR j [c j]

T
x +RkΣck RT

k +[ck]xΣRk [ck]
T
x

(27)
where [·]× is the skew-symmetric matrix operator.

For the error distribution in eq. 12,

ri = na
jk ·nb

jk (28)

the linearization above is applied as

σ
2
i =(na

jk)
T RT

j RkΣnb
jk

RT
k R jna

jk +(nb
jk)

T RT
k R jΣna

jk
RT

j Rknb
jk

(29)
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(a) Corner1 & rig1. χ2/N = 1.068
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(b) Corner2 & rig1. χ2/N = 1.014
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(c) Corner3 & rig1. χ2/N = 1.007
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(d) Corner1 & rig2. χ2/N = 1.004
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(e) Corner2 & rig2. χ2/N = 1.000
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(f) Corner3 & rig2. χ2/N = 1.013
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(g) Corner1 & rig3. χ2/N = 1.068
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(h) Corner2 & rig3. χ2/N = 1.001
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(i) Corner3 & rig3. χ2/N = 1.008

Figure 15: Monte Carlo simulation of a corner observation at three different orientations (a different corner
is shown in each column) with three different rigs of two LRFs (a different rig is shown in each row). The
distribution of the planarity and perpendicularity errors are shown respectively at the left and right of each graph,
together with the Gaussian functions which best fit these distributions. For each one, we compute the χ2 goodness
of fit test, where N represents the number of samples.

These linearizations imply that the product of two
Gaussian random variables is approximated as a Gaus-
sian distribution, despite that the result follows a χ2 dis-
tribution. The error of this approximation diminishes
asymptotically with the number of samples (observa-
tions) (Severo and Zelen, 1960; Zhang, 2005).

8.3 Fisher Information and Cramér-Rao
Bound

The Fisher Information Matrix (FIM) is a statistic
measure of how much information an observable ran-
dom variable X carries about the parameters θ =
[θ1,θ2, . . . ,θN ]

T upon which the likelihood function
P(X |θ) depends. For an unbiased estimator, the FIM
is defined as

I (θ) = E [ (∇θ logP(X |θ))(∇θ logP(X |θ))|θ ] (30)

which is a N×N positive semi-definite symmetric ma-
trix. Formally, the FIM corresponds to the expected
value of the observed information. It has important

implications regarding the observability of estimation
problems,

concretely, the problem is observable (it has a solu-
tion) if and only if the FIM has full rank, i.e. rank(I )=
N.

Considering an estimation problem in which the
observable random variables X follow an unbiased,
asymptotically Gaussian distribution, the FIM can be
calculated as

I (θ) = JT
E ΣX JE (31)

where JE is the Jacobian of the observation equations
(i.e. the cost function of the estimation problem)
(Van Trees and Bell, 2007). This formulation has a rel-
evant significance in this paper, implying that the FIM
of the maximum likelihood estimation in eq. 8 corre-
sponds to the Hessian of the negative log-likelihood of
eq. 9, which is minimized through least squares, where
the Hessian is given in eq. 16.

The Cramér-Rao Bound (CRB) defines a lower
bound for the variance of estimators, therefore, it is a
measure of the performance of estimators (Van Trees
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and Bell, 2007). The CRB states that the covariance of
an unbiased unbiased estimator cannot be lower than
the inverse of the Fisher information (Van Trees and
Bell, 2007).

cov(θ̂)≥I −1(θ) (32)

where θ̂ is the true value of the estimator. If this limit
is achieved, the estimator is called efficient. Thus, the
FIM defines a lower bound for the noise of our esti-
mate, which can be used to find the best estimator for
the problem.

8.4 Lie algebra and Lie groups
A Lie algebra can be described as a representation of a
Lie group in a vector space where infinitesimal transfor-
mations can be applied. The special orthogonal group
SO(3) which represents all rotations in 3D Euclidean
space R3, is an example of a Lie group. Each rotation in
SO(3) is expressed as a 3×3 orthonormal matrix. The
Lie algebra corresponding to the Lie group SO(3) is ex-
pressed as so(3), and coincides with R3. It constitutes
a minimal parameterization for the rotations which can
be arithmetically manipulated as a vector space. The
transformation from the Lie algebra so(3) to its corre-
sponding Lie group SO(3) is defined by the exponential
map operation

exp: so(3)→ SO(3)
ω → R

which is given by the Rodrigues’ formula

R = I +
sin(θ)

θ
[ω]×+

(1− cos(θ))
θ 2 [ω]2× (33)

where θ = |ω|, and [·]× represents the skew-symmetric
matrix operator. The inverse operation is called loga-
rithm map, which in this case is obtained from

θ = arccos
(

trace(R)−1
2

)
(34)

ω =

{
0 if θ = 0

θ

2sin(θ) (R−R>) if θ 6= 0 and θ ∈ (−π,π)

(35)
Figure 16 shows an intuitive representation for the

smooth manifold of a Lie group (e.g. SO(3)) and the
Euclidean tangent space of its Lie algebra, showing the
transformations between both. Note that the tangent
point is located at the identity of the Lie group.

Figure 16: Lie group and Lie algebra for the space of
3D rotations.

The special Euclidean group SE(3) represents 3D
rigid motions (rotation plus translation), and an element
is expressed as a 4×4 matrix

T = [R|t] =
[

R t
0 0 0 1

]
(36)

where the rotation R ∈ SO(3) and the translations t ∈
R3. The optimization algorithm presented in this pa-
per makes use of the above transformations between
Lie groups and Lie algebras, so that direct operations
to compute errors employ the Lie group formulation,
while the optimization problem is derived in the tan-
gent space of the manifold given by the Lie algebra.
For a more detailed description of Lie groups and Lie
algebras in the context of mobile robotics, the reader is
referred to (Blanco, 2010).
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