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Summary

This thesis addresses the problem of localization and mapping in mobile robotics. The
ability of a robot to build a map of an unknown environment from sensory information
is required to perform self-localization and autonomous navigation, as a necessary
condition to carry out more complex tasks. This problem has been widely investigated
in the last decades, but the solutions presented have still important limitations, mainly
to cope with large scale and dynamic environments, and to work in a wider range of
conditions and scenarios. In this context, this thesis takes a step forward towards
highly efficient localization and mapping.

A first contribution of this work is a new mapping strategy that presents two key
features: the lightweight representation of world metric information, and the organi-
zation of this metric map into a topological structure that allows efficient localization
and map optimization. Regarding the first issue, a map is proposed based on planar
patches which are extracted from range or RGB-D images. This plane-based map
(PbMap) is particularly well suited for indoor scenarios, and has the advantage of
being a very compact and still a descriptive representation which is useful to perform
real-time place recognition and loop closure. These operations are based on matching
planar features taking into account their geometric relationships. On the other hand,
the abstraction of metric information is necessary to deal with large scale SLAM and
with navigation in complex environments. For that, we propose to structure the map
in a metric-topological structure which is dynamically organized upon the sensor ob-
servations.

Also, a simultaneous localization and mapping (SLAM) system employing an
omnidirectional RGB-D device which combines several structured-light sensors (Asus
Xtion Pro Live) is presented. This device allows the quick construction of rich mod-
els of the environment at a relative low cost in comparison with previous alterna-
tives. Our SLAM approach is based on a hierarchical structure of keyframes with
a low level layer of metric information and several topological layers intended for
large scale SLAM and navigation. This SLAM solution, which makes use of the
metric-topological representation mentioned above, works at video frame rate ob-
taining highly consistent maps. Future research is expected on metric-topological-
semantic mapping from the new sensor and the SLAM system presented here.
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iv Summary

Finally, an extrinsic calibration technique is proposed to obtain the relative poses
of a combination of 3D range sensors, like those employed in the omnidirectional
RGB-D device mentioned above. The calibration is computed from the observation
of planar surfaces of a structured environment in a fast, easy and robust way, present-
ing qualitative and quantitative advantages with respect to previous approaches. This
technique is extended to calibrate any combination of range sensors, including 2D
and 3D range sensors, in any configuration. The calibration of such sets of sensors is
interesting not only for mobile robots, but also for autonomous cars.
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Resumen de la Tesis

Doctoral

Sumario

La presente tesis doctoral aborda el problema de localización y cartografía (o mapeo)
en robótica móvil. La capacidad de un robot móvil para crear un mapa de su entorno
a partir de la información obtenida por sus sensores es necesaria para que dicho robot
pueda localizarse y para que éste pueda navegar de forma autónoma. Este problema
ha sido ampliamente estudiado en las últimas décadas, sin embargo, las soluciones
obtenidas presentan aún importantes limitaciones. Estas limitaciones afectan prin-
cipalmente a la operación en entornos a gran escala y en la adaptación a entornos
dinámicos. En este contexto, esta tesis representa otro paso más en el camino hacia
soluciones de localización y mapeo eficientes.

Una primera contribución de este trabajo es una nueva estrategia de cartografía
que combina dos características principales: una representación compacta de la in-
formación métrica, y la organización de esta información métrica en una estructura
topológica que mejora la eficiencia en la localización y la optimización del mapa.
Para ello se propone un mapa basado en segmentos planos que son extraídos de las
imágenes de rango o RGB-D. Este mapa basado en planos (PbMap) es especialmente
adecuado para escenarios de interior, y tiene la ventaja de ser altamente descriptivo a
pesar de su compacidad, lo cuál permite reconocer escenarios en tiempo real y cerrar
bucles, siendo éstas tareas clave para la localización y mapeo simultáneos (SLAM).
Ambas operaciones se basan en el emparejamiento de segmentos planos teniendo
en cuenta sus relaciones geométricas. Por otro lado, la abstracción de la información
métrica es necesaria para abordar el problema de SLAM en gran escala y para la nave-
gación en entornos complejos. En este sentido, esta tesis propone organizar el mapa
en tiempo real en una estructura métrica-topológica de acuerdo a la co-visibilidad de
las observaciones.

Esta tesis también presenta un sistema de localización y cartografía simultánea
(SLAM) empleando un nuevo sensor omnidireccional RGB-D que combina varios
sensores Asus Xtion Pro Live. Este dispositivo permite construir rápidamente mod-
elos densos del entorno basados en nubes de puntos a un bajo coste con respecto a
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2 Resumen de la Tesis Doctoral

otras alternativas previas. Nuestro enfoque en SLAM se basa en la gestión de una
estructura jerárquica de keyframes consistente en una capa de bajo nivel con infor-
mación métrica y varias capas superiores con información topológica que son útiles
para SLAM en gran escala y para navegación. Este sistema de SLAM funciona a una
frecuencia de 30 Hz y permite la obtención de mapas de alta consistencia.

También se propone una técnica de calibración extrínseca para obtener las poses
relativas de una combinación de sensores de rango 3D, como aquellos empleados en
el dispositivo RGB-D omnidireccional mencionado anteriormente. La calibración se
obtiene a partir de la observación de superficies planas en un entorno estructurado
de una manera rápida, fácil y robusta. Esta nueva técnica presenta ventajas cualitati-
vas y cuantitativas con respecto a los enfoques anteriores. Esta solución es ampliada
para calibrar cualquier combinación de sensores de rango en cualquier configuración,
incluyendo sensores 2D y 3D. La calibración de tales conjuntos de sensores es intere-
sante no sólo en robótica móvil, sino también en el campo de vehículos autónomos.

Introducción

En los últimos años del siglo XX y principios del XXI se había generalizado en el
mundo desarrollado la impresión de que en la época actual viviríamos rodeados de
robots inteligentes que harían nuestras vidas más fáciles, o deberíamos decir, que nos
ahorrarían tediosas tareas rutinarias. Las películas de ciencia ficción han contribuido
a crear dicha imagen de nuestro futuro, en el que convivimos con complejos robots
móviles. Por otro lado, los avances en microelectrónica, el aumento del rendimiento
de computadores, y la aparición de nuevos materiales y sensores, que hoy tienen sus
resultados en los actuales teléfonos móviles (o smartphones) por ejemplo, también
han ayudado a pensar que la robótica móvil aparecería pronto en nuestras vidas. Sin
embargo la realidad sigue siendo muy diferente de aquella imagen futurista, la cuál
necesitará probablemente un largo tiempo para hacerse realidad.

Una de las principales razones para no tener robots móviles entre nosotros es la
dificultad para procesar e interpretar información del entorno del robot. Esto es clave
para la robótica móvil ya que un robot debe entender su entorno para poder interac-
tuar con él. En este contexto, la capacidad de un robot móvil para crear un mapa de
su entorno al mismo tiempo que se localiza en dicho mapa es crucial. Este problema,
conocido como localización y cartografía simultáneas (SLAM), ha recibido una gran
atención en las últimas décadas, dando como resultado una amplia literatura sobre
este tema que abarca diferentes condiciones de trabajo y diferentes tipos de sensores.
Sin embargo, a pesar del gran esfuerzo dedicado a solventar este problema, las solu-
ciones presentadas tienen todavía importantes limitaciones que impiden la creación
de robots fiables que puedan ejecutar tareas útiles en condiciones generales.

La investigación en SLAM se ha centrado principalmente en el uso de dos tipos
de sensores exteroceptivos: cámaras y sensores de rango. Las cámaras presentan im-
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portantes ventajas como su bajo coste, su compacidad y su bajo consumo, lo que
las hace adecuadas para diversas aplicaciones en robótica móvil además de SLAM,
como el reconocimiento de objetos. Además, las cámaras proporcionan información
similar a la captada por nuestros ojos, siendo por tanto una herramienta intuitiva de
percepción. Sin embargo, la información real proporcionada por una cámara es una
matriz rectangular donde cada celda (pixel) captura la luminosidad procedente de una
dirección del espacio. Por lo tanto, el primer problema es representar esta informa-
ción de una manera compacta y estructurada que pueda ser interpretada fácilmente.
La mayoría de las soluciones encontradas en la literatura abordan este problema me-
diante la extracción de diferentes tipos de características de bajo nivel que pueden ser
identificadas desde diferentes puntos de vista a lo largo de la trayectoria del robot.
Otros enfoques recientes tratan de identificar objetos significativos para ser utilizados
como referencias en el entorno. En cualquier caso, el problema de SLAM visual im-
plica algunas limitaciones intrínsecas para operar en escenarios con poca textura, con
repetición de texturas (visual aliasing), o donde existen reflejos especulares.

Con respecto a los sensores de rango, la percepción de profundidad permite a
un robot crear representaciones del espacio y evitar colisiones, creando mapas útiles
para la auto-navegación y para llevar a cabo el reconocimiento de objetos y lugares.
Existen distintas maneras de obtener información de profundidad del entorno, en el
que podemos diferenciar entre los métodos activos o pasivos. Las estrategias activas
proyectan y capturan luz de la escena para inferir la profundidad, mientras que las
estrategias pasivas sólo capturan luz. Ejemplos de este último son los sistemas de
visión estéreo o multi-cámaras; mientras que algunos ejemplos de visión activa son
LIDAR, cámaras de tiempo de vuelo y sensores basados en luz estructurada como
Kinect. Diferentes soluciones se han presentado para SLAM con un robot que se
mueve sobre un mismo plano en un entorno estático utilizando un sensor 2D. El uso
de sensores 3D también ha sido introducido para operar en condiciones más comple-
jas. Para este último, algunas desventajas comunes son el alto precio de los sensores,
las bajas frecuencias de observación o la escalabilidad de las soluciones de SLAM.

El problema de SLAM también se ha tratado combinando información visual y de
rango, especialmente después de la aparición de cámaras RGB-D de bajo coste como
Asus Xtion Pro Live o Microsoft Kinect. La fusión de la información de profundidad
e intensidad mejora la capacidad de SLAM proporcionando robustez a situaciones
donde la intensidad o la profundidad por sí solas tienen un bajo rendimiento. Dichos
sensores se han empleado por ejemplo para odometría mediante el registro denso
de las imágenes RGB-D. Cuando estos sensores se utilizan en SLAM, uno de los
principales problemas es cómo representar y almacenar el gran flujo de datos que
éstos proporcionan. Differentes estrategias de cartografía basadas en keyframes han
proporcionado buenos resultados en pequeños entornos, pero aún existen problemas
de escalabilidad y por lo tanto, representaciones del entorno más compactas son de-
seables para realizar otras tareas junto con SLAM.

Con respecto a la robótica móvil, los desafíos actuales en localización y mapeo
están relacionados principalmente con limitaciones en el tamaño del entorno de tra-
bajo y con la fiabilidad de funcionamiento a lo largo del tiempo. Otro problema clave
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es la integración de información simbólica para aumentar la robustez y el rendimiento
a la vez que se proporciona información útil para otros tareas. Pero como se puede
intuir, estos desafíos requieren avances incrementales en las soluciones actuales hasta
llegar al objetivo de localización y mapeo robusto en condiciones más generales.

Ámbito de la tesis

La investigación del problema de localización y mapeo simultáneo ha recibido una
amplia atención en los últimos años y se han presentado diferentes soluciones al prob-
lema. En este contexto, la contribución de esta tesis debe ser considerada como un
paso más en un largo camino hacia la obtención de soluciones más generales, robus-
tas y eficientes para SLAM, que doten a los robots de autonomía real en una variedad
de escenarios. El problema de SLAM implica diferentes subproblemas, desde la cal-
ibración de los sensores del robot a la representación de la información en el mapa
junto con la localización y re-localización (cierre de bucle) eficientes. Estos prob-
lemas se abordan en los capítulos siguientes mediante el uso de diferentes sensores
visuales y de rango.

Concretamente, esta tesis presenta una nueva metodología para la calibración
de conjuntos de sensores de rango que está basada en la observación de superficies
planas. Dicha metodología es utilizada para calibrar un nuevo sensor que consta de
varias cámaras de RGB-D, permitiendo también calibrar otras combinaciones de sen-
sores de rango con escáneres láser 2D y sensores de rango 3D con los que están
equipados muchos robots móviles, incluyendo los robots empleados en esta tesis.
La observabilidad de los diferentes problemas (dependiendo del tipo de sensores) es
analizada, y se definen las condiciones para resolver la calibración extrínseca a partir
de un conjunto mínimo de observaciones. En todos los casos, la solución propuesta
permite calibrar los sensores fácilmente y de forma robusta después de unos segundos
observando una escena estructurada.

Uno de los principales retos en SLAM es cómo extraer las características más
útiles de la escena para mantener una representación compacta de esta, descartando al
mismo tiempo información redundante. Esto es necesario para operar eficientemente
en tiempo real, tal como se requiere para muchas aplicaciones de robótica móvil. Para
ello presentamos un mapa métrico basado en la extracción de superficies planas de
la escena, que almacena un conjunto de características geométricas y radiométricas
de manera compacta. Dicha representación ha demostrado ser útil para el registro ro-
busto de imágenes, para odometría usando cámaras de rango y para el reconocimiento
automático de lugares.

El uso de superficies planas para la localización y mapeo presenta ventajas en
cuanto a la reducción de memoria y procesamiento. Por el contrario, existen limita-
ciones de inobservabilidad cuando no hay suficientes planos visibles, siendo la local-
ización ambigua. Esta restricción puede ser resuelta en general aumentando el campo
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de visión de los sensores utilizados. En esta línea, esta tesis presenta un nuevo dis-
positivo para capturar imágenes omnidireccionales RGB-D a una frecuencia de 30Hz.
Las imágenes capturadas por este dispositivo son adecuadas para su representación
en coordenadas esféricas, lo cual ofrece una serie de ventajas como un mejor condi-
cionamiento de la localización, el desacople natural entre la rotación y la traslación,
la creación de mapas compactos basados en keyframes, o su adecuación para clasifi-
cación topológica de imágenes.

La organización del mapa es una cuestión clave para el funcionamiento de SLAM
en gran escala. La literatura sobre este tema es amplia, y se pueden encontrar difer-
entes estrategias que proponen estructuras topológicas, métrico-topológicas o jerár-
quicas para los mapas. La necesidad de este tipo de estructuras se justifica porque
un sistema SLAM para gran escala debe abstraerse de la información que no es sig-
nificativa (por ejemplo, teniendo solo en cuenta información métrica relativa a la
localización actual del robot). En esta tesis, se presenta una estrategia para organi-
zar dinámicamente la información métrico-topológica en tiempo real que agrupa las
observaciones que están más interrelacionadas, formando lugares topológicos. Esta
estructura mejora la eficiencia y permite la escalabilidad en SLAM.

Por último, esta tesis presenta un nuevo enfoque en SLAM con el uso de imá-
genes omnidireccionales RGB-D que combina los avances descritos arriba en cuanto
a calibración, localización y mapeo. Re-localización y cierre de bucle son dos prob-
lemas inherentes en SLAM que se tratan aquí. El primero se refiere a la capacidad
para estimar la ubicación del robot cuando se ha perdido la localización (un problema
similar es conocido como robot awakening), mientras que el segundo implica que el
robot pueda reconocer una ubicación previamente visitada a través de una trayectoria
diferente. La detección del cierre de bucle permite reducir la incertidumbre del robot
y mejorar la coherencia global del mapa. Ambos problemas se abordan en esta tesis
mediante el uso de una representación de la escena basada en planos.

Conclusiones

Las contribuciones más relevantes de esta tesis son:

• Una nueva metodología para calibrar diferentes tipos de sensores de rango
basada en la observación de superficies planas. Esta metodología permite cal-
ibrar los parámetros extrínsecos de los sensores de forma fácil y robusta en
unos pocos segundos [Fernández-Moral et al., 2014b], [Fernández-Moral et al.,
2015b].

• Una representación del entorno altamente compacta basada en superficies planas
que sintetiza información geométrica y radiométrica (PbMap). Esta representación
es útil para el modelado de entornos estructurados, para la localización del
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robot y para la detección del cierre de bucle [Fernández-Moral et al., 2013b],
[Fernández-Moral et al., 2014a].

• Una técnica de registro para PbMaps basado en el emparejamiento de conjuntos
de planos vecinos mediante un árbol de interpretación. Esta técnica no restringe
el emparejamiento a una sola imagen, sino que cualquier conjunto local de los
planos es válido para ser emparejados lo que permite usar la información de
varias observaciones [Fernández-Moral et al., 2013b].

• Una estrategia de mapeo métrico-topológica, basada en corte normalizado de
grafos, que re-organiza dinámicamente el mapa en diferentes regiones topológ-
icas mientras este se actualiza simultáneamente. Esta estrategia de mapeo per-
mite la operación de SLAM en gran escala y ofrece ventajas para la navegación
y la planificación de tareas [Fernández-Moral et al., 2013a], [Fernández-Moral
et al., 2015a].

• El desarrollo de un nuevo sensor para la adquisición de imágenes omnidi-
reccionales RGB-D a 30Hz consistente en un conjunto de 8 sensores Asus
Xtion Pro Live montados en una configuración radial [Fernández-Moral et al.,
2014b], junto con un nuevo sistema de SLAM basado en un mapa métrico-
topológico de keyframes [Gokhool et al., 2014].

Todas las publicaciones derivadas de esta tesis están disponibles en: http://
mapir.isa.uma.es

Marco de esta tesis

Esta tesis es el resultado de cuatro años de actividad investigadora de su autor como
miembro del grupo de investigación MAPIR1, dentro del Departamento de Ingeniería
de Sistemas y Automática de la Universidad de Málaga. Esta investigación ha sido
financiada por el Gobierno español a través del “Fondo Regional de Desarrollo Eu-
ropeo FEDER” dentro de los contratos DPI2008-03527 y DPI2011-25483, en los que
se enmarcan los proyectos “Construcción de mapas topológicos métrica-visuales para
robótica móvil” y “TAROTH: Nuevos avances hacia un robot en el hogar", respec-
tivamente. El primer proyecto enfoca la creación de una representación del entorno
para una variedad de sensores visuales, y comprende los dos primeros años de in-
vestigación de esta tesis. El segundo comprende el resto de esta tesis, y abarca la
calibración de conjuntos de sensores y la explotación de los mapas previos para apli-
caciones de localización y SLAM.

Durante el doctorado el autor completó el programa doctoral titulado “Ingeniería
Mecatrónica” coordinado por el Departamento de Ingeniería de Sistemas y Automática

1http://mapir.isa.uma.es

http://mapir.isa.uma.es
http://mapir.isa.uma.es
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de la Universidad de Málaga. Este programa de doctorado le proporciona al autor una
visión general del campo multidisciplinar de la mecatrónica que combina mecánica,
eléctrica, control e ingeniería informática, y lo más importante un conocimiento pro-
fundo acerca de la robótica móvil, algo que ha resultado fundamental a lo largo de
estos años de investigación. Además, el autor ha completado su formación académica
con su participación en el curso de Visión por Computador (BMVA 2010) de la Uni-
versidad de Kingston, Londres.

El autor desarrolló parte de su investigación en colaboración con dos grupos de
investigación internacionales. En 2012, estuvo 4 meses con el grupo Visual Informa-
tion Laboratory en la Universidad de Bristol (Reino Unido), bajo la supervisión de
Dr. Walterio Mayol-Cuevas. Durante este período, su investigación se centró en la
explotación de estructuras planas para la construcción de mapas y SLAM. En 2013,
estuvo 9 meses con el equipo Lagadic en INRIA Sophia-Antipolis (Francia), bajo la
supervisión de Dr. Patrick Rives. Durante este tiempo, el autor trabajó en el desarrollo
de un dispositivo RGB-D omnidireccional concebido para la construcción de mapas
y la navegación de robots.

Por último, es necesario mencionar que el marco científico de esta tesis es un
área de investigación muy competitiva, que es impulsada por una creciente industria
en visión por computador y robótica. En la opinión del autor, las continuas contribu-
ciones en estas dos áreas que están altamente interrelacionadas permitirán la progre-
siva integración de robots móviles en nuestra sociedad.

Estructura de la tesis

Con el objetivo de obtener la mención de Doctorado Internacional por la universidad
de Málaga, el desarrollo completo de esta tesis está escrito en español e inglés. Así,
el texto está dividido en dos partes. La primera parte, escrita en español, describe de
forma resumida el contenido del trabajo, mientras que la segunda parte, redactada
íntegramente en inglés, presenta una descripción completa del mismo. Esta segunda
parte se compone de los siguientes capítulos:

El capítulo 2 introduce los conceptos básicos relativos a la calibración de difer-
entes sensores, y aporta una nueva metodología para calibrar conjuntos de sensores de
rango. La estrategia presentada no requiere ningún patrón específico ya que se basa en
la detección de superficies planas del entorno. Esta técnica de calibración es rápida,
fácil de usar y robusta, presentando importantes ventajas con respecto a alternativas
previas.

El capítulo 3 propone una nueva representación de la escena basada en superfi-
cies planas que son segmentadas de imágenes de rango. Este mapa basado en planos
(PbMap) es descrito por un grafo que contiene una serie de características geométri-
cas y radiométricas. También se propone un descriptor compacto de color basado en
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el color dominante del plano que contribuye a la eficiencia y robustez en el empare-
jamiento de planos. Una técnica de reconocimiento de escenas es propuesta basada
en el registro de tales planos. Los resultados cuantitativos y cualitativos aportados en
el ámbito de reconocimiento de lugar confirman las ventajas de esta representación.

El capítulo 4 aborda el problema de la cartografía métrico-topológica. La estruc-
tura topológica se representa mediante un grafo no dirigido donde los nodos contienen
información métrica y los arcos definen la conectividad entre regiones locales. Esta
estructura tiene ventajas para el manejo eficiente del mapa, ya que sólo la informa-
ción métrica local es utilizada para la localización y mapeo. Este capitulo propone
una estrategia dinámica para gestionar el mapa, donde las diferentes regiones locales
son agrupadas en función de la interconexión de las diferentes observaciones. Esta
técnica es evaluada en el marco de SLAM monocular (usando PTAM [Klein and
Murray, 2007]) y de SLAM omnidireccional RGB-D (capítulo 5).

El capítulo 5 presenta un nuevo sensor para capturar imágenes omnidireccionales
RGB-D a 30 Hz, junto con una solución SLAM para este tipo de sensor. El enfoque
SLAM se basa en una estructura métrico-topológica de keyframes que se organizan
en una red jerárquica de mapas locales. Los keyframes se describen a través de un
PbMap que es utilizado para la localización y para el cierre de bucle eficientes. La
localización obtenida del registro de PbMaps es refinada por una técnica de registro
denso. La consistencia del mapa se mejora mediante la optimización de mapa global
teniendo en cuenta todas las conexiones de los keyframes.

El capítulo 6 concluye la tesis, proporcionando un resumen de la investigación
presentada y expone el panorama de los retos futuros para la localización autónoma
y la cartografía. En este contexto, en el futuro se espera la continuación de la investi-
gación llevada a cabo en esta tesis en diferentes aspectos. Por un lado, el tratamiento
probabilístico de la representación mediante PbMap supondría un avance en pre-
cisión, que además permitiría fusionar de forma coherente los planos observados
por sensores diferentes. Por otro lado, la incorporación de información semántica al
PbMap y a los diferentes niveles topológicos en los que se estructura el mapa son otra
línea de investigación que previsiblemente ganará popularidad en los años venideros.



Chapter 1

Introduction

1.1 Motivation

Mobile robots are far from the state of development imagined a few years ago in our
society. There has existed the general impression in the late years of the 20th cen-
tury and beginning of the 21st, that intelligent robots would be spread in our society
making our lives easier, or should we say, releasing us from tiresome routines. But
the reality is still quite different. Science fiction films have contributed to build such
an image of our future, where we live side by side with intelligent mobile robots.
Also, the rapid technological development in the miniaturization of electronics, the
increase of processors’ computing performance, and the appearance of new materials
and sensors, which today have their results in compact smartphones for instance, sug-
gested that mobile robotics would come along undoubtedly. But unfortunately, such
a futuristic image will need some more time to come true.

One of the main reasons for not having mobile robots around us nowadays is the
difficulty to process and interpret exteroceptive information from the world. This is
key for mobile robotics since a robot must understand its environment before it can
interact with it. In this context, the ability of a mobile robot to create a map of its envi-
ronment at the same time that it performs self-localization within such a map becomes
crucial. This problem, known as simultaneous localization and mapping (SLAM), has
received great attention during the last decades, and there exists a vast literature on the
subject for a variety of working conditions using different sensors. However, despite
the large effort dedicated to this topic, the solutions presented have still important
limitations that prevent robots to work reliably in uncontrolled conditions.

Research in SLAM has mainly focused on two kinds of data: photometric infor-
mation from regular cameras or multi-camera systems, and depth information from
range sensors. The use of cameras have some nice advantages as they are inexpensive,
compact and consume low power, what makes them suitable for other applications in
mobile robotics besides SLAM, e.g. object recognition. Also, cameras provide infor-
mation similar to that captured by our eyes, being thus an intuitive way to perform
robot perception. However, the actual information provided by a camera is a rectangu-
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lar matrix where each cell (pixel) captures the luminosity coming from one direction
of the space, hence, the first problem regarding localization is to represent this infor-
mation in a more compact and structured way which provides invariance to different
viewpoints and illumination conditions. Most solutions found in the literature address
this problem by extracting different kinds of low level features which can be matched
along the robot trajectory. While some modern approaches also try to identify mean-
ingful objects to be used as such features. Several limitations are intrinsically related
to visual SLAM, like the operation in low texture scenarios, visual aliasing or specu-
lar reflections.

On the other hand, depth perception allows a robot to create representations of
the free space and to avoid collisions, thus creating useful maps for self-navigation,
and to perform recognition through shape description. There exist different ways of
acquiring depth information from the environment, where we can differentiate be-
tween active or passive approaches. Active strategies project and capture light from
the scene to perform depth inference, while passive strategies only capture light. Ex-
amples for the latter are stereo vision or multi-camera systems; while active vision
examples are LIDAR, time-of-flight cameras (ToF camera) and structured light sen-
sors. Many SLAM approaches have been presented for planar movement of a robot
in a static environment using a 2D range sensor. The use of 3D range devices has
also been presented to expand the utility of 2D approaches in more complex condi-
tions. For the latter, some common disadvantages are the high price of the sensors,
the low frame rate, the difficulty to obtain scalable solutions and the unobservability
of localization depending on the sensor/environment which may affect severely the
robustness of the solution (e.g. a sensor which only observes the floor).

Combined visual and range SLAM approaches have also been exploited, espe-
cially after the release of low cost RGB-D cameras like Asus Xtion or Microsoft
Kinect. The fusion of depth and intensity information enhances the capability of
SLAM by making it more robust to situations where only intensity or only depth
approaches have a low performance. This data also permits to create dense coloured
3D point maps of the environment that provide nice visualizations. Such sensors have
been employed for example for odometry by applying dense alignment of the RGB-
D images. When such sensors are to be used for SLAM, the main problem is how
to represent and store the big data streaming they provide. Mapping strategies based
on keyframes, inspired by those created for visual SLAM, have provided nice results
with hand-held sensors, but there are still scalability issues, and more compact repre-
sentations of the environment are desired so that other robotic tasks can be performed
on the same computer.

Regarding its application to real mobile robots, the current challenges in localiza-
tion and mapping are mainly related to size and time scalability (lifelong mapping),
and the integration of symbolic information to increase the robustness and perfor-
mance at the same time that provides useful information for other tasks. But as we
can guess, these challenges require little advances to progress towards the goal of
reliable localization and mapping.
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1.2 Scope of this thesis

The problem of simultaneous localization and mapping has centred the attention of
an extensive research over the last years, and many approaches to the problem have
been presented. In such a context, the contribution of this thesis must be regarded as
another step in a long way towards finding a more general, highly robust and efficient
approach for SLAM, which gives a robot real autonomy in a variety of scenarios. The
problem of SLAM can be divided in different subproblems, from sensor calibration to
efficient map representation and localization, including loop closure. These problems
are addressed in the next chapters using different visual and range sensors.

Concretely, this thesis presents a new methodology for calibrating sets of range
sensors based on the observation of planar surfaces at different orientations. Such
methodology is used here to calibrate a new sensor introduced in chapter 5 which is
composed of several depth cameras, and is also extended to calibrate other combina-
tions of range sensors like sets of 2D laser scanners, and combinations between 2D
and 3D range sensors which are present in the robots employed in the thesis and in
many other robotic set-ups in general for navigation and SLAM. The observability
of the different problems (depending on the type of sensors) is analysed, providing
the conditions to solve the extrinsic calibration from a minimum set of observations.
In all the cases, the proposed solution permits to compute the calibration easily and
robustly after a few seconds taking measurements.

One of the main challenges for SLAM, and still an open problem, is how to extract
the most useful cues from the scene which permits to keep a compact representation
of the scene, while discarding redundant information. This compact representation
is required to operate efficiently in real-time, as required for many mobile robotics
applications. For such a problem, we present a (metric) mapping approach based on
the extraction of planar surfaces from the scene, which stores a set of geometric and
radiometric cues in a compact fashion. Such representation has demonstrated to be
useful for robust image registration, odometry and place recognition. This mapping
approach is presented in chapter 3.

Using only planar surfaces for localization and mapping presents advantages for
low memory storage and fast processing. However, unobservability limitations arise
when there are not enough planes in view, so that localization becomes ambiguous.
This restriction can be alleviated, while maintaining our compact representation, by
increasing the field of view of our sensing technology. In this line, we present a new
device to capture omnidirectional RGB-D images online. The images captured by
this device are suitable for spherical representation, which offers a number of advan-
tages for different applications, as well conditioned localization, compact keyframe
mapping, or topological image classification.

The organization of the map becomes a key question for scalable operation in
SLAM. A rich literature can be found about this subject, where large scale SLAM
is addressed with topological, hierarchical or hybrid (metric-topological) maps. The
need of such structures is justified because an effective large scale SLAM system
must abstract itself from information which is less meaningful (so that only the map
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information related to the current robot localization is taken into account). In this
thesis, we present an online metric-topological map arrangement where scarcely in-
terrelated parts of the map are separated into different groups, forming topological
places. This map structure boosts efficiency and allows for scalable SLAM opera-
tion with sublinear loop closure. Chapter 4 is dedicated to such metric-topological
mapping.

Finally, a new SLAM approach is presented using omnidirectional RGB-D im-
ages, which combines the developments described in previous chapters. Relocaliza-
tion and loop closure are inherent problems of SLAM which are treated here. The
first refers to the ability to retrieve the location of the robot when it has got lost (i.e.
awakening problem), while the second implies that the robot can detect a previous lo-
cation when it is revisited through a different trajectory. Loop closure detection allows
the reduction of uncertainty in the robot location and to improve the global consis-
tency of the map. Both problems are addressed in this thesis by using the proposed
plane-based representation of the scene.

1.3 Contributions

The main contributions of this thesis are:

• A new methodology to calibrate different kinds of range sensors based on pla-
nar surface observations. This methodology permits to calibrate the extrinsic
parameters of the sensors easily and robustly in a few seconds [Fernández-
Moral et al., 2014b] and [Fernández-Moral et al., 2015b].

• A highly compact map representation based on planar patches (PbMap), which
synthesizes geometric and radiometric information. This representation is use-
ful for Manhattan-like modelling, for efficient robot localization and for loop
closure detection among others [Fernández-Moral et al., 2013b; Fernández-
Moral et al., 2014a].

• A registration technique for PbMaps based on graph matching of local contexts
of planes. An interpretation tree is used to match efficiently the planes of both
graphs. This technique does not restrict the matching to one image, instead, any
local set of planes which are distinctive are valid to be matched [Fernández-
Moral et al., 2013b].

• A metric-topological mapping framework, based on approximate minimum
normalized cut, which dynamically re-organizes the metric map into different
topological regions simultaneously while building the map. This mapping strat-
egy makes SLAM scalable, and offers advantages for planning and navigation
[Fernández-Moral et al., 2013a; Fernández-Moral et al., 2015a].

• The development of a new sensor for online acquisition of omnidirectional
RGB-D images. This sensor consists of a rig of 8 Asus Xtion Pro Live sensors
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mounted in a radial configuration [Fernández-Moral et al., 2014b]. A new
SLAM approach is presented using this sensor and a hybrid metric-topological
approach, based on a pose-graph of spherical RGB-D keyframes [Gokhool
et al., 2014].

Next, all the publications derived from this thesis are compiled:

Journals
1. E. Fernández-Moral, J. González-Jiménez and V. Arévalo, “Extrinsic Calibra-

tion of 2D laser rangefinders” (2014) Submitted to: The International Journal
of Robotics Research.

Book Chapters
1. E. Fernández-Moral, V. Arévalo and J. González-Jiménez, “Hybrid metric -

topological mapping for large scale monocular SLAM”, Lecture Notes in Elec-
trical Engineering (LNEE), 2014. Accepted for publication.

Conference Proceedings
1. E. Fernández-Moral, W. Mayol-Cuevas, V. Arévalo and J. González-Jiménez,

“Fast place recognition with plane-based maps”, Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), Karlsruhe, Ger-
many, 2013.

2. E. Fernández-Moral, V. Arévalo and J. González-Jiménez, “Creating metric-
topological maps for large-scale monocular SLAM”, Proceedings of the In-
ternational Conference on Informatics in Control, Automation and Robotics
(ICINCO), Reykjavik, Iceland, 2013.

3. T. Gokhool, M. Meilland, P. Rives and E. Fernández-Moral, “Dense RGB-D
map building from spherical RGB-D images”, Proceedings of the 9th Interna-
tional Conference on Computer Vision, Imaging and Computer Graphics The-
ory and Applications (VISAPP), Lisbon, Portugal, 2014.

4. E. Fernández-Moral, J. González-Jiménez, P. Rives and V. Arévalo, “Extrinsic
calibration of a set of range cameras in 5 seconds without any pattern”, Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Chicago, USA, 2014.

5. E. Fernández-Moral, V. Arévalo and J. González-Jiménez, “A compact planar-
patch descriptor based on color”, Proceedings of the International Conference
on Informatics in Control, Automation and Robotics (ICINCO), Vienna, Aus-
tria, 2014.
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1.4 Framework of this thesis

This thesis is the outcome of four years of research activity of its author as a member
of the MAPIR research group1, which is within the Department of System Engineer-
ing and Automation of the Universidad de Málaga. This research has been supported
by the Spanish Government and the “European Regional Development Fund ERDF”
under the contracts DPI2008-03527 and DPI2011-25483, within the framework of
the projects “Construction of visual metric-topological maps for mobile robotics”
and “TAROTH: New developments toward a robot at home”, respectively. The first
project addresses the research of a world representation from range and visual sen-
sors, and comprises the first two years of research of this thesis. The second one
comprises the remaining of this thesis, and covers the exploitation of the previous
maps for robotic applications.

During the PhD period, the author completed the doctoral program entitled “In-
geniería Mecatrónica” (Mechatronics Engineering) coordinated by the Departamento
de Ingeniería de Sistemas y Automática de la Universidad de Málaga. This doctoral
program granted the author both a general view of the multidisciplinary field of me-
chatronics which combines mechanical, electrical, control and computer engineering,
and more importantly a deep knowledge about mobile robotics, something that has
proved fundamental throughout these years of research.

Additionally, the author complemented his academic education with the partici-
pation in the BMVA Summer School on Computer Vision (2010) at Kingston Uni-
versity, London. Besides he developed part of his research in collaboration with two
international research groups. In 2012, he stayed 4 months with the Visual Informa-
tion Laboratory, at the University of Bristol (UK), under the supervision of Dr. Walte-
rio Mayol-Cuevas. During this period, his research was focused on exploiting planar
structure for map construction and SLAM. In 2013, he stayed 9 months with the team
LAGADIC, in INRIA Sophia-Antipolis (France), under the supervision of Dr. Patrick
Rives. During this time, he worked on the development of an omnidirectional RGB-D
device conceived for fast map construction and robot navigation.

Finally, it is worth mentioning that the scientific framework within this thesis
stands in a highly competitive research area, which is driven by a growing industry of
computer vision and robotic applications. In the opinion of the author, the continuous
contributions in these two interrelated areas will allow the progressive integration of
robots in our society.

1http://mapir.isa.uma.es
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1.5 Structure of this thesis

The remaining chapters of this thesis are organized as follows:

Chapter 2 introduces the basic concepts regarding the calibration of different
sensors, and contributes a new methodology to calibrate rigs of range sensors. The
presented strategy does not require any artificial pattern since it relies on sensing
planar surfaces from the environment. This calibration strategy is fast, easy to use
and robust, presenting important advantages with respect to previous approaches.

Chapter 3 presents a new compact scene representation based on planes (planar
patches), which can be quickly segmented from range images by region growing. This
plane-based map (PbMap) is described by simple geometric and radiometric features
using a graph representation. A compact colour descriptor based on the dominant
colour is introduced to improve the distinctiveness of planar patches. A registration
technique is also presented for continuous piecewise scene recognition. Quantitative
and qualitative results are reported for place recognition, testing also the suitability
for lifelong mapping.

Chapter 4 tackles the problem of hybrid metric-topological mapping. The topo-
logical structure is represented by an undirected graph where the nodes contain local
metric information, and the edges define the connectivity between different local re-
gions. This map structure is advantageous for the efficient management of the map,
since only the local metric information related to the current region is used for lo-
calization and mapping. A dynamic strategy to manage the map is proposed, where
local places are created depending on the interconnection between different observa-
tions. This hybrid metric-topological mapping is evaluated within both a monocular
SLAM framework (using PTAM [Klein and Murray, 2007]) and with omnidirectional
RGB-D SLAM introduced in chapter 5.

Chapter 5 introduces a new sensing device to capture omnidirectional RGB-D
images at video rate (30 Hz) together with a SLAM solution for this kind of data.
The SLAM approach is based on a metric-topological structure of keyframes, which
are organized in a hierarchical network of local maps. The keyframes are described
through a compact PbMap, which is used for efficient localization and loop closure.
The localization obtained from PbMap registration is further refined by a dense regis-
tration technique. The consistency of the map is improved by pose-graph optimization
taking into account all the keyframe connections.

Chapter 6 concludes the thesis, providing a summary of the presented research
and giving an outlook of the future challenges for autonomous localization and map-
ping.





Chapter 2

Calibration of sensor rigs

Abstract

The operation of a robotic system requires knowing the character-
istics and configuration of its sensor and motor systems. Such in-
formation is defined by the intrinsic and extrinsic parameters. The
intrinsic parameters refer generally to a single sensor or actuator,
describing how the measurements are modelled or how the actions
are executed, respectively. On the other hand, the extrinsic param-
eters describe the relative poses among the sensors/actuators. Such
parameters can be obtained from calibration, which is usually a pre-
requisite to perform other tasks as localization, mapping or naviga-
tion. This chapter reviews some relevant methods for intrinsic and
extrinsic calibration, and presents several solutions for the extrin-
sic calibration of different combinations of range sensors developed
within the work of this thesis.
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2.1 Introduction

Many applications in the field of mobile robotics employ a variety of sensors, from
proprioceptive sensors (like GPS, Inertial Measurement Units (IMU) or shaft en-
coders) to exteroceptive sensors (including vision, range or contact devices). In order
to exploit efficiently the information provided by such sensorial systems, the sensors
must be calibrated to: a) interpret correctly the acquired data (intrinsic calibration),
and to put all the measurements in a common reference frame (extrinsic calibration).
Such a calibration is also required for the robot’s actuators in order to provide the right
commands towards the goal. This chapter is focused on sensor calibration, though
many concepts can also be applied to the calibration of actuators. For more specific
literature on this the reader is referred to [Whitehouse and Culler, 2003].

The intrinsic calibration of a sensor consists of providing a model to interpret the
raw measurements, so that the data is put in correspondence with world properties.
Examples of intrinsic parameters are the focal length of a camera, its distortion pa-
rameters, the error model of a laser scanner, or the radius of the robot’s wheels. Such
parameters are usually provided by the manufacturer of the respective device, how-
ever, it may still be interesting to calibrate them in order to model deviations from
the construction parameters or particular circumstances of the system (e.g. wheel in-
flation degree). The intrinsic calibration is required prior to the extrinsic calibration
since it is needed to interpret the sensor measurements. It has been shown that com-
puting both calibrations in a coupled manner can be helpful to reduce the errors of
both [Zhang and Pless, 2004]. This section describes briefly two models employed
along this thesis to calibrate the intrinsic parameters of a regular camera using a
checkerboard [Zhang, 2000], and a method to calibrate the parameters of a depth
camera using SLAM [Teichman et al., 2013].

The extrinsic calibration among the robot’s sensors (i.e. finding their relative
poses) is required to exploit effectively all the sensor measurements and to perform
data fusion. There exist a vast literature about this problem. These works can be clas-
sified according to the devices to be calibrated, for instance, the extrinsic calibration
of regular cameras was one of the first to be investigated due to its utility for stereo
vision and multiview geometry [Faugeras and Toscani, 1986]. A rig consisting of a
camera and an IMU is calibrated in [Mirzaei and Roumeliotis, 2008; Guo and Roume-
liotis, 2013], what is required for applications in the fields of wearable devices and
aerial robotics (UAVs). Several solutions have been presented as well for the calibra-
tion of RGB cameras and laser scanners or LIDAR (e.g. [Zhang and Pless, 2004]),
which have been used to build coloured point clouds of the scene [Forkuo and King,
2004]. A 3D LIDAR and a camera have been calibrated with the same purpose of
registering depth and intensity information [Mirzaei et al., 2012]. A Velodyne 3D LI-
DAR and an omnidirectional camera were calibrated in [Pandey et al., 2010]. Meth-
ods for calibrating both the intrinsic and extrinsic parameters of a RGB and depth
cameras have also become popular in the last years with the release of consumer
RGB-D sensors like those developed by Primesense (e.g. Microsoft Kinect) [Smisek
et al., 2013; Herrera et al., 2011].
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The knowledge of the robot trajectory, and/or a map of its environment, provide
valuable information to compute the calibration, and at the same time, such calibra-
tion contributes to improve the localization and mapping [Foxlin, 2002]. The problem
of simultaneous calibration and localization (or SLAM) has also received consider-
able attention by the research community. This strategy has been applied to calibrate
regular cameras [Larsen et al., 1998; Heng et al., 2013], laser scanners [Martinelli
et al., 2007], and RGB-D cameras [Teichman et al., 2013; Brookshire and Teller,
2012].

Despite the large volume of literature covering different calibration problems,
only a few works have addressed the extrinsic calibration between range sensors. For
example, the extrinsic calibration of a set of 2D laser scanners (or laser rangefind-
ers -LRFs-) is a problem which is present in the field of autonomous vehicles [Thrun
et al., 2006; Campbell et al., 2010; Bohren et al., 2008; Petrovskaya and Thrun, 2009;
Miller et al., 2011; Leonard et al., 2008], where these sensors are necessary for safe
navigation. But most works employing such a combination of LRFs obtain the extrin-
sic calibration from manual measurements or from non-general ad-hoc solutions, in
tedious and time consuming procedures. This is a result of the difficulty to establish
some kind of data association between range sensors.

A new strategy for calibrating such combinations of sensors is presented in this
thesis (section 2.3), which is employed to calibrate different combinations of range
sensors. The technique is based on the observation of planar surfaces at different
orientations, and offers a series of advantages over previous alternatives such as its
ease of use, robustness and accuracy.

2.2 Intrinsic calibration

A large body of literature can be found about the problem of intrinsic calibration of
different sensors. In this section we review two methods for the intrinsic calibration
of a regular RGB camera and for the depth sensor of a structure light sensor like e.g.
Microsoft Kinect. These two methods are used along this thesis.

2.2.1 Calibration of a regular camera (RGB)

Finding the intrinsic parameters of a camera is a basic problem in computer vision,
and it is present in many robotic applications. Such parameters describe the projection
between the 3D coordinates of the scene to the 2D coordinates of the image sensor.
This problem involves finding the parameters of the camera model (in general the
pinhole model is used, which is defined by the focal length and principal point), and
the distortion parameters (radial and tangential distortions) of the lens [Heikkila and
Silvén, 1997]. The pinhole camera model is usually represented through the camera
projection matrix K

K =

α γ u0
0 β v0
0 0 1

 , (2.1)
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Figure 2.1: Checkerboard calibration pattern.

a 3×3 homogeneous matrix where α and β represent the scale factors (focal length)
in the x and y axes, γ describes the skewness of these axes, and (u0,v0) are the coordi-
nates of the principal point. Thus, the homogeneous images coordinates w= (u,v,1)>

corresponding a 3D point p = (x,y,z)> in the camera reference frame are obtained
from u

v
1

= K

x/z
y/z
1

 (2.2)

The lens distortion can be modelled as the combination of radial and tangential
distortion. The radial distortion consists of a radially symmetric artefact induced from
the lens light diffraction, while the tangential distortion is caused by misalignment of
the lens or lenses. Radial distortion models are more commonly applied since its
effect is generally more significant than the tangential component. The latter is not
considered here, for which the reader is referred to [Devernay and Faugeras, 1995].
The radial distortion can be modelled as

u′ = u+(u−u0)(k1r2 + k2r4 + ...)

v′ = v+(v− v0)(k1r2 + k2r4 + ...) (2.3)

where u and v are the ideal pixel coordinates given by the pinhole model, u′ and v′

are the real observed pixel coordinates affected by radial distortion and r

r =
√
(u−u0)2 +(v− v0)2 (2.4)

is the Euclidean distance between the pixel (u,v) and the principal point. Generally,
only the two first parameters k1 and k2 of radial distortion are computed since higher
order parameters have a negligible effect.

There is a vast literature treating this problem, where a common approach is to
employ a checkerboard calibration pattern (see figure 2.1) that must be observed from
different orientations of the camera. Point correspondences are extracted from these
observations, which are used to define geometrical equations to constrain the problem



2.2. Intrinsic calibration 21

Figure 2.2: RGB-D sensor: Asus Xtion Pro Live.

[Zhang, 2000]. This strategy has been applied along this thesis to find the intrinsic
parameters of different RGB cameras. Concretely, it is used in sections 4.4 and 5.2.1.
The method employed here for calibration is publicly available1 within the project
MRPT [Blanco, 2008].

2.2.2 Calibration of depth cameras

Depth cameras are increasingly popular in mobile robotics thanks to the arrival of
low-cost sensors like Asus Xtion Pro. Some other technologies for depth imaging in-
clude time-of-flight (ToF) cameras and 3D LIDAR, with considerable differences in
price and working conditions. In this section, we focus on the calibration of structured-
light cameras like Asus Xtion Pro or Microsoft Kinect since these sensors are used
along this thesis. For that, we outline some relevant works and explain in more detail
the one followed here.

Structured-light sensors are composed of an infrared (IR) camera and an IR pro-
jector (see figure 2.2). The depth image is obtained from stereo matching of the in-
frared projected pattern, and the specifications of this process are unknown to the
user. Thus, a model for the depth image formation like the one of the previous section
for regular intensity cameras is not available. As a consequence, many works that ad-
dress the calibration of RGB-D sensors solve for the intrinsic parameters of RGB and
IR cameras and for the relative pose of these, but do not deal with the intrinsic param-
eters of depth imaging [Herrera et al., 2011]. More recent works have addressed the
intrinsic calibration of this type of depth sensors proposing to treat each pixel (in fact,
regions of pixels) individually, to identify the bias of them through statistic methods
which imply the observation of a static scene using SLAM [Teichman et al., 2013],
or the observation of a checkerboard pattern [Basso et al., 2014b]. In this thesis we
employ the first of this methods to calibrate the depth provided by the RGB-D sensors
used along this thesis.

The depth error of RGB-D sensors from PrimeSense (including Kinect and Asus
Xtion) increases with distance, introducing a bias in the measurements. Such a bias is
evident when we see the deformation of a flat surface as it is observed from increas-

1http://www.mrpt.org/list-of-mrpt-apps/application_camera-calib/

http://www.mrpt.org/list-of-mrpt-apps/application_camera-calib/
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Figure 2.3: Intrinsic calibration. Image of multipliers for the 8 different sensors at the reference
depth of 4 m.

ing distance. In [Teichman et al., 2013], the authors propose to model the intrinsic
parameters using a discrete image of multipliers, where every pixel is updated ac-
cording to its coordinates and depth. This solution, which is publicly available2, has
been applied in this thesis to estimate the intrinsic parameters of different RGB-D
sensors employed in our experiments. This technique was chosen because it was the
only one which models the bias in the depth measurements. A sample of the resulting
images of multipliers for different sensors Asus Xtion Pro Live is shown in figure 2.3,
where we can see that the bias of each sensor is different even though they are the
same sensor type.

2.3 Extrinsic calibration of range sensors

The extrinsic calibration of different sensors is of very practical interest in robotics.
This problem has been widely studied and different solutions have been presented
for a variety of sensor configurations [Zhang and Pless, 2004; Le and Ng, 2009; Ha,
2012; Heng et al., 2013; Schneider et al., 2013]. The case of extrinsic calibration of
range sensors is a problem with fewer results in the literature, where only solutions
to very specific problems have been presented. The reasons for that are the difficulty
to establish some kind of data association between range sensors in arbitrary orienta-
tions, and the high cost of many of these sensors, though this cost is being reduced as
new technological advances appear [AsusXPL, 2011].

A new strategy to calibrate a combination of range sensors is proposed in this
section. The calibration methods proposed here are all based on the observation of
planar surfaces at different orientations to establish constraints on the sensor relative
poses. The calibration problem is tackled as a maximum likelihood estimation (MLE)
for the graph of constraints inferred between the different sensors. This formulation
permits to solve the calibration of different types of sensors, as each measurement

2http://cs.stanford.edu/people/teichman/octo/clams/
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is weighted according to its uncertainty. The uncertainty of the resulting calibration
can also be estimated, what is useful for SLAM and to evaluate the precision of the
calibration. The observability of these problems is analysed through the Fisher infor-
mation Matrix [Van Trees and Bell, 2007], presenting minimal solutions which only
require a single observation of the sensors.

The calibration of different combination of range sensors is dealt with in this
chapter: section 2.3.1 tackles the extrinsic calibration of a set of 2D LRFs; the calibra-
tion of a set of range cameras is addressed in section 2.3.2; and finally, the calibration
between range cameras and 2D LRFs is presented in section 2.3.3. The experimental
results confirm the efficacy and robustness of these calibration methods. These three
problems are solved separately as they are stated upon different constraints, thus hav-
ing different observability and convergence conditions.

2.3.1 Calibration of several 2D laser range�nders

The extrinsic calibration of several 2D laser rangefinders or LIDAR is of very practi-
cal interest for autonomous vehicles and for mobile robotics. Combinations of LRFs
have been employed for 3D mapping in outdoor [Borrmann et al., 2008; Barber et al.,
2008; Haala et al., 2008] and indoor environments [Thrun et al., 2000], and also for
safe navigation [Victorino et al., 2003]. This calibration problem becomes more rel-
evant with the advent of autonomous cars [Thrun et al., 2006; Campbell et al., 2010;
Bohren et al., 2008; Petrovskaya and Thrun, 2009; Miller et al., 2011; Leonard et al.,
2008], where the information provided by such sensors is essential to avoid possible
collisions.

This section presents a novel solution for the general problem of extrinsic cali-
bration of 2D LRFs, which is based on the observation of perpendicular planes from
any structured scene (i.e. Manhattan like world). Then, the calibration is computed by
imposing co-planarity and perpendicularity constraints on the line segments extracted
by the different laser scanners. No external information in the form of calibration
patterns or auxiliary sensors is required. Only a rough approximation of the sensor
relative poses must be provided, which can be guessed from simple visual inspection
of the rig. This method can be used to calibrate any set of rigidly joined LRFs where
there are at least two sensors with non-parallel scanning planes. The flexibility of
our method permits its application to different problems. For example, it can be used
to re-calibrate the LRFs mounted on an autonomous car, where the sensors relative
poses may change over time as a result of the vehicle vibrations [Bohren et al., 2008].

2.3.1.1 Related works

Among the robotic systems found in the literature that employ a combination of
LRFs, only a few of them report a calibration technique [Huang et al., 2010; Blanco
et al., 2009b; Gao and Spletzer, 2010]. Many other works like [Thrun et al., 2006;
Miller et al., 2011; Campbell et al., 2010; Bohren et al., 2008; Petrovskaya and
Thrun, 2009], do not report any calibration process, so, it is reasonable to suppose
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that they obtain the sensor’s relative poses from manual measurements on their set-
ups, like in [Blanco-Claraco et al., 2014]. Such procedures are prone to errors that
may severely affect the performance of mapping and navigation methods, especially
when the laser scanners have a long working range, so that small rotation errors can
produce significant distortions in the map [Miller et al., 2011; Leonard et al., 2008].
Apart from the limitations in accuracy, measuring the sensors relative poses by hand
is also tedious and time consuming.

Generally, the preferred strategy to calibrate exteroceptive sensors is to use their
own measurements to establish some kind of data association between their observa-
tions. The extrinsic calibration of 2D range scanners in arbitrary poses proves to be
more difficult than for RGB or depth cameras, since distinctive features are signif-
icantly more scarce in the first. This calibration strategy has been demonstrated for
LRFs in some particular problems, but the solutions reported share one or more of the
next limitations: they need supervised data association in controlled conditions; they
need external information (extra sensors, a pattern or landmarks placed manually in
the environment); or they are specific for a particular configuration of the sensor rig.
For example, vertical posts of traffic signs are segmented and matched in a supervised
way in [Huang et al., 2010]. In [Gao and Spletzer, 2010], a solution is presented based
on the matching of reflecting landmarks that are manually placed in the environment.
Without using particular targets, calibration is achieved in [Blanco et al., 2009b] by
making use of the vehicle’s odometry to maximize the fitting of the 3D point clouds
built from the different LRFs, what requires extra sensors (cameras or high precision
GPS) to improve the accuracy of the vehicle’s odometry. Another approach consists
of matching the trajectories of dynamic objects (or people) in the scene [Glas et al.,
2010; Schenk et al., 2012]. For that, the trajectory of one, or several objects, is tracked
independently by each LRF, and these trajectories are registered to constraint the sen-
sor’s relative poses. This solution is suitable for static systems where all the LRFs
scan a common space (nearly in the same plane), but like the approaches above, it is
not valid to calibrate LRFs in arbitrary poses. In contrast to those works, a general
method to calibrate LRFs like the one proposed in this thesis, is useful to deal with
many robot and autonomous vehicle configurations.

Ego-motion approaches have also been exploited to calibrate different combi-
nations of sensors. For instance, visual and range odometry [Brookshire and Teller,
2012; Heng et al., 2013; Schneider et al., 2013] have been employed to minimize the
fitting error of the independently estimated sensor trajectories. Also, ego-motion has
been used in combination with wheel odometry to determine the intrinsic parameters
of the odometry together with the relative pose of a laser sensor with respect to the
robot’s frame [Censi et al., 2013]. However, this strategy is only applicable when the
laser scanner moves in its own plane of measurement (typically, planar movement
of a vehicle with an horizontal LRF), otherwise the laser ego-motion cannot be esti-
mated. This last work addresses a different, but complementary problem to the one
tackled here. Therefore, a combination of this technique with the one proposed here
would be interesting in many problems to calibrate several LRFs with respect to the
vehicle’s frame.
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Figure 2.4: Observation of a corner structure by a rig with two LRFs.

Contribution

This section presents, to the best of our knowledge, the first general approach to cal-
ibrate a set of LRFs in arbitrary positions. This solution only requires observing per-
pendicular planes from any structured scene. The observability and the convergence
of the method are studied. A C++ implementation of this method is also provided
together with a testing dataset34.

In comparison to previous approaches, our method is applicable to almost any
geometric configuration of the sensors (with at least two non-parallel sensors); it does
not require auxiliary sensors or a calibration pattern; it is accurate and fast, indeed,
the calibration can be achieved from a single observation; and finally, our method
provides an estimation of the calibration uncertainty.

In the following section we describe the calibration method using constraint equa-
tions derived from the co-planarity and perpendicularity of the observed planes (sec-
tion 2.3.1.2). Section 2.3.1.3 addresses the optimization problem stated upon these
constraints within a probabilistic framework that takes into account the precision of
the sensor measurements. We analyse the observability conditions (section 2.3.1.4)
and study the convergence region for the solution (section 2.3.1.5). Experimental re-
sults are presented to validate our approach with both simulated and real data (section
2.3.1.6). Finally, the results are discussed and the conclusions are outlined.
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2.3.1.2 Calibration approach

Our proposal for finding the extrinsic calibration (i.e. relative poses) between two or
more LRFs relies on establishing geometric constraints from the simultaneous obser-
vation of pairs of perpendicular planes (see figure 2.4). For readability, let us define a
corner as a pair of perpendicular planar surfaces, not necessarily intersecting5. Then,
the geometric constraints are inferred from: 1) the co-planarity of the observed line
segments lying on each face of the corner, and 2) the perpendicularity of both planar
surfaces.

A minimum of two corner observations from different orientations are required
to calibrate a pair of LRFs (note that these can be obtained from a single observation
of the rig when three perpendicular planes are visible, as it is shown in figure 2.7).
However, it is preferable to take more observations to compensate for the noise in
the measurements, increasing the accuracy of the calibration. One of the easiest ways
to obtain such observations is by rotating the sensor rig in front of a corner. From
these observations, the calibration problem is stated as the optimization of a graph of
constraints, similar to the problem of pose graph SLAM [Grisetti et al., 2010].

Before going into the calibration method itself, we address related issues like how
the lines are represented and segmented from the laser scans, how to detect corner
observations and how to derive constraints on the sensor relative poses from them.

Line representation and segmentation

The planar structures of the environment are sampled by the LRFs as line segments.
These lines can be extracted from the scans provided by each LRF in a number of
ways [Nguyen et al., 2005]. Here we have implemented a segmentation method based
on RANSAC [Fischler and Bolles, 1981], although other approaches like those based
on region growing [Borges and Aldon, 2000] or on Hough transform [Forsberg et al.,
1995] may also be applied. The RANSAC procedure searches for the parameters
{A,B,C} of a 2D line which maximize the number of points pi = (xi,yi)

> supporting
the model

Axi +Byi +C ≤ ε (2.5)

being ε a threshold used to differentiate between inliers and outliers. An advantage of
using RANSAC is that unconnected collinear segments are automatically clustered
as the same line, simplifying the subsequent optimization process.

The segmented lines are represented in 2D in the LRF’s reference system by the
normalized direction vector l = (lx, ly)> and an arbitrary point of the line (see figure
2.5). For such a point we have chosen the centroid of the line’s inliers c = (cx,cy)

>

3https://github.com/EduFdez/mrpt/tree/LRF-calib/apps/LRF-calib/
4https://github.com/EduFdez/mrpt/blob/LRF-calib/share/mrpt/datasets/3LRFs_

dataset_demo.rawlog
5This procedure of calibration can make use of pairs of oblique (non-parallel) planes, not requiring

perpendicularity. However, by considering only perpendicular corners we facilitate both the readability of
this section and its implementation without adding any strong limitation, since any structured scene (i.e.
man-made environment) contains perpendicular planes.

https://github.com/EduFdez/mrpt/tree/LRF-calib/apps/LRF-calib/
https://github.com/EduFdez/mrpt/blob/LRF-calib/share/mrpt/datasets/3LRFs_dataset_demo.rawlog
https://github.com/EduFdez/mrpt/blob/LRF-calib/share/mrpt/datasets/3LRFs_dataset_demo.rawlog
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since it has less uncertainty to belong to the line than any measured point. These
parameters and their covariances are estimated assuming unbiased, identically dis-
tributed (i.i.d.) Gaussian noise in the LRF measurements. The covariances are used
latter as a measure of the uncertainty of the observed lines. In the literature, it is often
assumed a model where the noise only affects the range measurements, with exact
bearing directions [Arras and Siegwart, 1998; Diosi and Kleeman, 2003]. However,
such a model introduces linearization errors that produce biased estimates of the line
parameters. To avoid this, a common approach (see [Arras and Siegwart, 1998; Diosi
and Kleeman, 2003]) that we follow here is to approximate the covariance of each
point pi in Euclidean coordinates as Σpi = σ2

i I. Then, the maximum likelihood esti-
mation of the centroid c is calculated as

c =
1
N

N

∑
i=1

pi (2.6)

and its covariance Σc is given by

Σc =

[
σ2

N 0
0 σ2

N

]
(2.7)

The line direction vector l is obtained as the eigenvector corresponding to the largest
eigenvalue of the point dispersion matrix M

M =
N

∑
i=1

(pi− c)(pi− c)> (2.8)

and its covariance
Σl = H+ (2.9)

is calculated following [Pathak et al., 2010c] as the Moore-Penrose generalized in-
verse of

H =
1

σ2

N

∑
i=1

[
y2

i −yixi
−xiyi x2

i

]
(2.10)

In the rest of the section the lines are represented in 3D in the LRF reference
system (see figure 2.5) by setting the z component of the line parameters and their
covariances to zero.

Corner constraints

Let S1 and S2 be two rigidly jointed LRFs, each one observing two line segments
{La

1,L
b
1} and {La

2,L
b
2} from two perpendicular planes Πa and Πb. Let [R1|t1], [R2|t2]∈

SE(3) be the LRFs poses with respect to a common coordinate system, with the
rotations R ∈ SO(3) represented as 3×3 matrices and the translations t ∈ R3.

Co-planarity constraint: A co-planarity constraint is inferred for the lines segmented
by two LRFs that observe the same plane, for instance, the lines {La

1,L
a
2} on the plane
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Figure 2.5: A rig of 3 LRFs in different orientations (i.e. the z axis of each LRF are linearly
independent).

Πa in figure 2.4. Both line direction vectors and the vector joining any two points pa
1

and pa
2 of the observed lines, all referred to the same coordinate system, form a matrix

of deficient rank as they are all parallel to the plane Πa. Therefore, the determinant of
that matrix, which is equal to the mixed triple product of the 3 vectors, must be zero.
This is expressed as

(R1la1×R2la2) · (R1pa
1 + t1−R2pa

2− t2) = 0 (2.11)

This condition can also be interpreted as a statement for the perpendicularity between
the plane’s normal vector na = R1la1×R2la2 and any vector joining a pair of points
from the scanned lines. For such points, we make use of the centroids ca

1 and ca
2,

simplifying the optimization procedure presented later on.

Orthogonality constraint: Another constraint can be stated for the relative rotation of
a pair of LRFs that observe a corner defined by the perpendicular planes Πa and Πb,
so that

na ·nb = (R1la1×R2la2) · (R1lb1×R2lb2) = 0 (2.12)

Notice that the first constraint affects only the observation of a plane, while the
second one implies the observation of a corner. Regarding the calibration problem,
the former involves the relative rotation and translation of the sensors, while the latter
affects only the rotation.
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Corner detection

Let us call CO the corner observed by a pair of rigidly jointed LRFs. Specifically, a
CO is described by the set: CO = { j,La

j ,L
b
j ,k,L

a
k ,L

b
k}, where j and k are the indices

of the LRFs, a and b refer to the respective corner faces (orthogonal planes), and the
lines are represented by La

j = {ca
j , laj ,Σa

c j
,Σa

l j
}.

Detecting a CO is not trivial when the relative poses of the sensors are not known,
as it is the case here. Indeed, since the information provided by the LRF measure-
ments is purely geometric, we can only know that two pairs of lines observed by two
LRFs come from a corner once we know the sensor’s calibration. Thus, the result-
ing problem implies detecting the COs and estimating the calibration simultaneously.
This can be tackled in a hypothesize-and-test framework, where many potential COs
are generated from the rig observations by grouping sets of two pairs of lines seen by
a pair of LRFs, where some of them must come from real corners.

After a number of observations are taken from different poses of the sensor rig,
inconsistent COs are ruled out robustly using RANSAC [Fischler and Bolles, 1981]
taking into account the restrictions in equations (2.11-2.12). For that, a candidate ex-
trinsic calibration is calculated from a minimum set of randomly selected COs (as ex-
plained in the next section). Then, the number of consistent COs for such calibration is
evaluated. This process is repeated iteratively searching for the maximum consensus
in COs. The result of this process is the largest set of consistent COs (inliers) and the
calibration computed from them. Empirically, we have verified that the correct cali-
bration always corresponds to the largest number of inliers, even when the number of
outliers is considerably larger than the number of inliers (ninliers/noutliers ∼ 0.1). This
situation where the number of outliers is much larger than that of inliers results in a
slow calibration process, however, it is not critical since this can be done offline.

It is worth mentioning that if we have a rough knowledge of the sensors relative
poses, what is very common in practice, some constraints can be set for the selection
of COs so that fewer outliers are selected at a first instance. Such restrictions are not
applied here for the sake of generality.

The process to obtain the COs can perform automatically from the streaming data
of the sensors (see for example the video at http://youtu.be/YG4ShgyIUHQ). Er-
rors derived from the motion of the sensor rig are neglected here since the rig’s ve-
locity is small with respect to the acquisition time. In order to decide when should
we stop gathering COs, a convergence condition for the maximum uncertainty (co-
variance) of the resulting calibration can be set to stop this process automatically
[Fernández-Moral et al., 2014b].

Gaussian error model

It is common to assume Gaussian error models in robotics. This section verifies such
assumption for the error models employed here. In the simulation experiments car-
ried out in this work, the depth measurements are generated with additive Gaussian
noise of zero mean, and no error in the bearing. Although, the covariances of the

http://youtu.be/YG4ShgyIUHQ
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Figure 2.6: Monte Carlo simulation of a corner observation at three different orientations (a
different corner is shown in each column) with three different rigs of two LRFs (a different rig
is shown in each row). The planarity and perpendicularity errors are shown at the left and right
of each graph, respectively.

measured points are assigned as diagonal matrices (eq. 2.7) in Euclidean coordinates
(a common practice in most of the related works [Arras and Siegwart, 1998; Diosi
and Kleeman, 2003]). Moreover, several operations are applied to Gaussian random
variables in the error model, so that the resulting distribution is not necessarily Gaus-
sian. In this section, we conduct some Monte Carlo simulation with 105 samples, to
check how are distributed the planarity error (eq. 2.11) and the perpendicularity error
(eq. 2.12) of a corner observation for different normal errors in the measurements.
These errors are simulated for three different corners at different orientations, and for
three rig configurations with two LRFs (nine evaluations are shown). The results of
these simulations are shown in figure 2.6, confirming that both errors follow normal
distributions of zero mean. This test has been repeated for different resolutions of the
LRFs, obtaining similar results.

2.3.1.3 Problem formulation

Given a set of COs gathered from different orientations of a rig consisting of m LRFs
{S1, ...,S j, ...,Sm} where, without loss of generality, the sensor S1 is chosen as the
reference coordinate system and each LRF S j is located with a relative transfor-
mation [R j|t j] ∈ SE(3) with respect to S1. Then, we want to estimate the optimal
{R, t}= {[R2|t2], ..., [R j|t j], ..., [Rm|tm]} that minimize the errors of the constraints in
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eqs. 2.11-2.12, assuming independence between the COs and measurements affected
by unbiased Gaussian noise as modelled in section 2.3.1.2.

Maximum likelihood estimation

The above problem is formulated as the maximum likelihood estimation (MLE) of the
relative poses {R, t} for the given COs, which is calculated from the maximization of
the log-likelihood

argmax
{R,t}

(
ln

N

∏
i=1

p(COi|{R, t})

)
(2.13)

where the likelihood of {R, t} for the i-th CO is calculated from the constraints pre-
sented above (eqs. 2.11-2.12). It is expressed as the multiplication of the likelihood
for each constraint, two co-planarity constraints from eq. 2.11 (one per plane in the
corner) that affect the estimate of both rotation and translation and one constraint
from eq. 2.12 that affects only the estimate of the relative rotation. Thus, for a given
COi observed by the LRFs j and k, we have:

p(COi|{R, t}) =
p(COa

i |R j, t j,Rk, tk) · p(COb
i |R j, t j,Rk, tk) · p(COab

i |R j,Rk) (2.14)

with the superindices a and b referring to the co-planarity constraints inferred from
each plane, and the superindex ab referring to the perpendicularity condition. As
verified experimentally through the Montecarlo simulations above, the above proba-
bilities follow Gaussian distributions. Concretely, the first two elements of the right
term in eq. 2.14 are given by

p(COa
i |R j, t j,Rk, tk) =

1√
2πσa

i
exp
(
−1

2
r2

i
(σa

i )
2

)
=

1√
2πσa

i
exp

(
−
(na

jk · (R jca
j + t j−Rkca

k− tk))
2

2(σa
i )

2

)
(2.15)

with
na

jk = R jlaj ×Rklak (2.16)

being σa
i the standard deviation of the residual ri which is computed from eq. 2.11.

The expression of the probability from the co-planarity constraint of the plane Πb is
the same with the exception of the superindices. On the other hand, the probability
inferred from eq. 2.12 is given by

p(COab
i |R j,Rk) =

1√
2πσab

i
exp

(
−
(na

jk ·nb
jk)

2

2(σab
i )2

)
(2.17)
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being σab
i the standard deviation of the error of (eq. 2.12). Both standard deviations

(σa
i and σab

i ) are computed through linearisation from a first order Taylor approxi-
mation of the error functions. Their derivation is detailed in the appendix C.

When these standard deviations are constant with respect to the model parameters,
the solution of the MLE in (2.13) coincides with that of the weighted, non-linear least
squares problem expressed as

argmin
{R,t}

N

∑
i=1

(
ω

a
i (n

a
jk · (R jca

j + t j−Rkca
k− tk))

2+

ω
b
i (n

b
jk · (R jcb

j + t j−Rkcb
k− tk))

2+

ω
ab
i (na

jk ·nb
jk)

2
)

(2.18)

where ωx
i (the superindex x stands for a, b or ab) is the weight of the corresponding

residual from COi

ω
x
i =

1
(σ x

i )
2 (2.19)

This problem is reformulated using Lie algebra (see appendix B) to represent
the poses with a minimal parametrization on a manifold. For that, the rotations are
represented as the composition of a guessed rotation and a rotation increment rep-
resented with the exponential map (eµ j R j), with the rotation increment eµ j ∈ SO(3).
The translations are also represented as the sum of a guessed translation plus an incre-
ment (t j +∆t j), both in R3. The resulting non-linear least squares problem is solved
iteratively using Levenberg-Marquardt

[µk
2 ,∆tk

2, ...,µ
k
m,∆tk

m]
> =−(H +λ diag(H))−1g (2.20)

being λ the Levenberg-Marquardt’s damping factor. H is the Hessian (a symmetric
matrix of dimension 6(m− 1)) and g is the Gradient (a column vector of dimension
6(m−1)) of the cost function, which are calculated as

H =
N

∑
i=1

J>i ωiJi , g =
N

∑
i=1

J>i ωiri (2.21)

where N is the number of constraints of this optimization, being ri the residual de-
fined above and Ji the Jacobian for each constraint (remember that each CO provides
three constraints). The Jacobian Ja

i corresponding to the constraint from eq. 2.11 is
calculated as

Ja
i =[...;(laW

j × (laW
k × (caW

j − caW
k ))+R jca

j ×na
jk︸ ︷︷ ︸

Jµ j

; na
jk︸︷︷︸

J∆t j

; ...;

...;−(laW
k × (laW

j × (caW
j − caW

k ))−Rkca
k×na

jk︸ ︷︷ ︸
Jµk

;−na
jk︸︷︷︸

J∆tk

; ...]> (2.22)
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where the superindex W refers to the common system of coordinates, so that6

laW
j = R jlaj , laW

k = Rklak

caW
j = R jca

j + t j , caW
k = Rkca

k + tk

This Jacobian (a row vector of dimension 6(m− 1)) contains four blocks of 1× 3
vectors corresponding to the derivatives of the residual with respect to µ j, ∆t j and µk,
∆tk, respectively.

On the other hand, the Jacobian Jab
i of the residual from eq. 2.12 is given by

Jab
i = [...; lbW

j × (lbW
k ×na

jk)+ laW
j × (laW

k ×nb
jk)︸ ︷︷ ︸

Jµ j

; ...

...;−lbW
k × (lbW

j ×na
jk)− laW

k × (laW
j ×nb

jk)︸ ︷︷ ︸
Jµk

; ...]> (2.23)

The two blocks of 1×3 vectors of this Jacobian correspond to the derivatives of the
residual with respect to µ j and µk respectively, the blocks corresponding to the rest
of elements in {R, t} being zero.

This optimization is solved iteratively

Rk+1
j = eµk

j Rk
j , tk+1

j = ∆tk
j + tk

j , j ∈ [2,m] (2.24)

from an initial guess for the sensor relative poses, which may be obtained from a
rough measurement of the rig. Once the problem is solved, the covariance of the
resulting calibration is calculated as the inverse of the Hessian of the cost function
in (2.18) [Fernández-Madrigal and Claraco, 2013]. For a more detailed derivation of
Maximum Likelihood Estimation and Least Squares the reader is referred to appendix
A.

2.3.1.4 Observability

The problem of estimating the relative poses has 6(m−1) degrees of freedom (DoF),
with m being the number of LRFs. From the formulation presented in the previous
section, we have seen that each CO leads to three constraints for the relative poses
of the corresponding pair of LRFs. Therefore, at least 2(m− 1) COs are needed to
provide as many equations as unknowns for solving the problem.

We are also interested in knowing how these observations should be taken in or-
der to provide the necessary information to solve the calibration. The analysis of the
observability of calibration problems provides valuable information about the proce-
dure to gather such data [Martinelli, 2011; Censi et al., 2013]. Such analysis is carried
out here by studying the rank of the Fisher Information Matrix (FIM) of the estima-
tion problem(see appendix D). The key concept here is that when the FIM is singular,

6For clarity, the CO index i will be omitted in subsequent operations that affect only to the same CO.
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Figure 2.7: Observation of a corner with three perpendicular planes by two LRFs.

the information carried by the data (observations) is not sufficient and the problem
is under-constrained ({R|t} is unobservable). We wish to identify these situations of
unobservability in order to avoid them in practice.

The FIM can be expressed in matrix notation by transforming the sum term in
(2.21) to

FIM = J>ΩJ (2.25)

where J is a matrix concatenating the Jacobians Ji of the residuals, and Ω is a diagonal
matrix containing the weights ωi of such residuals. Since Ω is diagonal with all the
elements being positive, the rank of FIM is the same as the rank of J

rank(FIM) = rank(J>J) = rank(J) (2.26)

Therefore, the problem has a solution when

rank(J) = 6(m−1) (2.27)

By analysing the structure of the different Jacobians Ji for each CO, we can notice
that a CO provides three linearly independent rows for J when a corner is observed
in a new orientation (eqs. 2.22 and 2.23). To get a deeper insight into this, consider a
block of the Jacobian in eq. 2.23, for instance Jµ j . Each corner observation in a new,
linearly independent direction, expressed by na

jk × nb
jk, contributes to constrain the

problem for µ j. For the Jacobian in eq. 2.22, it can be verified that each plane obser-
vation providing a linearly independent n jk results in a linearly independent Ji which
constrains both the relative rotation and the relative translation between the sensors
S j and Sk. Therefore, two observations of a corner from different orientations suffice
to solve the calibration of a pair of sensors. Moreover, a single observation of a corner
with three perpendicular planes (as shown in figure 2.7), provides enough informa-
tion to solve the problem since it contains already 3 independent normal vectors of
the plane, and 3 independent orthogonal constraints.
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Figure 2.8: Error maps of the calibration of a pair of LRFs for 6 different combinations of 2
DoFs using 100 COs. The configuration of the rig corresponds to the one depicted in figure 2.12
for the sensors S1 and S2. The heat maps show the residual error from eq. 2.18 in logarithmic
scale, with the correct calibration at the center of each graph, lying on a local minimum. The
free DoFs in rotation take all possible values in the domain τ ∈ [−π,π], while for the translation
the DOFs are given values δ ∈ [−0.5 m,0.5 m].

An interesting case of unobservability occurs for planar movement of a sensor rig,
when all the visible planes are perpendicular to the plane of movement. In such a case,
it can be clearly seen that there is a free degree of freedom for the translation since the
rank of the matrix concatenating the plane’s normal vectors will always be deficient.
This situation arises for a vehicle with an horizontal LRF which only observes vertical
planes. In order to calibrate such a system, the scene should contain oblique planes,
or the rig should be tilted in order to take observations from non-vertical planes.

Finally, the ratio η = µ6(m−1)/µ1 between the smallest and largest eigenvalues
of the FIM is also an indicator of how well distributed the measurements are along
the different directions (DoF) of the domain (η = condition_number−1). So, in the
best case η = 1 which means that all plane observations are equally distributed in the
space, while when η → 0, the system becomes ill-conditioned.

2.3.1.5 Convergence

Considering that the calibration is observable, another important issue is to know
if the solution converges to the correct value. This problem is not trivial for a non-
linear optimization whose domain is not convex, containing local minima, as it is the
case here. The local convexity of the error function around the solution depends on
a number of parameters including: the configuration of the sensor rig, the amount of
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corner observations and their positions, and the noise in the sensor measurements.
Thus, a mathematical condition for the convergence cannot be established in general.

However, given a configuration of the rig and a set of observations (COs), we can
sample the optimization domain to conduct a qualitative analysis of its convexity. In
figure 2.8 we display the residual error of eq. (2.18) for a rig with two LRFs which
observe 20 COs from different orientations. The error is shown with respect to the six
parameters of the calibration by grouping pairs of DoFs in rotation and translation.
The first row of figure 2.8 shows three sections of the sphere of possible rotations,
corresponding to the planes x− y, y− z and z− x, while the second row shows the
translation domain, where each DoF takes values in [0.5, -0.5] meters around their
true value at the center {0, 0} of each graph. The resulting residuals are shown with
a 2D heat map with the contour lines. In all the graphs, we see clearly a minimum
at the correct calibration. We observe that there are local minima in the orientation
domain, what implies that the initial values for the relative rotation must be given in
a local region around the solution. On the other hand, the problem is convex for the
translation as it is inferred from the formulation (the error depends linearly on the
translation), therefore, the result does not depend on its initialization.

The test above has been repeated for a number of rig’s configurations and for
different COs at different positions, and the results are qualitatively similar. For all
such tests, we observe a similar trend for the error surfaces, indicating that there is at
least one local minimum for the error function at the correct solution, and that there
are local and global minima distributed in the domain. A particularly interesting case
of wrong convergence occurs when the relative rotation of a pair of LRFs is initialized
in a way that their scanning planes coincide. Note that there exists a global minimum
for such set of parameters, where the error will be zero no matter the COs. Apart from
this point of degeneracy, initializing the calibration near this local or global minima
can drive the optimization to an undesirable result, but in general, we observe that if
the optimization starts from a point near the solution it will converge to the correct
calibration. From these results, we can conclude that the convergence region is wide
enough to be able to provide good initial values for the relative poses from simple
visual inspection of the rig.

Another interesting point is to know if the calibration can be performed only from
plane observations since, in fact, co-planarity constraints already restrict both the
rotation and the translation of the relative poses in the rig. Several tests have indicated
that this form of calibration is not possible because the cost function is not locally
convex near the solution, and thus the problem cannot be properly constrained. As
shown in figure 2.9, the introduction of the orthogonality constraint (eq. 2.12) makes
the correct solution lie on a local minimum. Figure 2.9 shows the convergence error
maps of different cost functions from: a) co-planarity constraints, b) orthogonality
constraints, and c) a combination of both, which is actually the sum of the previous
two. Note how these two functions complement well making the correct calibration
lie on a local minimum.
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represented by the norms of the rotation (left) and translation (right) error vectors.

2.3.1.6 Experiments

A number of experiments has been carried out to validate the present approach from
both simulated and real LRF rigs.

Simulation

In our simulation environment, a rig consisting of two non-parallel LRFs is placed at
different distances and orientations with respect to a corner in order to gather mea-
surements from several poses. The sensors are modelled according to the parameters
of the Hokuyo UTM-30LX rangefinder, and the observations are generated with un-
biased, uncorrelated Gaussian noise with σ = 0.03 m. The line features and their
covariances are extracted from these synthetic observations. The calibration is esti-



38 Chapter 2. Calibration of sensor rigs

−2 −1 0 1

x 10
−4

−2

−1

0

1

2

x 10
−4

 

 

Roll

P
it
c
h

Roll−Pitch

Monte Carlo

1 Sample

−2 −1 0 1 2

x 10
−4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x 10
−4

 

 

Pitch

Y
a

w

Pitch−Yaw

Monte Carlo

1 Sample

−6 −4 −2 0 2 4 6

x 10
−5

−8

−6

−4

−2

0

2

4

6

8

x 10
−5

 

 

Yaw

P
it
c
h

Yaw−Roll

Monte Carlo

1 Sample

−4 −2 0 2 4

x 10
−4

−6

−4

−2

0

2

4

6
x 10

−4

 

 

x

y

x−y

Monte Carlo

1 Sample

−4 −2 0 2 4

x 10
−4

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

 

 

y

z

y−z

Monte Carlo

1 Sample

−4 −2 0 2

x 10
−4

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−4

 

 

z

x

z−x

Monte Carlo

1 Sample

Figure 2.11: Error distribution and 2σ covariance ellipses of the calibration of two LRFs. A
Monte Carlo simulation of 103 samples is shown (blue). One of this samples is also drawn (red
cross) with the covariance computed by the calibration method.

mated for the cases of weighted (MLE) and unweighted optimization (standard least
squares) for a varying number of COs. The average errors of the calibration with re-
spect to the true poses are obtained from a Monte Carlo simulation with 103 trials for
every set of COs. For each test, the initial relative pose is uniformly generated around
the groundtruth at distance d ∈ [0,1m] and at an angle |τ| ∈ [0,π/4]. The average
errors of the relative rotation and translation are shown in figure 2.10 in degrees and
millimeters, respectively. We observe that these errors diminish asymptotically with
the number of COs. Also, we see how the MLE solution that takes into account the
covariance of the measurements is consistently more accurate than the solution which
ignores that information. This test was repeated for several configurations of the LRF
rig (different relative poses between the sensors) obtaining similar results.

We also study the bias and covariance of our method from the above Monte Carlo
simulation by analysing the distribution of the calibration results. The six dimensional
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S1

S2

S3

Figure 2.12: Test LRF rig with three Hokuyo UTM-30LX.

errors of the calibrated poses are shown in figure 2.11, by grouping pairs of DoF for
the rotation and the translation, respectively. This figure shows the distribution of the
103 samples around the groundtruth (blue dots), and the 2σ confidence ellipses of
Monte Carlo (blue ellipse), and the one corresponding to the estimated covariance of
one sample (red ellipse) through the Cramér-Rao Bound (see appendix D). We can
see how the bias of the method is very small with respect to the covariance.

Real data

We have also validated the proposed calibration method in real case scenarios em-
ploying: 1) a rig with three LRFs and 2) the sensors mounted on two autonomous
cars. The characteristics of the calibrated LRFs are shown in table 2.1.

Table 2.1: Properties of the LRFs calibrated in this section.

Hokuyo UTM-30LX Sick LMS 291-S05
Range (m) [0, 60] [0, 80]
σ (m) 0.03 0.01
Resolution 0.25 ◦ 0.25 ◦

Field of view 270 ◦ 180 ◦

Test rig

In the first case, the test rig is composed of 3 Hokuyo UTM-30LX (see figure 2.12).
The sensors’ synchronization effect is neglected in this test since the rig is smoothly
waved at a low velocity while the LRFs scan at a frame rate of 40 Hz (see the video at
http://youtu.be/YG4ShgyIUHQ). The accuracy of the resulting calibration can-
not be estimated directly since a groundtruth for the sensors relative poses is not
available. Instead, we evaluate the accuracy of the method by checking that the pose

http://youtu.be/YG4ShgyIUHQ
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composition from calibrating the different pairs closes a loop (R12R23R31 = I and
t12 + t23 + t31 =~0).

In this test we validate our approach using a varying amount of COs. The initial
poses required by our method are given around a guess obtained from visual check
of the rig, in a range of [0, 40] degrees for the rotation and [0, 1] meters for the
translation, with respect to the correct calibration (several initializations are tested
to check the robustness of our method). Table 2.2 shows the results of this test for
different numbers of COs, from a minimum of 2 COs (that were extracted from a
single observation, like the one represented in figure 2.7), to 100 COs. The first three
columns show the average residuals of the calibration of each pair of sensors, and
the last two columns show the average deviation with respect to the loop closure
condition of the three independent calibrations. From this table, we observe that, as
expected, the residuals and the loop closure deviations decrease with the number of
COs.

Table 2.2: Residual errors for different calibrations for a varying amount of COs. (*from one
single observation).

COs res12 res23 res31 R dev (deg) t dev (cm)
2* 2.74 3.81 1.41 1.03 5.31
20 1.48 1.70 1.25 0.63 1.72
40 1.46 1.66 1.23 0.51 0.54
60 1.39 1.66 1.22 0.49 0.34
80 1.33 1.62 1.22 0.48 0.29

100 1.32 1.62 1.21 0.47 0.27

In this experiment, we have also calibrated the three LRFs by optimizing the
full graph of constraints between them, so that the above loop closure condition is
guaranteed. This way, the calibration should be more accurate since it uses all the
information available. Table 2.3 shows the deviation of the relative pose between
each pair of sensors and this global calibration. The deviations between the relative
poses are expressed in degrees for the rotations (r12, r23 and r31) and in centimetres
for the translations (t12, t23 and t31).

The covariance of the resulting calibration depends on the information provided
by the COs. In general, providing more COs contributes to reduce the uncertainty of
the solution. This is confirmed in figure 2.13, which displays the maximum eigenvalue
of the calibration covariance with respect to the number of COs for the experiment
above. We observe how the value of the variance decreases asymptotically with the
number of COs. This feature is relevant since it allows the user to set the maximum
uncertainty for the calibration, so that the process of gathering COs stops after such a
limit is reached.
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Table 2.3: Deviations between global calibration and the calibration of each pair for a varying
amount of COs (*from one single observation).

COs r12(deg) t12(cm) r23(deg) t23(cm) r31(deg) t31(cm)
2* 0.84 1.21 0.54 1.03 0.65 0.83
20 0.41 1.10 0.40 0.93 0.52 0.72
40 0.40 0.96 0.36 0.91 0.50 0.74
60 0.39 0.89 0.35 0.79 0.43 0.65
80 0.33 0.88 0.33 0.68 0.29 0.66
100 0.32 0.73 0.34 0.67 0.27 0.61

Autonomous car datasets

We have also validated our method by calibrating the sensors mounted on two dif-
ferent autonomous vehicles, using two publicly available datasets7,8. For the dataset
in [Blanco-Claraco et al., 2014], the vehicle has five LRFs in total, three Hokuyo
UTM-30LX and two Sick LMS 291-S05, whose configuration is shown in figure
2.14. The Sick sensors scan horizontal planes, and therefore, the calibration cannot
be fully constrained unless they observe non-vertical planes (for that, either the rig
must be tilted or the scene should contain oblique planes like shop awnings). This
situation does not occur in the dataset, so, only the Hokuyo sensors are considered.
Note that two of these three sensors (labelled as Hokuyo2 and Hokuyo3) scan almost
the same vertical plane, however they can still be calibrated since the sensor Hokuyo1

7http://www.mrpt.org/MalagaUrbanDataset
8http://grandchallenge.mit.edu/wiki/index.php?title=PublicData
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(a) (b)

Figure 2.14: A semi-autonomous car which incorporates several laser rangefinders at different
orientations. b) Scheme of the sensors.

has a different orientation. For calibration, we have chosen an extract of the dataset9

where the car travels through some streets with buildings at the sides. The corner ob-
servations where selected in a supervised way because the clutter in the scene (other
cars, trees, etc.) introduces a huge amount of wrong correspondences that prevents a
correct corner detection. Our method could be applied however automatically when
there is less clutter, like in the previous experiment.

The calibration was computed from 12 COs taking the extrinsic parameters pro-
vided with the dataset for the initialization which, according to the authors, were
manually measured from the rig. All the corners selected for this calibration come
from the floor and a wall, which are assumed to be perpendicular. The average angle
between these planes for the 12 corners after calibration was 89.4 degrees, with a
standard deviation of 0.68, while, by using the calibration provided with the dataset
the average angle was 85.9 degrees, with a standard deviation of 5.6. Also, the vi-
sualization of the calibrated laser scans for both cases shows that our estimation is
clearly more accurate since the intersection of the scanning planes produces coinci-
dent points, and the straight segments observed by each laser lie on the scene planes.
On the contrary, we observe that the alignment is not so good for the calibration
proposed in the dataset.

The second dataset used here [Huang et al., 2010] corresponds to the recordings
of a car which participated in the Darpa Challenge, which has 13 LRFs. The dataset
was taken in open outdoor spaces which are scarce in corner structures. At some
point of the video sequence however, the car passes near a building where a pair of
LRFs observe two corners (see figure 2.15). Such corners are seen at the time 15m03s
of the dataset “2007-11-03-log-uce-scrubbed.mission1”, by the lasers 2 and 4. From

9http://www.youtube.com/watch?v=qZMlc5UeUpE
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Figure 2.15: MIT’s autonomous vehicle Talos (left), and a snapshot of the corner observed by
the lasers 2 and 4 of this vehicle during the 2007 Darpa Urban Challenge (right).

this single observation we perform calibration using different initializations for their
relative pose. Such initializations were randomly generated around the calibration
proposed in the dataset, in a similar way to the previous experiments. In this case,
the lines were segmented using a parameter independent line fitting method [Prasad
et al., 2011], which works better given the low angular resolutions of the sensors in
the dataset (1/4 of the maximum resolution). The estimated pose differs from the one
reported by the authors by ∼ 0.8 ◦ in the rotation and ∼ 20 cm in the translation. It
is hard to say which calibration is more accurate in terms of the rotation, while for
the case of the translation, the calibration provided with the dataset looks more accu-
rate according to the visualization of the reconstructed laser scans. We attribute this
difference to the COs obtained (only 2) and to the curvature of one of the observed
“planes” (the floor). Also, the observations are not simultaneous since the scans were
taken with no synchronization while the car moves at a considerable speed, contribut-
ing to increase the calibration error.

There are several ways to improve the calibration obtained for this practical ex-
ample. The first thing would be to take observations in a more structured scenario,
like in a city, or just in front of a wall (a wall with the floor constitute a corner). In
this way, a bigger number of observations could be taken to compensate for different
sources of error. Finally, taking synchronized (or still) observations will also help to
obtain more accurate results.

Table 2.4: MIT Dataset calibration from a single observation with different initializations.

Av Rot deviation 0.79 ◦

Rot precision 0.02 ◦

Av Trans deviation 23.2 cm
Trans precision 3.65 cm
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2.3.1.7 Discussion

We have presented, to the best of our knowledge, the first general solution to calibrate
the extrinsic parameters of a rig of 2D range scanners. The method relies on the
observation of perpendicular planes to constraint the relative poses of the different
LRFs. This problem is solved in a probabilistic framework that takes into account
the uncertainty in the measurements of the sensors, and as a result, it also provides
the uncertainty of the estimated calibration. The observability and the convergence
conditions for the problem are studied, showing that there exists a minimal solution
which only requires a single observation from the LRF rig.

The calibration method proposed here presents important advantages with respect
to previous approaches, since it is applicable to almost any sensor configuration, it is
easy to use and easy to automatize, while being robust and accurate. Also, its prob-
abilistic formulation allows to calibrate different models of sensors, as each error is
weighted according to its uncertainty. We have conducted several experiments to val-
idate our approach, both with synthetic and real data, which have demonstrated the
claimed features of our proposal.

2.3.2 Calibration of a set of 3D range cameras

The integration of several 3D range cameras (or RGB-D cameras) in a mobile plat-
form is useful for applications in robotics and autonomous vehicles that require a
large field of view. This situation is increasingly interesting with the arrival of low
cost range cameras like those developed by Primesense. In this context, the avail-
able methods for extrinsic calibration present mainly two types of disadvantages:
they have restrictions on the camera positioning (e.g. requirement of overlapping),
or they rely on the tracking of the camera trajectory, which can be tedious to ob-
tain, besides having issues of robustness and accuracy. The disadvantages of previous
calibration approaches were clear after the construction of a device for omnidirec-
tional intensity and range image acquisition based on a rig of RGB-D cameras (figure
5.1) [Fernández-Moral et al., 2014b; Gokhool et al., 2014]. This new sensor, which
is used in chapter 5 for simultaneous localization and mapping, prompted in us the
need of a robust and easy calibration method, since the accuracy of the parameters
from the construction design were not satisfactory, and the solutions proposed in the
literature were not suitable for our problem due to the limitations commented above.

In this section we propose a new uncomplicated technique for extrinsic calibra-
tion of range cameras that relies on finding and matching planes. The method that we
present serves to calibrate two or more range cameras in an arbitrary configuration
(overlapping is not needed), requiring only to observe one plane from different view-
points. The conditions to solve the problem are studied, and several practical exam-
ples are presented covering different geometric configurations, including an omnidi-
rectional RGB-D sensor composed of 8 range cameras. The quality of this calibration
is evaluated with several experiments achieving successful calibrations. Such exper-
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iments demonstrate that our method constitutes a versatile solution that is extremely
fast and easy to apply.

2.3.2.1 Related works

To put our work into context, we review first some relevant approaches to this prob-
lem. A classical strategy for extrinsic camera calibration is through the detection and
matching of control points that are detected in the overlapping regions of the different
cameras [Szeliski and Shum, 1997]. However, the overlap requirement constitutes
a very strong constraint, specially the goal is to enlarge the field of view. Besides,
even when some overlap exists, it is generally more complicated to match features
in range images than in intensity images. A different strategy that have been widely
used for different calibration problems consists of using a calibration pattern to in-
fer constraints on the sensor relative poses. Such a procedure has also been applied
to RGB-D sensors [Basso et al., 2014a; Macknojia et al., 2013] with the same above
limitation for overlapping field of views. Besides, the need of calibration pattern itself
is wearisome.

A more general approach which does not depend on the camera set-up is based
on ego-motion to match the camera trajectories, which are tracked independently,
[Brookshire and Teller, 2012; Heng et al., 2013; Schneider et al., 2013]. Such ap-
proaches rely on the SLAM or visual odometry (VO) robustness, which depends
highly on the environment, especially for range-only cameras. Besides, obtaining a
useful trajectory is far more tedious and inconvenient than taking a few images from
different positions as the technique we propose here.

Contribution

We present a new method for extrinsic calibration of range cameras that avoids the
problems mentioned above. Our method relies on matching planes that can be ob-
served simultaneously from different cameras. For that, only one plane has to be
observed from different camera locations. This approach has several advantages as
the calibration can be performed very quickly and robustly, it does not require any
calibration pattern but a single plane from the environment (the floor, the ceiling, a
wall, ...), and supervision is not required. In this work, we test the performance of the
method by calibrating two typical configurations of range cameras, demonstrating
very satisfactory results in all the cases.

In the following we give the details of our calibration approach, the segmentation
and parametrization of the planes and their matching. The observability of the prob-
lem is studied next. Then, the equations for extrinsic calibration are derived for a pair
of cameras (section 2.3.2.3) and for an arbitrary number of cameras (section 2.3.2.6).
For both cases, calibration results for different camera configurations are presented.
Finally, the conclusions are outlined.
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CC’

C
C’

rigid join[R,t]

Figure 2.16: A planar surface is observed by two range cameras rigidly joined from different
positions. In this way, plane correspondences are captured from different orientations with
respect to the rig’s reference system to perform extrinsic calibration.

2.3.2.2 Calibration approach

We propose to solve the extrinsic calibration between several “a-priori” non overlap-
ping range cameras by matching planar features that are seen from different view-
points. We take advantage of the fact that structured environments contain large
planes (e.g. the floor, walls, ceiling) that can be reliably observed by the different
sensors simultaneously, making use of such planes to establish correspondences (see
figure 2.16). With this strategy we avoid the need of creating a specific calibration
pattern for the sensor set-up. Also, no SLAM neither odometry are needed, avoiding
robustness issues and making the procedure much more accessible and easy to use.

Before dealing with the extrinsic calibration itself, related issues like the plane
segmentation, parametrization and matching are addressed next.

Plane segmentation and parametrization

In order to obtain planes (planar patches to be precise), the depth images are seg-
mented with a region growing approach [Holz and Behnke, 2013]. This technique is
used here due to its efficiency to segment organized images, however other methods
for plane segmentation can be used equally [Zuliani et al., 2005; Borrmann et al.,
2011].

A planar patch is represented by its normal vector n, with ‖n‖ = 1, and the dis-
tance d to the optical center of the camera. In this way, a point p lying on the plane
fulfils the equation

n ·p+d = 0 (2.28)



2.3. Extrinsic calibration of range sensors 47

This overparametrization is very convenient for the formulation of the calibration
errors in the next sections.

The plane parameters and their covariances are estimated following [Poppinga
et al., 2008], assuming accurate directions of measurements mi, where the noise only
affects the range measurements ρi. After the intrinsic calibration has been performed,
we can assume that ρi ∼ N(ρ̂i,σi), where ρ̂i = d/n ·mi is the true range of the i-th
measurement. The standard deviation σi is generally a function that depends on the
range ρi and on the incidence angle σ(ρi,n ·mi). However, in this work we make the
same simplification as in [Poppinga et al., 2008] to assume the standard deviation
σi independent on {n,d}, and estimate σi in a conservative way: σ(ρi,n ·mi) < σ .
From this simplification the plane parameters and their covariances can be analyti-
cally defined. Thus, the optimal n∗ is the eigenvector corresponding to the smallest
eigenvalue of the matrix

M =
N

∑
i=1

(ri− rG)(ri− rG)
> (2.29)

where

rG =
1
N

N

∑
i=1

ri (2.30)

is the gravity center of the plane pixels. The optimal d∗ is given by

d∗ = n∗rG (2.31)

and the covariance of the plane parameters Σ∗ = (H)+ is calculated as the Moore-
Penrose generalized inverse of

H =
1

σ2

N

∑
i=1

[
rir>i −ri
−r>i 1

]
(2.32)

The simplification of considering constant variance (i.i.d.) assumed above can be
substituted for a more realistic model [Pathak et al., 2010c] to obtain more accurate
results. But this requires a complex numeric calculation of the plane parameters and
their covariances, which is out of the scope of this section.

Constraint equations

The constraint equations used to calibrate the sensors are inferred from plane corre-
spondences. A plane correspondence is defined here as the simultaneous observation
of a planar surface by at least two range cameras. To illustrate this, consider a pair
of rigidly jointed range cameras C and C′, where the camera C represents the system
of reference, and C′ is located with a relative transformation [R|t] ∈ SE(3) with re-
spect to C, where the rotation R ∈ SO(3) is represented with a 3× 3 matrix and the
translation t ∈ R3.
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Orientation constraint: A constraint for the relative orientation between the two sen-
sors is stated from the observed normal vectors

n−Rn′ =~0 (2.33)

being n and n′ the observed normal vectors seen by the cameras C and C′ respectively.

Position constraint: A constraint for the relative position is given by

d−d′+n · t = 0 (2.34)

where d and d′ are the observed distances from the plane to the optical centers of the
depth cameras C and C′.

Obtaining plane correspondences

Similarly as in the previous calibration problem (section 2.3.1.2), the sensor relative
poses must be known in order to establish the plane correspondences. Thus, the prob-
lem consists of estimating the calibration and plane correspondences simultaneously.
For that, all the plane observations gathered from a single observation of the rig are
matched between them, so that they will contain both correct and wrong correspon-
dences. Then RANSAC [Fischler and Bolles, 1981] is applied to find the extrinsic
calibration with a larger number of supporting correspondences, discarding the rest
of correspondences as outliers. This procedure is carried out in two steps: first, the
outliers showing a large error in the orientation are discarded, and second, those out-
liers in distance are removed (this order is chosen since the noise in the orientation
of the normal vectors is typically smaller than that in the plane position). For these
RANSAC processes, the relative poses between the pair of cameras are calculated
from a sample of 3 non-degenerate plane correspondences using the models defined
in section 2.3.2.3.

Note that giving an initial estimation for the relative position of the cameras can
also be applied to facilitate the matching of plane observations. Also, there exist other
plane matching strategies can be applied avoiding the need of an initial estimate for
the calibration [Pathak et al., 2010b; Fernández-Moral et al., 2013b].

The process for gathering correspondences is performed automatically while the
camera rig is moving until the problem is well conditioned according to the Fisher
Information Matrix, as explained in section 2.3.2.4. The range cameras synchroniza-
tion effect is neglected in this work since the images are captured at a minimum frame
rate of 30 Hz, and the camera rigs are never moved abruptly.

2.3.2.3 Problem formulation

Given a set of plane correspondences gathered from two rigidly jointed range cameras
C and C′, as defined above, and provided that the correspondences fulfill the observ-
ability condition (concretely the one represented by eq. 2.49), we want to estimate
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the optimal [R|t] assuming that the measurements are affected by unbiased Gaussian
noise as modelled in 2.3.2.2. This problem can be divided into two separate ones
since the rotation and the translation restrictions are decoupled.

Solving for the rotation

The maximum likelihood estimation (MLE) of the relative rotation R is given by the
maximization of the log-likelihood

argmax
R

(
ln

N

∏
i=1

p(ni,n′i|R)

)
(2.35)

for N plane correspondences, where the likelihood of the rotation for the i-th corre-
spondence is expressed as

p(ni,n′i|R) =
1√

(2π)3|Σi|
exp
(
−1

2
(ni−Rn′i)

>
Σ
−1
i (ni−Rn′i)

)
(2.36)

being ni and n′i the observed normal vectors from the plane i as seen by the cameras C
and C′ respectively; R is the rotation matrix in SO(3), and Σi is the 3×3 covariance
block corresponding to the normal vector of the plane correspondence (calculated
from the fusion of both observations [Pathak et al., 2010c], see appendix C). Con-
sidering independent errors of the plane correspondences, the derivation of this MLE
coincides with the solution of the least squares problem expressed as

argmin
R

N

∑
i=1

ωi‖ni−Rn′i‖
2 (2.37)

where ωi is the weight of the plane correspondence

ωi =
1
|Σi|

(2.38)

This problem is similar to the one of estimating the rotation of a registered set
of 3D points [Arun et al., 1987]. Thus, employing the same procedure, the above
equation can be expressed as

R = argmin
R

(
N

∑
i=1

ωin>i ni−2
N

∑
i=1

ωin>i Rn′i +
N

∑
i=1

ωin′>i n′i

)

= argmin
R

(
−2

N

∑
i=1

ωin>i Rn′i

)

= argmax
R

N

∑
i=1

ωin>i Rn′i (2.39)



50 Chapter 2. Calibration of sensor rigs

that can be denoted as

N

∑
i=1

ωin′>i Rni = trace(WY>RX) (2.40)

where W = diag(ω1, ...,ωn) is an n× n diagonal matrix containing the weights ωi;
and Y and X are 3× n matrices with the normal vectors n′i and ni as their columns,
respectively. This problem is solved with singular value decomposition (SVD) over
the 3×3 covariance matrix

S = XWY> (2.41)

From the singular value decomposition S =UΣV>, the rotation is obtained as

R =V
(1 0 0

0 1 0
0 0 det(VU>)

)
︸ ︷︷ ︸

A

U> (2.42)

where the matrix A is used to convert the degenerate case of a reflection

det(VU>) =−1 (2.43)

into a valid rotation in SO(3). For further details on the mathematics, please refer
to [Arun et al., 1987; Sorkine, 2009].

Solving for the translation

The MLE of the translation is obtained by maximizing the log-likelihood associated
to the probability

p(ni,n′i,di,d′i |t) =
1√

2πσi
exp
(
−1

2
(di−d′i +ni · t)2

σ2
i

)
(2.44)

where di and d′i are the observed distances from the plane i to the optical centers of
the depth cameras C and C′ respectively, σ2

i is the error variance, and t is the relative
translation we are looking for. This is equivalent to the least squares problem

argmin
t

N

∑
i=1

ωi(di−d′i + t ·ni)
2 (2.45)

with the weight given by ωi = 1/σ2
i . This has a closed form solution given by

t =−H−1g (2.46)

where H and g are the Hessian and the Gradient of the error function respectively,
which are calculated as

H =
N

∑
i=1

J>i WiJi , g =
N

∑
i=1

J>i Wiri (2.47)
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Figure 2.17: A particular set-up from which we can calibrate the cameras with a single obser-
vation. The planar patches on the left and right are those extracted from the two cameras.

where the Jacobians, the weights and the residuals are calculated from

Ji = n>i , Wi =
1

σ2
i
, ri = di−d′i (2.48)

2.3.2.4 Observability

It can be seen that each plane correspondence imposes three new constraints between
the pair of sensors: two for the relative rotation and one for the relative translation.
Thus, we need at least 3 measurements from linearly independent plane observations
(i.e the observed normal vectors of the planes must be linearly independent) to com-
pute the relative pose of a pair of sensors (only two measurements are needed to
compute the rotation), and a minimum of 3(N − 1) correspondences to calibrate a
rig with N sensors. To put a simple example, let’s consider a single sensor observ-
ing the corner of a room. The observation of the three perpendicular planes gives
us enough information to localize the camera and its relative motion with respect
to a previous pose. Analogously, the relative pose between two cameras can be ob-
tained if they observe 3 plane correspondences with linearly independent normal vec-
tors (either observed from one view, like in figure 2.17, or from several ones). The
most simple and convenient procedure of calibration would be to take a short se-
quence of images of one big plane at different orientations of the rig (see the video at
http://youtu.be/MGydi5R7ldA).

Similarly as for the calibration of 2D LRFs, here we make use of the Fisher In-
formation Matrix (FIM) to identify those unobservable cases in which the calibration
cannot be determined. This analysis defines how the measurements should be taken to
avoid these situations. As we will see, the probability of the MLE is given by an unbi-
ased Gaussian distribution (this assumption is realistic only after intrinsic correction).
For this estimator (called efficient [Fernández-Madrigal and Claraco, 2013]), the FIM
coincides with the Hessian of the least squares problem resulting from the MLE, and

http://youtu.be/MGydi5R7ldA
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Cases of study
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Figure 2.18: Different sensor configurations with a pair of cameras: a) Adjacent cameras, b)
Opposite cameras.

its inverse is the covariance of the resulting calibration (see the appendix D). When
the FIM is singular, the information provided is not sufficient and the MLE does not
exist. For a pair of cameras, it can be verified that when the FIM is not singular, then

rank(
N

∑
i=1

nin>i ) = 3 (2.49)

where ni is the normal vector of the plane i as seen from one of the cameras in the
pair.

From our experiments, we have verified that the covariance of both the rotation
and the translation estimations decrease asymptotically as the number of plane corre-
spondences increases. The covariance is used as the condition to control the calibra-
tion convergence, and hence, to stop gathering plane correspondences. In our tests, we
stop this calibration when the maximum eigenvalue of the covariance is under 10−3,
which has shown to be a good compromise between accuracy and effort to obtain
plane correspondences.

2.3.2.5 Practical study cases

1. Adjacent cameras
This case is interesting to provide a larger field of view of the scene, being spe-

cially practical for low cost sensors like Asus Xtion (see figure 2.18.a). This case
serves us to illustrate the conditioning of the problem, and so to show different pos-
sibilities for calibration. One of this situations is the calibration of the pair from one
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single observation, i.e. without moving the rig. This is only possible if three planar
patches whose normal vectors span through the different directions of the space are
visible at the same time by both cameras. This case can be easily set-up, as the exam-
ple shown in figure 2.17.

In practice, however, it is even more convenient to take several images from dif-
ferent orientations pointing to one single plane (the floor, for example), since we can
gather more quickly enough plane correspondences that help to reduce the error from
the measurement noise. This may take no longer than 2 or 3 seconds.

In table 2.5 we show an example of how the average residual error is reduced
when raising the number of plane correspondences. The alignment errors in rotation
and translation are measured in a dataset containing 2K correct plane correspondences
for the five calibrations, the plane correspondences were taken in all directions of the
space.

Table 2.5: Residual errors for different calibrations using a different number plane correspon-
dences.

Correspondences Av rot error (deg) Av trans error (cm)
3 1.12 1.89

10 0.68 1.01
30 0.52 0.82
60 0.49 0.74
100 0.49 0.61

2. Cameras in opposite directions
This case is interesting, for instance, for vehicles that need to observe the scene

forward and backward. We address this case here also since it probably represents the
most challenging case to obtain plane correspondences in different directions (notice
that the further the viewing directions of the cameras are, the more difficult is to find
plane correspondences). Figure 2.18.b shows how the plane correspondences can still
be obtained to add constraints in the different directions of the space, for example,
by rotating the camera rig. Calibration was performed automatically while the user
waved the camera near the floor. After 5 seconds from the start of the experiment, the
calibration finishes with 29 plane correspondences (see the video at http://youtu.
be/MGydi5R7ldA). In this case the deviation with respect to the rig parameters is less
than 1 deg for the rotation, and in the order of millimeters for the translation.
3. Sensors of different types

Though most of our experiments are carried out with structured light Primesense
cameras, other range sensors can also be calibrated with our method. Concretely, a
time-of-flight camera and a Kinect sensor mounted on a robot are calibrated by mov-
ing the robot (figure 2.19, left) around to gather plane correspondences. The errors
in the plane observations from both sensors will follow different distributions, so that
they are weighted accordingly as said in section 2.3.2.2.

http://youtu.be/MGydi5R7ldA
http://youtu.be/MGydi5R7ldA
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Figure 2.19: Robots which mount rigs of range and RGB-D cameras.

2.3.2.6 Extrinsic calibration of an arbitrary number of range cameras

This section extends the previous formulation for an arbitrary number M of range
cameras. Note that for the case when there are no loop closures between the sensors,
i.e. there is only one possible way to correlate the relative pose of any pair of sensors.
The extrinsic calibration can be calculated as in the previous section by estimating the
relative pose between each pair of adjacent sensors, and performing pose composition
to place them in a common reference. Instead, this section is dedicated to the case in
which there are plane correspondences that create loop closures between sensors. For
the sake of space, we present directly the least squares equations, which as in the
previous section, derive from the ML estimation.

The relative rotation between the different sensors can be formulated as

argmin
{R,t}

M

∑
j=1

M

∑
k= j+1

N

∑
i=1

λi( j,k)
(
(R jn j

i −Rknk
i )
>

Σ
−1
i (R jn j

i −Rknk
i )+

1
σ2

i
(d j

i −dk
i − t jR jn j

i + tkRknk
i )

2
)

(2.50)

where j and k are indices of the M sensors and i is the index of each one of the N
planes observed; λi( j,k) is a binary variable that equals 1 when the plane i is observed
by sensors j and k, being 0 otherwise; n j

i and nk
i are the normal vectors, and d j

i and dk
i

are the distances of the camera optical center to the plane i observed from sensors j
and k, respectively; Σi and σi are the covariance and the variance of the probabilities
in eq. 2.36 and 2.44, respectively; and the relative poses between the sensors are
represented by {R, t} ∈ SE(3).
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This least squares system has a different structure from the one in the previ-
ous section, that can not be solved with the strategy used from equations 2.39 to
2.42. Instead, we rewrite the problem to represent the relative rotations in minimal
parametrization with the exponential map from Lie algebra (see appendix B), simi-
larly as it was done for the calibration of 2D range scanners.

This is a non-linear least squares system that is solved iteratively with Levenberg-
Marquardt as in equations 2.20-2.21, where the Jacobian and the vector of residuals
are given by

Ji = [0 ... 0 J( j)
i 0 ... 0 J(k)i 0 ... 0]

J( j)
i = skew(n j

i ) , J(k)i = skew(−nk
i ) (2.51)

thus, the Hessian H and the gradient g are calculated incrementally as

H =
N

∑
i=1

Hi , g =
N

∑
i=1

gi (2.52)

which have the form

Hi =
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J jT
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j
i JkT

i ωiJ
j
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. . .
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i
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
J jT

i ωiri
...

JkT
i ωiri

 (2.53)

2.3.2.7 Calibration of a rig for omnidirectional image acquisition

We have designed a camera rig for omnidirectional RGB-D acquisition which com-
prises 8 Asus Xtion Pro Live (Asus XPL) sensors mounted in a radial configuration
(see figure 2.19.b). This device motivated at the origin the work described in this
section, since the parameters from the construction design were not accurate for our
application. Existing calibration approaches like those based on SLAM [Brookshire
and Teller, 2012] are very time consuming and impose important restrictions on the
trajectory, since planar movement (as we have in our robot) is a degenerate case where
calibration cannot be achieved. Thus, we employed the calibration method described
in the previous section, which was applied on a sequence of images taken with the
robot (planar movement is not a degenerate case in our approach).

The relative positions between the RGB cameras is the same as these between
their corresponding depth cameras for our sensor configuration. Therefore, both RGB
and depth omnidirectional images can be built as it is illustrated in chapter 5 (see
figure 5.4). The 3D point cloud can be also built from such images as it is shown in
figure 5.6(a).

The precision of calibration is tested with an experiment where the robot moves
in a small circular trajectory (∅∼ 0.5 m) in the center of a room, taking 200 images.
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In table 2.6, the average residual in orientation and translation for the plane corre-
spondences of these images is presented for different extrinsic calibrations: design
parameters (no extrinsic calibration) with and without intrinsic correction, and the
extrinsic calibration also with and without intrinsic correction. The residual of Iter-
ative Closest Point (ICP) alignment of the spherical point clouds from these images
is also shown. For all the cases, the combination of intrinsic and extrinsic calibration
offers the best results.

Table 2.6: Residual errors for different combinations of intrinsic and extrinsic calibrations.
Calib / Error type Res. rot (deg) Res. trans (cm) Res ICP (cm)
Design Specs 3.17 3.0 0.49
Design S.+Intrinsic 2.95 3.1 0.45
Extrinsic calib 1.78 2.9 0.34
Extrinsic+Intrinsic 1.60 2.5 0.29

2.3.2.8 Discussion

A new methodology for calibrating the extrinsic parameters of range camera rigs has
been presented in this section. The method relies on the matching of plane observa-
tions from the different sensors. No constraints are put on the position of the cameras,
where the only requirement for the system is that there is a planar surface that can be
observed simultaneously. The observability conditions are analyzed, and a solution
is presented based on MLE. With our method, performing calibration becomes very
fast and easy for the user, avoiding problems of previous solutions which rely either
on calibration patterns or trajectory estimation methods. The method has been tested
for different configurations of cameras, including a camera rig designed for omnidi-
rectional image acquisition. All the experiments have validated the claimed features
of our proposal.

2.3.3 Calibrating a 3D range camera and a 2D laser
scanner

After the previous solutions for calibrating sets of 2D and 3D range scanners, we
present in this section a new method to calibrate a combination of these ones. The
same strategy of the previous sections is applied to make use of plane observations
to constrain the relative poses of the sensors. We also follow a similar procedure as
before to formulate the problem and present an analysis on the restrictions and the
observability conditions. Still, a full description of the approach is given since the
problem characteristics are different from the previous ones. Experimental results are
provided with both simulation and real mobile platforms with several range sensors.
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2.3.3.1 Related works

There are some methods in the literature that have addressed the problem of extrinsic
calibration between a laser and different sensors like RGB cameras, wheel odometry,
etc. One that has received considerable attention is that of finding the relative pose
between a laser and a RGB camera. The first solution to this problem was reported
in [Zhang and Pless, 2004]. This solution employed a checkerboard as a calibra-
tion pattern, and estimates the extrinsic calibration by restricting that points observed
with the laser lie on the same 3D plane where the checkerboard lies. When these
assumptions hold, the relative position and orientation between both sensors can be
estimated through these geometric restrictions. Some improvements of this former
solution have been presented along the last decade by exploring different calibration
patterns [Li et al., 2007; Ha, 2012; Moreno et al., 2013], decoupling rotation from
translation [Zhou and Deng, 2012], presenting a minimal closed form solution [Vas-
concelos et al., 2012], and adopting different optimization strategies [Zhou, 2014].

Recently, a solution was presented to the problem of extrinsic calibration between
a laser and a Kinect [Devaux et al., 2013]. In this work, the authors extend a previous
solution for laser-to-camera calibration [Zhang and Pless, 2004] modifying the typi-
cal checkerboard calibration pattern and testing different error metrics. Note that the
above problem in which a range camera and a 2D laser are calibrated is very similar
to the one calibrating a RGB camera and a laser [Zhang and Pless, 2004], where the
plane parameters can be easily extracted from the range images [Fernández-Moral
et al., 2013b] without the need of any specific calibration pattern. Thus, only a com-
mon 3D plane should be sufficient to estimate the extrinsic calibration. As it was
demonstrated in [Vasconcelos et al., 2012], three plane-line correspondences are re-
quired for that, with the planes having linearly independent normal vectors (they in-
tersect in only one point). Such plane-line correspondences can be obtained through
the observation of the same plane from different orientations.

In this section we address the above problem in a probabilistic framework which
can be easily generalized to other kind of sensors. For that, the internal calibration
of the sensors are assumed to be known. A keypoint of this contribution in reference
to previous approaches is the derivation of the approximated maximum likelihood
estimation for the calibration, which propagates the uncertainty of the sensor mea-
surements providing the calibration uncertainty itself. This is useful for other prob-
lems in the field of mobile robotics like map construction, range-based odometry or
simultaneous localization and mapping (SLAM) [Trevor et al., 2012]. Also, the cal-
ibration approach presented here is generalized for any geometric configuration of
sensors (which may have very divergent fields of view), what is highly interesting for
autonomous vehicles.

Contribution

A new method for extrinsic calibration of range cameras and laser rangefinders is
presented in this section. This method shares the advantages of the two solutions
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Figure 2.20: A planar surface is observed by two range sensors (a 3D range camera and a 2D
laser rangefinder) rigidly joined from different positions. Extrinsic calibration is performed by
finding plane-line correspondences from different orientations with respect to the rig’s refer-
ence system.

presented above, requiring only the existence of an observable plane (e.g. the floor
or a wall). Regarding its advantages with respect to previous approaches: it does not
require any calibration pattern; it permits to calibrate sensors in arbitrary positions
(no need for overlapping fields of view); calibration can be performed rapidly and
easily; and finally, the covariance of the resulting calibration is derived according to
the sensor model, permitting to propagate the uncertainty of the measurements. The
formulation presented in this section can be also applied to other combinations of
sensors where 3D planes can be segmented, e.g. RGB and laser. Experimental results
are presented in both simulation and real case experiments, showing the advantages
of our technique regarding its simplicity with respect to previous solutions.

In the following we give the details of our calibration approach. The formulation
of the problem is presented for a pair laser-range camera (section 2.3.3.3). The ob-
servability of the problem is studied next. Experimental results are presented in both
simulation and real case experiments (section 2.3.3.5). Finally, the conclusions are
outlined.

2.3.3.2 Calibration approach

For simplicity, we consider here the problem of calibrating a pair composed of a 3D
range camera and a 2D laser rangefinder. The problem of calibrating an arbitrary com-
bination of these sensors can be easily derived nonetheless from the two calibrations
formulated above and the new constraints presented in this section. We propose to
solve this problem by matching planar and linear features that are seen from different
viewpoints. These features are parameterized as described for the solutions presented
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above to calibrate sets of 2D and 3D range sensors (sections 2.3.1.2 and 2.3.2.2). We
make use of large planes in the scene (e.g. the floor or the walls) to establish plane-
line correspondences, as shown in figure 2.20. With this strategy we avoid the need
of creating an specific calibration pattern for each sensor configuration. Also, neither
SLAM nor odometry are needed for calibration [Schneider et al., 2013], avoiding
robustness issues and making the procedure much more accessible and easy to use.

Constraint equations

Plane-line correspondences need to be found to constrain the problem of extrinsic
calibration. These are the pairs of segmented planes and lines that lie on the same
physical plane and are captured in the same time instant with the different sensors. To
define the constraints, let’s consider a range camera C and a laser rangefinder S which
are rigidly jointed, with the laser S relatively located at [R|t] ∈ SE(3) with respect to
C, where the rotation R∈ SO(3) is represented with a 3×3 matrix and the translation
t ∈ R3.

Orientation constraint: A constraint for the relative orientation between the two sen-
sors is inferred from the perpendicularity between the plane’s normal vector and a
vector lying on the plane, then

n ·Rl = 0 (2.54)

being n and l the normal vector and the line direction vector observed by the sensors
C and S, respectively.

Position constraint: Another constraint involving the relative position between the
sensors is stated by comparing the distance from the sensors to the respective plane,
which is expressed as

d +n · (Rp+ t) = 0 (2.55)

where d is the observed distance from the plane to the optical center of the depth
camera C, and p is any point on the line segmented by the laser scanner S.

Obtaining plane to line correspondences

Plane-line correspondences need to be found to constrain the problem of extrinsic
calibration. These are the pairs of segmented planes and lines that lie on the same
physical plane and are captured in the same time instant with the different sensors.
Such correspondences are established here by considering all the plane-line combi-
nations of each simultaneous observation as potential matches. Then, after enough
good correspondences have been found, outliers can be ruled out robustly using
RANSAC [Fischler and Bolles, 1981]. This stochastic procedure calculates the ex-
trinsic calibration (explained in the next section) from a minimum set of 3 plane-line
correspondences randomly selected, and searches for the maximum consensus be-
tween the whole set of correspondences. This provides good results when most cor-
respondences are correct as it is the case here, since the user drives intentionally the
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mobile platform or the rig of sensors towards planar surfaces to obtain such corre-
spondences.

This strategy allows us to gather correspondences directly from the streaming data
of the sensors (see the video at http://youtu.be/1VIeP5h_4h4). The sensors’
synchronization effect can be neglected when the motion of the set of sensors is small
with respect to the acquisition time. Also, a convergence condition can be set based
on the maximum uncertainty (covariance) of the resulting calibration, making the
process automatic.

As for the previous calibration problems, the selection of correspondences can be
constrained if we know a rough approximation of the sensors relative positions, so
that fewer outliers are selected in a first instance. This is a very common situation for
most applications, however, it is not applied here for the sake of generality.

2.3.3.3 Problem formulation

From the two constraints presented above, which are modelled as Gaussian distribu-
tions, the maximum likelihood estimation (MLE) of the relative pose [R|t] is calcu-
lated as the maximization of the log-likelihood

argmax
[R|t]

(
ln

N

∏
i=1

p(ni, li|R) · p(ni,di,ci|R, t)

)
(2.56)

where the likelihood of the observation inferred from the rotation constraint of the
i-th plane-line correspondence is approximated as a Gaussian given by

p(R|ni, li) =
(

1
2π(σR

i )
2

)1/2

exp
(
− (ni ·Rli)2

2(σR
i )

2

)
(2.57)

being N the number of plane-line correspondences, and σi represents the variance of
the error function which is derived following appendix C as

1
(σR

i )
2 '

1
n>i RΣliR

>ni + l>i R>ΣniRli
(2.58)

On the other hand, the likelihood of the observation inferred from the position
constraint of the i-th plane-line correspondence is given by

p(ni,di,ci|R, t) =
(

1
2π(σ t
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2

)1/2

exp
(
−1

2
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)
(2.59)

where σ t
i is the variance of the error, which after linearisation (see appendix C) is

calculated as
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+
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c>i R>ΣniRci +n>i (RΣciR
>+ c>i ΣRci)ni

(2.60)

http://youtu.be/1VIeP5h_4h4
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When the variances are constant with respect to the model parameters, the solu-
tion of the MLE in (2.13) coincides with that of the weighted, non-linear least squares
problem expressed as

argmin
[R|t]

N

∑
i=1

ω
R
i (ni ·Rli)2 +

N

∑
i=1

ω
t
i (di +ni · (Rci + t))2 (2.61)

where the weights ωR
i and ω t

i of corresponding constraints of the i-th plane-line cor-
respondence are given by

ω
R
i =

1
(σR

i )
2 , ω

t
i =

1
(σ t

i )
2 (2.62)

This problem is reformulated using Lie algebra (see appendix B) to represent the
poses with a minimal parametrization on a manifold. For that, the rotations are repre-
sented as the composition of a guessed rotation and a rotation increment represented
with the exponential map (eµ j R j), with the rotation increment eµ j ∈ SO(3). The trans-
lations are also represented as the sum of a guessed translation plus an increment
(t j +∆t j), both in R3. The resulting non-linear least squares problem is solved itera-
tively using Levenberg-Marquardt as in section 2.3.1.3 (eq. 2.20), where the Hessian
H (a 6-dimensional symmetric matrix) and the Gradient g (a 6-dimensional column
vector) of the cost function are calculated from

H =
N

∑
i=1

J>i ωiJi , g =
N

∑
i=1

J>i ωiri (2.63)

where N is the number of constraints of this optimization, being ri the residual and
Ji the Jacobian for each constraint. The Jacobian Ji corresponding to the constraint
from eq. 2.54 and its residual are calculated as

Ji = [(ni× (R jli))>, 0, 0, 0] , ri = ni ·R jli (2.64)

The Jacobian and the residual corresponding to the constraint from eq. 2.55 are given
by

Ji = [(ni× (R jci))
>, n>i ] , ri = di +ni ·Rci (2.65)

This procedure requires an initial guess for the relative pose which may be pro-
vided according to the sensor rig design. The covariance of the resulting calibration
corresponds to the Hessian of the above problem [Fernández-Madrigal and Claraco,
2013].

2.3.3.4 Observability

As it was described in the previous section, each plane-line correspondence imposes
two new constraints between the pair of sensors: one for the relative rotation and
one for the relative translation. Thus, we need at least 3 measurements from linearly
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independent observations (i.e the normal vectors of the observed planes are linearly
independent) to compute the relative position between a range camera and a laser
rangefinder. Following the procedores of the previous sections, this is demonstrated
from the analysis of the Fisher Information Matrix (FIM) of the estimation problem
above, which coincides with the Hessian matrix of eq. 2.63 (see the appendix D).
Then, when the FIM is singular (its rank is not full), the information provided is not
sufficient and the problem cannot be solved.

By analysing the translation block FIMt of the Fisher Information Matrix

FIMt =
N

∑
i=1

niωin>i = XWX> (2.66)

where ni is the normal vector of the plane i as seen from the range camera, X =
[n1|n2| . . . |nN ] a 3×N matrix, and W is a N×N diagonal matrix with the weights ωi
in its i-th element. The rank(FIM) = 6 only if FIMt has full rank (rank(FIMt) = 3),
what is the case when there are 3 observed normal vectors that are linearly indepen-
dent

rank(FIMt) = rank(X) = 3 (2.67)

The same theory applies for the rotation block FIMR, which depends on both
types of constraints. Considering only the orientation constraints

FIMR =
N

∑
i=1

(ni× (Rli))ωi(ni× (Rli))> = YWY> (2.68)

where Y = [n1× (Rl1)|n2× (Rl2)| . . . |nN × (RlN)] is a 3×N matrix. Assuming that
the plane-line correspondences are correct and that the initialization for the rotation
is in a close neighbourhood of the solution, then rank(FIMR) = 3 always when the
condition of eq. 2.67 is met. Therefore, the problem is observable if and only if 3
planes with different orientations are observed.

From this result, we see that the pair of sensors can be calibrated from a single
observation when there are 3 perpendicular planes that are visible by both sensors.
This can be achieved by observing the corner of a room or a building.

2.3.3.5 Experiments

A number of experiments has been carried out to validate the present approach. Both
simulation and real cases experiments are presented in this section.

Simulation

The accuracy of our method is evaluated with some simulation experiments since a
groundtruth for the relative poses of the range sensors of our mobile platforms is not
available. For that, a large plane is observed from different sensor positions and ori-
entations of a rig containing a laser and a 3D range camera. The rig is positioned
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Figure 2.21: Average errors in rotation (measured as the module of the difference of the ro-
tation vectors) and translation (module of their Euclidean distance) for different numbers of
plane-line correspondences and different relative poses between the sensors. 200 trials are per-
formed for each set of parameters.

at different distances from the plane in a range between 1 m and 3 m, and it is ro-
tated around some random axis to gather measurements in different directions, as
shown in figure 2.20. The sensors are modelled according to the parameters of the
depth camera of a Kinect and a Hokuyo UTM-30LX rangefinder. The observations
are modelled following these sensor specifications, where the error in the measure-
ments is modelled as unbiased Gaussian noise, for the Kinect, the σK depends on the
true depth and the incidence angle of the ray of observation with the 3D plane, and the
σL of the laser is set constant. Plane and line features together with their covariances,
are extracted from such observations as explained in section 2.3.3.2. Data association
is not tackled in this simulation as all the measurements come from the same plane.

The rotation and translation are then estimated from the simulated observations
for different conditions: varying number of correspondences, different incidence an-
gle of the sensors optical axis and the plane, and different relative transformations
between the sensors. The initial rotation is set to the a random pose at an angle of
[0,π/4] radians and a distance of [0,1] m of the true relative pose. The average errors
with respect to the true pose for the rotation and the translation are obtained for a
total of 200 trials for every set of conditions, see figure 2.21. From this experiment,
we observe the trend that the average errors in rotation and translation decrease as
the number of correspondences grows, as more measurements help to reduce the co-
variance. Also, we see that the further apart the relative poses between the sensor are,
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Figure 2.22: Maximum eigenvalues of rotation and translation covariance with respect to the
number of plane-line correspondences.

the bigger the error. This makes sense, since sensors far away will have few common
observations.

Another interesting point is to evaluate the convergence of the algorithm, so that
plane-line correspondences are gathered until a threshold for the calibration’s un-
certainty is reached. For that we draw the maximum eigenvalue of the calibration’s
covariance as the number of correspondences grows for both rotation and translation,
see figure 2.22. We see how the covariance decreases asymptotically to zero as more
correspondences are gathered. The threshold to stop calibration can be set easily by
the user according to his needs.

Real data

We present here the results of a real case experiment to illustrate the precision of the
calibration method. We have calibrated a Hokuyo UTM-30LX laser rangefinder with
respect to a Kinect RGB-D camera. Both sensors are mounted on a Pioneer PatrolBot
as is shown in figure 2.23. The sensors’ synchronization effect is neglected in this test
since the laser scans and range images are captured at a minimum frame rate of 30
Hz, and the robot is moved at low speed.

The accuracy of the resulting calibration from our method cannot be evaluated
directly since we do not have a groundtruth for the sensors relative positions. Thus,
following the works in the literature, we provide some qualitative results based on
the residual errors. In table 2.7 we show an example of how the average residual er-
ror is reduced when raising the number of plane-line correspondences. The residual
error in rotation and translation are measured in a dataset containing 1000 correct
correspondences for several calibrations with varying number of correspondences. In
this experiment we placed the robot near a wall, so that correspondences could be ac-
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Figure 2.23: Robot which has a 3D range camera and a 2D laser rangefinder.

quired quickly in different directions (from the wall and the floor) as it is shown in the
video http://youtu.be/1VIeP5h_4h4. In this situation, calibration is performed
in a few seconds with around 12-100 plane-line correspondences.

Table 2.7: Residual errors for different calibrations using a different number correspondences.

Correspondences Av rot error (deg) Av trans error (cm)
3 1.31 3.17

10 0.71 2.01
20 0.65 1.52
40 0.60 1.34
80 0.55 1.33

2.3.3.6 Discussion

A new methodology for calibrating the extrinsic parameters of a rig of range sen-
sors has been presented in this section, namely a 3D range camera and a 2D laser
rangefinder. The method relies on the matching of plane and line observations from
the different sensors. The extrinsic calibration problem is solved in a probabilistic
framework that takes into account the uncertainty in the measurements of the sen-
sors, and provides also the uncertainty of the resulting calibration. No constraints
are put on the position of the cameras, where the only requirement for the system is
that there is a planar surface that can be observed simultaneously by all the sensors.
This approach can be easily extended to other types of sensors always when a plane
can segmented from the scene. The observability conditions and some insight in the

http://youtu.be/1VIeP5h_4h4
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convergence of the problem is presented. With our method, performing calibration be-
comes very fast and easy for the user, avoiding problems of previous solutions which
rely either on calibration patterns or trajectory estimation methods. The method has
been tested in simulation and real case experiments validating the claimed features of
our proposal.

2.4 Conclusions

This chapter reviews some relevant methods for calibrating different combinations of
sensors which are usually employed in mobile robotics. A new methodology for cal-
ibrating combinations of range sensors has been presented. Three different problems
are tackled here to calibrate: a) a set of 2D range scanners, b) a set of 3D range cam-
eras, and c) a 2D and a 3D range sensors. Different methods are presented for each
problem which can be easily combined to calibrate any combination between them.
All these methods are based on the observation of planar surfaces from structured
environments. The proposed methods have a number of advantages with respect to
previous approaches, namely: they can be applied to any geometric configuration of
the rig of sensors; they do not need external information (calibration patterns, special
landmarks, etc.); they are easy to apply, performing calibration in a few seconds; and
they provide the uncertainty of the resulting calibration.

The method to calibrate combinations of 2D range scanners are mainly interesting
in the context of autonomous cars, where most prototypes in the literature make use
of several 2D LRFs. On the other hand, the calibration of 3D range cameras looks
more interesting for indoor robotic applications, providing large field of view at low
cost of the sensor system. The observability of each one of the proposed methods is
analysed, showing that a single observation of the rig may be enough to calibrate the
sensors.

Regarding the experimental evaluation carried out here, the presented techniques
are not compared to previous approaches in the literature since they cannot be com-
pared in the same conditions. Still, an interesting aspect would be to measure the
accuracy of the techniques presented in the real experiments to set some bounds on
their applicability and to provide some quantitative information for future compar-
isons. Obtaining such results would imply a complex and expensive procedure to
obtain some kind of groundtruth that was not available during the research of this
thesis. Therefore, this aspect stays as a possible line of future research.
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Plane-based maps for fast

localisation and place

recognition

Abstract

Different kinds of maps have been used in mobile robotics for self-
localization, navigation or scene reasoning. A new type of map is
proposed in this chapter which is based on the registration of pla-
nar surfaces, and which is extremely compact in comparison with
previous approaches. This world representation is organized in a
graph where the nodes represent the planar patches and the edges
connect neighbouring planes. This map structure allows to work
efficiently with local regions by selecting subgraphs of neighbour
planes that can be quickly compared for real-time place recognition
and scene registration. For that, an interpretation tree is employed
to find a candidate match between two subgraphs by searching the
best combination of planar patches that fulfils a series of geometric
and radiometric constraints. Such a strategy permits working with
partially observed and missing planes, offering invariance to view-
point and robustness against changes in the scene. The proposed
approach constitutes an efficient way to solve loop closure detection
and scene registration, working satisfactorily even when there are
substantial changes in the scene (lifelong maps).
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3.1 Introduction

As discussed in the first chapter of this thesis, compact scene representations are
highly interesting for efficient SLAM operation, among other utilities. Take into ac-
count that a mobile robot can gather information from the environment continuously
like we humans do. Besides, lightweight mapping solutions are desired when the
computation burden is limited, like in wearable applications or in robotic solutions
which integrate other demanding functionalities (e.g. task planning and execution,
or events anticipation). In such a context, efficient memory and processing mapping
strategies are highly advantageous.

Different mapping strategies have been proposed in mobile robotics depending on
the purpose of the robot and the available sensors. A popular alternative to represent
the world when using RGB-D sensors (like Microsoft Kinect) is through point clouds,
where coloured points are rendered to the map according to the sensor’s pose [Kerl
et al., 2013a]. Such a representation offers a high degree of detail, achieving nice
visualizations of the scene that can be employed in several fields apart from mo-
bile robotics, like scene modelling, augmented reality or video games. However, the
compactness of this representation is not suitable for applications with more limited
memory and processing resources.

The problem of re-localization is a good example where compact maps are highly
interesting. The ability to quickly recognize a previously visited place is a major prob-
lem in mobile robotics since, among other things, it allows to accomplish topological
localization and loop closure detection in SLAM. In contrast to the typical localiza-
tion problem in SLAM where the robot tracks a local map around its last position, a
re-localization algorithm will check generally a much larger part of the map, requir-
ing more computation. The map being checked for that will depend on the uncertainty
of the robot trajectory. For instance, in the case of robot awakening problem, where
information about the current location is not available, the whole map will need to be
checked. The main issue here is how to describe the generally big amount of infor-
mation present in the scene in order to recognize a place in a robust and affordable
way when it is visited again.

This chapter proposes a compact plane-based representation of the scene from
RGB-D data that we name PbMap (Plane-based Map) [Fernández-Moral et al., 2013b],
which is specially useful for place recognition and re-localization. The PbMap stores
only the planar skeleton of point clouds, and thus, it avoids the redundancy of infor-
mation in them, where coplanar points are represented compactly by a convex hull.
This representation was partly inspired by the CAD models, that encode metric in-
formation in a compact fashion and still, they can be easily interpreted by humans
despite the lack of information about scale, texture, etc. (see figure 3.1.a). Also, a
plane constitutes a higher level feature of semantic information with respect to 3D
points, as planes normally correspond to meaningful objects (e.g. a wall, or a door)
and a few planes can compose a semantically meaningful object (e.g. a table, a desk-
top, etc.), that can be exploited for semantic mapping [Ruiz-Sarmiento et al., 2014].
On the other hand, this model loses descriptiveness with respect to point clouds since
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a) b)

Figure 3.1: Example of a typical scene that can be represented with planar patches. a) CAD
model b) PbMap of the scene where a local neighbourhood of planes is represented, which is
defined by a reference plane (green), and includes its closest planes up to a distance threshold
of 1 m (blue).

the information from non planar areas is discarded. Thus, our approach assumes that
there are enough planar patches, and then structured indoor scenes are more adequate
for this representation.

A PbMap is organized as an annotated graph where each node corresponds to
a planar patch (described by simple features: normal vector, centroid, area, colour,
etc.) and the edges connect neighbour patches according to their proximity and co-
visibility. These planar patches (or planes, for short) can be extracted in real-time
from the range video streaming provided by a hand-held range camera or a RGB-D
sensor. Such planes are integrated into the map in their respective poses according to
the sensor location. The sensor pose can be obtained in different ways, in this chap-
ter it is estimated from the sensor observations using an odometry algorithm [Stein-
brücker et al., 2011]. The use of odometry only for constructing our maps implies
that our representation is topological in nature, but note that re-localization and place
recognition do not require fully consistent maps to work.

Place recognition in PbMaps is addressed here as a problem of matching sub-
graphs, which represent the so-called “contexts of planes”. For loop closure detec-
tion, the subgraphs representing the current observed planes are compared with other
ones from the PbMap. Such subgraphs can be defined by one reference plane together
with their closest neighbours, up to a distance threshold (see figure 3.10). For solving
the graph matching problem we rely on an interpretation tree [Grimson, 1990] that
exploits the geometric and radiometric characteristics of the planes and their relative
positions to generate a set of constraints that guide efficiently the search.

A registration method for aligning two matched places is also presented here. This
registration is applied after graph matching to check the consistency of the matched
places. Thus, it improves the robustness of the recognition since a good registration is
required to accept the validity of the matched place. This consistency test computes



70 Chapter 3. Plane-based maps for fast localisation and place recognition

a) b)

Figure 3.2: Plane-based representation. a) Point cloud representation of a living room. b) Point
cloud representation with the segmented planar patches superimposed.

the adjustment error together with the relative pose of the sensor with respect to the
place recognized, thus providing an estimate for the localization.

Experimental results are provided demonstrating the effectiveness of our method
for recognizing and localizing places in a dataset composed of several home and
work-place scenes (e.g. offices, living rooms, kitchens, bedrooms, corridors, etc.).
The proposed registration has also been tested for omnidirectional RGB-D images,
showing a performance (accuracy vs. computation) suitable for odometry and SLAM
(this is addressed in chapter 5). Also, in order to test the concept of “lifelong map”
[Konolige and Bowman, 2009] we also show how the recognition is affected by the
fact that the scene suffers some changes.

3.1.1 Related works

Mapping

Different mapping solutions have been presented depending on the characteristics
of the problem. One of the first ones being employed were the 2D occupancy grid
maps, in which the space is organized in cells which keep the probability to be occu-
pied [Moravec and Elfes, 1985]. This representation has been very popular for navi-
gation of wheel robots equipped with 2D laser rangefinders moving on a plane [Del-
laert et al., 1999]. A 3D version of this map makes use of cubic cells (or voxels)
[Lozano Albalate et al., 2002]. The main limitation of this kind of maps comes from
its storage requirements which becomes a problem in large scenarios. Octomaps are
a way of organizing such information where each voxel is subdivided in 8 sub-voxels
depending on the variability of neighbouring cells and the precision required [Wurm
et al., 2010].

An alternative to the grid representations are the maps based on distinctive fea-
tures or landmarks that can be extracted from a textured scene with one or more
cameras [Se et al., 2002]. In this line, most works in the literature have focused on
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point-based maps, where different invariant point descriptors have been used, from
the popular SIFT [Lowe, 2004], or SURF [Bay et al., 2008], to patch descriptors
like in [Davison and Murray, 2002]. Feature maps from range data have also been
proposed more recently with the spread of 3D range sensors [Rusu et al., 2008].

Dense point maps have also become very popular in the last years with the arrival
of low cost RGB-D sensors like Microsoft Kinect. These representations offer a fair
degree of detail that permits creating point cloud models with nice visualizations
which have many applications beyond robotics. However, the scalability of such maps
becomes an issue for many mobile applications, especially for large-scale SLAM
operation. A common approach to reduce data redundancy is by using keyframes,
in a similar fashion to previous monocular SLAM approaches [Klein and Murray,
2007]. In this line, recent combinations of the state-of-the-art techniques exploiting
the power of modern computers have resulted in impressive 3D maps from hand-held
RGB-D sensors [Kerl et al., 2013b]. Continuous surface representations have also
been proposed based on polygonal representations [Lafarge and Alliez, 2013], and
piecewise continuous radial basis functions (RBFs) [Carr et al., 2001]. Such models
are useful for scene reconstruction and augmented reality, but are not suitable for fast
localization in comparison to other approaches.

Besides metric mapping strategies, pure topological representations have been
employed when accurate metric localization is not required [Ulrich and Nourbakhsh,
2000]. Also, semantic information maps have been presented as a way to integrate
useful knowledge about the objects and the environment [Galindo et al., 2005]. Hy-
brid maps integrating metric and topological information have also been proposed to
deal with large and complex scenarios [Blanco et al., 2009a]. These kind of maps are
discussed in the following chapter of this thesis.

Compact scene representations are interesting for efficiency and scalability. In
general, the more compact the model is, the less information and weaker description
it offers. The balance between compactness, and accuracy (or descriptiveness) of the
model must be taken into account according to the application. For example, this
balance is adjusted with the size of the cell in a gridmap [Elfes, 1989], with the
number of features in keypoint maps [Dissanayake et al., 2001] and point clouds
[Rusu et al., 2008], or with the size of discretization for piecewise continuous RBFs
representations [Carr et al., 2001].

In this thesis we address the creation of a compact representation which only con-
tains planar patches. This is the first work, to the best of our knowledge, in which
planes are integrated to a map at a high frame rate with unconstrained camera move-
ment. This plane-based representation constitutes a useful framework for object de-
tection and grasping [Klank et al., 2009], visual servoing [Cowan and Koditschek,
1999] and Manhattan-like modelling [Furukawa et al., 2009]. Such planar patches
can be efficiently extracted from depth images [Poppinga et al., 2008], [Holz and
Behnke, 2013]. In the context of SLAM, some approaches have already used pla-
nar surfaces as the only map features [Weingarten and Siegwart, 2006; Trevor et al.,
2012], or along with other features (like point features) [Chekhlov et al., 2007; Gee
et al., 2008; Martinez-Carranza and Calway, 2012]. Our approach differs from the
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above in the graph-based representation that we employ to characterize the scene,
which permits to take into account the relations between neighbouring planes to per-
form fast and robust place recognition.

Place recognition

The problem of place recognition has been addressed previously from different per-
spectives using different sensors, from laser-range finders to different kind of cameras
(e.g. consumer cameras, stereo vision, omnidirectional imaging and range cameras).
Most solutions for this problem employ intensity images as input data. Appearance
based methods, applied previously for object recognition [Murase and Nayar, 1995],
have been largely studied in this sense. We can distinguish two kind of approaches
here depending on whether the scene is described with local descriptors (local appear-
ance) or using a global descriptor (global appearance). Local appearance methods,
like the popular bag-of-words (BoW), represent the images as an unordered set of vi-
sual features (words), that are generally collected in a dictionary in a previous stage.
Such a dictionary is built by clustering similar descriptors to create visual words that
are repeatable. Then, different places can be recognized by classifying the images
according to the frequency of their words [Sivic and Zisserman, 2003; Csurka et al.,
2004]. A relevant example which makes use of bag-of-words is the work of [Cum-
mins and Newman, 2008], which recognizes places quickly by capturing the fact
that certain combinations of appearance words tend to co-occur. Also, [Angeli et al.,
2008] presented an incremental, real-time system to detect loop-closures within a
Bayesian filtering framework. The orderless bag-of-words technique is extended to
take into account geometric correspondence in [Lazebnik et al., 2006], improving the
recognition performance.

In contrast to the solutions above, global appearance methods describe the scene
as a whole. In this line, the method presented in [Ulrich and Nourbakhsh, 2000] makes
use of an omnidirectional camera to find the location in a topological map employing
maximum likelihood estimation to match the current image with a database of im-
ages acquired beforehand. Contemporary with this, the work of [Kröse et al., 2001]
presented a probabilistic localization method that employs linear image features ex-
tracted using Principal Component Analysis. A context-based vision system for place
and object recognition was presented in [Torralba et al., 2003] which identifies famil-
iar locations employing a low-dimensional global image representation. In [Oliva and
Torralba, 2001], a holistic representation of the scene’s spatial envelope is proposed.
This work is extended in [Oliva and Torralba, 2006] introducing a scene centred im-
age global descriptor to find places based on configuration of spatial scales. This
method has common aspects with ours since it relies on the global scene layout and it
can be combined with local image analysis (like BoW) to constrain the search space
and to improve performance. An important difference however, is that our technique
is not restricted to work with individual images, and thus, it can integrate several sen-
sor observations in the same scene description, providing inherently a high invariance
to viewpoint.
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There exist other methods in the literature which also address the place recogni-
tion problem from range data: the work of [Bosse and Zlot, 2008] presents a solution
for place recognition which employs distinctive keypoints from 2D lidar observa-
tions. This approach is extended to 3D laser point clouds in [Bosse and Zlot, 2010].
The work in [Granström et al., 2011] also employs range data to extract features that
capture important geometric and statistical properties to detect loop closures. Our
approach differs from the ones above in different aspects: a) our method exploits
contextual information of nearby planes, b) it does not require a training step, and
c) it describes the scene in a more continuous way with a plane-based representation
which is useful beyond place recognition (e.g. scene modelling).

The recent availability of low cost RGB-D sensors has given rise to new ap-
proaches for the problem. In [Biswas and Veloso, 2012] the depth image from a
Kinect sensor is used for localization and navigation. This approach extracts pla-
nar regions to reduce the computation load of using dense point clouds, and projects
the points and planes in a 2D vector map to localize the robot and to avoid obsta-
cles in previous 2D-range maps. However, this approach does not exploit the implicit
description of planar regions and neglects important 3D information in the scene
description. The method proposed in [Koppula et al., 2011] segments the scene and
automatically labels these segments using a machine learning approach that takes into
account local visual appearance and geometric cues, together with contextual infor-
mation. Our method resembles the one above in the use of geometric information and
proximity to establish the context regions, however, this method is focused on scene
understanding, and therefore, requires a training stage, while ours aims to recognize
previous places and does not need any off-line preparation.

3.1.2 Contribution

We propose a highly compact map representation of the scene based on planar patches
that can be built online from the streaming data of a RGB-D sensor. The novelty of our
representation is that such planes are described with a compact geometric and radio-
metric descriptor, and that such planes are integrated in a graph representation which
stores the “topological” relations between planes, which permits quick checking for
similar place descriptions. This new representation is highly efficient for recognizing
and registering places, having the following advantages:

1. the description of the scene through a PbMap is very compact, requiring little
memory and reducing the computational cost of search operations;

2. it is robust to changes of viewpoint since the scene planes can be detected from
very different poses, and the context of planes to match can be chosen with
flexibility (it is not restricted to single-image discretization);

3. it tolerates reasonably well changes in the scene, and therefore is adequate
for the so called “lifelong maps”, i.e. maps that are still valid after the scene
changes. This characteristic particularly holds for indoor scenarios, where the
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most visible and larger planes (i.e. walls, floor, ceiling, bigger furniture, etc.)
are normally persistent over time, while other smaller objects (e.g. chairs, a
laptop, a backpack) are more likely to be moved or even disappear.

An implementation of PbMaps and the registration technique which is used for
localization and place recognition is made available at http://www.mrpt.org/
pbmap.

The rest of this chapter is structured as follows: first, we address the plane seg-
mentation problem, which needs to be solved prior to the map construction. Next,
a PbMap is described as a set of geometric and radiometric characteristics which
are encoded in a graph representation (section 3.3). A compact colour descriptor for
planar patches is presented next (section 3.4). The construction of a PbMap and its
update from new observations of a range or RGB-D sensor is described in section
3.5. Then we show how the PbMap is used to search for similar scenes by matching
subgraphs (section 3.6). The experiments and their results are presented next (section
3.7). Finally, we expose the conclusions of our work.

3.2 Plane segmentation

The problem of plane segmentation has been long studied in computer vision. Dif-
ferent techniques are applied for range and visual data respectively. For the case of
visual data, planes can be inferred from vanishing points and lines [Hartley and Zis-
serman, 2003; Košecká and Zhang, 2005; Micusik et al., 2008], from local and global
features learning [Hoiem et al., 2007; Saxena et al., 2009; Haines et al., 2013],
or from 3D point features extracted with a moving camera [Gee et al., 2008]. The
stochastic technique of Random Sampling and Consensus (RANSAC) [Fischler and
Bolles, 1981] has become a standard tool for robust generation of plane hypothe-
sis [Zuliani et al., 2005; Martinez-Carranza and Calway, 2012], which can be further
checked with homography restrictions [Argiles et al., 2011]. Apart from RANSAC,
other approaches like those based on seed initialization and votation have demon-
strated good performance to obtain planar patches from a sparse point-based model
[Martínez-Carranza and Calway, 2010].

Methods based on the Hough transform are well known for segmenting lines and
circles in images. This kind of technique can be also applied to segment specific
patterns from point clouds, like planes [Vosselman et al., 2004; Borrmann et al.,
2011]. Hough transform methods, like RANSAC, have the disadvantage to cluster
together unconnected regions, since the only restriction imposed is the plane equation.
This makes difficult to distinguish patches from different objects when they lie nearly
in the same infinite plane. Also, both techniques do not take advantage of the spatial
organization of the data when it is available.

Unlike regular intensity images, range images directly provide geometric infor-
mation that can be exploited to segment planar patches. Region growing techniques
can be efficiently applied in range images since the data is already organized (i.e.
the neighbour points of a given pixel can be directly accessed with the pixel index:

http://www.mrpt.org/pbmap
http://www.mrpt.org/pbmap
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(a) (b)

Figure 3.3: Segmentation of planar surfaces from a 160x120 depth image. a) RGB image of
the corresponding view, where the segmented are represented with different colours in b).

row and column) [Hoover et al., 1996; Poppinga et al., 2008]. Merging strategies are
often applied after a first segmentation stage to improve the results, so that contigu-
ous patches with a similar plane equation are integrated together [Holz and Behnke,
2013]. In this thesis, we have followed the work of Holz and Behnke [Holz and
Behnke, 2012] to segment planar patches from range images. The segmentation is car-
ried out with region growing by limiting the maximum curvature and depth difference
between neighbouring pixels. Thus, the first step is to calculate the surface normals
and curvature estimates of the image pixels [Holzer et al., 2012]. Next, a bilateral
filter is applied to smooth both depth measurements and normal estimates [Weiss,
2006]. These methods are implemented in the Point Cloud Library (PCL)1 [Rusu and
Cousins, 2011]. In order to improve the segmentation in a longer range of distances,
a varying threshold for the maximum change of curvature has been introduced to
compensate for the measurements noise, which increases quadratically with depth.

The planar patches are segmented from 160× 120 range images in real time,
offering a rate above 30 Hz. The results obtained with higher resolution images in
terms of segmented planes are almost identical, while the computation time scales
linearly with the image size. At lower than 160× 120 resolutions, the number of
segmented planes starts to drop. The segmentation stage is the main computation
load for the PbMap construction, taking 13 ms in average per frame.

3.3 Formal de�nition of a PbMap

A plane-based map (PbMap) is a representation of the scene as a set of 3D planar
patches. It is organized as an annotated, undirected graph G, where each node rep-
resents a planar patch and the edges connect co-visible neighbour planes, that is, an

1The Point Cloud Library is publicly available at http://www.pointclouds.org/

http://www.pointclouds.org/
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edge connects two patches when they have been observed in the same image and the
distance between their closest points is under a threshold (see figure 3.1.b).

Each plane Pi ∈ G is described by a set of geometric features:

• ci the centroid,

• ni the normal vector,

• di the principal vector (i.e. dominant direction of the plane)

• ei the elongation,

• ai the area,

• Hi a set of points defining the patch’s convex hull.

The plane centroid ci is calculated as the average of the plane’s 3D points pi
j

ci =
1
m

m

∑
j=1

pi
j (3.1)

The normal vector ni and the principal vector di are the eigenvectors corresponding
to the smallest and the largest eigenvalues of the covariance matrix M, respectively.

M =
m

∑
j=1

(pi
j− ci)(pi

j− ci)
> (3.2)

The elongation ei is computed as the ratio between the two largest eigenvalues of M,
and the area ai is computed from the convex hull Hi. All these features are obtained
from the plane segmentation and map construction stages, that is, they are set when
a plane is initialized and are updated when such plane is re-observed. The patch’s
convex hull serves besides to calculate the minimum distance between two patches.
Besides this geometric description, colour information may be added to the geometric
descriptor if it is available. This is comprehensively addressed in the next section.

3.4 Compact colour descriptor

In this section we investigate how to incorporate colour information to a PbMap to
improve its descriptiveness while maintaining the model compactness, which is es-
sential in real-time applications [Fernández-Moral et al., 2014a]. The context of this
research is that of matching planar patches for real-time tasks like scene registra-
tion or place recognition, which involves extensive search for patch correspondences.
Thus, selecting a colour descriptor involves the non-trivial aspect of maintaining a
trade-off between distinctiveness, compactness, and computational cost.

This problem of finding a colour descriptor for planar patches was posed by
[Pathak et al., 2012] in the context of registering 3D range scans, where the authors
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adopted a hue based histogram to increase the efficiency of registration. In this section
we explore the idea of finding a descriptor based on the dominant colour for several
reasons: first, most planes present in indoor environments have a dominant colour;
second, the dominant colour is more robust to the partial observation of planes; and
finally, the efficiency of on-line back-end processes for loop closure or place recog-
nition will benefit from a more compact, fast to compare descriptor.

In order to obtain such a descriptor, we study different colour representations and
radiometric features, looking for invariance to illumination, point of view and partial
occlusion. We propose a colour descriptor based on the patch dominant colour in
normalized RGB space, which provides the best balance between distinctiveness and
compactness. This descriptor is compared with the hue histogram descriptor [Pathak
et al., 2012], which was previously proposed for a similar problem.

3.4.1 Colour information for patch matching

We address the problem of finding the simplest colour descriptor for a planar patch
focused on the problem of patch matching. This descriptor must be highly invariant
to viewpoint, lighting conditions and partial occlusion, and also, it must be efficiently
calculated. Note that the utility of this descriptor is not to identify unequivocally pla-
nar patches, but to prune the search space of possible matches by adding radiometric
information to the geometric attributes of a planar model.

A common solution for matching planar patches is that of maximizing the photo-
consistency between them [Argiles et al., 2011]. The main limitation of this strategy
is that maximizing the photoconsistency is prohibitively expensive for many applica-
tions, especially when there is not a good initial estimation of the registration (e.g.
loop closure detection). Closer to our work are those that describe the patch radio-
metric information through its histogram [Hafner et al., 1995], [Swain and Ballard,
1991]. In this line, [Pathak et al., 2012] posed recently the problem that we consider
in this section, showing that colour information can be exploited to increase the ef-
ficiency of 3D scan registration. A well illuminated scene is assumed in that work,
where the authors adopt a hue based histogram with 2 extra bins to keep saturated
values (black and white). Here, we also take into account the fact that many planar
patches have a single colour, so that the histogram contains redundant information.

In contrast to the works above, we propose to describe the patch with its domi-
nant colour. A similar strategy is used in video compression [Manjunath et al., 2001]
to define blobs having the same colour. In this way the descriptor storage and the
computation of distances are reduced to a minimum. This is important in a number of
problems where many match combinations have to be checked in real-time. In order
to select such a descriptor we need to address some issues: first, the selection of the
colour space which offers the best suitability to obtain an invariant and distinctive
dominant colour (subsection 3.4.2); second, to define the way this dominant colour
is extracted (subsection 3.4.3); and third, to adapt the descriptor for cases where the
dominant colour is not reliable (subsection 3.4.4).
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Figure 3.4: Two patches of the same plane extracted from different views with their histograms
in the colour spaces rgb, HS, c1c2c3 and l1l2l3 below. We can appreciate that the histograms in
rgb and c1c2c3 exhibit more clearly unimodal, and more stable distributions.
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Table 3.1: Formulation of several colour spaces from the RGB data.

Colour space Formulation
r(R,G,B) = R

R+G+B
rgb g(R,G,B) = G

R+G+B
b(R,G,B) = B

R+G+B

HS H(R,G,B) = arctan
( √

3(G−B)
(R−G)+(R−B)

)
S(R,G,B) = 1− min(R,G,B)

R+G+B

c1(R,G,B) = arctan
(

R
max(G,B)

)
c1c2c3 c2(R,G,B) = arctan

(
G

max(R,B)

)
c3(R,G,B) = arctan

(
B

max(R,G)

)
l1(R,G,B) = (R−G)2

(R−G)2+(R−B)2+(G−B)2

l1l2l3 l2(R,G,B) = (R−B)2

(R−G)2+(R−B)2+(G−B)2

l3(R,G,B) = (G−B)2

(R−G)2+(R−B)2+(G−B)2

3.4.2 Selection of the colour space

In order to obtain a distinctive dominant colour it must be invariant to illumination
conditions, shading and viewpoint. These characteristics are highly dependent on the
colour space used to represent the radiometric information, as it is shown below. Note
also that the fact of selecting the dominant colour makes the descriptor inherently
robust to partial occlusion when the physical plane has a clearly defined dominant
colour, which is the most common situation. If this is not the case, e.g. a textured
plane with different colours, the dominant colour is not a good descriptor and it should
not be used for matching.

Different colour spaces have been studied in the context of object recognition
in [Gevers and Smeulders, 1999]. This work concludes that normalized RGB (rgb),
saturation and hue (HS), and the colour models c1c2c3 and l1l2l3 (see table 5.1 for
the formulation of these colour spaces) are highly invariant to changes in viewing
direction and illumination. Below, we analyse these colour spaces for a dataset con-
taining 1000 observations of plane surfaces from different scenarios, spanning diverse
viewing conditions (changing viewpoint and illumination, partial occlusion, etc.). As
an example, figure 3.4 shows two of these observations, together with the patch his-
tograms in the analysed colour spaces.

Next, we study some relevant properties of such colour spaces:

Histogram invariance. To extract a dominant colour descriptor invariant to view-
point (including the effects of partial occlusion and shades), the histograms
main peak must be stable along different views of the same plane. To measure
the histogram stability in a given colour space, we check the similarity of all
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histograms corresponding to the same plane by means of a chi-squared (χ2)
distance measure [Pele and Werman, 2010]. This measure is used to compute
the histogram distances of all pairs of views of the same plane. Then, the mean
distance of all analysed pairs is averaged for all tested planes to obtain a global
measure of the colour space stability (see table 3.2).

Histogram dispersion. The histograms of planes with a well defined dominant colour
must be unimodal and with little dispersion. However, such characteristics do
not apply to all the planes in the environment, and also, it varies depending on
the colour space. To accept that a plane has a dominant colour we make use of
a simple heuristics which requires that at least 50% of the patch pixels are con-
tained in a bandwidth of±5% of the histogram range, centred at such dominant
colour. Thus, we define the concentration rate C as the number of planes that
fulfils this condition in all colour components divided by the total number of
planes. We have found that the condition above is fulfilled in 97.5% for planes
represented with rgb and 92.8% for planes represented with c1c2c3, while the
other colour spaces present much lower rates. Table 3.2 shows the dispersion
rate in this experiment, defined as (1−C).

Computation time. Another important criterion to consider is the computation time
required to transform the original colour space to the target one. This is less
critical because this cost is small in comparison with the whole process of seg-
menting the planes, whichever the chosen colour space is. The average of this
time for this dataset is also indicated in table 3.2.

Table 3.2: Suitability of different colour spaces to represent planar patches according to: his-
togram stability, histogram dispersion and computation time. The values shown correspond
to the average of 100 different planes, with 10 observations each. For all properties, smaller
values mean better performance.

rgb c1c2c3 l1l2l3 HS
Stability χ2 0.10 0.11 0.13 0.14
Dispersion (1−C) 0.03 0.07 0.74 0.77
Comp. time (µs) 10.7 104.9 23.0 11.3

Taking into account the criteria studied above, we notice that rgb is the one with
the best properties, and therefore, it is the one adopted here.

3.4.3 Computing the dominant colour

We note that the dominant colour is a discriminative property since its value is repet-
itive over different observations of the patch (with different viewpoints, lighting con-
ditions, shades and partial occlusions), and it is also distinctive with respect to other
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patches (different patches have generally different colours). Figure 3.5 shows an ex-
ample where 5 different planes are observed in different conditions, and still they are
easily distinguishable. These observations are represented by their dominant colour,
expressed as the histogram mode in each channel in the rgb triangle.

G

R

B

Figure 3.5: Representation of several observations of 5 planar surfaces through their rgb mode
in the triangular domain of rgb. Each planar surface is indicated with a different type of marker.

There exist several ways to define the dominant colour for a planar patch. In
this work we have tested the mode of the histograms, and the centroid of the largest
cluster extracted with two variants of the mean shift algorithm: with fixed (FMS) and
variable bandwidth (VMS), respectively. Mean shift has been broadly used for colour
segmentation [Comaniciu and Meer, 1997]. Though it has limitations for real-time
applications due to its computational cost, in our case the cost of the mean shift is
affordable since most histograms present unimodal distributions and we only extract
one cluster, so that it converges in very few iterations.

We compare the distinctiveness of the dominant colour obtained with the above
techniques using a binary classifier based on the colour difference of two patches,
expressed as ‖ri− r j‖. This difference is actually computed as the L1-norm for each
one of the three components in the rgb space. Thus, when this difference is larger
than a threshold (for any colour component) the patches are considered to belong
to different physical planes. This classifier is tested, for a range of thresholds, with
the previous dataset in which we know beforehand which observation corresponds to
each plane, i.e. we know the classification groundtruth.

From this experiment we obtain the distinctiveness of this classifier in terms of
its sensitivity (ratio of actual positives which are correctly identified) and the speci-
ficity (ratio of negatives which are correctly rejected) for the different techniques to
obtain the dominant colour. These results are depicted as ROC (Receiver Operating
Characteristic) curves in figure 3.6. Every point of each curve represents a different
threshold for the classifier, thus, more restrictive thresholds result in higher sensitivity
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Figure 3.6: ROC curves (sensitivity vs. specificity) of the colour constraints as binary classifier.

and lower specificity. Note that the nearer the curve is to the optimum point (1,1) the
better the classifier. From this test we conclude that VMS provides the most distinctive
dominant colour since both, sensitivity and specificity, are higher than for the mode
and FMS for any threshold.

3.4.4 Choosing a robust colour descriptor

We have seen that the dominant rgb colour of a plane is a distinctive property for
patch matching in many cases. However, non saturated colours (i.e. r = g = b =
0.33), as for instance black and white planes, which are present in many scenarios,
cannot be distinguished. Thus, we propose to include in the descriptor the average
intensity of the plane so that another loose restriction can be applied to differentiate
between such planes. Note that a minimum illumination of the scene is required to use
colour in PbMaps, and such a minimum illumination is enough to make a difference
between black and white surfaces. This value is calculated as the average ((R+G+
B)/3) of the inliers supporting the dominant colour given by the previous mean shift
segmentation. This parameter permits also recovering the plane’s original main colour
in RGB for visualization purposes.

Also, an important issue when describing patches with their dominant colour is
dealing with those cases where this description is not applicable (e.g., textured re-
gions without a prevalent colour). In order to take into account this condition we add
a boolean to our colour descriptor to specify whether the distribution of the plane
histogram in rgb has a low dispersion, as explained in the previous subsection. To
sum up, the resulting descriptor contains 4 elements that are stored in a word of 4
bytes: 2 bytes for normalized colour r and g (note that b depends on these two since
r+g+b = 1), 1 byte for the average intensity and 1 byte to specify the existence of
a dominant colour.
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Figure 3.7: ROC curves (sensitivity vs. specificity) of different colour descriptors: dominant
rgb, robust dominant rgb++ and hue histogram.

3.4.5 Comparison with the hue histogram

In this section we evaluate the distinctiveness of the proposed colour descriptor by
comparing it with the dominant rgb colour and with the normalized, saturated hue
histogram proposed by [Pathak et al., 2012]. For this last, the histogram distance
between h1 and h2 is computed with the Bhattacharyya distance [Bhattacharyya,
1946]:

B(h1,h2) =

√
1−

N

∑
k=1

√
h1[k] ·h2[k] (3.3)

The sensitivity and specificity of a binary classifier based on the compared de-
scriptors are evaluated using different thresholds as we did in the previous section
(see figure 3.7). As expected, we observe that the proposed descriptor is significantly
more distinctive than the rgb dominant colour, since the latter lacks the robust infor-
mation added to the first. By comparing our descriptor with the hue based histogram
we observe that their distinctiveness are similar despite the richer information of the
latter. The reason for this is that most planes have a dominant colour in our test en-
vironment, as in most indoor scenarios. The fact that the sensitivity of the hue his-
togram is slightly lower is explained because the histogram is less robust to partial
viewing. Contrarily, this descriptor should perform better for textured surfaces and
when the patches present no occlusion, however, such cases are rare in the home and
office environments we are working in, where our dominant colour descriptor is more
suitable.
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Figure 3.8: 2D representation of the map construction scheme. a) RGB-D capture with seg-
mentated planes (blue). b) Current PbMap with segmented planes (blue) superimposed accord-
ing to the sensor pose. c) PbMap updated: the planes updated are highlighted d) PbMap graph
updated: the planes updated are highlighted in blue, the new plane P7 is marked in green and,
the new edges are represented with dashed lines.

3.5 PbMap construction

After the previous segmentation stage, each detected planar patch is integrated into
the PbMap according to the sensor pose, either by updating an already existing plane
or by initializing a new one when it is first observed. The sensor pose needed to locate
the planes in a common frame of reference can be obtained in different ways. For
instance, the current pose may be obtained from the observation of a sufficient number
of planes of the PbMap [Fernández-Moral et al., 2013b]. Otherwise, range, visual or
combined range and visual odometry may be used [Kerl et al., 2013b; Gokhool et al.,
2014].

The PbMap construction procedure is illustrated in figure 3.8. For every new
frame, a subsampled point cloud (160×120) is built relative to the sensor, and planar
patches are segmented from it. The segmented patches are then placed in the PbMap
according to the sensor pose (figure 3.8.b). If the new patch overlaps a previous one
and their normal vectors coincide, then they are merged and the parameters of the
resulting plane are updated. In other case, a new plane is initialized in the PbMap
(figure 3.8.c). The graph connections of the observed planes are also updated at every
new observation by calculating the minimum distance between the current planes in
view and the surrounding planes (figure 3.8.d). An example of a PbMap built from a
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Figure 3.9: Plane based representation of a living room. The coloured planes at the right have
been extracted from the point cloud at the left.

short RGB-D video sequence in a home environment is shown in figure 3.9 where we
can distinguish the different planes segmented.

3.6 Place recognition and localization in
PbMaps

The identification of a place using PbMaps is based on matching and aligning a set
of neighbour planes that are represented by a graph. This process can be divided into
three different stages: first, the scope and the size of the subgraphs that are to be
compared has to be chosen; second, an interpretation tree is applied employing geo-
metric and radiometric constraints to match the maximum number of planes between
the two subgraphs; and finally, the matched planes are aligned rigidly, providing an
error measurement and the relative rigid transformation between the matched places.
These two last stages constitute the technique for scene registration, that can be ap-
plied when the first stage is not required as in the registration of PbMaps extracted
from single images (i.e. PbMap odometry), or to find the correspondence between
PbMaps that have already been localized in the same local region.

3.6.1 Choosing the scope of search

The first question implies that we have to select a set of planes (or subgraph) which
defines a place as a distinctive entity. The key to select a subgraph from the multiple
combinations that are possible in a PbMap lies in the graph connections, as they
link highly related planes in terms of distance and co-visibility. Thus, a subgraph is
selected by choosing a reference plane and taking its k-order neighbours which are
defined by a distance threshold. In the experiments of this chapter we use the first
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Figure 3.10: Example of the graph representation of a PbMap, where the arcs indicate that two
planes are neighbour. Two subgraphs are indicated: the ones generated by the reference planes
P1 and P5, respectively.

order neighbours and we set a distance threshold of 1 m to define neighbour planes
(see figure 3.10). This strategy permits to describe a place in a piecewise continuous
fashion, so that different subgraphs can be possible around a local area, providing
flexibility to recognize places that are partially observed.

The number of possible subgraphs grows linearly with the map size, that is, the
maximum number of subgraphs in the PbMap is limited by the number of planes,
though in practice, this number is smaller, since one particular subgraph can be gen-
erated from two –or more– neighbour planes (e.g. the subgraphs generated by P8 and
P9 in figure 3.10 are the same). Also, when a subgraph is contained in other subgraph,
only the largest one is considered for matching a place. Thus, in order to achieve
a scalable solution for place recognition or loop closure we just need to guarantee
bounded time for graph matching.

3.6.2 Graph matching

The problem addressed here is that of matching local neighbourhoods of planes, rep-
resented as subgraphs in the PbMap. Thus, we aim to solve a graph matching prob-
lem allowing for inexact matching to be robust to occlusions and viewpoint changes.
Several alternatives are found in the literature for this problem, from tree search to
continuous optimization or spectral methods [Hansen et al., 2008]. Here, we em-
ploy a tree search strategy because it does not require further information like the
probability of the graph attributes, it is easy to implement and it is extremely fast to
apply when the subgraphs to be compared have a limited size. In order to match two
subgraphs we rely on an interpretation tree [Grimson, 1990], which employs weak
restrictions represented as a set of unary and binary constraints. On the one hand, the
unary constraints are used to check the correspondence of two single planes based on
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the comparison of their geometric and radiometric features. On the other hand, the bi-
nary constraints serve to validate that two pairs of connected planes present the same
geometric relationship. An important advantage of this strategy is that it allows to rec-
ognize places when the planes are partially observed or missing (inexact matching),
resulting in high robustness to changes of viewpoint.

3.6.2.1 Unary constraints

The unary constraints presented here are designed to reject incorrect matches of two
planes, and thus, to prune the branches of the interpretation tree. Thus, the unary con-
straints serve to speed-up the search process. These are weak constraints, meaning
that the uncertainty about the plane parameters is high, so the thresholds are very
relaxed to avoid rejecting a correct match. In other words, a unary constraint should
validate that two planes are distinct when their geometric or radiometric character-
istics are too different, but they lack information to confirm that two observations
belong to the same plane, since even different planes can have the same characteris-
tics.

Three unary constraints have been used here, which perform direct comparisons
of the plane’s area, elongation, and dominant colour if available. For example, the
area constraint checks that the ratio between the areas of two observed planes are
under certain bounds, and similarly for the other constraints. That is

1
threshold

<
areaPi

areaPj

< threshold (3.4)

In order to determine appropriate thresholds for such constraints, we analyse their
performance in a dataset containing 1000 observations of plane surfaces from diffe-
rent scenarios, spanning diverse viewing conditions (changing viewpoint and illumi-
nation, partial occlusion, etc.). We have manually classified these planes, so that the
correspondences of all plane observations are known. Then, we analyse the classifica-
tion results of our constraints in terms of the sensitivity (ratio of actual positives which
are correctly identified) and the specificity (ratio of negatives which are correctly re-
jected), for a set of different thresholds. The result of this experiment are shown with
a ROC curve, which shows the sensitivity with respect to the specificity for a given
threshold, see figure 3.11. The curves show that higher values of specificity corre-
spond to smaller values of sensitivity and viceversa. Note that the nearer the curve is
to the optimum point (1,1) the better the classification of the weak constraint. From
this graph we can see that the colour is the most discriminative constraint. Also, since
all unary restrictions require similar computation, we arrange them according to their
discrimination power, thus the first constraint applied is the radiometric one, followed
by the area and the elongation, respectively.

The thresholds for each constraint are determined consistently by choosing a min-
imum sensitivity of 99%. We notice that those planes that are incorrectly rejected by
a unary constraint correspond to planes which have been partially observed (e.g. the
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Figure 3.11: Comparison of the different unary constraints by their ROC curves (sensitivity
vs. specificity).

corner of a table). The fact that some planes might be rejected incorrectly is not crit-
ical to recognize a place since not all of the planes are required to be matched. The
thresholds obtained here depend on the amount and variety of the training samples
used. But since most indoor scenes have planes of similar sizes and with similar con-
figurations, such thresholds must be valid for most similar environments. Besides, we
have observed that variations of one order of magnitude in the thresholds do not affect
significantly the results for place recognition.

3.6.2.2 Binary constraints

The binary constraints impose geometric restrictions about the relative position of
two pairs of neighbour planes (e.g. the angle between the normal vectors of both
pairs must be similar, up to a given threshold, to match the planes). These constraints
are responsible to provide robustness in our graph matching technique, enforcing the
consistency of the matched scene. Three binary constraints are imposed to each pair
of planes in a matched subgraph. First, the angle difference between the two pairs
being compared should be similar. This is∣∣arccos(nC

i ·nC
j )− arccos(nM

ii ·nM
j j)
∣∣< threshold (3.5)

where nC
i and nC

j are the normal vectors of a pair of nearby planes from the sub-
graph C, and similarly nM

ii and nM
j j are the normal vectors of a pair of planes from the

subgraph M.
Also, the distances between the centroids of the pair of planes must be bounded∣∣(cC

j − cC
i )− (cM

ii − cM
j j)
∣∣< threshold (3.6)
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Figure 3.12: Comparison of the different binary constraints by their ROC curves (sensitivity
vs. specificity).

The other binary constraint takes into account the perpendicular distance from
one plane to the centroid of its neighbour. This distance must be similar when the two
pair of planes are correctly matched,∣∣nC

i · (cC
j − cC

i )−nM
ii · (cM

j j− cM
ii )
∣∣< threshold (3.7)

Other constraints have been tested employing the distance between planes, and
the direction of the principal vectors, however, these constraints did not improve sig-
nificantly the search since they are highly sensitive to partial observation of planes.
Nevertheless, these constraints can be used when partial observation is not a big issue,
like when matching nearby omnidirectional frames as in chapter 5.

Similarly to the previous subsection, the classification performance of these con-
straints is analysed for a range of thresholds. For that, we estimate the ROC curves
to show the balance between sensitivity and specificity of these binary constraints,
which are shown in figure 3.12.

3.6.2.3 Interpretation tree

Algorithm 1 describes the recursive function for matching two subgraphs. This func-
tion checks all the possible combinations, defined by the edges among the planes of
the subgraphs SC and SB, to find the one with the maximum number of matches. In
order to assign a new match between a plane from SC and a plane from SB the unary
constraints are verified first (their result is stored in a look-up table to speed up the
search), and if they are satisfied, the binary constraints are checked with the already
matched planes. If all the constraints are satisfied, a match between the planes is ac-
cepted and the recursive function is called again with the updated arguments. The
algorithm finishes when all the possibilities have been explored, returning a list of
pairs of corresponding planes.
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Algorithm 1 MatchSubgraphs

INPUT:
SC, LC // Current subgraph and List of planes of SC
SM,LM // Previous subgraph and List of planes of SM
matched_planes // List of matched planes

OUTPUT:
best_combination // Final list of matched planes

best_combination = MatchSubgraphs(LC,LM,matched_planes)

1: best_combination = matched_planes
2: for each plane PC ∈ LC do
3: for each plane PM ∈ LM do
4: if EvalUnaryConstraints(PC,PM) == False then
5: continue
6: end if
7: for each P′C,P

′
M ∈ matched_planes do

8: // Check if the edges PC,P′C and PM,P′M exist
9: if PC,P′C ∈ SCandPM,P′M ∈ SM then

10: if EvalBinaryConstraints(PC,P′C,PM,P′M) == False then
11: continue
12: end if
13: end if
14: end for

15: // Remove PC from LC and PM from LM
16: new_LC = LC−PC
17: new_LM = LM−PM
18: new_matched_planes = matched_planes∪{PC,PM}

19: // Search for the best combination of matched planes
20: result = MatchSubgraphs(new_LC,new_LM,new_matched_planes)

21: // Check the length of the resulting list of matched planes
22: if SizeO f (result)> SizeO f (best_combination) then
23: best_combination = result
24: end if
25: end for
26: end for

27: return best_combination
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Despite the large amount of possible combinations for this problem, most of them
are rejected in an early stage of the exploration since they do not fulfil the geometric
(or radiometric) restrictions. In addition, the evaluation of these restrictions requires
little computation, since they only do simple operations to compare 3D vectors and
scalars. The cost of this process depends linearly on the number of edges in the sub-
graphs, and the number of edges has an exponential relation with the threshold defin-
ing neighbour planes, and with the number of levels of neighbouring relations used
to define the subgraph. This allows the search process to work at frame rate when the
number of edges in the subgraphs is bounded (e.g. 1025 edges per subgraph, such a
number of edges can be obtained by setting a big distance threshold for neighbour
planes like ∼ 20 m, which is clearly inflated). By considering smaller, more reason-
able thresholds to define distinctive contexts of planes, this process performs in the
order of microseconds.

Notice that this strategy for place recognition can give rise to several candidate
places, one per previous subgraph. A minimum of 4 planes, with a sum of areas bigger
than 2 m2 is required to accept the candidate. And from these candidates, we choose
the one with the best rigid alignment, which is given by the consistency test described
in the next section.

3.6.3 Localization and rigid consistency

A consistency test is proposed here to evaluate the rigid correspondence of the matched
planes of two subgraphs provided by the interpretation tree. This technique requires
that at least 3 linearly independent (non parallel) planes are matched to estimate the
relative pose between them, µ . This is accomplished by minimizing a cost function
which measures the adjustment error of each matched plane. Mathematically

µ̂ = argmin
µ

N

∑
i=1

ei(µ)
2 (3.8)

where N is the number of matched planes and ei(µ) represents the adjustment error
of a pair of planes Pi and Pmi with respect to the rigid transformation defined by µ .
This error corresponds to the distance from the centroid of Pi to its matched plane Pmi

(refer to figure 3.13). Thus, the proposed error function ei(µ) is given by

ei(µ) = wi nmi(exp(µ)ci− cmi) (3.9)

being nmi the normal vector and cmi the centroid of Pmi ; ci is the centroid of Pi, and
exp(µ) is the rigid transformation matrix in SE(3) represented as the exponential
map of the 6D vector µ , which is a minimal parametrization for the relative pose, and
wi a weight defined by

wi =
Ai

∑
N
j=1 A j

(3.10)

where Ai and A j are the area of the planes Pi and Pj, respectively. This weight gives
more relevance to the adjustment error of larger planes over smaller ones.
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Figure 3.13: Consistency test. 2D representation of the depth error (the blue segments repre-
sent planes of the current subgraph and the black segments correspond to a previous subgraph).

We solve this non-linear least squares problem using Gauss-Newton optimization
for µ . Notice that other scene alignment methods can be applied, like dense align-
ment. The election of the one presented here is motivated by two reasons: the residual
error couples rotation and translation, and so it constitutes a measure of the quality
of the alignment; and second, it is simple and fast to calculate from the information
already present in the map.

After the above method has converged and the relative pose has been calculated,
the resulting error is used to evaluate the consistency of the candidate matches. In our
experiments, we employ the matched area divided by the residual of this optimization
to obtain a non-dimensional parameter which represents the quality of the alignment.
We have verified empirically that a matched scene with a score higher than 100 almost
always corresponds to a correct match (99.8%), therefore, we use this threshold to
gain robustness against possible incorrect matches.

3.7 Experimental validation

This section presents the experiments carried out to validate our approach for place
recognition. These experiments are divided in two subsections depending on the input
data: range only or RGB-D. The difference is relevant since different sensors can be
employed for each option. Time-of-flight (ToF) cameras, LIDAR, or structured light
cameras like Asus Xtion are valid sources for the case of only range, while the most
common option for depth and intensity are RGB-D cameras like Microsoft Kinect
or Asus Xtion Pro Live. The advantages of adding radiometric information to the
geometric description of a PbMap are also demonstrated here.

In the first set of experiments, the effectiveness for recognizing places is evalu-
ated with 300 tests performed in an environment composed of 15 rooms; second, we
evaluate the robustness of our solution to recognize places in non-static scenes, in
other words, we evaluate the suitability of the PbMaps to represent scenes that suffer
changes continuously (this second experiment is performed using only range images).
In these experiments we have employed an Intel Core i7 laptop with 2.2 GHz proces-
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sor. The experiments are performed using video sequences captured with a RGB-D
camera (Microsoft Kinect), where we only use the depth images for the case of range
only. In such a way, the results of the two input data can be compared.

3.7.1 Recognition from range images

In the first battery of experiments we explore the scene with a handheld RGB-D sen-
sor, building progressively a PbMap while at the same time, the system searches for
previous places. In order to build the PbMap, the pose of each frame is estimated with
a method for dense visual odometry2, which applies the same strategy from [Stein-
brücker et al., 2011]. This method estimates the relative pose between two consec-
utive RGB-D observations by iteratively maximizing the photoconsistency of both
images. The optimization is carried out in a coarse-to-fine scheme that improves effi-
ciency and allows coping with larger differences between poses. The drift of this al-
gorithm along the trajectory is sufficiently small to achieve locally accurate PbMaps.

While the scene is explored and the PbMap is built, the current place is continu-
ously searched in a set of 15 previously acquired PbMaps corresponding to different
rooms of office and home scenarios (these PbMaps generally capture a 360◦ coverage
of the scene, see figure 3.16). An additional challenge of this experiment comes from
the fact that some PbMaps represent the same type of room. This is an important issue
for solutions based on bag-of-words since features are normally repeated in scenes of
the same kind. In the case of PbMaps, this can also be problematic as some scenes
share a similar layout.

We have repeated 20 exploration sequences with different trajectories for each
one of the 15 different scenarios. The success and failure rates for place recognition
have been recorded, together with the average length of the sensor trajectory until a
place was detected, or until the scene was fully observed when no place was recog-
nized. Table 3.3 shows the recognition rate for these experiments. The first column
indicates the percentage of cases where a place was recognized correctly, while the
failure rate stands for the percentage of places recognized erroneously. The average
length of the path taken until a place is recognized is shown in the third column. This
somehow gives an idea of how distinctive the local neighbourhoods of planes are
for each different scenario. Nevertheless, note that the length of exploration is not di-
rectly related to the recognition rate, since even scenes with few distinctive subgraphs
(e.g. the case of an empty room) can eventually be matched. An interesting feature
of our approach is that it can recognize easily places where there is little appearance
information, but where the geometric configuration of planes is highly descriptive,
this can be perceived in the video http://youtu.be/uujqNm_WEIo. In cases where
there are fewer extracted planar patches the recognition rate drops.

A second battery of experiments shows that PbMaps can be used to recognize
places that have suffered some changes, but where the main structure of the scene

2This method was implemented by Miguel Algaba, and is publicly available at https://code.
google.com/p/photoconsistency-visual-odometry/

http://youtu.be/uujqNm_WEIo
https://code.google.com/p/photoconsistency-visual-odometry/
https://code.google.com/p/photoconsistency-visual-odometry/
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Table 3.3: Effectiveness of the proposed method in different environments with different ex-
ploration trajectories (20 tests for each environment). There are some tests where no place was
recognized (neither correctly nor erroneously), as a consequence, the sum of the recognition
rate and the failure rate is not 100%.

Scenario Recog. rate Failure rate Av. path length (m)
LivingRoom1 100% 0% 5.53
LivingRoom2 100% 0% 3.25
LivingRoom3 100% 0% 2.85

Kitchen1 100% 0% 4.53
Kitchen2 100% 0% 2.24
Kitchen3 90% 0% 3.75
Office1 100% 0% 2.01
Office2 90% 10% 2.61
Office3 90% 10% 3.82
Hall1 100% 0% 1.34
Hall2 80% 10% 2.31

Bedroom1 60% 10% 4.98
Bedroom2 50% 20% 6.25
Bedroom3 55% 20% 5.52
Bathroom 50% 35% 5.60

is unchanged. For that, we have evaluated the recognition rate with respect to the
amount of change in the scene, which is measured using Iterative Closest Point
(ICP) [Besl and McKay, 1992] on the point clouds built from the depth images. Sim-
ilarly as in the previous experiments, we evaluate the recognition rate for 20 different
trajectories exploring each one of two following scenarios: Office1 and LivingRoom1
(we have chosen these two scenarios because changes are more common in them, see
figure 3.14). The results of these experiments are summarized in Table 3.4, show-
ing that the recognition rate remains high for moderate changes in the scene (Ch1 &
Ch2, where chairs have been moved, and some objects like a laptop, have disappeared
from the scene, while new objects have also appeared), though as expected, this rate
decreases as the change in the scene increases significantly (Ch3 & Ch4, where card-
board boxes have been placed in the scene, occluding previous planes and generating
new ones).

3.7.2 Recognition from RGB-D images

The same experiment of the previous subsection, in which we explore 15 different
scenes with 300 independent sequences is carried out here adding colour informa-
tion. The main differences are that the main colour of the planar patches is extracted
in each observation to update the map, and that the unary colour constraint intro-
duced previously (section 3.4) is added to the interpretation tree for searching previ-
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(a) (b) (c)

Figure 3.14: Lifelong maps in office environment. a) Reference scene (Ch0), b) Scene with
moderate changes (Ch3), c) Scene with significant changes (Ch5).

Table 3.4: Lifelong maps. The ICP fitness score shows the average adjustment error per 3D-
point. The recognition shows the percentage of “finds” for 20 different trajectories exploring
the scene.

Office1 Ch0 Ch1 Ch2 Ch3 Ch4
Av. ICP error (mm) 0 0.671 1.215 1.540 3.442
Recognition 100% 100% 95% 90% 80%
LivingRoom1 Ch0 Ch1 Ch2 Ch3 Ch4
Av. ICP error (mm) 0 1.182 2.010 2.942 3.863
Recognition 100% 100% 100% 95% 85%

ous places. Regarding the PbMap construction, the slow down to compute the main
colour is small in comparison with the plane segmentation stage, and the system still
works at 30 Hz. Regarding place recognition, or more concretely graph matching, we
perceive two relevant improvements: first, the search is more efficient, and second, it
is more robust to incorrect matches.

The performance improvement is illustrated with an experiment which shows the
number of restrictions checked (which is directly proportional to the time required for
searching a place) with respect to the subgraphs size, with and without the use of the
colour descriptor. Figure 3.15 shows the average time of the search with respect to the
number of planes being evaluated. We observe that performing the search using the
proposed colour descriptor is around 6 times faster. Such a rate varies from 2 to 10
depending on the radiometric characteristics of the planar surfaces of the particular
environment. This constitutes a significant increase of efficiency over the previous
pure-geometric solution.

The radiometric information in PbMaps allows to distinguish different places with
similar geometric layout but different colour. That was the case in two bedroom envi-
ronments of the previous experiment, where colour information helps to differentiate
one from another. The results show that apart of the improvement on efficiency, the
solution employing colour is more robust to incorrect matching. This is shown in table
3.5, where a significant reduction in the number of mismatched scenes is achieved.
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Figure 3.15: Performance of the place recognition process (in terms of the number of restric-
tions checked until matching with respect to the size of the subgraph to match) for both: only
geometry and colour and geometry in PbMaps. The computing time is directly proportional to
the number of restrictions checked.

Table 3.5: Robustness to wrong recognition by using colour information.

Scenario Failure rate (depth) Failure rate (depth+colour)
Office2 10% 0%
Office3 10% 0%
Hall2 10% 0%

Bedroom1 10% 5%
Bedroom2 20% 10%
Bedroom3 20% 5%
Bathroom 35% 30%

3.8 Discussion

This chapter presents a highly compact map representation of the scene based on
planar patches (PbMap). Such planes are efficiently extracted from range images with
a region growing procedure, permitting the use of this representation for real-time
mapping and SLAM. The planes are described by simple geometric attributes, and
also colour information if it is available. A PbMap is structured as an undirected
graph where the nodes represent planes and the edges store the neighbour relations
between them, so that they contain contextual information. This arrangement permits
to operate quickly on local neighbourhood of planes for scene registration and place
recognition.

A new methodology for real-time place recognition in indoor environments using
PbMaps has been proposed. The recognition process is tackled with an interpretation
tree, which matches efficiently local neighbourhoods of planes based on weak con-
straints that prune the match space. This matching process employs unary and binary
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constraints. The unary constraints restrict the individual correspondence of pairs of
matched planes, and its main contribution is the speed-up of our solution. On the
other hand, the binary constraints check that the layout of the scenes being compared
are geometrically consistent, and so, they are responsible of the robustness of this
technique.

This kind of map is interesting for representing indoor scenes, where the amount
of planar surfaces dominates over non-planar structures. The proposed solution can
work with range cameras, by generating a geometric description of the scene, or with
RGB-D sensors, adding radiometric information to the planes to improve the descrip-
tion and the recognition performance through the unary constraints. A colour descrip-
tor consisting of the dominant colour, the average intensity and a parameter indicating
the robustness of dominant colour was employed. A comparison of both alternatives
(only geometry vs. geometry and colour) has been presented, which shows an average
speed-up of 6 times in scene recognition by using colour information.

A registration technique is proposed to further check the metric consistency of
two matched places, and to recover the metric localization. This technique aligns the
scenes through the minimization of a cost function, whose residual is used to vali-
date the proposed match. This minimization provides the relative pose between the
matched places, which can be used for loop closure for instance. We provide exper-
imental results demonstrating the effectiveness of our approach for recognizing and
localizing places in a dataset composed of 20 home and work-place scenes: offices,
living rooms, kitchens, bathrooms, bedrooms and corridors.

Apart from the above mentioned advantages, this strategy to describe and identify
places is robust to changes in the scene. The point is that most of the movable objects
in indoor environments are not planar, and regarding the planar structure, the larger
(dominant) planes are generally static. Thus, the approach presented is conceptually
adapted to lifelong mapping. In order to test this idea, we performed an experiment
to measure how the recognition performance is affected by the fact that objects can
be moved by the users. The results confirm the intuition, though a deeper study must
be carried out to evaluate the applicability of our representation for such a problem.
This constitutes a field for future research after this thesis.

A future improvement for the PbMap will consist of its integration into a prob-
abilistic framework to represent the plane parameters. This will permit to deal with
sensor noise to obtain more robust and accurate PbMap registration. Another impor-
tant improvement would be the ability to detect planar patches that fully cover the
represented surface. This implies that the surface is seen with no occlusions, so that
information about other dimensions can be exploited to improve localization and to
address related tasks like object recognition. Also, an interesting open issue from this
research is how to use the compact description of a PbMap for semantic inference,
which can provide extra capabilities in mobile robotics and better communication
interfaces human-robot. Since the PbMap’s compact geometric (and radiometric) de-
scription is useful to match scenes, it is reasonable that they can be useful to identify
classes of scenes (e.g. kitchens, bedrooms, etc.) what is interesting for example for
domestic service robotics. However, this problem has a total different perspective,
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and a whole research to find distinctive cues must be carried out before evaluating the
potential capabilities of PbMaps for this problem.
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Figure 3.16: Different scenarios where place recognition has been tested. These pictures show
the point clouds of some of the maps created previously, showing their PbMap right below of
each scenario.





Chapter 4

Hybrid metric-topological

mapping

Abstract

Efficient map representations are required in mobile robotics to per-
form complex tasks. The integration of metric and topological infor-
mation has been proposed to create multi-layer hybrid maps, where
the metric layer is generally used for accurate localization in a lo-
cal environment, and the topological layer stores high level symbolic
information which may be required for planning and task reason-
ing. This chapter presents a new methodology to structure dynam-
ically a metric map into a topological arrangement of local maps,
while the topological structure keeps information about the connec-
tivity of these local maps. The division is carried out based on the
co-visibility of map features, and is executed with graph cut. This
strategy permits scalable localization and mapping approaches by
considering only the set of local maps which are closer to the robot.
Experimental results are presented with a monocular SLAM system
in indoor and outdoor scenarios.

101
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4.1 Introduction

Different kinds of mapping strategies are needed in mobile robotics to perform dif-
ferent actions. For example, grasping an object requires a metric map of the object
and its environment, while for navigation, besides the local metric map required to
execute immediate movements, a global map with topological information is gener-
ally required to decide the most appropriate path or to reason about the aimed tasks.
Such topological representation could encode information that is meaningful also for
humans, like the connectivity of rooms in a building. Hybrid metric-topological maps
have been proposed for dealing with these two types of information [Thrun, 1998]. In
this chapter we build up on previous works to present a dynamic arrangement of the
metric-topological representation according to the sensed space [Blanco et al., 2006].

The problem of scalable SLAM is present when coping with some real autonomous
robotics applications. Such ability to operate in large scale brings the need of ap-
propriate strategies for managing the map. This problem may be addressed using
metric-topological or multilayer hierarchical representations. In this sense, applying
abstraction (as humans do) is an effective way of dealing with the huge amount of
detail present in large metric maps. The result of such abstraction process is a metric-
topological map, consisting of a two-layer representation, one containing pure ge-
ometrical information and a second one containing higher level symbolic informa-
tion [Thrun, 1998]. Thus, the benefit of a metric-topological arrangement is twofold:
first, it offers a natural integration with symbolic planning that permits a robot to rea-
son about the world and to execute high level tasks [Galindo et al., 2008]; second, the
efficiency and scalability of SLAM is improved by limiting the scope of localization
and mapping to the region of the environment where the robot is operating. Also, loop
closure and re-localization can be more efficiently solved using topological informa-
tion [Savelli and Kuipers, 2004; Angeli et al., 2009].

Here, we present a mapping strategy where the metric map is dynamically divided
into regions (submaps) with highly connected observations, resulting in a topologi-
cal structure where each node stores a local metric map, and the arcs represent the
relations with neighbouring submaps. The key idea is to cluster in the same submap
those features which are more interrelated according to the sensor’s visibility, that
is, grouping co-visible features, or keyframes with higher overlap depending on the
metric map chosen. The map division is performed using a graph cut technique which
can be executed online (with every new observation), allowing efficient and scalable
SLAM operation.

The mapping approach presented here is tested in the framework of a monocular
SLAM, where the experiments show that this hybrid metric-topological approach
outperforms the efficiency and scalability of the pure metric approach. Concretely, we
will focus on the benefits of such hybrid mapping applied to a well known monocular
SLAM system based on Bundle Adjustment on keyframes (PTAM [Klein and Murray,
2007]). Our approach has also been applied in a SLAM solution based on PbMaps
[Fernández-Moral et al., 2013b] which is presented in the next chapter.
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4.1.1 Related works

Hybrid mapping and map partitioning

Hybrid maps that combine metric and topological information have been proposed
for SLAM in large and complex robot environments. Such maps are usually com-
posed of local metric maps (suitable for robot localization) organized in a topological
graph structure, which stores the relations between local maps, and/or other high level
symbolic information [Bosse et al., 2003; Estrada et al., 2005; Blanco et al., 2009a].
A key question for such hybrid mapping is how the map should be partitioned into
local maps.

Map division has been addressed in a number of works. Some relevant exam-
ples are: the Atlas framework [Bosse et al., 2003], where a new local map is started
whenever localization performs poorly in the current local map, or the hierarchical
SLAM presented in [Estrada et al., 2005], where sensed features are integrated into
the current local map until a given number of them is reached. However, none of
these provides a mathematically grounded solution based on the particular perception
of the scene.

In [Eade and Drummond, 2007], the map is divided in nodes where the landmarks
are represented in a local coordinate frame and, these landmarks are updated using
an information filter. This method uses the common features between adjacent nodes
to calculate their relative pose. A different approach called Tectonic-SAM [Ni et al.,
2007] uses a “divide and conquer” approach with locally optimized submaps in a
Smoothing and Mapping framework (SAM). This approach is improved in [Ni and
Dellaert, 2010] to build a hierarchy of multiple-level submaps using nested dissection.

Other works employ “graph cut” to divide the map according to a measurable
property of the map observations. On that mathematically sound basis, [Zivkovic
et al., 2005] addresses the problem of automatic construction of a hierarchical map
from images; [Blanco et al., 2008] generates metric-topological maps using a range
scanner, and generalizes the approach for other sensors; and [Rogers and Christensen,
2009] splits the map within a Bayesian monocular SLAM framework to reduce the
problem complexity.

Our method, which also relies on graph cut, differs from the works above in the
way the graph is updated, which is specifically tailored for online SLAM operation.
Our approach resembles also the stereo-SLAM framework of [Lim et al., 2011] who
divide the map keyframes into groups (called segments) according to their geodesic
distances in the graph. On the contrary, our map partitioning is independent of the
keyframe positions, and is only based on observations acquired from the scene. Con-
cretely, the map is split where there are fewer shared observations, minimizing the
loss of information and therefore, enforcing the coherency and consistency of the
submaps.
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Monocular SLAM

Many solutions have been presented to build metric maps with monocular SLAM
since [Davison, 2003] presented the first real-time solution for the problem in 2003.
Two main strategies have been applied since then: Bayesian filtering (following the
work of Davison) and Bundle Adjustment (BA) on keyframes, as introduced in [Klein
and Murray, 2007]. The latter represents the base for the current state-of-the-art since
it allows handling denser maps and generally offers a better ratio accuracy/cost [Stras-
dat et al., 2010].

BA, traditionally used as an offline method for Structure from Motion (SfM),
is now widely used in visual SLAM thanks to the introduction of parallel processing
and efficient algorithms which exploit the sparse structure of the problem. Its applica-
tion to visual SLAM was inspired by real time visual odometry and tracking [Nistér
et al., 2004], where the most recent camera poses where optimized to achieve ac-
curate localization. In a similar vein, PTAM selects keyframes and applies BA in a
fixed size window, around the last keyframe incorporated, to optimize the metric map
and the camera trajectory. Then, once the local optimization is performed, a low pri-
ority global BA is run to improve the map consistency. This approach is extended
in [Holmes et al., 2009] by combining it with relative bundle adjustment (RBA) [Sib-
ley et al., 2009], allowing fixed-time, consistent exploration. An improvement of the
latter to exploit the problem’ sparse structure was recently presented by [Blanco et al.,
2013].

The work of [Strasdat et al., 2011] which is also related to RBA, proposes a
double window optimization: a first window as in PTAM and a second one includ-
ing the periphery of the first to improve consistency by optimizing a pose-graph of
keyframes. Despite the impressive results obtained, such unique map solution has
intrinsic limitations for managing maps of real large environments. To prevent this
limitation, we propose a topological arrangement of the map into local metric maps.

4.1.2 Contribution

In this chapter we present a mapping strategy where the metric map is dynamically
divided into regions with highly connected observations, resulting in a topological
structure which permits the efficient augmentation and optimization of the map. With
such map division, the current submap always contains the most relevant metric infor-
mation about the current robot location, which is useful to improve the efficiency of
SLAM. This hybrid mapping solution has been integrated with a monocular SLAM
system to demonstrate the advantages of our approach. This strategy can be applied
to other types of SLAM as it is demonstrated in the next chapter, where it is applied
to an omnidirectional RGB-D SLAM approach.

Subsequently, we describe our metric-topological mapping approach and the map
partitioning procedure (section 4.2) and show how it is combined with the monocular
SLAM system of PTAM (section 4.3). The experiments and their results are presented
next (section 4.4), and finally, we expose our conclusions from these results.
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4.2 Hybrid metric-topological mapping
approach

Splitting a map into locally consistent metric representations and globally coherent
regions provides some relevant advantages for SLAM. Next, we explain the benefits
of such map structure (subsection 4.2.1), and describe our proposal to obtain such
metric-topological arrangement of the map (subsection 4.2.2). In order to be con-
sistent with the experiments in this chapter, the next subsections tackle specifically
SLAM based on bundle adjustment, and for a mapping approach based on keyframes
and point features. However, both can be easily generalized to be applied to other
types of SLAM approaches, like e.g. pose-graph SLAM or EKF-SLAM, and for other
kinds of maps, e.g. PbMaps.

4.2.1 SLAM Improvements through hybrid mapping

The advantages of applying a coherent map partition in SLAM are diverse: a) all the
metric data in each submap (which may include the keyframe poses, landmark posi-
tions, point clouds, etc.) can be referred to a local coordinate system to reduce error
accumulation and to avoid numerical instability; b) localization can be achieved more
efficiently since only those map features in the nearer regions are used to estimate the
pose of the robot; and c) this map structure permits to approximate the global map
optimization by the individual optimization of the different submaps, thus reducing
the computational cost of this process. This last advantage is of special relevance due
to the demanding nature of map optimization. For bundle adjustment, its complexity
ranges from linear to cubic in the number of keyframes depending on the particu-
lar structure of the problem [Konolige, 2010]. Let us now explain the details of this
approximation for BA global optimization.

Having a map of n landmarks obtained from m keyframes, bundle adjustment can
be expressed as

min
T j ,pi

n

∑
i=1

m

∑
j=1

vi j d(Q(T j, pi), xi j)
2 (4.1)

where

• d(x,x′) denotes the Euclidean distance between the image points represented
by vectors x and x′,

• T j is the pose of camera at keyframe j and pi the position of landmark i,

• Q(T j, pi) is the predicted projection of landmark i on the image associated to
keyframe j,

• xi j represents the observation of the i-th 3D landmark by keyframe j, and

• vi j stands for a binary variable that equals 1 if landmark i is visible in keyframe
j and 0 otherwise.
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Let’s now consider that the map is divided into N submaps, each submap, say k,
containing mk keyframes and nk landmarks, with k = {1, . . . ,N}. Then, (4.1) can be
rewritten as

min
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l
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nk
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i ), xkl

i j)
2

)
(4.2)

where the combination of subscript i and superscript k refers to the i-th landmark of
the k-th submap (e.g., pk

i ), and similarly l over j refers to the j-th keyframe of the l-th
submap (e.g., Tl

j). Taking into account the observations shared between submaps, this
expression can be written as
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(4.3)
where the term A stands for the reprojection error of those landmarks observed from
keyframes of different submaps and the term B corresponds to the reprojection error
of those landmarks observed from keyframes within the same submap.

If we are able to divide the map in such a way that the different submaps have
few common observations, and assuming that the reprojection errors are independent
of the map division, then A becomes negligible with respect to B. Thus, the global
optimization can be approximated by

N

∑
k=1

(
min
Tk

j ,p
k
i

nk

∑
i=1

mk

∑
j=1

vi j d(Q(T j, pi), xi j)
2

)
(4.4)

As stated previously, the reduction in complexity is a direct consequence of using
submaps. Such a reduction comes from the approximation of the full map optimiza-
tion by the optimization of each submap independently, which leads to a significant
reduction of computational burden. In fact, this approximation is equivalent to the
original expression (4.1) when there are no connections between the submaps.

4.2.2 Map partitioning method

The approach proposed here to divide the map into coherent regions consists of
grouping together those keyframes that observe the same features from the environ-
ment. To that effect, we consider the map as a graph whose nodes represent keyframes
and the weight of the arcs are a measure of the common observations between them.
There are two critical issues in this partitioning approach: first, the computation of the
arc weights; and second, the criterion adopted to perform the partition itself. As for
the first, the arc weights are assigned according to the Sensed-Space-Overlap (SSO)
following the work of [Blanco et al., 2006], which is particularized here for landmark
observations. This simple but effective measure represents the information shared
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Figure 4.1: a) Common observations between two keyframes. This is used to calculate the
Sensed Space Overlap (SSO) (see equation 4.5). b) Graph-representation of the map where
each node represents a keyframe and the arcs are weighed with the SSO calculated between
keyframes (thicker arcs mean higher SSO). c) Example of SSO matrix, in which the brightness
of the element i j represents the SSO between the keyframes i and j.

by two keyframes. It is calculated as the relation between the number of common
landmark observations divided by the total number of landmarks observed in both
keyframes (see figure 4.1.a). This is expressed as

SSO(k fA,k fB) =
∑vA

i · vB
i

∑vA
i +∑vB

i −∑vA
i · vB

i
(4.5)

where vA
i and vB

i , similarly to the definitions of the previous section, are binary vari-
ables that equal 1 if landmark i is observed in the keyframes k fA and k fB, respec-
tively. We assume that the ratio between outliers and inliers is very low, so that the
computed SSO is very accurate. This situation applies to the monocular SLAM sys-
tem employed in our experiments and to other registration frameworks in SLAM like
the PbMap registration, which is employed in the next chapter.
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Regarding the criterion for partitioning the graph, we follow previous works [Ziv-
kovic et al., 2005; Blanco et al., 2008; Rogers and Christensen, 2009] that apply
the minimum normalized-cut (min-Ncut), originally introduced by [Shi and Malik,
2000]. The min-Ncut has the desirable property of generating balanced clusters of
highly interconnected nodes, in this case clusters of keyframes that cover the same
part of the environment. Figure 4.1 illustrates this concept, where figure 4.1.a shows
the common observations in a pair of keyframes whose arc is calculated through the
SSO (eq. 4.5), and figure 4.1.b shows a map division into three submaps as a result of
applying min-Ncut. Notice that the pairs of keyframes with higher SSO (thicker arcs)
are grouped together. Figure 4.1.c shows the symmetrical SSO matrix corresponding
to a different, larger map, where the keyframes are arranged according the min-Ncut
to give rise to three groups of keyframes or submaps (matrix blocks).

It is important to notice that, in order to guarantee a scalable system when apply-
ing map partitioning in SLAM, the size of the submaps (i.e. number of keyframes)
must be kept bounded. This requirement is not demonstrated mathematically here,
but it is intuitive to see that as the camera explores new parts of the scene, the new
keyframes will have low SSO values (if any) with distant ones in the map. Therefore,
the min-NCut will produce new partitions when the system explores unobserved re-
gions of the environment. This can be more clearly understood with the following
example: let’s consider the case where there are features that are always observed
(e.g. the horizon when travelling by train, or when zooming in the scene, or travers-
ing a corridor with the camera pointing in the movement direction) as new keyframes
are selected, they will introduce new features and therefore they will contribute to
reduce the minimum normalized-cut, resulting in the eventual partition of the map.
The last two examples represent another advantage of our partition method, which
produces natural multi-scale maps when the camera zooms. This insight is supported
by all the experiments we have carried out during this work.

4.3 Metric-topological monocular SLAM

This section outlines the combination of our partition procedure and Parallel Tracking
and Mapping (PTAM) [Klein and Murray, 2007]. PTAM is a monocular SLAM algo-
rithm which performs online BA on keyframes, separating the tracking and mapping
stages in two different threads to permit efficient real-time performance. This tech-
nique requires an initial map before it starts working automatically. Such initial map
is acquired with a Structure from Motion procedure that involves user intervention to
select two views with sufficient parallax. Once the initial map has been created, the
system analyses the images retrieved by the camera to self-localize in the map, while
the map is continuously optimized and augmented with new keyframes and land-
marks. Such keyframes are selected according to some simple heuristics (see [Klein
and Murray, 2007] for more details), and new landmarks are extracted by matching
point features between each new keyframe and its nearest keyframe in the map ap-
plying epipolar restrictions.
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Figure 4.2: Keyframe selection heuristics. a) PTAM’s separation condition. b) and c) Keyframe
acceptance and rejection heuristics, respectively, for large scale mapping. The thresholds used
in our experiments for accept_k f and re ject_k f are 0.2 and 0.7 respectively.

4.3.1 Keyframes selection in large environments

The keyframe selection criterion becomes an important aspect when PTAM is em-
ployed to build maps of large spaces. PTAM was designed for small environments
(e.g. an office), where it works adequately with a hand-held camera which is waved
sideways. PTAM employs a heuristic rule to select a new keyframe when there is a
minimum separation between the current frame and the nearest keyframe in the map
(i.e. Euclidean distance divided by the mean depth of the scene). This condition se-
lects valid keyframes when the camera is moved sideways. But unlike in PTAM, we
wish to explore big scenes and to construct large maps without being restricted to
move sideways. Therefore, we have adapted this heuristic to select a keyframe when
it provides useful information for mapping, by adding two more restrictions to the
previous one for camera movement. Consequently, the current frame (CF) is selected
as a new keyframe when:

• There exists a nearby keyframe which meets PTAM’s separation condition with
CF and which shares some information about the scene (SSO > accept_k f ).

• There is not a nearby keyframe which does not meet PTAM’s separation con-
dition with CF and which shares much information about the scene
(SSO > re ject_k f ).

Figure 4.2 shows the adapted heuristics to select keyframes in large scale. PTAM’s
separation condition is shown in figure 4.2.a, where a keyframe is accepted when the
Euclidean distance to the nearest keyframe divided by the mean depth of the scene is
over some defined threshold. Figure 4.2.b shows the new acceptance condition, which
selects the current frame if there exist at least one keyframe that fulfills PTAM’s sep-
aration and whose SSO > accept_k f (KF1-CF). Figure 4.2.c shows the rejection con-
dition, which rejects the current frame if there exist at least one keyframe that does



110 Chapter 4. Hybrid metric-topological mapping

not fulfil PTAM’s separation and whose SSO > re ject_k f (KF2-CF). These thresh-
olds are selected heuristically after a few quick tests looking for robust localization
with a minimum number of keyframes using a hand-held camera. We observe that
the values accept_k f = 0.2 and re ject_k f = 0.7 produce good results in such sense.
This matter is not further investigated here since it is out of the scope of this research.

So, the acceptance condition prevents taking a new keyframe which shares little or
no information with the map, while the rejection condition avoids selecting keyframes
that are too similar to those already in the map. Hence, the combination of these
two conditions permits selecting keyframes that provide new information to the map
relaxing the movement constraints for nimble exploration of the scene.
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Algorithm 2 Map Partitioning

M and KF are a submap and a keyframe respectively. SSO_M is the matrix con-
taining the SSO values between all pairs of keyframes in the neighbourhood V .
The current_map is the submap being tracked. num_KF is a keyframes counter
and N_part is a parameter to control when the partition is to be reevaluated. A
keyframe’s match_map is the submap where it will be added, and a keyframe’s
match_KF is the keyframe used to find point correspondences.

After new keyframe new_KF is selected

1: num_KF ++
2: Select match_map and match_KF
3: if match_map ! = current_map then
4: num_KF = 0
5: end
6: Extract new map-points
7: Add a new row and a new column to SSO_M
8: for all submaps Mi ∈V do
9: for all keyframes KFj of Mi do

10: SSO_M← SSO(new_KF,KFj)
11: end
12: end
13: if (num_KF % N_part) == 0 then
14: Evaluate partition
15: if partition is modified then
16: Lock tracking thread
17: for all submaps Mi ∈V do
18: Restructure Mi
19: end
20: Unlock tracking thread
21: Update SSO_M
22: end
23: end
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Figure 4.3: Tracking and mapping threads of PTAM. Blue boxes correspond to the embedded
stages to perform the map partitioning.

4.3.2 Combination of map partitioning and PTAM

A scheme of the proposed partitioning method interacting with PTAM is depicted
in figure 4.3. Our submapping procedure takes action in both of PTAM threads. In
the tracking thread, it selects the current submap and the nearest keyframe to the
estimated pose after a new frame is analysed. In the mapping thread, after a new
keyframe is selected and new landmarks are detected in it, the SSO is evaluated with
respect to all the keyframes of the neighbourhood. Such neighbourhood includes all
the submaps directly connected to the current submap (see figure 4.4).

The partitioning procedure comes into play after the SSO has been updated, then,
the min-Ncut is evaluated, and if it results in a different partition, the map is rear-
ranged. This procedure is described in algorithm 2. This partitioning method is ap-
plied dynamically while the map is built and may create new submaps as well as
merge existing submaps to maintain the division coherency by grouping keyframes
with high overlap. The result is a metric-topological map, where two different topo-
logical areas will be connected by a rigid transformation if there are common obser-
vations between them.

The partitioning process, including SSO computation, min-NCut evaluation and
map rearrangement depends on the number of keyframes and landmarks in the neigh-
bourhood, taking up to 100 ms in our experiments, which is a short time in compari-
son with the map optimization stage through BA.
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Figure 4.4: Topological representation of the map, showing the neighbourhood of a reference
submap.

Figure 4.5: Experimental set up: laptop with attached camera.

4.4 Experiments

In this section we present some experiments which show the advantages, in terms
of efficiency and scalability, of using the proposed metric-topological arrangement
of the map instead of a single metric map. The experiments have been carried out
using a Philips SPC640NC webcam, connected by USB to a linux-based laptop with
an Intel Core2 Duo 2.4 GHz processor, 2Gb of memory and a nVidia GeForce-9400
graphics card. The camera intrinsic parameters were calibrated using the methodol-
ogy described in section 2.2.1. Figure 4.5 shows the set up of our monocular SLAM
system.

A first experiment is aimed to illustrate the increase of efficiency in localization
(tracking of the camera’s pose). For that, we compare the time needed to reproject



114 Chapter 4. Hybrid metric-topological mapping

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3

4

5

6

Map projection time

Number of Map Points

T
im

e
(m

s
)

Submapping

Single Map

Figure 4.6: Map projection time for localization with and without map partitioning.

map points into the current frame with and without partitioning as the map grows.
Both tests have been performed in the same environment, building maps composed
of about 45K points and 1K keyframes, distributed in 52 submaps for the partition-
ing case. Figure 4.6 shows that the time with a unique map grows linearly with the
number of map points, whereas with the metric-topological submapping this time is
bounded since only those points in local maps close to the camera are evaluated. This
improvement in efficiency becomes more evident when the map grows non-stop (note
that this process is performed with each new frame captured by the camera, at 30 Hz).

The goal of the second experiment is to quantify the efficiency in the global opti-
mization of the map with our submapping approximation. For that, we have run BA
offline after every new keyframe is selected from a recorded video (that is, sequential
SfM), measuring the times of each BA completion with and without partitioning. At
the end of these tests, the maps created were composed of about 22K points and 400
keyframes, distributed in 9 submaps for the partitioning case. In order to compare
both alternatives in the same conditions, we have included the time of partition man-
agement in the BA time for the partitioning test. Figure 4.7 shows the computing time
of the optimization vs. the number of keyframes of the whole map for both cases. As
expected, for the case of a single metric map, the computational cost follows an in-
creasing polynomial trend with the number of keyframes. Conversely, when applying
hybrid mapping, the computational burden is bounded since the BA is applied only
on the current submap. For this case, we can observe some abrupt changes in the cost
which are produced when the reference submap (the one where the system is local-
ized) switches to a neighbour of different size. Figures 4.8.a and 4.8.b show the maps
built with both alternatives (different colors represent different submaps in 4.8.b). We
can verify visually their high similarity, and their good alignment, as a result of the
continuous optimization previous to the map partition.
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Additionally, we are interested in comparing the accuracy of the generated met-
ric map. Due to the lack of a reliable metric to evaluate the map’s quality, we have
compared visually the different maps considering as ground truth the map obtained
offline in the previous experiment (figure 4.8.a), which is the most accurate we can
get. In the map obtained with PTAM (figure 4.8.c), we can appreciate some regions
with depth errors and many outliers (e.g. landmarks detected behind physical walls).
These inconsistencies appear as a consequence of the premature interruption of global
BA that happens when a new keyframe is selected, which leads to data association
errors and the subsequent loss of accuracy with the map size. On the contrary, the
map obtained with our approach (figure 4.8.d) presents no inconsistencies and con-
siderably fewer outliers than the unique map solution (figure 4.8.c). This results from
the higher efficiency of the submap local optimization, which optimizes regions with
highly correlated observations to produce locally accurate submaps.

The results shown in this section have been supported in several tests performed
under different conditions: exploring different rooms, re-visiting previous maps, travers-
ing a corridor, zooming to get more detail of the scene, etc. The reader may refer to
http://youtu.be/-zK05EcOjX4 for a video that illustrates the operation of our
submapping approach with PTAM in different environments.

4.5 Discussion

This chapter presents an online metric-topological mapping technique which main-
tains a structure of local metric maps by grouping highly connected observations.
Such local maps are obtained from graph cut, by grouping co-visible observations.
This hybrid metric-topological structure improves the scalability of SLAM in two
aspects: first, the system rules out unnecessary metric information to perform local-
ization more efficiently; and second, it permits to approximate the global map op-

http://youtu.be/-zK05EcOjX4
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Figure 4.8: Top view of maps generated in our experiments. All the maps are composed of
more than 400 keyframes and 22.000 landmarks. The different colors in b) and d) represent
different submaps.

timization by a local optimization to reduce computational cost while maintaining
the map consistency. Experimental results have demonstrated the potential of our ap-
proach to obtain efficient map representations in large environments, permitting a
monocular SLAM system designed for small environments to operate in large scale.
Furthermore, the topological arrangement of the map is useful for other tasks, as
loop closure, global localization or navigation. A possible line of future work after
this thesis may include exploiting the topological structure of the proposed mapping
technique for loop closure and relocalization.



Chapter 5
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Abstract

Simultaneous Localization and Mapping (SLAM) is a central prob-
lem for autonomous mobile robotics. It requires building a map from
the sensor measurements at the same time that the robot is localized
in such map. This chapter presents a new indoor SLAM solution em-
ploying an omnidirectional RGB-D device. The solution presented
here is based on a hybrid metric-topological mapping approach
consisting of a graph where the nodes are keyframes, correspond-
ing to the omnidirectional (or spherical) RGB-D images, and the
arcs represent the relative poses of pairs of keyframes. Each node
is described through a plane-based map (PbMap), and localization
is performed through PbMap registration. The map is optimized in
a pose-graph framework applying dense pixelwise matching of the
keyframes. This hybrid map is also structured in a second topologi-
cal layer where closely related keyframes are clustered. Such higher
level organization permits efficient re-localization and loop closure
for optimizing the global consistency of the map.

117
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5.1 Introduction

Omnidirectional images are traditionally defined as those images whose field of view
(FOV) comprises 360 ◦ in the horizontal plane. They are also referred to as spherical
images [Meilland et al., 2010] since they can be warped on a sphere covering a large
area (in this chapter we use these two terms with no distinction). Such images have
some important advantages in computer vision and robotics, since problems as optical
flow, or feature selection and matching are better conditioned. Furthermore, spherical
vision provides a natural decoupling between rotation and translation, which is use-
ful for localization in mobile robotics. These advantages have already been exploited
during the last decades for scene modelling [Micušık et al., 2003], vision-based navi-
gation [Gaspar et al., 2000], robot localization [Tamimi et al., 2006; Menegatti et al.,
2006; Meilland et al., 2011], visual odometry [Scaramuzza and Siegwart, 2008],
place recognition [Ulrich and Nourbakhsh, 2000; Jogan and Leonardis, 2000], and
SLAM [Kim and Chung, 2003; Rituerto et al., 2010].

The availability of depth images is much more recent than for intensity ones
(RGB) due to the latter development of dense depth perception. One solution for ob-
taining spherical depth images is omnidirectional LIDAR, as Velodyne [Glennie and
Lichti, 2010]. However, the expensive price of this sensor (about $75000) prevents
more extended applicability. A different strategy to obtain spherical RGB-D images
is by using a rig of RGB cameras [Meilland et al., 2010], where the depth is obtained
from dense stereo matching [Hirschmuller, 2005]. In such case, this omnidirectional
RGB-D device allows to build realistic representations of the world, permitting also
accurate localization through dense image alignment [Meilland et al., 2011]. How-
ever, the need to construct the RGB-D spheres offline puts an important limitation for
its application in SLAM.

In this thesis we propose to use a rig of RGB-D sensors to obtain omnidirec-
tional intensity and depth images at video frame rate (30 Hz). This approach presents
some advantages with respect to the above ones like real-time acquisition, easy cal-
ibration and lower price (around $1800). On the other hand, the approach presented
here is only valid for indoor environments. Outdoor environments could nonetheless
be treated given that the depth can be obtained and that the scene contains planar
surfaces. Regarding the first aspect, the main drawbacks of the RGB-D sensors used
here is that they cannot compute the depth with direct sunlight and that they have a
short useful range. These problems will likely be alleviated with the future versions
of these sensors, but by now, they can only be avoided using more expensive sensors
like Velodyne. Regarding the lack of planar structure, our approach can still work
thanks to the pixelwise registration, however, the frame rate will drop in such case as
this technique is considerably slower than PbMap registration. This sensor set-up is
intended for quick scene reconstruction and for the creation of hybrid maps (metric-
topological-semantic) for autonomous navigation. In this chapter it is used for SLAM
employing the mapping approaches introduced in previous chapters of this thesis,
to allow efficient operation through a compact and descriptive map. Concretely, the
localization procedure is based on plane-based map (PbMap) registration, where a
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PbMap descriptor is computed online for each omnidirectional image. The map con-
sists of a set of keyframes which are selected when they provide new information
about the scene, either when they observe an unexplored place or when the scene
has changed considerably with respect to the previous observation. We perform some
preliminary experiments in office and home environments confirming that despite the
big volume of data acquired by the sensor, SLAM can still perform in real-time.

5.1.1 Related works

A variety of SLAM approaches have been presented for different sensors and condi-
tions, a good introduction on these methods is given in [Durrant-Whyte and Bailey,
2006] and [Bailey and Durrant-Whyte, 2006]. In this chapter we focus on omnidi-
rectional RGB-D SLAM, which has its own particularities with its pros and cons.
Visual SLAM from omnidirectional cameras has already been investigated following
the approaches based on the Extended Kalman Filter [Rituerto et al., 2010], or pure
topological SLAM [Goedemé et al., 2007]. Previously, this source of data has been
used for visual odometry with perspective omnidirectional vision [Tardif et al., 2008]
and with a catadioptric camera [Scaramuzza and Siegwart, 2008]. For the latter, loop
closure was also proposed in [Scaramuzza et al., 2010]. Topological mapping has
been addressed with omnidirectional cameras like in [Menegatti et al., 2002] where
the authors employ a spatially semantic hierarchy. These images have also advantages
for semantic inference and image classification [Oliva and Torralba, 2006], [Rituerto
et al., 2012].

A SLAM system only from omnidirectional depth images acquired with Velo-
dyne was proposed by [Moosmann and Stiller, 2011]. Their Velodyne SLAM is based
on Iterative Closest Point (ICP) registration [Chen and Medioni, 1992] which is per-
formed on planar surfaces characterized by low uncertainty. This solution achieves
nice point cloud representations with good global consistency over long trajectories
in outdoor environments. Despite the registration stage is focused on planar surfaces,
the compactness of such features is not exploited here where ICP is still performed
using a classical pointwise cost function. As a result this is only useful with low frame
rates or for offline mapping. Similarly to this work, we make use of planar patches
for registration of RGB-D images, but we employ a compact description of them
which abstracts from the 3D points (pixels). This strategy allows to perform faster
inter-frame registration in real-time (30 Hz). Also, our technique does not require any
initial estimation and furthermore, it can register frames further apart, so that it can
be applied for re-localization and loop closure detection.

In the context of omnidirectional RGB-D data, probably the first mapping system
to create large models is that of [Meilland et al., 2010], which is intended for urban
autonomous navigation. This work was extended in [Meilland et al., 2011] to create
dense representations of large environments which are used later for robot localization
with a regular monocular camera. Recently, another omnidirectional RGB-D sensor
rig, very similar to the one presented in this thesis, was built by [Schwarz and Behnke,
2014] to perform navigation in rough terrain. Besides mapping and navigation, om-
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nidirectional RGB-D images provide very rich information for SLAM. However, it
still constitutes an open problem where the main question is how to manage the big
volume of data captured by the sensors.

The approach to SLAM presented here is based on PbMaps, which are used as a
descriptor to solve quickly the registration of omnidirectional RGB-D frames. Other
SLAM approaches can be found in the literature based on planar patch features ex-
tracted from a rotating laser scanner [Weingarten and Siegwart, 2006; Pathak et al.,
2010a]. These employ a probabilistic framework to build a map of planar patches
which is updated at a low frame rate limited by the frequency of the sensor. The
solution proposed here differs from those in a few aspects, mainly in the mapping ap-
proach, which is based on a nested structure of keyframes with different topological
levels to allow for large scale operation with efficient re-localization and loop-closure.
Also, our localization strategy takes into account the spatial relations of neighbouring
planes for higher robustness, and finally, the depth and intensity information is ex-
ploited through pixelwise registration in a back-end process to refine the keyframe’s
poses through pose-graph optimization.

5.1.2 Contribution

We present a new sensor rig to capture omnidirectional RGB-D images at video rate
(30 Hz), and a new SLAM system employing such omnidirectional RGB-D data. This
novel device has important prospective applications for scene reconstruction and mo-
bile robotics, including SLAM. The SLAM approach proposed here is based on hy-
brid metric-topological mapping, where localization is achieved by PbMap registra-
tion. Its main advantage comes from the rapid online registration of spherical RGB-D
images using a compact plane-based description of the scene. The map is organized
in a metric-topological structure of keyframes which is rearranged dynamically as
new observations are available. This map structure permits to perform efficient re-
localization and loop closure with sub-linear computation time on the map size. Also,
the global consistency of the map is improved through pose-graph optimization, for
which the connections between keyframes are refined by dense RGB-D alignment.
This dense alignment method is a modified version of a previous method to take into
account occlusions and thus, be able to register frames that are further apart.

Next, we present the details of our sensor set-up and the acquisition of spherical
images, analysing the pros and cons between the different alternatives to obtain spher-
ical RGB-D images. Then, we describe our SLAM approach (section 5.3), where
we detail: the localization technique based on fast registration of PbMaps and dense
RGB-D alignment; the mapping process, which is based on a hierarchical structure
of keyframes; and the loop closure approach. Some preliminary experiments are pre-
sented next within home and office environments (section 5.4). Finally, we expose the
conclusions of this work and advance some lines of future research.
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Figure 5.1: Omnidirectional RGB-D camera rig.

5.2 Omnidirectional RGB-D device

5.2.1 Sensor set-up

Our device for omnidirectional RGB-D acquisition is composed of 8 Asus Xtion
Pro Live (Asus XPL) sensors, which are mounted vertically in a radial configuration
at an angle of 45◦ as shown in figure 5.1. An example of the images captured by
this sensor is shown in figure 5.2. This device is connected to a computer through
two PCIe cards with 4 USB ports each. This set-up permits to capture 360 ◦ field of
view in the horizontal plane with no overlap among sensors, avoiding problems of
interference in the infrared images (the vertical FOV of the Asus XPL sensor is 45◦).
The vertical FOV of our device correspond to the horizontal FOV of Asus XPL, being
63 ◦ and its maximum resolution is 3840 x 640 (2.46 Mpx). The whole system works
at 30 Hz without synchronization between the different sensors. The latter is not an
issue here since the system is mounted on a robot moving at a maximum speed of 1
m/s, what permits to approximate the reconstructed spherical images considering that
the 8 pairs of RGB and depth images are taken simultaneously.

Previous alternatives to capture omnidirectional depth or RGB-D images include
3D LIDAR (like e.g. Velodyne), and multicamera rigs. Table 5.1 shows a compari-
son between these options and the device proposed here. Regarding the 3D LIDAR,
it still constitutes a very expensive option, so that its use has been mainly limited to
complex projects in the field of autonomous cars. This sensor can provide images
of about 1 Mpx at 15 Hz with a vertical FOV (26.8 ◦). This reduced vertical FOV
is more amenable for outdoor applications. Also, in order to obtain RGB-D images,
the radiometric information must be captured with a separate sensor, requiring cal-
ibration between both [Mirzaei et al., 2012]. A different option to obtain spherical
RGB-D images through a rig of RGB cameras was presented in [Meilland et al.,
2010] which reconstructs the scene based on dense stereo matching. In this way, the
corresponding intensity and depth images are available with no need of further geo-
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(a)

(b)

Figure 5.2: Images captured by the omnidirectional RGB-D sensor: a) RGB and b) depth.

metric corrections. However, this technique requires well textured scenes to produce
consistent depth images, which besides need to be computed offline. Here, the main
advantage of our RGB-D sensor is the combination of a more affordable price, with
big field of view and a high frequency of acquisition.
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Table 5.1: Characteristics of different spherical depth image devices.
Acquisition LIDAR Stereo-rig RGB-D-rig
Information Depth RGB-D RGB-D
Price 75000$ 7500$ 1800$
Frequency 5-15 Hz 30-60 Hz 30-60 Hz
Field of view 26.8 ◦ 125 ◦ 63 ◦

Range 70 m 60 m 5 m
Accuracy 2 cm 2 cm / m 1 cm / m
Outdoor Yes Yes No
Indoor - Yes Yes

5.2.2 Calibration

The proposed rig of RGB-D sensors needs to be calibrated in order to put the data
in the same reference frame. For that, both intrinsic and extrinsic parameters must be
estimated. First, the intrinsic parameters of the 8 RGB cameras are estimated indepen-
dently using a chequerboard pattern, following section 2.2.1. Then, an intrinsic model
is estimated for each depth camera to reduce the bias of depth measurements [Teich-
man et al., 2013] (see section 2.2.2). A combined methodology to calibrate each
sensor, including intrinsic parameters of RGB and depth cameras together with the
extrinsic parameters between them1 was not applied here because this type of solution
does not take into account the bias of the depth measurements. Besides, we found that
the extrinsic parameters provided by the sensor manufacturer are good enough for our
application. Once the intrinsic calibration is done, the extrinsic calibration between
the 8 RGB-D sensors is obtained applying the method proposed in section 2.3.2.

5.2.3 Spherical representation

The chosen spherical representation has the advantage of modelling the image iso-
metrically, i.e. the same solid angle is assigned to each pixel. This permits to apply
directly some operations, like point cloud reconstruction, photoconsistency alignment
or image subsampling. To build the images, the sphere S2 is sampled according to the
resolution of our device, so that the equator (θ direction) contains 3840 divisions in
the range [0,π], and the (φ direction) is sampled keeping the same angular proportion,
so that it contains 1920 divisions in the range [−π/2,π/2]. Actually, since the sensor
does not observe the full range in φ , we only store the useful range which corresponds
to a vertical FOV of in the range [−π/6,π/6].

For spherical warping, a virtual sphere with the above sampling and radius ρ = 1
(unit sphere) is used to project the sample points into image coordinates (u,v), (see

1www.mrpt.org/tutorials/programming/miscellaneous/kinect-calibration/
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Figure 5.3: Spherical image construction

Figure 5.4: Omnidirectional RGB and depth images acquired by our RGB-D camera rig.

figure 5.3). For that, the extrinsic calibration of each sensor is taken into account.
Thus, a point p in S2 is parametrized in R3 as p = [x,y,z]Tx

y
z

=

 ρ sin(φ)
ρ cos(φ) sin(θ)
ρ cos(φ) cos(θ)

 (5.1)

The point q= (u,v) on image coordinates is found by applying perspective projection
to p, through the homogeneous matrix M = K[R|t], where K ∈ R3x3 is the camera
projection model and, [R|t]∈ SE(3) is the relative position of the camera with respect
to the sphere reference frame (extrinsic calibration). Nearest neighbor interpolation is
used to assign the intensity and depth values to the respective spherical coordinates.
Figure 5.4 shows an example of the RGB and depth spherical images obtained from
this technique.

In order to obtain the point cloud from the spherical representation the equations
5.1 are applied, substituting ρ by the measured depth and the values of θ and φ by
their corresponding image location.
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5.3 SLAM approach

The SLAM approach presented here is based on a map of keyframes correspond-
ing to selected omnidirectional RGB-D images which are organized in a topological
structure of local submaps. The keyframes are described through a compact PbMap,
which is used for efficient localization and loop closure. Our SLAM solution can be
described through two main concurrent processes: a front-end localization process
which tracks the sensor pose from the streaming images, and a back-end process for
map construction and loop closure optimization. These two processes are illustrated
in figure 5.5, and are described separately below.

5.3.1 Localization

The tracking problem is addressed here by registering PbMaps that are extracted from
each omnidirectional RGB-D image. Figure 5.6(a) shows the point cloud built from
an omnidirectional RGB-D observation, with the coloured patches of its PbMap de-
scriptor superimposed in figure 5.6(b). The PbMap structure and its registration pro-
cedure were described in chapter 3. Differently from other works that register planar
patches like [Weingarten and Siegwart, 2006; Pathak et al., 2010a], our approach
takes into account the geometric relationships between the different planes in the
scene, making this compact descriptor much more reliable, and thus, making it suit-
able for loop closure and re-localization. This registration technique also provides the

Figure 5.5: Block scheme of our keyframe based metric-topological SLAM using an omnidi-
rectional RGB-D sensor.
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(a) Point cloud obtained from a spherical RGB-D image

(b) Point cloud with segmented planes superimposed.

Figure 5.6: Point cloud visualization of the spherical image from fig. 4.
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covariance (uncertainty) of the relative pose between the frames registered, which is
useful to optimize the map through pose-graph optimization.

The whole process of localization is illustrated in the upper block of figure 5.5.
It starts when a new frame is acquired, by computing the PbMap descriptor for that
frame. Then, it is registered to the closest keyframe, for which a reference to that
keyframe is always kept in this process (during exploration this generally corresponds
to the last keyframe selected). This registration can result in three different outcomes
depending on some heuristic parameters: a) "good registration", when more than 70%
of the scene planes are matched; b) "weak registration" when the number of matched
planes is between 70% and 30%; and c) "insufficient registration", when less than
30% of the planes are matched. These thresholds were chosen heuristically after some
tests trying different values. Then, if the registration with the closest keyframe is not
good, this process is repeated sequentially until a "good registration" is achieved with
a keyframe of the current local map, in which case, the index of the closest keyframe is
updated. If the best localization is weak, then we can assume that the sensor explores
a new part of the scene and the current frame is selected as a new keyframe. Finally,
if registration is insufficient, a re-localization algorithm is launched that looks for the
current image in the whole map, starting from the nearest submaps to the last tracked
position.

The localization may also be refined by applying a dense alignment method based
on the consistency of both pairs of intensity and depth images, in a similar way as it
is described in [Gokhool et al., 2014]. This technique is more accurate than PbMap
registration, since it makes use of all the information in the RGB-D images, but on
the other hand it is considerably slower (about 2 orders of magnitude). Therefore,
this refinement is applied only to the keyframes to improve the registration with their
neighbour ones. This is carried out in the background inside the mapping process,
concretely in the block Connect keyframe, but it is described here since it is intrinsi-
cally related to localization.

This dense registration technique minimizes the error from two different metrics
that measure the differences between the reference image and the target one, where
the latter is warped according to the relative pose T (x) which is estimated iteratively.
The photoconsistency error function is given by

FI =
n

∑
i=1

ηHUB

(
I(w(T (x);P∗i ))− I∗(w(T (0);P∗i ))

)2
(5.2)

where I and I∗ are the target and reference images respectively, w(·) is the warping
function that projects a 3D point P∗i from the reference image onto the target sphere
according to the relative pose T (x) between them, where x is a minimal parametriza-
tion of the pose in the Lie algebra se(3) and the operator T (·) represents the expo-
nential map to SE(3) (see appendix B). Finally, ηHUB is a robust weighting function
given by Huber’s M-estimator [Huber, 1981]. This robust estimator contributes to
reduce the effect of outliers with large intensity differences, which may arise as a
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result of specular reflections for instance. On the other hand, the depth consistency
minimizes the cost

FD =
n

∑
i=1

ηHUB (D(w(T (x);P∗i ))−‖T (x)P∗i ‖)
2 (5.3)

where D is the depth source image and ‖·‖ is the L2-norm operator. This cost function
is equivalent to the formulation of point-to-plane ICP with projective lookup.

The optimization of such RGB-D image alignment is computationally demanding
because all the pixels have to be reprojected along several iterations of the method. In
order to speed-up the estimation, we only consider the salient pixels of both intensity
and depth images (i.e. pixels with high gradient on the image) since the rest of the
pixels provide little or no information. The resulting speed-up is directly related to
the proportion of pixels used, which in our case has been manually set to 10 %,
qualitatively producing similar registration results in our experiments.

The cost functions above have been used for registration of both: projective RGB-
D images like those captured by Kinect [Kerl et al., 2013b], and spherical RGB-
D images as in [Meilland et al., 2010]. The only difference between them lies in
the warping function which is specific for each case. In any case, the images to be
registered are supposed to be taken from very close positions, so that the possible
occlusions are neglected. This is not the case here, where keyframes which are further
apart are to be registered, so that the co-visibility of these should be enough to be
able to compute the alignment, but occlusions must be handled as they may introduce
important deviations in the registration. In order to cope with this situation, a depth-
buffer of the projected pixels (as in [Lieberknecht et al., 2011]) is employed here to
discard the occluded points from the sums above.

Both cost functions for intensity and depth consistency depend on the relative
pose x between the frames, but they have different scales. Several methods can be
found in the literature to weight these two functions. Here, we follow the work
of [Kerl et al., 2013a] to weight the intensity and depth errors within a probabilis-
tic approach depending on the error variances, which are assumed to be independent.
However, since both errors are considered to be independent, we employ different Hu-
ber estimators for each, instead of using a common bivariate weight as in [Kerl et al.,
2013a]. Thus, the resulting least squares problem corresponds to a robust maximum
likelihood estimation (see appendix A).

5.3.2 Mapping

The map creation process consists of building a network of keyframes described by
individual PbMaps, where each keyframe is connected to those keyframes near-by
with which relative localization is possible through PbMap registration. The map is
organized in a structure of local submaps which contain highly related keyframes.
These submaps are also connected themselves when there exist connections among
their keyframes. Figure 5.7 shows a representation of this structure, where we can see
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the two levels of topological information (local and global). This mapping strategy
is based on previous works focused on scalable mapping and navigation in complex
environments [Blanco, 2009].

The lower block of figure 5.5 depicts the different actions carried out by our
mapping approach. Thus, when a new keyframe is provided by the localization pro-
cess, the current local map is updated to include this keyframe, establishing also
the new connections with the registered keyframes in the current submap and its
one-connected submaps, for what dense RGB-D registration is also applied. Each
keyframe connection stores a relative pose in SE(3) and its 6× 6 covariance matrix
which are obtained from the registration stage, storing also a scalar which represents
the co-visibility of the pair of keyframes. Following [Blanco et al., 2006] we call this
value sensed-space-overlap (SSO), which we define as

SSO =
Ashared

Ashared +Adi f f
(5.4)

where Ashared represents the total area of the matched planar patches, and Adi f f rep-
resents the sum of the areas of the non-matched patches (for both measures we take
the average of the two PbMaps,). Thus, the SSO ∈ [0,1], where SSO = 1 when all
the planes in both PbMaps are matched, while SSO = 0 when the frames are not
registered (no keyframe connection). The SSO is used here to organize the map into
a higher level topological structure following the methodology presented in chapter
4. Thus, after a new keyframe is added to the map, the submap arrangement is re-
evaluated to maintain a structure of local maps containing highly related keyframes
(this may result in a larger, equal, or even smaller number of local maps depending
on the new keyframe connections). This process affects the current local map and its
first order neighbors, and it is performed very quickly since the map division strategy
is very fast (see chapter 4) and re-organizing the map only implies re-arranging the
keyframe indices.

The concept of sensed space overlap also permits to define what we call the most
representative keyframe of a local map. This keyframe corresponds to the one with
the highest index of shared information ISI, which is computed for each keyframe
as the sum of the SSO with all its connections. The ISI can be intuitively seen as
the connection score of a keyframe within a submap. For example, considering a
local map corresponding to a single room of a building, the highest ISI will generally
correspond to a keyframe in the center of the room which observes most of the planes
and with the minimum occlusions. Identifying the most representative keyframe has
two different advantages: it permits to summarize the information of the map with a
reduced number of keyframes, and as a consequence, problems like re-localization or
loop closure can be performed more efficiently by considering the most representative
keyframes first.

Each submap stores also its pose with respect to a global coordinate system, and
each keyframe stores its pose relative to the submap’s reference system. Such poses
allow to represent all the keyframes unequivocally in a common reference frame. This
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Figure 5.7: Hybrid map structure with two topological layers: a higher layer where each
node represents a local map of highly related keyframes, and a lower layer with a network
of keyframes. The most representative keyframe of each local map (the one with highest ISI)
is coloured in green.

is useful to build consistent metric maps, e.g. a single point cloud or PbMap combin-
ing the information of all keyframes into a global map (see figure 5.9). For that, the
poses of both the submaps and the keyframes are obtained from pose-graph optimiza-
tion of the global and local maps respectively, taking into account all its keyframe
connections and their covariances. This graph optimization is carried out using the
publicly available library g2o2 [Kummerle et al., 2011]. For that, every time a new
keyframe is added to the map, whether the topological structure is modified or not,
the local map is optimized to update the keyframe positions. Also, loop closure is
searched for with every new keyframe, and if it is found, the map division is rear-
ranged and the relative poses of the local maps are updated also through pose-graph
optimization similarly as it is done for the keyframe poses inside a local map. Such
loop closure algorithm is detailed separately in the next section.

5.3.3 Loop closure

Some loop closure approaches have been proposed in the literature which are spe-
cially suited for omnidirectional images, like [Chapoulie et al., 2011] which is based
on the well known bags of visual words, or [Oliva and Torralba, 2006] which is based
on the registration of a global image descriptor. By employing PbMap registration
also for loop closure, we reduce the computation burden with respect to the alterna-
tives above, while we maintain the coherence in our SLAM approach which relies
mainly on a geometric description and thus it can be applied also to range images.
Note however that our loop closure strategy can be combined with those above to
gain in robustness.

2www.openslam.org/g2o.html

www.openslam.org/g2o.html
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The loop closure search is carried out with every new keyframe by identifying
the most representative keyframes of the local maps which are nearer to it (excluding
the current local map and its first order neighbors which are constantly checked for
SLAM). In order to estimate the most likely locations for a loop closure, we com-
pute the relative pose between the current keyframe and each local map together with
its covariance (this is done through pose composition among the different reference
frames). Then, the ratio between the squared root of the maximum eigenvalue of the
covariance of the relative translation and the norm of such translation (i.e. the Eu-
clidean distance), provides a comparative measure of how likely is the current frame
to be near the local map being evaluated. Arranging such measures in decreasing or-
der provides the order in which the different local maps are checked for loop closure.
This strategy results in sublinear loop closure computation with respect to the map
size.

Once the search order has been established, loop closure is tackled in a similar
manner to the re-localization problem by registering the PbMap descriptor of the
current frame with others from different local maps. If a match is found (the loop is
closed), new keyframe connections are searched between the current local map and
the one with which the loop has been closed. Then, the pose-graph containing the
poses of the different local maps is optimized to include the new constraints of the
loop closure in the global map. This optimization is carried out in a similar way as
for the keyframes of a local map using g2o [Kummerle et al., 2011].

5.4 Experimental validation

This section presents some preliminary experiments to validate our SLAM system.
These experiments are carried out with a wheeled robot with planar movement (see
figure 5.8), though the SLAM approach is designed to work with 6 degrees of free-
dom. The robot has an on-board computer which performs all the computation with
an Intel i7 processor with 8 cores at 3.1 GHz and 8Gb of memory. In our experiments
we employ a reduced resolution of the omnidirectional RGB-D images with 960x160
pixels, since higher resolutions do not affect significantly the plane segmentation re-
sults and they have a higher computational cost. The depth images captured by the
sensor are corrected as explained in the section 2.2.2, such correction takes around 2
ms per omnidirectional image. Several sequences are taken exploring different home
and office environments, where the robot is remotely guided by a human at a maxi-
mum speed of 1 m/s.

5.4.1 Fast scene registration

The main feature of our SLAM system is the fast registration of omnidirectional
RGB-D images, which is used for camera tracking, re-localization, and keyframe se-
lection. In this section we present experimental results comparing the performance of
PbMab based registration with other registration approaches like ICP and dense in-
tensity and depth alignment. Our registration approach requires building the PbMap



132 Chapter 5. A SLAM system for omnidirectional RGB-D sensors

Figure 5.8: Robot with the omnidirectional RGB-D sensor.

descriptors from the spherical RGB-D images, which implies the segmentation of
planar surfaces from the images. Such segmentation is performed efficiently through
region growing (see chapter 3), being the most demanding task for registration. This
stage is also parallelized to exploit our multi-core processor to segment the planes of
the spherical image in less than 20 ms. PbMap matching requires much less compu-
tation, in the order of microseconds.

Furthermore, both ICP and dense alignment also need a previous preparation to
compute the spherical point cloud and the spherical images, respectively, before com-
puting the matching. Table 5.2 presents the average computation time of these three
methods for spherical RGB-D image registration, calculated from 1000 consecutive
registrations (odometry). For that, both ICP and dense alignment are performed us-
ing a pyramid of scales for robustness and efficiency. In this table, we can see how
the registration based on PbMap is two orders of magnitude faster than the other two
alternatives.

Table 5.2: Average RGB-D sphere registration performance of different methods (in seconds).
PbMap ICP Dense

PbMap construction (s) 0.019 - -
Sphere construction (s) - 0.010 0.093

Matching (s) 10−6 1.53 2.12
Total Registration (s) 0.019 1.54 2.22
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Besides the low computational burden, another important advantage of our reg-
istration technique with respect to classic approaches like ICP or dense alignment
is that we do not require any initial estimation. Thus, we can register images taken
further away, while ICP and dense alignment are limited to shorter distances without
a good initial estimation (i.e. considering the identity as the initial transformation).
This fact is also illustrated in table 5.3, which shows the average maximum Euclidean
distance between the registered frames of the previous sequence. For that, each frame
is registered with all the preceding frames until tracking is lost, selecting the last
registered frame as the furthest one. Also, our method is better suited to dynamic en-
vironments where humans or other elements are constantly moving, since the large
planar surfaces taken into account for registration are generally static. Home and of-
fice environments are a good example for that, where the humans change their pose,
and also the poses of some objects like chairs, but where the scene structure remains
unchanged.

Table 5.3: Average of the maximum distance for registration with different methods.
PbMap ICP Dense

Registration dist. (m) 3.4 0.39 0.43

The registration of RGB-D images through PbMap permits to perform odometry
estimation of the robot trajectory efficiently. This is done simply by registering the
current frame to the previous one (see the video at www.youtube.com/watch?v=
8hzj6qhqpaA). Figure 5.9 shows the trajectory followed by our sensor in one of our
exploration sequences in a home environment together with the point clouds from
each spherical image superimposed. The consistency of the resulting map indicates
that each sphere is registered correctly with respect to the previous one, though yet,
we can appreciate the drift in the trajectory which comes as a consequence of the open
loop approach. This qualitative experiment shows that despite the compact informa-
tion extracted for fast registration of the spherical images, the accuracy of registration
is still good for many applications.

5.4.2 Keyframe-based SLAM

The above results for fast registration are exploited here to perform SLAM based on a
multilayer metric-topological map of keyframes. The map is built concurrently while
the robot explores different environments, including home and office environments.
These experiments are basically a proof of concept for a new robust and efficient
SLAM solution from omnidirectional RGB-D data. To our knowledge, this is the
first SLAM system using such kind of data and thus, a comparative study cannot be
provided here.

The operation of our SLAM approach is shown with a video in www.sites.

google.com/site/efernandezmoral/projects/rgbd360, where we can see how
the map is built while the robot explores the scene, by adding new keyframes when

www.youtube.com/watch?v=8hzj6qhqpaA
www.youtube.com/watch?v=8hzj6qhqpaA
www.sites.google.com/site/efernandezmoral/projects/rgbd360
www.sites.google.com/site/efernandezmoral/projects/rgbd360
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Figure 5.9: Trajectory of the sensor in a home environment composed of different rooms (the
path is about 36 m).

they provide new information of the scene. A snapshot from this video is shown in
figure 5.10 showing the map as a set of superimposed point clouds extracted from
keyframe locations, which are shown with sphere objects. Such keyframes are con-
nected to other nearby keyframes with which they were registered, forming a network
which is optimized as a pose-graph. The spheres are shown with different colours rep-
resenting the different local maps. As we can see, the different local maps correspond
to meaningful areas of the environment (i.e. different rooms), making this represen-
tation suitable for topological navigation.

This representation is also well adapted to large scale SLAM operation since only
a local portion of the whole map is managed as the robot moves around the scene.
However, experiments on large scale are not shown here due to limitations in the
environment where we had access during this thesis (i.e. small buildings). Such a
work is left for some future research. From this proof of concept experiments we also
see that the whole map is highly consistent thanks to the loop-closure mechanism.

Another advantage of our approach that we corroborate in our experiments is the
suitability of the maps for variable illumination. This is a direct consequence of using
mainly geometric information extracted from depth images which do not depend on
the available light (with the exception of direct sunlight). If the proposed representa-
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tion is to be used for more complex tasks which may require the intensity information
(e.g. object recognition), the map can be easily adapted to take new keyframes when
the lighting is considerably different to the previous time when that area was mapped,
like during day and night.

Figure 5.10: Keyframe-map of an office environment. The spheres represent the location where
the keyframes were taken. The large spheres are the most representative keyframes of each local
map, where different colours are used to represent such local maps.

5.5 Discussion

A novel sensor set-up has been proposed here for online acquisition of spherical
RGB-D images. This approach has advantages over other alternatives used today
in terms of accuracy and real-time spherical image construction for indoor environ-
ments, which are specially interesting for mobile robotics. A calibration method for
such device is presented, which takes into account the bias of each sensor indepen-
dently. The proposed calibration method does not require any specific calibration
pattern, taking into account the planar structure from the scene to cope with the fact
that there is no overlapping between sensors. In order to demonstrate the potential of
this device, we show how these images can be registered in real-time by extracting
and matching planar surfaces.

The proposed map structure has several advantages with respect to previous ap-
proaches in the literature: first, the map stores complete information about the scene
in a compact fashion; second, it permits fast keyframe registration through the com-
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pact PbMap descriptors for localization and loop closure, while dense registration is
applied to refine the relative poses between keyframes; third, the map is maintained
as a pose-graph which is optimized locally when new keyframes are added, and glob-
ally when loop closure is detected; and finally, the topological structure can also be
used to define attributes of the scene like rooms, or to recognize places.

The next step in our future research is focused to dynamic SLAM in scenarios
that change constantly (e.g. presence of people moving, who also modify the objects
present in the environment). For that, we plan to extract semantic cues in the scene
that will be used for detecting changes in the scene, and so to update the existing map
when necessary.



Chapter 6

Conclusions

This thesis has addressed different problems related to the topic of localization and
mapping for mobile robotics. The research community has dedicated important ef-
fort to this topic and an extensive literature can be found around it. However, most
approaches have still important limitations, mainly to cope with large scale and dy-
namic environments, and to work in a wider range of conditions and scenarios. In
this context, several contributions have been presented in this thesis for calibrating
sensor rigs, for efficient and compact map representations, and for fast and robust
localization in such maps.

Localization and mapping in mobile robotics is often addressed using a combi-
nation of sensors, in which case, these must be calibrated to refer all the data to a
common frame of reference. The particular problem of calibrating a rig of range sen-
sors has been previously solved only for very particular conditions. In this thesis, we
have proposed a new methodology that permits to calibrate any combination of 2D
and 3D range sensors in arbitrary configurations from the observation of common
planar surfaces. This methodology is easy to apply, not requiring any special cali-
bration pattern, and it is applicable to different configurations of mobile robots and
autonomous cars.

We have also presented a new mapping approach based on planar surfaces which
can be easily segmented from range or RGB-D images. This plane-based map (PbMap)
is particularly well suited for indoor scenarios, and has the advantage of being a very
compact and still a descriptive representation which is useful to perform real-time
place recognition and loop closure. A fast localization approach has been proposed
to register contexts of planes by matching planar features taking into account their
geometric relationships. This solution performs significantly faster than previous ap-
proaches. Also, a hybrid mapping strategy has been presented to deal with large scale
SLAM and with navigation in complex environments. This approach organizes the
map into local maps with highly related observations, permitting the abstraction of
metric information unnecessary at the current robot location. For that, the map is dy-
namically organized in a metric-topological structure according to the sensor obser-
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vations. Efficient large scale SLAM operation has been demonstrated in monocular
SLAM.

Finally, a SLAM approach is presented for omnidirectional RGB-D data, inte-
grating several advances achieved along this thesis. A new device was conceived for
gathering this type of images at high frame rates (30 Hz) which combines several
structured-light sensors. This device has important advantages for navigation and
SLAM with respect to previous alternatives as: lower cost, large field of view, and
high observation frequency. This SLAM system is based on summarizing the rich
information gathered by the sensor in a compact sketch of planar surfaces (PbMap),
which is structured in the metric-topological mapping based on keyframes to per-
mit real time SLAM operation. Future work is envisaged for this new sensor and the
SLAM approach to adapt better to dynamic environments by integrating semantic
information about the scene.
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Appendix A

Maximum Likelihood

Estimation and Least

Squares

This appendix describes the theory of Maximum Likelihood Estimation (MLE) ap-
plied to problems where the observable data are modelled by a likelihood function
following a Gaussian distribution, and presents its solution by common least squares
optimization.

Maximum Likelihood Estimation

Maximum Likelihood Estimation refers to a method of estimating the parameters θ

of a statistical model given by a likelihood function on some observable outcome x.
Such likelihood function expresses the probability of a measured sample for some
given parameter values L (θ |x) = P(x|θ). When this probability follows a normal
distribution, which is a very common assumption in mobile robotics and computer
vision and is also employed along this thesis, the estimation problem coincides with
the solution of weighted least squares minimization. To arrive to this result, let’s con-
sider the following Gaussian distribution

P(x|θ) = 1√
(2π)k|Σ|

exp
(
−1

2
(x−µ)T

Σ
−1(x−µ)

)
(A.1)

defined by the mean µ (the unobservable true value of measured observation which
depends on the model parameters θ ) and the covariance Σ, where k is the dimension of
the observation x. In the general case where a series of measurements from x1, . . . ,xn
are available, the likelihood of the parameters is expressed as

P(x1, . . . ,xn | θ) =
n

∏
i=1

P(xi|θ) (A.2)

141



142 Chapter A. Maximum Likelihood Estimation and Least Squares

and thus, the maximum likelihood for the parameters θ̂ comes from

θ̂ = argmax
θ

n

∏
i=1

P(xi|θ) (A.3)

The result of this maximization is the same when applied to the log-likelihood

θ̂ = argmax
θ

(
log

n

∏
i=1

P(xi|θ)

)
(A.4)

= argmax
θ

n

∑
i=1

logP(xi|θ) (A.5)

= argmin
θ

n

∑
i=1

(x−µ)T
Σ
−1(x−µ) (A.6)

= argmin
θ

n

∑
i=1

rT
Λr (A.7)

which is equivalent to a weighted least squares problem, where the residual r = x−µ

and the weights are given by the information matrix Λ = Σ−1.

Least squares

This section details the optimization of the least squares form of the cost function
F(m), defined as the following quadratic form:

F(m) = r>Λr (A.8)

where r = r(m) is the vector of errors or residuals, a measure of the mismatch be-
tween the prediction and the observation, Λ stands for the information matrix, i.e. the
inverse of the covariance matrix, and m are the unknown parameters to estimate. The
information Λ is usually assumed to be independent on the parameters and the error
is a known function of them r(m).

The minimum of the above cost function is found by restricting that its Jacobian
must be zero

∂F (m)

∂m

∣∣∣∣
m̂
= 0 (A.9)

This problem has a closed form solution when the residuals are linear functions of m.
In the general case where the residuals do not depend linearly on the parameters this
process can be solved iteratively, providing for each iteration a small increment ∆m
of the current state towards the optimal value m̂.
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The cost function F(m) can be approximated by its second-order Taylor series
expansion F̂(m) in the vicinity of its actual state mk:

F(mk +∆m) ≈ F̂k (mk +∆m)

= F(mk)+
∂F
∂m

∣∣∣∣
m=mk︸ ︷︷ ︸

∇mF(mk)

∆m+
1
2

∆mT ∂ 2F
∂m∂mT

∣∣∣∣
m=mk︸ ︷︷ ︸

∇2
mF(mk)

∆m

= F(mk)+∇mF(mk)︸ ︷︷ ︸
gT

k

∆m+
1
2

∆mT
∇

2
mF(mk)︸ ︷︷ ︸

Hk

∆m

= F(mk)+gT
k ∆m+

1
2

∆mT Hk ∆m (A.10)

where we introduce the first and second-order derivatives of F(m), namely the gradi-
ent vector gk = ∇mF(m)> and the Hessian matrix Hk = ∇2

mF(mk).

Taking now derivatives with respect to an increment in the unknowns, we obtain

∂F(mk +∆m)

∂∆m
≈ ∂ F̂k (mk +∆m)

∂∆m
(A.11)

=
∂

∂∆m
{F(mk)}︸ ︷︷ ︸

0

+
∂

∂∆m
{

g T
∆m
}
+

∂

∂∆m

{
1
2

∆mT H∆m
}

Provided that ∂aTMa
∂a =

(
M+MT)a and ∂aTb

∂b = a, and since the Hessian matrix is
symmetric:

∂ F̂k (mk +∆m)

∂∆m
= g+H∆m (A.12)

The increment of the current state that leads to the optimal value is then determined
from

∂ F̂k (mk +∆m)

∂∆m

∣∣∣∣
∆m=0

= 0 → gk +Hk ∆mk = 0

Therefore, ∆mk is computed by solving the linear system of the form Ax = b

Hk∆mk =−gk (A.13)

This linear system can be rewritten by taking the first order Taylor extension on the
residuals r, leading to the well-known formula:

(J>ΛJ)︸ ︷︷ ︸
Hessian H

∆m =− J>Λr︸ ︷︷ ︸
Gradient g

(A.14)
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where J stands for the Jacobian of the residuals with respect to ∆m

J =
∂r(mk +∆m)

∂∆m
(A.15)



Appendix B

Lie algebra and Lie groups

A Lie group is defined as a smooth differentiable manifold for which the group ax-
ioms apply. That is, there is an operator that combines two elements of the group
into a third element also in the same group, which fulfils the axioms of associativity,
identity and invertibility. A Lie algebra can be described as a representation of a Lie
group in a vector space where infinitesimal transformations can be applied.

The special orthogonal group SO(3) which represents all rotations in 3D Eu-
clidean space R3, is an example of a Lie group. Each rotation in SO(3) is expressed
as a 3×3 orthonormal matrix. The Lie algebra corresponding to the Lie group SO(3)
is expressed as so(3), and coincides with R3. It constitutes a minimal parameteriza-
tion for the rotations which can be arithmetically manipulated as a vector space. The
transformation from the Lie algebra so(3) to its corresponding Lie group SO(3) is
defined by the exponential map operation

exp: so(3)→ SO(3)
ω → R

which is given by the Rodrigues’ formula

R = I +
sin(θ)

θ
[ω]×+

(1− cos(θ))
θ 2 [ω]2× (B.1)

where θ = |ω|, and [·]× represents the skew-symmetric matrix operator. The inverse
operation is called logarithm map, which in this case is obtained from

θ = arccos
(

trace(R)−1
2

)
(B.2)

ω =

{
0 if θ = 0

θ

2sin(θ) (R−R>) if θ 6= 0 and θ ∈ (−π,π)
(B.3)

An intuitive representation for the smooth manifold of a Lie group (e.g. SO(3)) and
the Euclidean tangent space of its Lie algebra ,showing the transformations between
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Figure B.1: Lie group and Lie algebra for the space of 3D rotations.

both, is depicted in figure B.1. We can see that the tangent point is located at the
identity of the Lie group.

Another interesting Lie group which is used throughout this thesis is the special
Euclidean group SE(3) representing 3D rigid motions (rotation plus translation). An
element of this group is expressed as a 4×4 matrix

T = [R|t] =
[

R t
0 0 0 1

]
(B.4)

where the rotation R∈ SO(3) and the translations t∈R3. In this case, the exponential
map is formulated as

exp: se(3)→ SE(3)(
ω

t ′

)
→
[

R t
0 0 0 1

]
where the rotation matrix R is calculated as explained above in B.1, and the translation
is given by

t = Rt′ (B.5)

The logarithm map can be trivially derived from the above formulation.
The above transformations between Lie groups and Lie algebras are required by

many optimization algorithms in the field of robotics and computer vision, where
rotation or pose parameters need to be estimated to compute robot or camera motion.
The differentiation of a function which depends on some parameters of the Lie group
is always done at the tangent point in the Euclidean space defined by its Lie algebra.
Thus, direct operations like the calculation of residuals are calculated with the Lie
group formulation, while the optimization problem is derived in the tangent space of
the manifold given by the Lie algebra. For a more detailed description of Lie groups
and Lie algebras in the context of mobile robotics, the reader is referred to [Blanco,
2010].
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Propagation of uncertainty

This appendix details the propagation of uncertainty for Maximum Likelihood Es-
timation (MLE) problems. This permits taking into account the uncertainty of the
sensor measurements in the minimization of the cost function. For that, the covari-
ance of different functions must be estimated. This is systematically done through
linearization, so that the covariance Σy of

y = f (x) (C.1)

is computed as
Σy = JxΣxJT

x (C.2)

being Jx =
∂ f (x)

∂x the Jacobian of f (x). This is an approximation when f (x) is not
linear, otherwise the formula is exact.

As an example, the variances of the error functions used in 2.3.1.3 are derived
here. Thus, to compute the variance of the error in eq. 2.15

r jk = R jl j×Rklk︸ ︷︷ ︸
n jk

·(R jc j + tj− R̂kck− tk︸ ︷︷ ︸
d

)

the linearization above is applied, resulting in

σ
2 ' nT

jkσdn jk +dT
Σn jk d (C.3)

Σn jk = [R jl j]xRkΣlk RT
k [R jl j]

T
x +[Rklk]xR jΣl j R

T
j [Rklk]Tx (C.4)

σ
2
d = R jΣc j R

T
j +[c j]xΣR j [c j]

T
x +RkΣck RT

k +[ck]xΣRk [ck]
T
x (C.5)

where [·]× is the skew-symmetric matrix operator.
For the case of the error in eq. 2.17,

ri = na
jk ·nb

jk (C.6)
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the linearization above is applied as

σ
2 = (na

jk)
T RT

j RkΣnb
jk

RT
k R jna

jk +(nb
jk)

T RT
k R jΣna

jk
RT

j Rknb
jk (C.7)

These linearisations imply that the product of two Gaussian random variables is
approximated as a Gaussian distribution, despite that the result follows a χ2 distribu-
tion. It can be verified that the error of this approximation diminishes asymptotically
with the number of samples (observations) [Severo and Zelen, 1960; Zhang, 2005].



Appendix D

Fisher Information and

Cramér-Rao Bound

The Fisher Information Matrix (FIM) is a statistic measure of how much information
an observable random variable X carries about the parameters θ = [θ1,θ2, . . . ,θN ]

T

upon which the likelihood function P(X |θ) depends. For an unbiased estimator, the
FIM is defined as

I (θ) = E [ (∇θ logP(X |θ))(∇θ logP(X |θ))|θ ] (D.1)

which is a N×N positive semidefinite symmetric matrix. Formally, the FIM corre-
sponds to the expected value of the observed information. It has important implica-
tions regarding the observability of estimation problems, concretely, the problem is
observable (it has a solution) if and only if the FIM has full rank, i.e. rank(I ) = N.

Considering an estimation problem in which the observable random variables X
follow an unbiased, asymptotically Gaussian distribution, the FIM can be calculated
as

I (θ) = JT
E Σ
−1
X JE (D.2)

where JE is the Jacobian of the observation equations (i.e. the cost function of the
estimation problem) and ΣX is the covariance of the observed data X [Van Trees
and Bell, 2007]. This formulation has a relevant significance implying that, for of
a maximum likelihood estimation problem which is solved through a least squares
minimization of the negative log-likelihood, the FIM corresponds to the Hessian of
such negative log-likelihood. This result is applied in the observability analysis of all
the extrinsic calibration problems tackled in chapter 2.

The Cramér-Rao Bound (CRB) defines a lower bound for the variance of estima-
tors, therefore, it is a measure of the performance of estimators [Van Trees and Bell,
2007]. The CRB states that the covariance of an unbiased estimator cannot be lower
than the inverse of the Fisher information [Van Trees and Bell, 2007].

cov(θ̂)≥I −1(θ) (D.3)
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where θ̂ is the true value of the estimator. If this limit is achieved, the estimator is
called efficient. Thus, the FIM defines a lower bound for the noise of our estimate,
which can be used to find the best estimator for the problem.
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