
 
 

 

  

Abstract— This paper presents a new method for 
recognizing places in indoor environments based on the 
extraction of planar regions from range data provided by a 
hand-held RGB-D sensor. We propose to build a plane-based 
map (PbMap) consisting of a set of 3D planar patches 
described by simple geometric features (normal vector, 
centroid, area, etc.). This world representation is organized as 
a graph where the nodes represent the planar patches and the 
edges connect planes that are close by. This map structure 
permits to efficiently select subgraphs representing the local 
neighborhood of observed planes, that will be compared with 
other subgraphs corresponding to local neighborhoods of 
planes acquired previously. To find a candidate match between 
two subgraphs we employ an interpretation tree that permits 
working with partially observed and missing planes. The 
candidates from the interpretation tree are further checked 
out by a rigid registration test, which also gives us the relative 
pose between the matched places. The experimental results 
indicate that the proposed approach is an efficient way to solve 
this problem, working satisfactorily even when there are 
substantial changes in the scene (lifelong maps).  

I. INTRODUCTION 

HE ability to recognize a place previously visited is a 
major problem in mobile robotics since, among other 
things, it allows to accomplish topological localization 

and loop closure detection in SLAM. Most of the solutions 
to this problem have concentrated on exploiting appearance 
from intensity images [1], [2], [3], [4], [5], [6] and [7]. 
Though these methods work in many situations, they rely 
heavily on local visual descriptors and thus fail when these 
cannot be extracted, e.g. due to little visual texture, changes 
in illumination or when they are not distinctive enough. 
Further recent work has extended the concept of local 
image descriptors to create 3D local or global descriptors 
[8] and [9] geared for object detection, but these suffer 
again from distinctiveness or contamination from changes 
in the environment or occlusion. 

In this paper we present an approach to recognize places 
using range images from an RGB-D camera that overcomes 
the main drawbacks of local appearance based methods. 
Specifically, we propose a compact plane-based 
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representation of the scene that we name PbMap (Plane-
based Map). This PbMap is organized as an annotated 
graph where each node is a 3D planar patch (described by 
simple geometric features: plane’s normal, centroid, area, 
etc.) and the edges connect neighbor patches according to 
their proximity. These planar patches (or planes, for short) 
are extracted in real-time from the range video streaming 
provided by a hand-held sensor. Such planes are integrated 
into the map in their respective poses, according to the 
sensor location, which is estimated from the RGB-D 
observations using a visual odometry algorithm. Although 
other sources of map creation such as full SLAM are also 
suitable to use. The use of odometry only for constructing 
our maps implies that our representation is topological in 
nature, but we note that place localisation does not require 
fully consistent maps to work. 

Place recognition in PbMaps is addressed as a problem 
of matching subgraphs: those subgraphs representing the 
observed planes are compared with other ones from the 
PbMap. Such subgraphs are defined by one reference plane 
together with their closest neighbors, up to a distance 
threshold (see figure 1). For solving the graph matching 
problem we rely on an interpretation tree [10] that exploits 
the geometric characteristics of the planes and their relative 
positions to generate a set of unary and binary constraints 
that guide efficiently the search. For gaining in robustness, 
we introduce a consistency test to finally accept the match 
given by the search process. This consistency test evaluates 
the rigid adjustment of the matched planes, providing the 
adjustment error together with the approximate position of 
the sensor with respect to the place recognized. 

The proposed approach for recognizing a visited place 
has three main advantages:  
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a)             b) 

Fig. 1. a) Example of a typical scene that can be represented with planar 
patches. b) PbMap of the scene where a local neighborhood of planes is 
represented, including a reference plane (green), and its closest planes 
(blue) up to a distance threshold (1 m). 
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1. the description of the scene through a PbMap is very 
compact, requiring little memory and reducing the 
computational cost of the required search;  

2. it is robust to changes of viewpoint since the scene 
planes can be detected from very different poses;  

3. it tolerates reasonably well changes in the scene, and 
therefore is adequate for the so called “lifelong maps”, 
i.e. maps that are still valid after the scene changes. 
This characteristic particularly holds for indoor 
scenarios, where the most visible and larger planes 
(i.e. walls, floor, ceiling, bigger furniture, etc.) are 
normally persistent over time, while other smaller 
objects (e.g. chairs, a laptop, a backpack) are more 
likely to be moved or even disappear. 

Our approach assumes that there are enough planar patches 
and thus busy indoor scenes are more amenable for our 
method. 

There exist other methods in the literature which also 
address the place recognition problem from range data: the 
work of [11] presents a solution for place recognition which 
employs distinctive keypoints from 2D lidar observations. 
This approach is extended to 3D laser point clouds in [12]. 
The work in [13] also employs range data to extract features 
that capture important geometric and statistical properties to 
detect loop closures. Our approach differs from the above 
ones in different aspects: a) the search for a place is 
performed using contextual information of nearby planes, 
and so, it relies on the continuous perception of the scene 
instead of particular observations of the sensor, b) our 
method does not require a training step, and c) it describes 
the scene in a more continuous way with a plane-based 
representation which is useful beyond place recognition 
(e.g. scene modeling). 
 We provide experimental results demonstrating the 
effectiveness of our method for recognizing and localizing 
places in a dataset composed of 15 home and work-place 
scenes: offices, living rooms, kitchens, bathrooms, 
bedrooms and corridors. In order to test the concept of 
“lifelong map” we also show how the recognition is 
affected by the fact that the scene suffers some changes. 

Next, we describe the PbMap construction procedure and 
show how this map is used to search for similar plane 
configurations in previous subgraphs. The experiments and 
their results are presented in section V. Finally, we expose 
the conclusions of our work.  

II.  PLANE-BASED MAP (PBMAP) 

A plane-based map (PbMap) is a representation of the 
scene as a set of 3D planar patches. It is organized as an 
annotated, undirected graph G, where each node represents 
a planar patch and the edges connect neighbor planes, that 
is, an edge connects two patches when the distance between 
their closest points is under a threshold ( see figure 2). Each 
plane Pi ∈ G is described by a set of 

geometric features: the centroid, the area, the elongation, 
the normal vector, and the principal vector (i.e. dominant 
direction of the plane). A node also stores a set of points 
defining the patch’s convex hull, which serves to calculate 
the minimum distance between two patches. All these 
features are obtained from the plane segmentation and map 
construction stages: they are set when a plane is initialized 
and are updated when such plane is re-observed. 

A. Map generation 

The planar patches are segmented from 160x120 range 
images in real time using a region growing technique [14]. 
This method exploits the spatial organization of the range 
images to estimate the normal vector for each 3D-point 
corresponding to each pixel, and then it clusters them to 
obtain the planar patches. This technique is computationally 
less expensive than other well-known methods such as 
RANSAC, which has been used before for concurrent plane 
extraction in SLAM [15]. After this segmentation stage, a 
detected planar patch is integrated into the PbMap 
according to the sensor pose, either by updating an already 
existing plane or by initializing a new one when it is first 
observed. 

The sensor pose needed to locate the planes in a common 
frame of reference can be computed in different ways, for 
example, using visual odometry, as it is the case 
implemented in this work. Concretely, the odometry method 
followed here is the one presented in [16]. This method 
estimates the relative pose between two consecutive RGB-D 
observations by iteratively maximizing the 
photoconsistency of both images. The optimization is 
carried out in a coarse-to-fine scheme that improves 
efficiency and allows coping with larger differences 
between poses. The drift of this algorithm along the 
trajectory is sufficiently small to achieve locally accurate 
PbMaps. 

The PbMap construction procedure is illustrated in figure 
3. For every new frame, a subsampled point cloud 
(160x120) is built relative to the sensor, and planar patches 

 

Fig. 2. Example of the graph representation of a PbMap, where the arcs 
indicate that two planes are close by. Two subgraphs are indicated: the 
ones generated by the reference planes P1 and P5 respectively. 
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are segmented from it.  The segmented patches are then 
placed in the PbMap according to the sensor pose (figure 
3.b). If the new patch overlaps a previous one and their 
normal vectors coincide they are merged and the parameters 
of the resulting plane are updated. In other case, a new 
plane is initialized in the PbMap (figure 3.c). The graph 
connections of the observed planes are also updated 
calculating the minimum distance between them and their 
surrounding planes that are not connected yet (figure 3.d). 

III.  PLACE RECOGNITION 

The problem addressed here is that of matching local 
neighborhoods of planes, represented as subgraphs in the 
PbMap. Concretely, as the PbMap grows and is populated 
with new planes, the current observed planes are used to 
define subgraphs (one per observed plane) that are to be 
matched with other ones previously acquired. The 
subgraphs are composed of those planes 1-connected with 
the one considered as reference (e.g. the subgraphs 
generated by P1 and P5 in figure 2). The maximum number 
of subgraphs in the PbMap is limited by the number of 
planes, though in practice, this number is smaller, since one 
particular subgraph can be generated from two –or more– 
neighbor planes (e.g. the subgraphs generated by P8 and P9 
in figure 2). Also, when a subgraph is contained in other 
subgraph, only the largest one is considered for matching a 
place. 

In order to match two subgraphs, SC, generated from the 
current range image, and SM, generated from previous 
observations, we rely on an interpretation tree [10], which 
employs geometric restrictions represented as a set of unary 
and binary constraints. On the one hand, the unary 
constraints are used to check the correspondence of two 
single planes based on the comparison of their geometric 
features. On the other hand, the binary constraints serve to 
validate that two pairs of connected planes of SC and SM, 
respectively, present the same geometric relationship (e.g. 
the angle between normal of both pairs are similar up to a 
given threshold). All such constraints depend on 

Algorithm 1  Employs an interpretation tree to search recursively 
for the best match between two subgraphs of planes SC and SM, for a 
given set of matched planes (initially empty). 
 
INPUT:  SC, LC // Current subgraph and List of planes of SC 
    SM, LM  // Previous subgraph and List of planes of SM 
    matched_planes // List of matched planes 
OUTPUT: best_combination // Final list of matched planes 
 
best_combination = MatchSubgraphs(LC, LM, matched_planes) 
 
 best_combination = matched_planes 
 
 for each plane PC ∈ LC do 
  for each plane PM ∈ LM do 
 
   if EvalUnaryConstraints(PC, PM) == F then 
    continue 
   end if 
 
   for each { PC’, PM'}  ∈ matched_planes do 
 
    // Check if the edges { PC, PC'} and {PM, PM'} exist 
    if { PC, PC'}  ∈ SC and { PM, PM'}  ∈ SM then 
 
     if EvalBinaryConstraints({ PC, PC'} , { PM, PM'})  == F then 
       continue 
     end if 
    end if 
   end for 
 
   // Remove PC from LC and PM from LM 
   new_LC = LC - PC  
   new_LM = LM – PM 
 
   new_matched_planes = matched_planes ∪ { PC, PM}  
 
   // Search for the best combination of matched planes 
   result =MatchSubgraphs(new_LC, new_LM, new_matched_planes) 
 
   // Check the length of the resulting list of matched planes 
   if SizeOf(result) > SizeOf(best_combination) then 
    best_combination = result 
   end if 
  end for 
 end for 
 
 return best_combination 
 
 
 

 

a)                                                         b)                                                                     c)                                                      d)                

Fig. 3. 2D representation of the map construction scheme. a) RGB-D capture with segmentated planes (blue). b) Current PbMap with segmented planes 
(blue) superimposed according to the sensor pose. c) PbMap updated: the planes updated are highlighted d) PbMap graph updated: the planes updated 
are highlighted in blue, the new plane P7 is marked in green and, the new edges are represented with dashed lines. 

draft version

3 IEEE International Conference on Robotics and Automation (ICRA), 
Karlsruhe (Germany), 2013.



 
 

 

thresholds that have been experimentally determined from 
different tests carried out in several scenarios. An important 
advantage of the interpretation tree is that it allows us to 
recognize places when the planes are partially observed or 
missing, allowing the system to deal with non-static scenes.  

Algorithm 1 describes the recursive function for 
matching two subgraphs. This function checks all the 
possible combinations, defined by the graph edges, between 
planes of the subgraphs SC and SB, to find the one with the 
maximum number of matches. In order to assign a new 
match between a plane from SC and a plane from SB the 
unary constraints are verified first, and if they are satisfied, 
the binary constraints are checked with the already matched 
planes. If all the constraints are satisfied, a match between 
the planes is accepted and the recursive function is called 
again with updated arguments. The algorithm finishes when 
all the possibilities have been explored, returning a list of 
pairs of corresponding planes. 

Despite the large amount of possible combinations for 
this problem, most of them are rejected in an early stage of 
the exploration since they do not fulfill the geometric 
restrictions. In addition, the evaluation of these restrictions 
requires little computation, since they only do simple 
operations to compare 3D vectors and scalars. This allows 
the search process to work at frame rate. 

Notice that this process can give rise to several candidate 
places, one per previous subgraph. From these candidates, 
we choose the one with the best rigid alignment, which is 
given by the consistency test described in the next section. 

IV.  CONSISTENCY TEST 

The consistency test evaluates the rigid correspondence 
of the matched planes from two subgraphs provided by the 
interpretation tree. For that, we need to estimate the relative 
pose in 6D, µµµµ, between the matched places. This is 
accomplished by minimizing a cost function which 
measures the adjustment error of each matched plane. 
Mathematically 

( )∑
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2minargˆ µµ
µ
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where N is the number of matched planes and ei(µ) 
represents the adjustment error of the planes Pi and 

imP  

with respect to the rigid transformation defined by µ. This 
error corresponds to the distance between the centroid of Pi 
and the plane 

imP  (refer to figure 3). More precisely, the 

proposed error function ei(µ) is given by 
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where Ai and Aj are the area of the planes Pi and Pj 
respectively. This weight gives more relevance to the 
adjustment error of larger planes over smaller ones. We 
solve this least squares problem using Gauss-Newton 
optimization for µ. After the relative pose has been 
calculated, the resulting error is used to evaluate the 
consistency of the candidate matches. 

This consistency test is evaluated for those matched 
subgraphs given by the place recognition stage, selecting 
the one that presents the minimum error. And finally, the 
match is accepted if this error is smaller than a given 
threshold (0.04 m2 in our experiments). 

V. EXPERIMENTS 

In this section we present the experiments carried out to 
validate our approach in two different ways: first, we test 
the effectiveness for recognizing places in 300 tests 
performed in an environment composed of 15 rooms; 
second, we evaluate the robustness of our solution to 
recognize places in non-static scenes, in other words, we 
evaluate the suitability of the PbMaps to represent scenes 
that suffers changes continuously (lifelong maps). In these 
experiments we have employed an Intel Core i7 laptop with 
2.2 GHz processor. Our RGB-D camera is a MS Kinect 
sensor. The visual odometry works independently in one 
thread while the PbMap is built and explored for previous 
places in a second thread, this process works at frame rate 
(30 Hz), where the main load comes from the plane 
segmentation, which takes around 13 ms per frame. 

 
Fig. 4.  Consistency test. 2D representation of depth error (the blue 
segments represent planes of the current subgraph and the black 
segments correspond to a previous subgrah. 
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In the first battery of experiments we explore the scene 
with a handheld RGB-D sensor, building progressively a 
PbMap and searching continuously the current place in a set 
of 15 previously acquired PbMaps corresponding to 
different rooms (these PbMaps generally capture a 360º 
coverage of the scene, see figure 5). An additional 
challenge of this experiment comes from the fact that some 
PbMaps represent the same type of room. We have repeated 
20 exploration sequences with different trajectories for each 
one of the 15 different scenarios, recording the success and 
failure rates, together with the average length of the sensor 
trajectory until a place was detected, or until the scene was 
fully observed when no place is recognized. Table I shows 
the recognition rate for these experiments. The first column 
indicates the percentage of cases where a place was 
recognized correctly, while the failure rate stands for the 
percentage of places recognized erroneously. The average 
length of the path taken until a place is recognized is shown 
in the third column. This somehow gives an idea of how 
distinctive neighborhoods of planes are for each different 
scenario. However note that the length of exploration is not 
directly related to the recognition rate, since even on scenes 
with few distinctive subgraphs (e.g. the case of an empty 
room) can eventually lead to a detection. 

An interesting feature of our approach is that it can 
recognize easily places where there is little appearance 
information but the geometric configuration of planes is 
highly descriptive, this can be perceived in our videos 
http://mapir.isa.uma.es/efernandez/place_recognition. In 
cases where there are fewer extracted planar patches the 
recognition rate drops. 

A second battery of experiments shows that our PbMap 
can be used to recognize places that have suffered some 

changes, but where the main structure of the scene is 
unchanged. For that, we have evaluated the recognition rate 
with respect to the amount of change in the scene, which is 
measured using ICP on the point clouds of the scene. 
Similarly as in the previous experiments, we evaluate the 
recognition rate for 20 different trajectories exploring each 
one of two following scenarios: Office1 and LivingRoom1 
(we have chosen these two scenarios because changes are 
more common in them, see figure 6). The results of these 
experiments, summarized in Table II, show that the 
recognition rate remains high for moderate changes in the 
scene (Ch1 & Ch2, where chairs have been 

 

Scenario Recog Rate Failure Rate 
Av. Path 

Length (m) 
LivingRoom1 100% 0% 5.53 
LivingRoom2 100% 0% 3.25 
LivingRoom3 100% 0% 2.85 

Kitchen1 100% 0% 4.53 
Kitchen2 100% 0% 2.24 
Kitchen3 90% 0% 3.75 
Office1 100% 0% 2.01 
Office2 90% 10% 2.61 
Office3 90% 10% 3.82 
Hall1 100% 0% 1.34 
Hall2 80% 10% 2.31 

Bedroom1 60% 10% 4.98 
Bedroom2 50% 20% 6.25 
Bedroom3 55% 20% 5.52 
Bathroom 50% 35% 5.60 

Table I. Effectiveness of the proposed method in different 
environments with different exploration trajectories (20 tests 
for each environment). There are some tests where no place 
was recognized (neither correctly nor erroneously), as a 
consequence, the sum of the recognition rate and the failure 
rate is not 100%. 

 

 

                              a)                                                            b)                                                          c)                                                        d)       

Fig. 5. Different scenarios where place recognition has been tested. These pictures correspond to some of the maps created previously in the place 
recognition tests. The top row correspond to point clouds registered with visual odometry, while the lower row correspond to the PbMaps (the point 
cloud is also superimposed in a) and b) ). These scenarios correspond to: a) Living-room 1, b) Living-room 2, c) Office2 and d) Bedroom 1. 

draft version

5 IEEE International Conference on Robotics and Automation (ICRA), 
Karlsruhe (Germany), 2013.



 
 

 

moved, and some objects, like the laptop, have disappeared 
from the scene, while new objects have appeared). Though 
as expected, this rate decreases as the change in the scene 
increases significantly (Ch3 & Ch4, where cardboard boxes 
have been placed in the scene, occluding previous planes 
and generating new ones). 

VI.  CONCLUSION 

Plane extraction has been used in previous mapping and 
modelling systems but it has rarely been used to quickly 
describe a scene in a manner useful for real-time place 
detection. This article presents a real-time place recognition 
method for indoor environments using range images from 
an RGB-D camera. Our approach relies on a plane-based 
representation of the scene (PbMap). This representation 
has the advantage of being very compact, and so, permits 
fast map exploration to detect previously visited places. We 
introduce an interpretation tree to perform the place search 
efficiently, together with a consistency test to verify the 
rigid adjustment of the matched places, which also provides 
localization. Experiments have demonstrated the potential 
of our approach to recognize places efficiently, working 
even for non-static scenes.  

In order to study the potential of a purely geometric 
approach we have not made use of RGB information here to 
recognize places. Color information, however, could be 
exploited in several ways to produce a more robust and 
efficient solution. Our formulation allows this extension 
easily, e.g. by introducing new constraints in the 
interpretation tree. This will be one line of future work, in 
which we aim to evaluate the increase of performance of a 
combined strategy.  
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Office1 Ch0 Ch1 Ch2 Ch3 Ch4 
Av. ICP error 

(mm) 
0 0.671 1.215 1.540 3.442 

Recognition 100% 100% 95% 90% 80% 
      

LivingRoom1 Ch0 Ch1 Ch2 Ch3 Ch4 
Av. ICP error 

(mm) 
0 1.182 2.010 2.942 3.863 

Recognition 100% 100% 100% 95% 85% 

Table II. Lifelong maps. The ICP fitness score shows the average 
adjustment error per 3D-point. The recognition shows the percentage of 
“finds” for 20 different trajectories exploring the scene. 

 

 

                    a)                                    b)                                 c)         

Fig. 6.  Lifelong maps in office environment. a) Reference scene, b) 
Scene with moderate changes (Ch3) c) Scene with significant changes 
(Ch5). 
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