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Fast place recognition with plane-based maps

E. Fernandez-Mor3lW. Mayol-Cuevas V. Arévald and J. Gonzalez-Jimérlez

Abstract— This paper presents a new method for
recognizing places in indoor environments based on the
extraction of planar regions from range data provided by a
hand-held RGB-D sensor. We propose to build a plane-based
map (PbMap) consisting of a set of 3D planar patches
described by simple geometric features (normal vector,
centroid, area, etc.). This world representation is organized as
a graph where the nodes represent the planar patches and the
edges connect planes that are close by. This map structure a) b)
permits to efficiently select subgraphs representing the local ] ]
neighborhood of observed planes, that will be compared with Fig- 1. @ Examplef a typical scene that can be represented with
other subgraphs corresponding to local neighborhoods of Paiches. b) PbMap of the scene where a local neighborhood of pl

. . ; . represented, including a reference plane (green), and its cfaast

planes acquired previously. To _flnd a can(_jldate match betwgen (blue) up to a distance threshold (1 m).

two subgraphs we employ an interpretation tree that permits

working with partially observed and missing planes. The

candidates from the interpretation tree are further checked representation of the scene that we name PbMap (Plane-

out by a rigid registration test, which also gives us the relative pased Map). This PbMap is organized as an annotated

pose between the matched places._ The e_xperimental resultsgraph where each node is a 3D planar patch (described by

indicate that the proposed approach is an efficient way 10 solVe. gy 16 geometric features: plane’s normal, centroid, area,

this problem, working satisfactorily even when there are . .

substantial changes in the scene (lifelong maps). etc:) and _th_e edges connect neighbor patches according to
their proximity. These planar patches (or planes, for short)

are extracted in real-time from the range video streaming

provided by a hand-held sensor. Such planes are integrated

THE ability to recognize a place previously visited iS gt the map in their respective poses, according to the
major problem in mobile robotics since, among othegensor |ocation, which is estimated from the RGB-D
things, it allows to accomplish topological localizationypservations using a visual odometry algorithm. Although
and loop closure detection in SLAM. Most of the solutionginer sources of map creation such as full SLAM are also
to this problem have concentrated on exploiting appearanggiaple to use. The use of odometry only for constructing
from intensity images [1], [2], [3], [4], [S], [6] and [7]. our maps implies that our representation is topological in
Though these methods work in many situations, they rehatyre, but we note that place localisation does not require
heavily on local visual descriptors and thus fail when theg@ny consistent maps to work.
cannot be extracted, e.g. due to little visual texture, changes|gce recognition in PbMaps is addressed as a problem
in illumination or when they are not distinctive enoughgs matching subgraphs: those subgraphs representing the
Further recent work has extended the concept of locghserved planes are compared with other ones from the
image descriptors to create 3D Iocallor global descriptor_q)Map_ Such subgraphs are defined by one reference plane
[8] and [9] geared for object detection, but these suffgpgether with their closest neighbors, up to a distance
ggain from distinctiveness or contamination from changggresnhold (see figure 1). For solving the graph matching
in the environment or occlusion. _ problem we rely on an interpretation tree [10] that exploits
In this paper we present an approach to recognize plaggg geometric characteristics of the planes and their relative
using range images from an RGB-D camera that overcomgssitions to generate a set of unary and binary constraints
the main drawbacks of local appearance based methogigi guide efficiently the search. For gaining in robustness,
Specifically, we propose a compact plane-basege introduce a consistency test to finally accept the match
given by the search process. This consistency test evaluates
the rigid adjustment of the matched planes, providing the
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compact, requiring little memory and reducing the e —_—
computational cost of the required search; - ,
2. it is robust to changes of viewpoint since the scer
planes can be detected from very different poses;
3. it tolerates reasonably well changes in the scene, a
therefore is adequate for the so called “lifelong maps
i.e. maps that are still valid after the scene change_ ’
This characteristic particularly holds for indoor
scenarios, where the most visible and larger plan
(i.e. walls, floor, ceiling, bigger furniture, etc.) are N
normally persistent over time, while other smalle e g e i
objects (e.g. chairs, a laptop, a backpack) are mc Subgraph defined by P,
likely to be moved or even disappear. Fig. 2. Exarple of the graph representation of a PbMap, where th:

Our approach assumes that there are enough planar patindicate that two planes are close by. Two subgraphs are indicat
and thus busy indoor scenes are more amenable for ones generated by the reference planem@ R respectively.

method.

There exist other methods in the literature which a'ig%ometric features: the centroid, the area, the elongation,
address the place recognition problem from range data: normal vector, and the principal vector (i.e. dominant
work of [11] presents a solution for place recognition whicRjrection of the plane). A node also stores a set of points
employs distinctive keypoints from 2D lidar observationsgefining the patch’s convex hull, which serves to calculate
This approach is extended to 3D laser point clouds in [13he minimum distance between two patches. All these
The work in [13] also employs range data to extract featurgsatures are obtained from the plane segmentation and map
that capture important geometric and statistical properties égnstruction stages: they are set when a plane is initialized

detect loop closures. Our approach differs from the aboy@d are updated when such plane is re-observed.
ones in different aspects: a) the search for a place is

performed using contextual information of nearby planes,A- Map generation

and so, it relies on the continuous perception of the scend@he planar patches are segmented from 160x120 range
instead of particular observations of the sensor, b) oimages in real time using a region growing technique [14].

method does not require a training step, and c) it describBsis method exploits the spatial organization of the range

the scene in a more continuous way with a plane-basedages to estimate the normal vector for each 3D-point

representation which is useful beyond place recognitiarorresponding to each pixel, and then it clusters them to
(e.g. scene modeling). obtain the planar patches. This technique is computationally

We provide experimental results demonstrating thi€ss expensive than other well-known methods such as
effectiveness of our method for recognizing and localizin@BANSAC, which has been used before for concurrent plane
places in a dataset composed of 15 home and work-pladgraction in SLAM [15]. After this segmentation stage, a
scenes: offices, living rooms, kitchens, bathroomsletected planar patch is integrated into the PbMap
bedrooms and corridors. In order to test the concept @€cording to the sensor pose, either by updating an already
“lifelong map” we also show how the recognition isexisting plane or by initializing a new one when it is first
affected by the fact that the scene suffers some changes. observed.

Next, we describe the PbMap construction procedure and Ne sensor pose needed to locate the planes in a common
show how this map is used to search for similar plarfeame of reference can be computed in different ways, for
configurations in previous subgraphs. The experiments aRj@mple, using visual odometry, as it is the case
their results are presented in section V. Finally, we expodBPlemented in this work. Concretely, the odometry method

1. the description of the scene through a PbMap is ve Subgraph defined by P,

the conclusions of our work. followed here is the one presented in [16]. This method
estimates the relative pose between two consecutive RGB-D
Il. PLANE-BASED MAP (PBMAP) observations by iteratively maximizing the

A bl based PbM . , ¢ hotoconsistency of both images. The optimization is
plane-based map ( ap) is a representation o "W8rried out in a coarse-to-fine scheme that improves

scene as a set_ of 3D planar patches. It is organized aseﬂ”fbiency and allows coping with larger differences
annotated, undirected grag) where each r!ode represents,.nveen poses. The drift of this algorithm along the
a planar patch and the edges connect nelghpor planes, [ﬁ:ctory is sufficiently small to achieve locally accurate
is, an edge connects two patches when the distance betw, aps

their closest points is under a threshold ( see figure 2). Eac he PbMap construction procedure is illustrated in figure

plane PO G is described by a set of3 por every new frame, a subsampled point cloud
(160x120) is built relative to the sensor, and planar patches
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Fig. 3. 2D representation of the map construction scheme. a) RGB-D capture with segmentated planes (blue). b) Current PbMap with segmented plane
(blue) superimposed according to the sensor pose. ¢) PbMap updated: the planes updated are highlighted d) PbMap graph updated: the planes update
are highlighted in blue, the new plaRgis marked in green and, the new edges are represented with dashed lines.

are segmented from it. The segmented patches are tlAlgorithm 1 Employs an interpretation tree to search recursively
placed in the PbMap according to the sensor pose (figifor the best match between two subgraphs of plagesdsSy, for a
3.b). If the new patch overlaps a previous one and theiven set of matched planes (initially empty).
normal vectors coincide they are merged and the paramet ,

. INPUT: &, Lc
of the resulting plane are updated. In other case, a n Su Lw /I Previous subgraph and List of planes gf S
plane is initialized in the PbMap (figure 3.c). The grapl matched_planes // List of matched planes
connections of the observed p|anes are also upda1OUTPUTZ best_combination // Final list of matched planes
calculating the minimum distance between them and the
surrounding planes that are not connected yet (figure 3.d).

/I Current subgraph and List of planes ef S

best_combination = MatchSubgraghs, Lv, matched_plangs

best_combinatior matched_planes

I1l. PLACE RECOGNITION
for each plane Pc O Lc do

The problem addressed here is that of matching loc
neighborhoods of planes, represented as subgraphs in
PbMap. Concretely, as the PbMap grows and is populat
with new planes, the current observed planes are used
define subgraphs (one per observed plane) that are to
matched with other ones previously acquired. Th
subgraphs are composed of those planes 1-connected \
the one considered as reference (e.g. the subgra|
generated by; andPs in figure 2). The maximum number
of subgraphs in the PbMap is limited by the number ¢
planes, though in practice, this number is smaller, since o
particular subgraph can be generated from two —or mor
neighbor planes (e.g. the subgraphs generatd®s bpdPg
in figure 2). Also, when a subgraph is contained in othe
subgraph, only the largest one is considered for matching
place.

In order to match two subgraplt®;, generated from the
current range image, an8,, generated from previous
observations, we rely on an interpretation tree [10], whic
employs geometric restrictions represented as a set of un
and binary constraints. On the one hand, the una
constraints are used to check the correspondence of t
single planes based on the comparison of their geomet
features. On the other hand, the binary constraints serve
validate that two pairs of connected planesSefand Sy,
respectively, present the same geometric relationship (e
the angle between normal of both pairs are similar up to
given threshold). All such constraints depend o

for each plane Py O Ly do

if EvalUnaryConstrain®c, Pv) == F then
continue
end if

for each {Pc’, Pm'} O matched_planedo

/I Check if the edgd®c, Pc} and {Pwm, Pu} exist
if {Pc, Pc} O Sand {Pw, Pu} O Su then

if EvalBinaryConstraint§ Pc, Pc}, {Pu, Pw}) == Fthen
continue
end if
end if
end for

/I Remove Pfrom Lc and Ry from Ly
new_lg =Lc-Pc
new_ly =Ly —Pu

new_matched_planes = matched_plang®c, Pu}

/I Search for the best combination of matched planes
result =MatchSubgrapffsew_Lc, new_Lly, new_matched_plangs

/I Check the length of the resulting list of matched planes
if SizeOfresul) > SizeOfbest_combinatigrthen
best_combination = result
end if
end for

end for

return best_combination
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with respect to the rigid transformation definedbyThis
error corresponds to the distance between the centréid of
and the planeP;, (refer to figure 3). More precisely, the

proposed error functiog(u) is given by

&(w)=wn, lexplu)c -c,) @

Fig. 4. Consistency test. 2D representation of depth éher blue  being N and c

m
segments represent planes of the currembgraph and the bla . . .
Segmems Cor?espond&aprevious subgrah. arap the centroid ofP;, and expf) the rigid transformation

matrix SH3) represented as the exponential map of the 6D
thresholds that have been experimentally determined froffiCtor |, \{Vh'Ch is @ minimal parameterization, angd a
different tests carried out in several scenarios. An importafyeight defined by

the normal and the centroid an e

advantage of the interpretation tree is that it allows us to A

recognize places when the planes are partially observed or W =—

missing, allowing the system to deal with non-static scenes. Z A ®)
Algorithm 1 describes the recursive function for !

matching two subgraphs. This function checks all the 1=

possible combinations, defined by the graph edges, betwegere A, and A; are the area of the planés and P,
planes of the subgrapl® andS;, to find the one with the respectively. This weight gives more relevance to the
maximum number of matches. In order to assign a neygjustment error of larger planes over smaller ones. We
match between a plane frof and a plane frong the solve this least squares problem using Gauss-Newton
unary constraints are verified first, and if they are satisfiedptimization for p. After the relative pose has been
the binary constraints are checked with the already matchggiculated, the resulting error is used to evaluate the
planes. If all the constraints are satisfied, a match betweg#nsistency of the candidate matches.

the planes is accepted and the recursive function is calledrhis consistency test is evaluated for those matched
again with updated arguments. The algorithm finishes whe@ihgraphs given by the place recognition stage, selecting
all the possibilities have been explored, returning a list e one that presents the minimum error. And finally, the

pairs of corresponding planes. _ o match is accepted if this error is smaller than a given
Despite the large amount of possible combinations f@hreshold (0.04 fin our experiments).

this problem, most of them are rejected in an early stage of
the exploration since they do not fulfill the geometric V. EXPERIMENTS
restrictions. In addition, the evaluation of these restrictions . . . .
In this section we present the experiments carried out to

requires little computation, since they only do simple lidat hin two diff ¢  first test
operations to compare 3D vectors and scalars. This alloty}g' ate our approach in two diffierent ways. lirst, we tes

the search process to work at frame rate e effectiveness for recognizing places in 300 tests

Notice that this process can give rise to several candidé{grforg]ed n anl etnwrtcr)]nmentt) ctomposefd of 15| rtc?omst;
places, one per previous subgraph. From these candidatesOnd, We - evaluate the robusiness ot our solution to

we choose the one with the best rigid alignment, which jgcognize place_s 'W.“O”'Sta“c scenes, in other words, we
evaluate the suitability of the PbMaps to represent scenes

given by the consistency test described in the next section; . X
that suffers changes continuously (lifelong maps). In these
experiments we have employed an Intel Core i7 laptop with
) o 2.2 GHz processor. Our RGB-D camera is a MS Kinect
The consistency test evaluates the rigid correspondengghsor. The visual odometry works independently in one
of the matched planes from two subgraphs provided by thgead while the PbMap is built and explored for previous

interpretation tree. For that, we need to estimate the relatiygices in a second thread, this process works at frame rate
pose in 6D, |, between the matched places. This i$30 Hz), where the main load comes from the plane

accomplished by minimizing a cost function whichsegmentation, which takes around 13 ms per frame.
measures the adjustment error of each matched plane.

Mathematically

IV. CONSISTENCYTEST

N
ju = argmin > e ()’ (1)

" i=1

where N is the number of matched planes aa@u)
represents the adjustment error of the pldheand Py,
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Fig. 5. Different scenarios where place recognition has been tested. These pictures correspond to some of the maps created previously in the pla
recognition tests. The top row correspond to point clouds registered with visual odometry, while the lower row correspond to the PbMaps (the point
cloud is also superimposed in a) and b) ). These scenarios correspond to: a) Living-room 1, b) Living-room 2, c) Office2 and d) Bedroom 1.

In the first battery of experiments we explore the scer , _ Av. Path
with a handheld RGB-D sensor, building progressively Scenario | Recog Rate| Failure Rate| | oo (m)
PbMap and searching continuously the current place in a LivingRoom1 100% 0% 5.53
of 15 previously acquired PbMaps corresponding t t:x::giggmg 18822 822 ggg
different rooms (these PbMaps generally capture 6_1_36 Kitgchenl 100% 0% 153
coverage of the scene, see figure 5). An addition Kitchen2 100% 0% 224
challenge of this experiment comes from the fact that sor Kitchen3 90% 0% 3.75
PbMaps represent the same type of room. We have repee Officel 100% 0% 2.01
20 exploration sequences with different trajectories for ea Office2 90% 10% 2.61
one of the 15 different scenarios, recording the success ¢ Oﬁ;‘ﬁi:’) 1%2:& 102? f'gi
failure rates, together with the average length of the sent Rall2 80% 10% 531
trajectory until a place was detected, or until the scene w Bedroom1 60% 10% 4.08
fully observed when no place is recognized. Table | shov Bedroom?2 50% 20% 6.25
the recognition rate for these experiments. The first colun Bedroom3 55% 20% 5.52
indicates the percentage of cases where a place v Bathroom 50% 35% 5.60

recognized correctly, while the failure rate stands for trtaple I. Effectiveness of the proposed method in different

percentage of places recognized erroneously. The averienvironments with different exploration trajectories (20 tests

length of the path taken until a place is recognized is showfor each environment). There are some tests where no place
in the third column. This somehow gives an idea of howas recognized (neither correctly nor erroneously), as a
distinctive neighborhoods of planes are for each differeconsequence, the sum of the recognition rate and the failure
scenario. However note that the length of exploration is n"at€ is not 100%.

directly related to the recognition rate, since even on scerics

with few distinctive subgraphs (e.g. the case of an empﬁéaﬂges’ dbu'i Wthherte theh main sltrutt:tl:jr(:h of the s;ene Its
room) can eventually lead to a detection. changed. or that, we have evaluated the recognition rate

An interesting feature of our approach is that it Ca}q/ith respect to the amount of change in the scene, which is

recognize easily places where there is little appearan qlsu:ed u§|n?h ICP on the po"f“ Cl?Uds of thle fcet?]e.
information but the geometric configuration of planes i imifarly as in the previous experiments, we evaluate the

highly descriptive, this can be perceived in our videoEcognition rate for 20 different trajectories exploring each

http:/mapir.isa.uma.es/efernandez/place_recognitionin ~ "¢ of two following scenarios: Officel and LivingRoom1

cases where there are fewer extracted planar patches (HXS have chosgn these two scenarios because changes are
recognition rate drops. more common in them, see_ﬁgure 6). The results of these
A second battery of experiments shows that our Pbegperlments, summarized in Table II, show that the

- ognition rate remains high for moderate changes in the
can be used to recognize places that have suffered Sosc%ne (Chl & Cch2,

where chairs have been
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