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Abstract: In the last very few years, monocular SLAM approaches based on bundle adjustment are achieving amazing 

results in terms of accuracy, computational efficiency, and density of the map. When such solutions are 

applied on large scenarios it is crucial for the system scalability to maintain a map representation that 

permits efficient map optimization and augmentation. In order to cope with such large maps, we present an 

on-the-fly partitioning technique which allows abstraction from the metric map to operate more efficiently. 

The result is a metric-topological arrangement where the areas with highly-connected observations are 

grouped in submaps weakly interconnected to each other. This is accomplished by progressively cutting a 

graph representation of the map, where the nodes are keyframes and the arcs between them represent their 

shared observations. The experimental results indicate that the proposed approach improves the efficiency 

of monocular SLAM and provides a metric-topological world representation suitable for other robotic tasks. 

1 INTRODUCTION 

Monocular SLAM is an appealing way of solving 
the localization and mapping problem in mobile 
robotics because cameras are inexpensive, compact, 
easy to calibrate and consume low power. During 
the last years monocular SLAM has advanced 
notably with the use of parallel processing and 
efficient algorithms for data association and map 
optimization. It has made possible that current state-
of-the-art approaches can operate accurately in some 
large scale scenarios, facilitating its application in a 
wide range of areas such as augmented reality, scene 
reconstruction and, particularly, mobile robotics. 

The increasingly larger maps that are now 
possible with monocular SLAM are fundamental to 
cope with a wider range of real autonomous robotics 
applications. Such ability to operate in large scale 
brings the need of appropriate strategies for 
managing the map. Applying abstraction (as humans 
do) is an effective way of dealing with the huge 
amount of detail present in large metric maps. The 
result of such abstraction process is the so-called 
metric-topological map, consisting of a two-layer 
representation, one containing pure geometrical 
information and a second one containing higher 
level symbolic information (Thrun, 1998). 

The benefit of a metric-topological arrangement 
is twofold: on the one hand, it offers a natural 

integration with symbolic planning that permits a 
robot to reason about the world and to execute high 
level tasks (Galindo et al., 2005). On the other hand, 
the efficiency and scalability of the SLAM process 
itself are improved by limiting the scope of 
localization and mapping to the region of the 
environment where the robot is operating. Also, loop 
closure and relocalisation can be more efficiently 
solved using topological information (Savelli et al., 
2004, Angeli et al., 2009, Fernández-Moral et al. 
2013). 

In this work, we present an online submapping 
technique which creates a topological representation 
of the world from the metric map being built by a 
monocular SLAM technique. The key idea of our 
proposal is to cluster in the same submap those 
keyframes with higher observation overlap. This 
presents some important advantages over other 
approaches (as it will be explained latter on). The 
generated map consists of a topological structure 
composed of nodes representing local metric maps 
and arcs representing relative geometric 
transformations among the so-called submaps. In 
this paper, we will focus on the benefits of such a 
hybrid map for improving the efficiency and 
scalability of conventional (metric) monocular 
SLAM, concretely PTAM (Klein and Murray, 
2007). 
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Next, we discuss some relevant related work and 

explain in detail the advantages of our approach. We 

then describe our partitioning procedure and show 

how it is combined with the SLAM process 

(PTAM). The experiments and its results are 

presented next, and finally, we expose the 

conclusions of our work. 

2 RELATED WORK 

2.1 Construction of the Metric Map 

Many solutions have been presented to build 

metric maps with monocular SLAM since Davison 

(Davison, 2003) presented the first real-time solution 

for the problem in 2003. Two main strategies have 

been applied since then: Bayesian filtering 

(following the work of Davison) and Bundle 

Adjustment (BA) on keyframes, as introduced in 

(Klein and Murray, 2007). The latter represents the 

base for the current state of the art since it allows 

handling denser maps and generally offers a better 

ratio accuracy/cost (Strasdat et al., 2010). 

BA, traditionally used as an offline method for 

Structure from Motion (SfM), is now widely used in 

visual SLAM thanks to the introduction of parallel 

processing and efficient algorithms which exploit 

the sparse structure of the problem. Its application to 

visual SLAM was inspired by real time visual 

odometry and tracking (Nistér et al., 2005), where 

the most recent camera poses where optimized to 

achieve accurate localization. In such line, PTAM 

selects keyframes and applies BA in a fixed size 

window, around the last keyframe incorporated, to 

obtain good metric maps and accurate localization. 

Then, once the local optimization is performed, a 

low priority global BA is run to improve the map 

consistency. This approach is extended in (Holmes 

et al., 2009) by combining it with relative bundle 

adjustment - RBA - (Sibley et al., 2009), allowing 

fixed-time, consistent exploration. An improvement 

of the latter to exploit the problem' sparse structure 

was recently presented by (Blanco et al., 2013).  

The work of (Strasdat et al., 2011) is also related 

to RBA, they propose a double window 

optimization: a first window as in PTAM and a 

second one including the periphery of the first to 

improve consistency by optimizing a pose-graph. 

Despite the impressive results obtained, such unique 

map solution has intrinsic limitations for managing 

maps of real large environments. To avoid such a 

limitation, we propose a topological arrangement in 

local metric maps. 

2.2 Dividing the Map 

Map division has been addressed in a number of 

works. Some relevant examples are: the Atlas 

framework (Newman et al., 2003), where a new 

local map is started whenever localization performs 

poorly in the current local map, or the hierarchical 

SLAM presented in (Estrada et al., 2005), where 

sensed features are integrated into the current local 

map until a given number of them is reached. 

However, none of these provides a mathematically 

grounded solution based on the particular perception 

of the scene.  

 In (Eade and Drummond, 2007), the map is 

divided in nodes where the landmarks are 

represented in a local coordinate frame and, these 

landmarks are updated using an information filter. 

This method uses the common features between 

adjacent nodes to calculate their relative pose. A 

different approach called Tectonic-SAM (Ni and 

Dellaert, 2007) uses a “divide and conquer” 

approach with locally optimized submaps in a 

Smoothing and Mapping framework (SAM). This 

approach is improved in (Ni and Dellaert, 2010) to 

build a hierarchy of multiple-level submaps using 

nested dissection.  

 Other works employ “graph cut” to divide the 

map according to a measurable property of the map 

observations. On that mathematical sound basis, 

(Zivkovic et al., 2005) addresses the problem of 

automatic construction of a hierarchical map from 

images; (Blanco et al., 2008) generates metric-

topological maps using a range scanner, and 

generalizes the approach for other sensors; and 

(Rogers and Christensen, 2009) splits the map 

within a Bayesian monocular SLAM framework to 

reduce the problem complexity. 

Our method, which also relies on graph cut, 

differs from the above works in the way the graph is 

constructed, which is specifically tailored for BA-

based monocular SLAM. Our approach resembles 

also the stereo-SLAM framework of (Lim et al., 

2011) who divide the map keyframes into groups 

(called segments) according to their geodesic 

distances in the graph. On the contrary, our map 

partitioning is independent of the keyframe 

positions, and is only based on observations 

acquired from the scene. Concretely, the map is split 

where there are less shared observations, minimizing 

the loss of information and therefore, enforcing the 

coherency and consistency of the submaps. 
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3 MAP PARTITIONING 

Splitting a map into locally metric consistent and 

globally coherent regions provides some relevant 

advantages for SLAM. Next, we explain the benefits 

of such map structure (subsection A), and describe 

our proposal to obtain this metric-topological 

arrangement of the map (subsection B). 

3.1 SLAM Improvements through 
Hybrid Mapping 

The advantages of applying a coherent map partition 

in monocular SLAM are diverse: a) all the metric 

data in each submap can be referred to a local 

coordinate system, what reduces error accumulation 

and numerical instability; b) localization can be 

achieved more efficiently since only those map 

points in the nearer regions are reprojected to 

estimate the camera position; c) this map structure 

permits to approximate the global BA by the 

individual optimization of the different submaps, 

thus reducing the computational cost of the 

optimization process. This last advantage is of 

special relevance due to the demanding nature of 

BA, whose complexity ranges from linear to cubic in 

the number of keyframes depending on the particular 

point-keyframe structure (Konolige, 2010). Next, we 

explain the details of this approximation for the 

global optimization. 

Having a map of n landmarks obtained from 

observations at m keyframes, bundle adjustment can 

be expressed as 
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where 

 d(x,x’) denotes the Euclidean distance 

between the image points represented by 

vectors x and x’, 

 aj is the pose of camera at keyframe j and bi 

the position of landmark i, 

 Q(aj,bi) is the predicted projection of 

landmark i on the image associated to 

keyframe j, 

 xij represents the observation of the i-th 3D 

landmark on the image of keyframe j and, 

 vij stands for a binary variable that equals 1 

if landmark i is visible in keyframe j and 0 

otherwise. 

 
Let’s now consider that the map is divided into N 

submaps, each submap, say k, containing m
k
 

keyframes and n
k
 landmarks, with k = {1,…N}. 

Then, (1) can be rewritten as 
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where the combination of subscript i and superscript 

k refers to the i-th landmark of the k-th submap (e.g., 

bi
k
), and similarly l over j refers to the j-th keyframe 

of the l-th submap (e.g., aj
l
). Taking into account the 

observations shared between submaps, this 

expression can be written as 
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where the term A stands for the reprojection error of 
those landmarks observed from keyframes of 
different submaps and the term B corresponds to the 
reprojection error of those landmarks observed form 
keyframes within the same submap. Both concepts 
are illustrated in figure 1.b. The first establishes the 
inter-connection between submaps which is 
represented by arcs connecting keyframes of 
different submaps (e.g. arc linking KF-2 and KF-11) 
and the second sets the intra-connection of the 
submap which includes the submaps’ inner arcs (e.g. 
arc linking KF-1 and KF-2).  

If we are able to divide the map in such a way 
that the different submaps have few common 
observations, and assuming that the reprojection 
errors are independent of the map division, then A 
becomes negligible with respect to B. Thus, the 
global optimization can be approximated by 
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This approximation is equivalent to optimize 
each submap independently, which leads to a 
significant reduction of computational burden. In 
fact, this approximation is equivalent to the original 
expression (1) when there are no connections 
between submaps. 
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Figure 1: a) Common observations between two keyframes. This is used to calculate the Sensed Space Overlap (SSO) (see 

equation 5). b) Graph-representation of the map where each node represents a keyframe and the arcs are weighed with the 

SSO calculated between keyframes (thicker arcs mean higher SSO). c) Example of SSO matrix, in which the brightness of 

the element ij represents the SSO between the keyframes i and j. 

                                                                                                                           

3.2 Map Partitioning Method 

The approach proposed here to divide the map into 

coherent regions consists in grouping together those 

keyframes that observe the same features from the 

environment. For that, we consider the map as a 

graph whose nodes represent keyframes and the 

weight of the arcs are a measure of the common 

observations between them. There are two critical 

issues in this partitioning approach: first, the 

computation of the arc weights; and second, the 

criterion adopted to perform the partition itself. 

As for the first, the arc weights are assigned 

according to the Sensed-Space-Overlap (SSO), 

following our previous work (Blanco et al., 2006), 

particularized for landmark observations. This 

simple but effective measure represents the 

information shared by two keyframes. It is 

calculated with the relation between the number of 

common landmark observations and the total 

number of landmarks observed in both keyframes 

(see figure 1.a). This is expressed as 
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where vi
A
 and vi

B
, similarly to the definitions of the 

previous section, are binary variables that equal 1 if 
landmark i is observed in the keyframes kfA and kfB, 
respectively. 

Regarding the criterion for partitioning the 
graph, we follow previous works (Zivkovic et al., 
2005), (Blanco et al., 2008), (Rogers and 
Christensen, 2009) that apply the minimum 
normalized-cut (min-Ncut), originally introduced in 
(Shi and Malik, 2000). The min-Ncut has the 
desirable property of generating balanced clusters of 
highly interconnected nodes, in our case clusters of 
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keyframes that cover the same part of the 
environment. Figure 1 illustrates this concept: figure 
1.a shows the common observations in a pair of 
keyframes whose arc weight is calculated with the 
SSO (see Eq. 5), and figure 1.b shows a map 
division into three submaps as produced by the min-
Ncut procedure. Notice that the pairs of keyframes 
with higher SSO (thicker arcs) are grouped together. 
Figure 1.c shows the symmetrical SSO matrix 
corresponding to a different, larger map, where the 
keyframes are arranged according the min-Ncut to 
give rise to three groups of keyframes or submaps 
(matrix blocks). 

It is important to notice that, in order to 
guarantee a scalable system when applying map 
partitioning to visual SLAM, the size of the submaps 
(i.e. number of keyframes) must be kept bounded. 
This requirement is not demonstrated 
mathematically here but it is intuitive to see that as 
the camera explores new parts of the scene, the new 
keyframes will have low SSO values (if any) with 
distant ones in the map. Therefore, the min-NCut 
will produce new partitions when the system 
explores unobserved regions of the environment. 
This can be more clearly understood with the 
following example: let’s consider the case where 
there are features that are always observed (e.g. the 
horizon when travelling by train, or when zooming 
in the scene, or traversing a corridor with the camera 
pointing in the movement direction) as the new 
keyframes are selected, they will introduce new 
features and therefore will reduce the minimum 
normalized-cut, resulting in the eventual partition of 
the map. The last two examples represent another 
advantage of our partition method, which produces 
natural multi-scale maps when the camera zooms. 
This insight is supported by all the experiments we 
have carried out during this work. 

4 COMBINATION OF MAP 

PARTITIONING AND PTAM 

This section outlines the combination of our 
partition procedure and Parallel Tracking and 
Mapping (PTAM) (Klein and Murray, 2007). PTAM 
is a monocular SLAM algorithm which performs 
online BA on keyframes, separating the tracking and 
mapping stages in two different threads to permit 
efficient real-time execution. This technique requires 
an initial map before it starts working autonomously. 
Such initial map is acquired with a Structure from 
Motion procedure that involves user intervention to 
select two views with sufficient parallax. Once the 
initial map has been created, the system analyses the 

 

Figure 2: Tracking and mapping threads of PTAM. Blue 

boxes correspond to the embedded stages to perform the 

map partitioning. 

images retrieved by the camera to self-localize in the 
map, while the map is continuously optimized and 
augmented with new keyframes and landmarks. 
Such keyframes are selected according to some 
simple heuristics (see (Klein and Murray, 2007) for 
more details), and new landmarks are extracted 
through epipolar search between each new keyframe 
and its nearest keyframe in the map. 

Figure 2 shows a scheme of the proposed 

partitioning method interacting with PTAM. Our 

submapping procedure takes action in both of PTAM 

threads. In the tracking thread, it selects the current 

submap and the nearest keyframe to the estimated 

pose after a new image is analyzed. In the mapping 

thread, after a new keyframe is selected and new 

landmarks are detected in it, the SSO is evaluated 

with respect to all the keyframes of the vicinity, 

which includes all the submaps directly connected to 

the current submap (see figure 3). The partitioning 

procedure comes into play after the SSO has been 

updated, then, the min-Ncut is evaluated, and if it 

results in a different partition, the map is rearranged. 

This partitioning method is applied dynamically as 

the map enlarges and may create new submaps as 

well as merge existing submaps to maintain 

coherency by grouping keyframes with high overlap. 

The partitioning process, including SSO 

computation, min-NCut evaluation and map 

rearrangement depends on the number of keyframes 

and landmarks in the vicinity, taking up to 100 ms. 

in our experiments, which supposes a short time in 

comparison with the map optimization time. 
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Figure 3: Topological representation of the concept of 

submap vicinity. 

5 EXPERIMENTAL RESULTS 

In this section we present some experiments which 

show the advantages, in terms of efficiency and 

scalability, of using the proposed metric-topological 

arrangement of the map instead of a single metric 

map. The experiments have been carried out using a 

Philips SPC640NC webcam, connected by USB to a 

linux-based laptop with an Intel Core2 Duo 2.4 GHz 

processor, 2Gb of memory and a nVidia GeForce-

9400 graphics card.  

A first experiment is aimed to illustrate the 

increase of efficiency in localization at frame rate. 

For that, we compare the time needed to project map 

points into the current frame with and without 

partitioning as the map grows. Both tests have been 

performed in the same environment, building maps 

composed of about 45000 points and 1000 

keyframes, distributed in 52 submaps for the 

partitioning case. Figure 4 shows that the time with a 

unique map grows linearly with the number of map 

points, whereas with submapping, this time is 

bounded since only those points in submaps close to 

the camera are evaluated. This improvement in 

efficiency becomes more relevant when the map 

grows nonstop (note that this process is performed 

with each new frame captured by the camera). 

The goal of a second experiment is to quantify 

the efficiency in the global optimization of the map 

with our submapping approximation. For that, we 

have run BA offline after every new keyframe is 

selected from a recorded video (that is, sequential 

SfM), measuring the times of each BA completion 

with and without partitioning. At the end of these 

tests, the maps created were composed of about 

22000 points and 400 keyframes, distributed in 9 

submaps for the partitioning case. In order to 

compare both alternatives in the same conditions, we 

have included the time of partition management in 

the BA time for the partitioning test. Figure 5 shows 

the optimization times vs. the number of keyframes 

of the whole map for both cases. As expected, for 

the case without partitioning, the computational cost 

follows an increasing polynomial trend with the 

number of keyframes. Conversely, when applying 

map partitioning, the computational burden is 

bounded since the BA is applied only on the current 

submap. For this case, we can observe some abrupt 

changes in the cost which are produced when the 

reference submap (the one where the system is 

localized) switches to a neighbor of different size. 

Figures 6.a and 6.b show the maps built with both 

alternatives (different colors represent different 

submaps in 6.b). We can verify visually their high 

similarity, and their good alignment, as a result of 

the continuous optimization previous to the map 

partition.  

Additionally, we are interested in comparing the 

accuracy of the generated metric map. Due to the 

lack of a reliable metric to evaluate the map’s 

quality, we have compared visually the different 

maps considering as ground truth the map obtained 

offline in the previous experiment (figure 6.a), 

which is the most accurate we can get. In the map 

obtained with PTAM (figure 6.c), we can appreciate 

some regions with depth errors and many outliers 

(e.g. landmarks detected behind physical walls). 

These inconsistencies are consequence of the 

premature interruption of global BA that happens 

when a new keyframe is selected, what leads to data 

association errors and the subsequent accuracy 

decrease with the map size. On the contrary, the map 

obtained with our approach (figure 6.d) presents no 

inconsistencies and considerably less outliers than 

the unique map solution (figure 6.c). This results 

from the higher efficiency of the submap local 

optimization, which optimizes regions with highly 

correlated observations to produce locally accurate 

submaps. 

The results shown in this section have been 

supported in several tests performed under different 

conditions: exploring different rooms, re-visiting 

previous maps, traversing a corridor, zooming to get 

more detail of the scene, etc. The reader may refer to 

http://mapir.isa.uma.es/eFernández/partition for a 

video that illustrates the operation of our 

submapping approach with PTAM in different 

environments. 
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Figure 4: Map projection time for localization with and 

without map partitioning. 

 

Figure 5: Bundle adjustment computation time (offline) 

with and without partitioning. 

6 CONCLUSIONS 

This article presents an online submapping method 

which transforms a metric map into a metric-

topological arrangement of it. This hybrid metric-

topological structure improves the scalability of 

monocular SLAM in two aspects: first, the system 

rules out unnecessary metric information to perform 

more efficiently; second, it permits to use an 

approximation of BA to reduce computational cost 

while maintaining map consistency. Besides, the 

topological arrangement of the map is useful for 

other tasks, as loop closure, global localization or 

navigation. Experiments have demonstrated the 

potential of our approach to obtain efficient map 

representation in large environments. Future work 

will focus on exploiting the topological structure of 

the map for tasks as loop closure and relocalisation. 

ACKNOWLEDGEMENTS 

This work has been supported by the  project 

“TAROTH: New developments toward a robot at 

home”, funded by the Spanish Government and the 

“European Regional Development Fund ERDF” 

under contract DPI2011-25483. 

REFERENCES 

Angeli, A., Doncieux, S., Meyer, J.-A., Filliat, D., 2009. 

"Visual Topological SLAM and Global Localization", 

In IEEE International Conference on Robotics and 

Automation. 

Blanco, J.L., Fernández-Madrigal, J.A., González, J., 

2008. Toward a unified bayesian approach to hybrid 

metric-topological SLAM. IEEE Transactions on 

Robotics and Automation, 24(2):259-270. 

Blanco, J.L., González, J., Fernández-Madrigal, J.A., 

2006. “Consistent observation grouping for generating 

metric-topological maps that improves robot 

localization”. In IEEE International Conference on 

Robotics and Automation, pp. 818–823. 

Blanco, J.L., González-Jiménez, J., Fernández-Madrigal, 

J.A., 2013. "Sparser Relative Bundle Adjustment 

(SRBA): constant-time maintenance and local 

optimization of arbitrarily large maps", In IEEE 

International Conference on Robotics and Automation. 

Davison, A.J, 2003. “Real-time simultaneous localisation 

and mapping with a single camera,” In Proceedings of 

the International Conference on Computer Vision. 

Eade, E., Drummond, T., 2007. “Monocular slam as a 

graph of coalesced observations”. In Proceedings of 

the International Conference on Computer Vision. 

Estrada, C., Neira, J., Tardos, J., 2005. “Hierarchical slam: 

Real-time accurate mapping of large environments”. 

IEEE Transactions on Robotics, vol. 21, no. 4, p. 588-

596. 

Fernández-Moral, E., Mayol-Cuevas, W., Arévalo, V., 

González-Jiménez, J., 2013. "Fast place recognition 

with plane-based maps", In Proceedings of the IEEE 

International Conference on Robotics and Automation. 

Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., 

Fernández-Madrigal, J.A., J. González, 2005. “Multi-

hierarchical semantic maps for mobile robotics,” In 

Proceedings of the IEEE/RSJ International 

Conference on Intelligent Robots and Systems, pp. 

2278–2283. 

Holmes, S.A., Sibley, G., Klein, G., Murray, D.W., 2009. 

”A relative frame representation for fixed-time bundle 

adjustment in monocular SFM”. In Proceedings IEEE 

International Conference on Robotics and Automation. 

Klein, G., Murray, D.W, 2007. “Parallel tracking and 

mapping for small AR workspaces”. In Proceedings of 

the International Symposium on Mixed and 

Augmented Reality. 

Konolige, K., 2010. “Sparse sparse bundle adjustment”. In 

Proceedings of the British Machine Vision Conference. 

Lim, J., Frahm, J.M., Pollefeys, M., 2011. Online 

environment mapping. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern 

Recognition. 

10th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2013), pages 39-47. 
Reykjavík (Iceland), 2013.



 

Figure 6: Top view of maps generated in our experiments. All the maps are composed of more than 400 keyframes and 

22.000 landmarks. The different colors in b) and d) represent different sub-maps.   

Newman, P., Leonard, J., Soika, M., Feiten, W., Teller, S., 

2003. “An atlas framework for scalable mapping”. In 

Proceedings of the IEEE International Conference on 

Robotics and Automation, vol. 2, pp. 1899–1906. 

Ni, K., Dellaert, F., 2010. “Multi-level submap based slam 

using nested dissection”. In IEEE/RSJ International 

Conference on Intelligent Robots and Systems. 

Ni, K., Steedly, D., Dellaert, F., 2007. “Tectonic SAM: 

Exact, out-of-core, submap-based SLAM,” in IEEE 

International Conference on Robotics and Automation. 

Nistér, D., Naroditsky, O., Bergen, J.R, 2005. “Visual 

odometry”. In Proc. IEEE International Conference on 

Computer Vision and Pattern Recognition, pages 652–

659. 

Rogers, J.G., Christensen, H.I., 2009. “Normalized graph 

cuts for visual slam”. In IEEE/RSJ International 

Conference on Intelligent Robots and Systems. 

Savelli, F., Kuipers, B., 2004. “Loop-Closing and 

Planarity in Topological Map-Building,” In 

Proceedings of the IEEE/RSJ International 

Conference on Intelligent Robots and Systems, vol. 2, 

pp. 1511–1517. 

Shi, J., Malik, J., 2000. “Normalized cuts and image 

segmentation”. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 22, no. 8, p. 

888-905. 

Sibley, G., Mei, C., Reid, I., Newman, P., 2009. “Adaptive 

relative bundle adjustment”. In Robotics Science and 

Systems. 

Strasdat, H., Davison, A.J., Montiel, J.M.M., Konolige, 

K., 2011. “Double Window Optimisation for Constant 

Time Visual SLAM”. In IEEE International 

Conference on Computer Vision. 

Strasdat, H., Montiel, J.M.M., Davison, A.J., 2010. “Real-

time monocular slam: Why filter?”. In IEEE 

International Conference on Robotics and Automation. 

Thrun, S., 1998. “Learning Metric-Topological Maps for 

Indoor Mobile Robot Navigation,” Artificial 

Intelligence, v.99, no.1, pp. 21-71. 

Zivkovic, Z., Bakker, B., Krose, B., 2005. “Hierarchical 

map building using visual landmarks and geometric 

constraints”. In Proceedings of the IEEE/RSJ 

International Conference on Intelligent Robots and 

Systems, p. 2480-2485. 

10th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2013), pages 39-47. 
Reykjavík (Iceland), 2013.




