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Accurate registration of high-resolution images requires the extraction of an important number of
reliable control-point pairs distributed over the entire images and localized with a high precision.
The possibility of automatically extracting them from images is of notorious significance, since
commercial packages only provide the user with some tools that assist him/her when carrying out
their manual identification. In this paper we proposed a method to robustly and accurately extracting
such matches in a full automatic way. This method consists of two steps: first, an initial set of control
point pairs is identified in both images following a coarse-to-fine approach, and second, these pairs
are processed in order to discard outliers that do not fit to the affine epipolar geometry inherent to
the two views. To gain also in precision, the positions of remaining pairs (inliers) are refined on the
basis of a Maximum Likelihood error minimization. As demonstrated in the paper through
experimental results using panchromatic QuickBird images (0.6 meter/pixel), our approach is able

to improve the registration accuracy up to 45% percent.
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1. Introduction

Image registration is the process of spatially aligning two images of the same scene acquired on different dates
(multitemporal analysis), from different viewpoints (multiview analysis) and/or using different sensors
(multimodal analysis). In this process, one image remains without modification (the fixed image) whereas the
other one (the moving image) is spatially transformed until fitting with the fixed one. Image registration is a
crucial step in those image analysis applications where the final result comes from the association of several

data sources, for example, image fusion, change detection, 3D scene reconstruction, etc.
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Most registration techniques applied within the remote sensing field deal with the registration process by
means of a mapping function estimated from a set of representative pairs of control points (CP) identified in
both images (Gonzalez et al., 2001; Zitova & Flusser, 2003). Defining precise corresponding points in both
Images may require the user to spend a considerable amount of time in those situations where hundred of control
points are necessary for capturing the geometric distortions, especially in high-resolution satellite images, as
revealed in (Arévalo & Gonzéalez, 2006). To facilitate this process, current commercial packages include
specific tools to assist their identification, but fail when the images present important radiometrical and
geometrical differences. It is clear, then, the convenience of having automatic software tools to robustly and
precisely extract pairs of CP despite the possible differences between the images, which is the main contribution
of this paper.

In satellite remote sensing, an important simplification about the scene geometry can be made: the
perspective projection, which is a non-linear mapping, can be approximated by a paraperspective one (so-called
affine projection), which is a linear transformation. This simplification leads to a great reduction of computation
in many vision problems and provides certain a priori knowledge about the scene geometry (Xu & Zhang,
1996). This work takes advantage of this fact in order to make more efficient and robust the automatic detection
of corresponding control points, given a pair of high resolution images. More precisely, our method applies a
corner detector to identify key points in the fixed image and a feature tracker that searches for their
corresponding points in the moving one. The matcher that we propose consists of an enhanced extension of the
well-known Lukas-Kanade feature tracker (Lucas & Kanade, 1981). To uniformly distribute the control point
pairs throughout the images, the identification of keypoints in the fixed image is accomplished by selecting a
point from every cell of a rectangular grid arranged on it. Robustness in the process is achieved by recovering
the affine epipolar geometry of the two images to register. In particular, we exploit such information to discard
the matches not consistent with the estimated 3D viewing geometry (labelled as outliers) and to accurately re-
estimate the localization of the rest (inliers).

The proposed method has been successfully tested with panchromatic QuickBird images (0.6 meter/pixel)
acquired on different seasons, which leads to significant radiometric profiles, and from different acquisition
poses, which in combination with a high-relief terrain introduces important geometric differences between the
images.

The remainder of this paper is organized as follows. In section 2, we state and justify the assumption of
paraperspective camera projection for satellite images. In section 3, we describe in detail the proposed method

and present some experimental results in section 4. Finally, some conclusions and future work are outlined.
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2. The assumption of paraperspective camera projection for satellite image acquisition

When a camera field-of-view is narrow and the size of the sensed objects is small with respect to their distance
to the camera, as it is the case of the satellite images, the perspective projection, which is a non-linear mapping,
can be approximated by a paraperspective transformation, which is a linear one. This simplification leads to
great reduction of complexity in many vision problems including the epipolar geometry estimation of different
views (Xu & Zhang, 1996).

The epipolar geometry is the intrinsic projective geometry between two images (views) of the same scene.
It is independent of scene structure, and only depends on the cameras’ internal parameters and their relative
poses. The fundamental matrix F encapsulates this intrinsic geometry, that is, F is the algebraic representation
of epipolar geometry. If a point in 3-space X is imaged at x =(x,y,1)" in a certain image, and at x'=(x",y'1)"
in another one (in homogeneous coordinates), then both points satisfy the relation x'" I'=0, where I'=Fx is
named the epipolar line of x (see figure 1). The fundamental matrix F is the unique 3x3 rank 2 homogeneous
matrix which maps a point of one image to a line of the other (x = I'). This relation is called epipolar constraint
and can be expressed as follows:

XxTFx=0 (1)

which holds for any pair of corresponding image points (pixels) <x, x'>.

The fundamental matrix is independent of the scene structure, and has 8 independent ratios (degrees of
freedom or dof) that can be estimated from correspondences identified in both images (7 pairs for its general

form), without requiring knowledge of the cameras’ internal parameters or relative pose.
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Satellite pose 2 Rt Satellite pose 1

Figure 1: Intrinsic projective geometry between two images (epipolar constraint).

On the other hand, if a set of 3D points {Xi,i =1,---,n} are coplanar (see figure 2), their projections
{{x;,%"),i=1,---,n} must verify the expression:
X;'=HX, 2

where H is a projective transformation (also called projectivity or homography) induced by the planar surface

which maps any point from one image plane to another (x > x'). H isa 3x 3 non-singular homogeneous matrix

L (At
v v ®

being A a 2x2 non-singular matrix, t = (tx,ty)T a translation 2-vector; and the vector v’ =(v,,V, ).

of the form:

Just as the fundamental matrix, the homography has 8 dof and can be estimated from 4 corresponding points
identified in both images, without requiring knowledge of the cameras’ parameters or the relative pose of the

plane.
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Satellite pose 2 Rt Satellite pose 1

Figure 2: Projective transformation between two images induced by a planar surface (world plane).

In satellite remote sensing, because of the distance between the camera and the observed scene, we can
assume a paraperspective (also called affine) projection. Under this assumption, the epipolar geometry can be
simplified as follows:

e 4 pairs of points suffice to compute the epipolar geometry which relates both images, instead of the 7

pairs required for the general form. In this case, the matrix F (called now the affine fundamental matrix)
has only 4 dof and is of the form:

Fa= )

O O O
o O O
®© T @

This forces the epipolar lines to be parallel and, under the hypothesis that the errors in the image point
localization follow a known model (typically Gaussian), their positions can be accurately re-estimated
(Xu & Zhang, 1996).

¢ Regarding the estimation of the homographies, 3 pairs of control points are enough to compute the affine
homography, instead of the 4 pairs required for its general form. The affine homography (also called

affinity) has 6 dof and can be written as:
At
Ha=lor 1 (5)
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Exploiting such simplifications, the identification of corresponding point pairs (in our case, for registering

high resolution images) can be stated as follows: given the image point x, =(x;,y;)" in the fixed image (1),
locate its corresponding points X', = (X, Y', )T in the moving one (1), such that, <x,x'> verify x'"F, x=0 and,
the image patches at x; and x'; are as much “similar” as possible. Thus, we set the point matching as a process

that minimizes the sum of square differences (SSD) of two pixel neighbourhoods centered at x;, and H,Xx;.

Formally, this can be expressed as:
L , 2
min > > [I(x,y)—l (a11x+a12y+tx,a21x+a22y+ty)] ©6)

where (2o, +1)><(2a)y +1) is the size of the pixel neighbourhood considered. If no information is available a

priori, H, can be initially taken as the identity matrix.

Finally, in order to compensate for the radiometric differences between both images, the image patches are

conveniently normalized, and (6) can be rewritten as:
) X +ay y|+a)y 2

min > > [I (xy)-al '(aﬂx+a12y+tx,a21x+a22y+ty)+ﬂ] )
AL x=x—w, y=Y;-o,

where o and g are the local contrast and brightness normalization coefficients, respectively, estimated from

the values of both pixel neighbourhoods (Benke & Hedger, 1996).

3. Description of the proposed method

For a registration process to be successful, especially with high-resolution images, it is necessary that the CP
pairs are distributed on the images according to their geometric differences or, failing that, the CP density must
be high enough to account for the most geometrically distorted area. This paper is concerned with the second
choice, that is, since we assumed that no a priori knowledge of the geometric distortions of images is available;
we present a technique to robustly extract high-densities of CP pairs uniformly distributed over the image. As
depicted in figure 3, the proposed method consists basically of two steps: 1) an initial set of CP pairs is identified
in both images based on a coarse-to-fine matching strategy, and 2) this CP set is processed in order to discard

outliers as well as to refine the position of the inliers according to the recovered affine epipolar geometry.
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Figure 3: Structure of the proposed method.

Similar approaches have been proposed, for example, in disciplines such as computer vision for feature
tracking (Kang et. al., 1997; Bouguet, 1999), stereo matching (Guoging et. al., 1996; Zhang et. al., 1996),
motion estimation (Tomasi & Kanade, 1991; Feng & Perona, 1998), etc. Most of these methods cope with video
sequences or pairs of images where the relative geometric differences between two consecutive frames can be
approximated, in most of cases, by a similarity transformation (translation, rotation, and scale change).
However, these approaches may not perform well when applied to typical remote sensing images which are
usually acquired from very different observation angles, lighting conditions, and with significant scene changes.
On the other hand, none of them include specific mechanisms to assure the geometric consistency and/or the
correct localization of the detected pairs of control points.

Next, we describe in detail each of above-mentioned steps.

3.1.  Selection of control point pairs

The selection of a CP set is addressed in two phases. First, we select distinctive points (i.e. pixels of maximum
curvature or corners) in the fixed image. In order to get them uniformly distributed over the image, we pick a
point from every cell of a rectangular grid arranged on it (the cell size is adjustable). The corner detector used
in this work is the well-known Harris operator (Harris & Stephens, 1988), which presents two interesting
characteristics for this work: it generates a big number of reliable corners and provides sub-pixel accuracy.
Secondly, the matches of the fixed-image corners are identified in the moving one. To accomplish such a task,
we employ a pyramidal implementation (Bouguet, 1999) of the classical Lucas-Kanade feature tracker (Lucas

& Kanade, 1981) that we have extended for working with affine matching (instead of similarity) as well as for
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compensating image radiometric differences (as described in section 2). More precisely, this approach addresses
the minimization of (7) in a Newton-Raphson style for each fixed-image point. The minimization is applied
throughout the n levels of the Gaussian pyramid decompositions” of the two images with a fixed size of the
pixel neighbourhood (Burt & Adelson, 1983). More specifically, the matching process starts from the top level
of the pyramid, and the results in the higher levels are used as approximations in the subsequent lower levels.
This continues until the entire pyramid has been processed, or certain degree of similarity between the image
patches has been achieved. In the latter case, the control point localizations are conveniently scaled (in the same
proportion) to compensate the pyramidal decomposition. Because of fixed pixel size during this iterative
process, we are able to cope with large displacements between corresponding points (typical in satellite image

registration). Figure 4 shows graphically the selection of control point pairs described above.
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Figure 4: Selection of control point pairs: corner selection and affine matching. The selection step is addressed in a Gaussian

pyramid decomposition of both images, which allows us to deal with significant geometric differences between the images.

In our tests, we have employed a grid with square cells of 50 pixels of side (for panchromatic QuickBird
images this width corresponds to 30 meters). This size is small enough for precisely registering images acquired

from different observation angles and covering diverse terrain profiles, as analyzed in (Arévalo & Gonzalez,

* A Gaussian pyramid is a technique broadly used in image processing, which involves creating a series of images that are weighted

down using Gaussian kernel (a low-pass filtering) and scaled down. It creates a stack of successively smaller images, with each

pixel contains the local average that corresponds to a pixel neighbourhood on a higher level of the pyramid.
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2006). Regarding the parameters of the matching procedure, we have considered 4 levels for the Gaussian
pyramid and 25x25 pixels for the size of the pixel neighbourhood. Figure 5 shows the control point pairs

identified in a pair of QuickBird images of a typical urban scene.
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Figure 5: Selection of control point pairs illustrated on two QuickBird images of a typical urban scene. Gaussian pyramids of both

images and set of CP pairs provided by the matching procedure proposed in section 3.1.

Once the initial set of matches has been identified, the following step of our method consists of discarding
those pairs non-consistently matched and refining the remaining matches’ coordinates in order to compensate

their localization errors.
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3.2.  Refinement of the control point pairs

At this stage, we make use of the affine epipolar geometry both to remove point pairs not consistent with that
estimated fundamental matrix, that is, outliers that do not verify the equation (1), and to refine the localization
of those non-discarded (inliers).

For recovering the affine fundamental matrix, we employ a robust methodology based on the RANdom
SAmple Consensus (RANSAC) algorithm (Fischler & Bolles, 1981). This technique exploits the information
redundancy to provide a robust estimate of the parameters of a model and to discard those samples do not

consistent with it. In our particular case, the model is given by the affine fundamental matrix F, and the error
function that measures the consistency of a pair of points <x, x'> is the first-order geometric error (also called
Sampson distance), which is expressed as follow:

(x'TFAx)2

d(X"FAX): 2 2 T..\2 T2
(FaX); +(FaX), +(Fix )1 +(Fax )2

®)

where the terms of the form (z)f represent the square of the j-th entry of the vector z .

In practice, in order to achieve a better estimate, we employ the symmetric epipolar error (the distance of a
point from its projected epipolar line in both images) which is derived from (8) and whose geometric

interpretation is graphically shown in figure 6. The symmetric epipolar error is defined as:

1 N 1
(Fax); +(Fax), (Fax )12 + (F;X )2

The final step of the RANSAC algorithm is re-computing the model (i.e. the epipolar geometry) using all

d(x'Fx)* +d (x,F,Ix')2 = (x‘TFAx)2 )

the inliers. We make this re-estimation by minimizing a cost function from which we deliver the Maximum
Likelihood (ML) estimate of the affine epipolar geometry and, taking advantage of the simplifications derived
from the paraperspective assumption, a better estimate of the coordinates of the matches (for a comprehensive
description of this procedure, please, refer to (Hartley & Zisserman, 2003)). The ML estimate of the affine
fundamental matrix assumes that the image point localizations are affected by Gaussian noise. In that case, the

ML estimate is the one which minimizes the geometric distance (which is the re-projection error):
- 2 ' )2
{Fﬂiﬂx,i}zd(xnxi) +d(x; %) (10)

where (x;, X", ) are the initial CP pairs, and (X;,X’,) are the refined ones.
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Figure 6: Robust identification of control point pairs. By forcing the pairs to satisfy the affine epipolar geometry that relates both

images, we can (a) discard the outliers and (b) re-estimate the localization of the inliers.

Figure 7 illustrates the refinement of the control point pairs identified in the pair of QuickBird images shown
in figure 5. In particular, figure 7(a) illustrates the case of a pair classified as outlier, since its symmetric epipolar
error (equation (9)) is greater than a given threshold (0.75 pixels in our tests). Figure 7(b) shows the inliers once
their localizations have been corrected. As observed in figure 7(b), the proposed method is able to provide a set
of point pairs distributed throughout the images despite their difference in radiometry, angle of observation and
content (e.g. cast shadows, different sides of the buildings, scene changes, etc.). Next, a variety of experimental

tests to quantify and evaluate the method performance are presented.
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Figure 7: Refinement of the control point pairs detected in two QuickBird images of a typical urban scene: a) robust detection of the
outlier matches and b) coordinates re-estimation of the inliers. The enlarged images show, in detail, the actuations described in

section 3.2.
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4. Experiment and results

In this section, we evaluate the accuracy of the matches identified by the proposed method. Because the large
number of them and differences between both images, it is difficult to manually deal with this task. Thus, we
propose the following automatic procedure: first, we register the two images with a powerful elastic method
using the identified control point set as input; and second, we measure the registration errors (RMS and CE90)
of an independent check point (ICP) set selected by hand. The registration method applied is a thin-plate-spline
(TPS) function, which a part from its effectiveness, takes into account the contribution of all control points in
the resulting accuracy. With regard to the test data used in this work, we have considered two QuickBird images
of the city of Rincon de la Victoria (Malaga-Spain) of 1.8 x 0.9 Km? acquired on different seasons (which leads
to significant illumination changes) and from two very different poses.

A first set of experiments is aimed to check the robustness of the matching process. To this extent, we
analyze the accuracy and the number of control points robustly matched by the proposed method when the
images are affected by different noise patterns. Concretely, five pairs of images are evaluated: the original one
and four pairs affected by different rates of either uniform or Gaussian noise. Given the size of the images (
1.8x 0.9 Km?) and the size of the cells (30 meters), the number of corners initially extracted in the fixed image
Is 1800 points. After applying the proposed method, the percentage of inliers and outliers as well as the
registration errors for the five identified CP sets are shown in table 1. Two facts can be highlighted from these
results: a) the robustness of the method despite the noise pattern applied (all experiments exhibit similar rates);
and b) the high percentage of inliers, close to 90% (1613 pairs) for the five experiments. Such robustness and
accuracy of matching is also appreciated in the registration errors, which remain steady for most experiments

and close to 1 meter in all of them.

Table 1: Some statistical results of the method when the images to register are affected by different noise patterns.

Noise pattern % inliers % outliers RMSE (m) CE90% (m)
None 90.19 9.81 1.26 0.97
Gaussian (2.5%) 90.36 9.64 1.17 0.97
Gaussian  (5%) 89.57 10.43 1.15 1.02
Uniform (2.5%) 89.80 10.20 1.24 1.06
Uniform (5%) 89.86 10.14 1.20 1.04

In a second experiment, we quantify the benefits of using the affine-based matching instead of the similarity-

based one typically employed in other works. For this purpose, we compare the proposed method (affinity-
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based) with a pyramidal implementation of the Lucas-Kanade feature tracker included in The OpenCV Library",
which is based on similarity-based matching (Bouguet, 1999). Although the two methods start with the same
set of fixed-image points, only those pairs matched by both methods are finally considered in the image
comparison. As can appreciated in table 2, the our affinity-based approach outperforms the Lucas-Kanade
feature tracker, because a matching process based on similarities is not able to accurately match features in

images which exhibit local affine distortions.

Table 2: Results from the comparison between our affinity-based method and the Lucas-Kanade feature tracker.

Method % inliers % outliers RMSE (m) CE90% (m)
Proposed method 90.19 9.81 1.26 0.97
Lukas-Kanade feature tracker 91.40 8.60 3.57 3.15

Finally, the influence of the outlier detection and coordinates re-estimation on the method performance is
analyzed with the comparative results shown in table 3. From that numbers, we can highlight the following
points:

e The accuracy of the matching process is high even when no refinement is applied. We may confirm this
fact comparing the results of the first test (initial CP set) with the registration errors provided by Lucas-
Kanade feature tracker (see table 2). The differences are about 1 meter for both metrics.

e The identification of the outliers via affine epipolar geometry (second row) discards those pairs with
extreme registration errors, as revealed by the RMSE value. The CE90 value is not affected by removing
these pairs since the CE90 captures how good the 90% of the samples are, rejecting the remaining 10%.
This actuation leads to a decrease of the RMSE and CE90 values up to 1.61 and 1.76 meters,
respectively.

e The significant improvement in accuracy when the coordinate correction is applied, as revealed by the

CE90 value (lower than 1 meter). This result reveals the importance of refining the CP localization.

T The Open Source Computer Vision Library is a collection of algorithms and sample code for various computer vision problems. The
library is compatible with IPL and utilizes Intel® Integrated Performance Primitives for better performance. Visit

http://www.sourceforge.net/projects/opencvlibrary for further information.

Technical Report. 2009


http://www.sourceforge.net/projects/opencvlibrary

Table 3: Statistics of the proposed method after applying the following actuations: none, outlier detection and coordinate correction.

Actuation % inliers % outliers RMSE (m) CE90% (m)
Initial CP set 100 - 2.85 1.89
Outlier detection 90.19 9.81 1.61 1.76
Coordinate re-estimation 90.19 - 1.26 0.97

5. Conclusions and future work

High-resolution satellite images such as QuickBird are expected to play an important role in many remote
sensing applications. For achieving that, tools commonly used for lower resolution images may not be
appropriate, as it is the case of the methods for automatically detecting control point pairs.

This paper presents a technigue to robustly extract pairs of control points for registering such images, and
analyze their accuracy and robustness by means of a variety of experimental tests. We have described a coarse-
to-fine approach for matching image points which exploits the affine epipolar geometry to discard the outliers
(matches not consistent with the estimated 3D geometry) and to accurately estimate the correct localization of
the inliers. In the experimental tests, we have used panchromatic QuickBird images (0.6 meter/pixel) acquired
from very different poses and illumination conditions; and affected by different noise patterns.

This automatic procedure allows us to manage a large number of consistently-matched and uniformly
distributed point pairs, as revealed in our tests. Nevertheless, it should be noted that, same as all methods for
automatically detecting point pairs in high-resolution images (Zhang & Fraser, 2005; Paul et. al., 2002), the
resulting set of matches could not be the most suitable ones to model the relative geometric differences in typical
urban scenarios. For example, a perfectly-matched independent check point pair identified at a flat roof of a
very high building is not appropriate for measuring how good the ground or low-height buildings have been
registered (see figure 8). Thus, local geometric information should be considered to efficiently discard non-
suitable (although correctly detected) pairs from the registration accuracy viewpoint. This is one of our concerns
for the next future, as well as, to develop some strategy for recovering the points missed in the second step
taking advantage of the recovered affine reconstruction.
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Figure 8: Control points pairs identified in different scene planes (e.g. ground and top of the buildings). This circumstance typically

introduces additional registration errors in urban scenes.
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