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Image shadow segmentation has become a major issue in satellite remote sensing

because of the recent commercial availability of high-resolution images.

Detecting shadows is important for successfully carrying out applications such

as change detection, land monitoring, object recognition, scene reconstruction,

colour correction, etc. This paper presents a simple and effective procedure to

segment shadow regions on high-resolution colour satellite images. The method

applies a region growing process on a specific band (namely, the c3 component of

the c1c2c3 colour space). To gain in robustness and precision, the region

expansion also imposes a restriction on the saturation and intensity values of the

shadow pixels, as well as on their edge gradients. The proposed method has been

successfully tested on QuickBird images acquired under different lighting

conditions and covering both urban and rural areas.

1. Introduction

High-resolution images provided by latest missions such as QuickBird, Ikonos, or

OrbView have opened a new range of applications in the remote sensing field

because of the possibility of extracting detailed information from the images. These

applications include some that are becoming common in recent years, such as

natural disaster monitoring (i.e. flood or tsunami (Adams et al. 2005); earthquake

(Vu et al. 2004), etc.) or urban change detection (Del-Frate et al. 2005), and others

that will be a real possibility in the coming years, such as urban scene

reconstruction, cartography update, urban inventory, etc.

The improvement in spatial resolution of satellite imagery also implies that

something inherent to images, such as shadows, take on special significance for

different reasons (figure 1). On the one hand, they cause the partial or total loss of

radiometric information in the affected areas, and consequently they make image-

analysis processes like object detection and recognition, temporal change detection,

3D scene reconstruction, etc. more difficult or even fail. On the other hand, we may

take advantage of the presence of shadows as a valuable cue for inferring 3D scene

information based on the position and shape of the cast shadow, for example, for

building detection, delineation, and height estimation (Irvin and McKeown 1989). It

is clear, then, the convenience of accurately detecting shadowed areas in satellite

images either to radiometrically correct them and/or to infer 3D information.
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Shadow detection has received considerable attention within the computer vision

field, though not much work has been done towards the application of these results

to high-resolution satellite images recently available. This paper describes the main

approaches to detect shadows in images, and analyses their suitability for being

applied to colour satellite imagery. Based on this study, we propose a procedure that

exploits invariant colour space as well as edge information to effectively and

accurately detect shadows, in particular for QuickBird images (0.6 m per pixel).

Additional information such as sun azimuth or object heights (DEM) is not

considered here.

Very briefly, the proposed method deals with shadow detection through a region

growing procedure which basically consists of two stages:

1. Small groups of pixels which are likely to be shadow are selected as seeds of

shadow regions. They are obtained from a neighbourhood of local maxima in

the c3 component of the c1c2c3 colour space. Each shadow area is then

characterized by a Gaussian distribution of the c3 values of the pixels within

this region. The c1c2c3 space, first proposed by Gevers and Smeulders (1999)

for colour-based object recognition, is computed from the RGB representation

through the following nonlinear transformations:

c1~arctan
R

max G, Bf g

� �
ð1Þ

c2~arctan
G

max R, Bf g

� �
ð2Þ

c3~arctan
B

max R,Gf g

� �
: ð3Þ

2. From these seeds, the shape of the shadow region is recursively extended by

adding adjacent pixels which are consistent with the above distribution. To

delimit as precisely as possible the shape of the shadowed area, this process

takes into account region boundary information provided by an edge

detector.

One of the problems when using the c3 component is its instability for certain

colour values that leads to the misclassification of non-shadow pixels as shadow

(false positives). As reported in Gevers and Smeulders (1999) and Salvador et al.

(2004), this occurs both for pixels with low values of saturation and for pixels with

extreme intensity values (either low or high). During the above two stages, to

overcome this problem some components of the HSV space are checked. The overall

approach has been successfully tested with QuickBird images acquired under

different lighting conditions taken in diverse seasons, with different sun elevation

angles and covering both urban and rural areas.

The remainder of this paper is organized as follows. In §2, we review some of the

most representative methods of detecting shadows in digital images. In §3, we

describe some colour spaces of special interest for shadow detection. In §4, the

proposed method is described. In §5, we present experimental results. Finally, some

conclusions and future work are outlined.
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2. An overview of shadow detection methods

In this section, we first give a brief introduction to the nature of shadows (types and

structure) and then review some previous approaches to detect shadows in digital

images.

Shadow segmentation has been investigated within several computer vision

applications. The first reported methods appear in the field of aerial image

interpretation (Huertas and Nevatia 1988, Irvin and McKeown 1989, Wang et al.

1991, Koller, et al. 1993). With the spread of digital images in the last decade, a

tremendous interest in shadow detection has emerged in applications of video

stream processing, such as video surveillance, traffic control, pedestrian monitoring,

etc. (Rosin and Ellis 1995, Hsieh et al. 2003, Prati et al. 2003, Salvador et al. 2004).

Shadows occur when objects totally or partially occlude direct light from a source

of illumination. Shadows can be divided into two classes: cast and self (figure 2(a)).

A cast shadow is projected by the object in the direction of the light source; a self

shadow is the part of the object which is not illuminated by direct light. The part of a

cast shadow where direct light is completely blocked by an object is called the

umbra, while the part where direct light is partially blocked is called the penumbra.

See Funka-Lea and Bajscy (1995) for a deeper analysis of the physics of shadows.

When dealing with aerial or satellite images, neither self-shadows nor the

distinction between umbra and penumbra are of significance (figure 2(b)). Thus,

(a) (b)

Figure 2. Different types of shadows: (a) indoor image and (b) satellite image.

Figure 1. Shadows in high-resolution QuickBird imagery (typical urban scenes).

Shadow detection in colour high-resolution satellite images 1947
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most of the proposed methods presented in the remote sensing field only deal with

cast shadows, and follow two general approaches, image-based methods or model-

based methods (based on shadow properties), which are reviewed next.

2.1 Image-based methods

This approach makes use of certain image shadow properties such as colour (or

intensity), shadow structure (umbra and penumbra hypotheses), boundaries, etc.,

without any assumption about the scene structure. Some common ways of

exploiting image shadow characteristics are:

N The value of shadow pixels must be low in all the RGB bands. Shadows are, in

general, darker than their surrounding (shadow darkness hypothesis), so they

have to be delimited by noticeable borders (i.e. the shadow boundaries).

Luminance information is exploited in early techniques by analysing edges

(Scanlan et al. 1990) or histogram information (Nagao et al. 1979). In later

works such as Salvador et al. (2004), these hypotheses are considered (among

other information) to extract candidate shadow points in colour still images

and video streaming.

N Shadows do not change the surface texture. Surface markings tend to continue

across a shadow boundary under general viewing conditions. This knowledge is

exploited to detect background regions which are covered or uncovered by a

moving cast shadow in (Stauder et al. 1999).

N In some colour components (or combination of them), no change is observed

whether the region is shadowed or not, that is, they are invariant to shadows.

Salvador et al. (2004) and Sarabandi et al. (2004) take advantage of this feature

to extract shadow boundary information (see §3 for further information about

these colour representations). Another approach is presented in Huang et al.

(2004), where the authors analyse the relationship between RGB bands to

detect cast shadows in aerial images. Finally, in Barnard and Finlayson (2000),

a new space obtained from the linear combination (ratios) of the RGB bands is

proposed to detect shadows in indoor scenes.

2.2 Model-based methods

In this approach, simple shadow properties are used jointly with some a priori

knowledge of the scene to derive the geometry of buildings (Irvin and McKeown

1989), vehicles (Koller et al. 1993, Hinz and Baumgartner 2001), pedestrians (Hsieh

et al. 2003), etc. In a different context, there are studies that exploit cloud shadows

to detect clouds (Wang et al. 1991, Simpson et al. 2000). These methods make

assumptions about the observed scenes and, sometimes, about some image

acquisition parameters such as camera orientation, date and daytime of acquisition,

etc. Examples of how to apply such knowledge are:

N One or more edges of the cast shadow are oriented exactly in the light

direction. In Jiang and Ward (1994) and Massalabi et al. (2004), both intensity

and geometry constraints are used to detect and classify shadows in images of

constrained, simple environments.

N Shadow size depends on the light source direction and the object’s height. In

Stevens et al. (1995), the authors present a technique which takes into account

such information in combination with imprecise terrain maps to determine the

1948 V. Arévalo et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
d
e
 
M
a
l
a
g
a
]
 
A
t
:
 
1
1
:
2
2
 
3
0
 
N
o
v
e
m
b
e
r
 
2
0
0
9



probability that a given point in an aerial photographs is either in sunlight or in

shadow.

In general, the shadow detection techniques proposed in these works are quite

simplified processes (typically, thresholding) which are usually part of a more

complex system that refines the shadow area (along with the model of the object that

has cast it) through a hypothesis-verification framework. In some works, the

accuracy in confining the shadow region is not important, since it is only employed

as a cue for the presence of buildings (typically, detecting shadows is easier than

detecting buildings, pedestrians, cars, etc.).The main limitation of these methods is

that they are designed for specific applications and for a particular type of object.

Therefore, in complex scenes, as is usually the case for high-resolution images, they

are not general enough for coping with the great diversity of geometric structures

they may contain.

Our technique for shadow detection is a pure image-based method, since we

exclusively apply image properties. In particular, we exploit both a shadow invariant

colour component and edge information. Although the Sun azimuth and sensor/

camera localization are typically available for satellite images (i.e. in QuickBird), we

do not make use of this information since, in general, it is not possible to derive

precise model of the acquired area (in most cases, the 3D geometry of scene is

unknown or of a great complexity).

Next, we analyse the c3 component of the c1c2c3 colour space and its suitability for

being applied to shadow detection in colour high-resolution satellite images.

3. c3 colour component

Colour can be represented in a variety of three dimensional spaces, such as RGB,

HSV, XYZ, c1c2c3, l1l2l3, YCrCb, Lab, Luv, etc. (Ford and Roberts 1998). Each

colour space is characterized by interesting properties which make it especially

appropriate for a specific application. Among these properties, we can highlight the

invariant features. For example, some colour spaces are invariant to changes in the

imaging conditions including viewing direction, object surface orientation, lighting

conditions, and shadows. Traditional colour spaces such as normalized-RGB (rgb),

hue and saturation (from HSV), and, more recently, c1c2c3 (Gevers and Smeulders

1999) are colour representations that have revealed some kind of shadow invariant

property. Of remarkable effectiveness is the latter, c1c2c3, which has been

successfully used by Salvador et al. (2004) to extract shadows in simple images

with few single-colour objects and a flat (non-textured) background. Obviously,

these premises cannot be assumed in high-resolution colour satellite images where

the observed scenes are highly textured, objects may have many different colours,

and the scene, in general, is very complex (figure 3). In Sarabandi et al. (2004), the

authors also employ this representation to extract shadow boundaries in high-

resolution images by means of a texture filter.

To evaluate the limitations of the c1c2c3 space for shadow detection, we have

performed tests over a broad set of QuickBird images, acquired under different

lighting conditions and covering both urban and rural areas. The results of our

tests verifies the suitability of the c3 component to identify shadowed regions

which produce a much higher response than those non-shadowed (figure 3).

Despite these promising possibilities, our tests have also revealed the following

problems:

Shadow detection in colour high-resolution satellite images 1949
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N The c3 band is quite noisy, which causes the misclassification of shadow pixels

as non-shadow (true negatives) as well as inaccuracies in the shadow

boundaries.

N Equation (3) becomes unstable for low saturation (S) values (i.e. grey levels),

which causes the misclassification of non-shadow pixels as shadow (false

positives) (e.g. asphalt, concrete areas, etc.). This behaviour has also been

reported by Gevers and Smeulders (1999).

N Colours close to blue (high values of B) are wrongly detected as shadows (false

positives). In our test images, typically this occurs for blue water (i.e. swimming

pools), as illustrated in figure 3.

To overcome the above problems, in our approach we incorporate the following

two actuations:

Figure 3. Typical urban scenes that illustrate the complexity of high-resolution colour
satellite images (e.g. highly textured, objects may have many different colours, etc.) and their
corresponding c3 components. Local maxima produced by saturated white areas (bottom left)
and swimming pools (bottom right) are marked in both images.

1950 V. Arévalo et al.
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N To minimize the noise effect, the c3 image is smoothed, and we make use of the

intensity image gradient to define more precisely the shadow areas.

N We check the components S and V (from HSV) and do not classify a pixel as

shadow if it is one of the above cases. This may give rise to small gaps in a

shadow region, but it is a minor cost to pay for avoiding false positives,

especially since these small gaps may be filled later by a morphological filter.

Next, we describe the developed method, which is based on the segmentation of a

smoothed c3 image while taking into account the aforementioned considerations.

4. Description of the proposed method

Figure 4 shows the block diagram of the proposed system which comprises the three

stages described next. The system has been successfully implemented in C + + and

makes use of The OpenCV Library (Open Source Computer Vision Library; visit

http://www.sourceforge.net/projects/opencvlibrary for further information) to deal

with the image-processing operations.

4.1 Pre-processing stage

The system input is an RGB image from which the following components are

computed: c3, saturation (S) and intensity (V). The c3 image is convolved with a

363 average kernel to minimize the effects of noise (figure 5(c)), and the magnitude

of gradient of the intensity image (V) is computed by a 363 Sobel detector

(figure 5(d)).

4.2 Shadow detection stage

For segmenting the shadows, we apply a region growing process over the smoothed

c3 component. A generic region growing process starts with a small group of pixels

(called seed-window) and recursively adds neighbour pixels as long as they confirm

certain region membership rules. This technique is particularly suitable for our

problem because many shadow regions may exist throughout the image, and each

may have different radiometric profiles (shadow strength may vary from one zone of

the image to another). Obviously, one of the pivotal points when applying this

Figure 4. Structure of the proposed shadow detection system.

Shadow detection in colour high-resolution satellite images 1951

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
d
e
 
M
a
l
a
g
a
]
 
A
t
:
 
1
1
:
2
2
 
3
0
 
N
o
v
e
m
b
e
r
 
2
0
0
9



technique is that of reliably placing the seeds in the image: at least one per shadow

region (irrespective if they are redundant) and no seed at non-shadow pixels. Next,

we describe our implementation of this technique in more depth.

4.2.1 Seed selection. In our implementation, a seed is a square region (window) of

565 pixels. It is placed at pixels of the smoothed c3 image that confirm the following
conditions:

1. The centre is a local maximum, and its 565 neighbourhood must have values

higher than the mean of the whole c3 image. The size of this window gives the

minimum size allowed for the shadows, for example, 363 m2 for a QuickBird

image of 0.6 m per pixel of resolution.

2. The mean of the intensity (V) component of the window’s pixels must be lower

than a certain threshold TV (hypothesis of shadow darkness). In the same way,

the mean of the saturation (S) component must be higher than a threshold TS,

to avoid the instability of c3 (equation (3)) for low-saturation colours.

3. None of the window’s pixels must belong to another previous seed-window.

These values have been empirically set to TV50.35 and TS50.02 within the range

[0,1]. In §5, we analyse how much the variation of these thresholds affects the
shadows obtained.

Each of the seed-windows is now taken as a shadow prototype which is

characterized by a Gaussian distribution N(c^3,s) estimated from their c3 values
(figure 6). The process described below relies on this information for growing the

seeds through the shadow region.

The above conditions make it highly likely that the seed-window corresponds to a
shadow. Since, in a typical shadow region, several seeds are usually identified, we do

not mind very much if some of them are ruled out by these demanding premises: the

important point is not to generate false positive seeds. When several seeds are placed

within the same shadow, they eventually meet each other during the growing process

and end up being a single region.

4.2.2 Region growing. This procedure is recursively executed for all the eight

neighbours of the boundary pixels of a growing region. Starting with the seed-
window, a pixel is classified as shadow and added to the region if it satisfies the

following conditions:

1. It has not previously added to any shadow region already grown.

2. It is below a certain Mahalanobis distance d0 from the mean c^3 of the region,

that is:

c3{ĉ3j j
s

vd0: ð4Þ

Notice that higher values of s indicate a higher dispersion of c3 within the
region, and thus we tolerate larger deviation from the mean c^3. A value of

d053 has shown to produce good results.

3. The magnitude of the gradient of V is below a given threshold TE50.30, that
is, it is not a shadow boundary pixel. (We have also tried with the gradient of

the c3 smoothed image but because of the noise—still there, in spite of the

smoothing—the results are not reliable enough.)

4. It satisfies the conditions imposed to the seed pixels regarding the values of S

and V (see §4.2.1).

1952 V. Arévalo et al.
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If the pixel is incorporated into the region, the Gaussian distribution N(c^3,s) is

updated with its c3 value. The process ends when none of the neighbour pixels has

been added to the region.

Notice that, during the growing process of a particular seed, pixels of different

seed-windows not processed yet can be evaluated as any other image pixel. If their

inclusion in the region is accepted, that seed is removed from the list of remaining

seeds to be grown. We have checked that there is not much difference in the results

between this sequential implementation and a concurrent one since, in the end, all of

the obtained regions are going to be merged into a single indistinctive one after the

gap filling stage (to be described next).

(a) (b)

Figure 6. (a) Shadow seeds identified in the smoothed c3 component. (b) A shadow seed
window.

(a)

(b) (c) (d )

Figure 5. (a) Colour components computed from the RGB image. (b) Horizontal scan lines
which illustrate the effects of smoothing stage in the c3 component. The images (c) and (d)
show the results of the image processes described in section 3, that is, the smoothed c3

component and the module of gradient of V, respectively.

Shadow detection in colour high-resolution satellite images 1953
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Figure 7 illustrates the growing process in one dimension. It displays several scan

lines: the components c3, S, and V, respectively, and the module of gradient of the V

image. We can observe three detected seed-windows and the shadow boundaries

(indicated by vertical lines) where the region growing process ends because of some

of the above-mentioned conditions are not met.

Figure 8(a) shows the evolution of a Gaussian distribution during the growing of

a shadow region. As we can observe, the distribution parameters c^3 and s update

their values when new shadow pixels are added to the initial seed. This procedure

allows us to dynamically characterize the shadow area and to control the growing

process efficiently, in spite of the noisy nature of the c3 component. Figure 8(b)

shows two adjacent shadow regions generated after growing two seeds placed in

different textured areas within the same cast shadow.

4.3 Gap-filling stage

After the region growing, small gaps in the shadow region may appear because of

the misclassification of shadow pixels (true negatives) (figure 9(b)). To correct this,

we apply sequentially a typical pair of morphological operations over the binary

shadow image consisting of a dilatation with a 262 filter, followed by a 262

erosion filter (Sonka et al. 1998). This fills in gaps up to 2 pixels wide while

preserving the original boundaries (as illustrated in figure 9(c)).

(a) (b)

(e)

(c) (d )

Figure 7. Seed selection and growing processes are illustrated on a horizontal scan-line of
the image: (a) the V component, (b) the S component, (c) the smoothed c3 component and (d)
the module of gradient of V. (e) All scan-lines plotted together and the limits according to the
termination conditions.

1954 V. Arévalo et al.
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5. Experimental results

The proposed method has been tested with a variety of QuickBird pan-sharpen

colour images acquired under different lighting conditions (diverse seasons and sun

elevation angles) and covering both urban and rural areas. To quantify the

effectiveness of the method, we have chosen one of 102461024 pixels, of a typical

urban scene where significant shadow regions appear. The image also contains low

saturation areas (concrete, asphalt, etc.), saturated white areas, and dark non-

shadow regions that may confuse the shadow detection method. A ‘ground data’

shadow image is obtained by manually selecting the shadowed areas with the

(a) (b) (c)

Figure 9. (a) Shadow seeds identified in the smoothed c3 component during the seed
selection stage (plotted on the RGB image). (b) Shadow regions generated by the growing
region stage. Observe how a single shadow may appear disconnected. (c) Shadow region
provided by the gap-filling process.

(a)

(b)

Figure 8. (a) Evolution of the Gaussian distribution N(c^3,s) during the growing process of a
shadow region (10 iterations). (b) Shadow regions generated after growing two seeds
identified in a cast shadow. Observe that when growing seed 11 (the right-most image), other
seeds not processed yet are included in the region and, consequently, discarded as seeds for
further growing.

Shadow detection in colour high-resolution satellite images 1955
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selection tools included in a well-known image-processing package (AdobeH
PhotoshopH). Through a pixel-by-pixel comparison with this shadow image we

have classified the pixels of our test images as true/false positive/negative (TP, TN,

FP, and FN). A pixel is set to be TP/FP if it is correctly/erroneously detected as

shadow, and TN/FN when it is correctly/erroneously detected as non-shadow. Both

true positives (TP) and true negatives (TN) are correct classifications, while the

others are misclassifications.

Three statistics that capture the goodness of these four values are: the Producer’s

Accuracy (PA), also called sensitivity (Kanji 1999), the Consumer’s Accuracy (CA),

and the Overall Accuracy (OA), which are defined as follows:

PA ~
TP

TPzFN
|100 ð5Þ

CA~
TP

TPzFP
|100 ð6Þ

OA~
TPzTN

TPzFPzTNzFN
|100: ð7Þ

For completeness, we also include the specificity (SP) (Kanji 1999), which is

defined as:

SP~
TN

TNzFP
|100: ð8Þ

Notice that TP + FN and TN + FP are the shadow and non-shadow ground data,

respectively. Consequently, the producer’s accuracy indicates the probability of the

method of correctly classifying a pixel as shadow among those which are actually

shadow, while the specificity gives us the probability of the method of correctly

classifying a pixel as non-shadow among those which are actually non-shadow.

Thus, the greater these two statistics, the better the detection process.

Since our method makes use of information from edges and different colour

components, it is of interest to evaluate their contributions to the results. Table 1

shows the performance of the method for different combinations of the information

Table 1. Statistics of applying our shadow detection method with the thresholds reported in
§4, to an image of size 102461024 that includes the pieces shown in figures 11 and 13.

Information
used TP FN FP TN PA CA OA SP

c3 20.46 2.17 21.60 55.77 90.41 48.64 76.23 72.08
c3, S 20.15 2.47 16.07 61.30 89.07 55.65 81.45 79.23
c3, edges 19.44 3.19 11.21 66.16 85.92 63.43 85.60 85.51
c3, V 20.36 2.27 7.21 70.16 89.98 73.85 90.52 90.68
c3, S, edges, V 18.36 4.27 1.85 75.53 81.15 90.94 93.89 97.62

TP, FN, FP, and TN are computed as percentages with respect to the total number of image
pixels, while PA (Producer’s Accuracy), CA (Consumer’s Accuracy), and OA (Overall’s
Accuracy) are obtained through their definition formulas in §5. The ground data shadow
pixels (TP + FN) equal 22.63%.
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managed by the region growing procedure. For example, <c3,V> refers to the

application of the region growing without taking into account the restrictions

regarding the gradient of V (edges) and saturation. This table reveals the importance

of including, apart from the c3 component, the three additional constraints (for S, V

and gradient values). Among these three constraints, it is remarkable the effect of

the hypothesis of darkness of shadows (the V value below a threshold TV), which

produces an important decrease in the percentage of FP. In this implementation, the

thresholds for the set of constraints (c3, S, Edges, V ) have been selected to be very

restrictive in not detecting non-shadow pixels as shadow (high consumer accuracy),

at the cost of missing some true shadows (producer’s accuracy); observe in the last

row of table 1 that the percentage of TP falls slightly.

Another issue of concern is how the threshold selection affects the performance of

the method. To analyse this subject, we have conducted a set of trials that involve

running the shadow detection process for a range of values of a given threshold,

while the rest of them remain fixed (with the values proposed in §4.2). Figure 10

Figure 10. Producer’s accuracy (PA) and specificity (SP) indices for a set of trials where the
proposed shadow detection process was executed using a range of values of a given threshold,
while the rest of them remain fixed (with the values proposed in section 4.2). The image is a
pan-sharpened QuickBird of 102461024 pixels corresponding to an urban area (see the text
for more details).
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shows the results of these experiments in terms of the producer’s accuracy and

specificity indices, where the following points can be highlighted:

1. The specificity is always high regardless of the threshold value (for all the

plots), because the TP remains small in comparison with the TN (its slight

drop may be due to a significant increase in the FP). Notice that, when the

specificity decreases, the producer’s accuracy increases, so we must select the

threshold to balance between these two opposite behaviours: good in detecting

shadows or in not detecting non-shadows.

2. With the exception of the edge threshold (TE), all the plots present ‘flat’

intervals where the threshold values can vary without affecting the PA of the

output of the procedure too much. For example, any value of TS can be

selected within the range [0.01–0.03] giving almost the same result. This is

important, because it allows us certain tolerance in the selection of these

parameters.

3. From our tests with other different images (not shown here) we have verified

that optimal threshold values may slightly change with their brightness,

contrast, colour balance, etc. However, it has also been checked that

intermediate thresholds in the middle of these intervals produce satisfactory

(though not optimal) results for a wide variety of images.

Next, to show visual results of the proposed method, we have selected two small

images of the city of Puerto de Santa Marı́a, Cádiz, Spain: one is a piece of that used

in the above experiments which covers a typical urban area (i.e. high buildings,

green areas, parking, etc.) that allows us to illustrate the method performance in the

presence of saturations and dark regions (figure 11(a)); and the other is a residential

area with buildings and some woods, which is particularly interesting for checking

the method behaviour on high-textured areas and with small, irregular shadows

(figure 12(a)). The following particular points of interest can be remarked from these

figures:

N Figure 11(b) shows large shadow regions which are reasonably well delimitated.

Shadows in this image are not easy to detect because they are cast over a highly

textured surface (as in the bottom-left building) and also because some

elements could be wrongly classified as shadows (i.e. the dark hexagons, the

saturated side of the buildings, etc.).

N In Figure 12(b), although some small shadows have not been detected, the

method performs quite acceptably given the difficulty, even for a human eye, to

distinguish between tree crowns and shadows. The undetected shadows are

because no seed was placed in them. This could be corrected to a certain extent

with a less restrictive set of thresholds and/or a smaller seed-window, but at the

expenses of producing more false positive regions and an increase in the

computational time (because of the larger number of seeds). For example, if we

use a 363 seed-window instead of a 565 one with the image of figure 12(a),

the producer’s accuracy improves 4%, but now some false positive small

regions appear, and the computational time rises from 6.75 s to 9.76 s.

Finally, we have compared the performance of our method against the techniques

proposed by Huang et al. (2004) and Sarabandi et al. (2004), previously commented

in §2.1 and 3. The former applies an area-based algorithm in the RGB space, while

the latter searches for shadow boundaries in the c1c2c3, as our method does. We have

1958 V. Arévalo et al.
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(a)

(b) (c)

Figure 12. (a) QuickBird image from a high-textured residential area which contains regular
buildings and woods. (b) Shadows detected by the proposed method using the set of
parameter reported in section 4.2.1 (number of seeds557, PA549.80%, SP596.39%, and
CPU time56.75 s). (c) Shadows generated using a seed size of 363 pixels (instead of a 565),
and the same set of parameters (number of seeds594, PA553.35%, SP596.18%, and CPU
time59.76 s).

(a) (b)

Figure 11. (a) QuickBird image from a high-textured urban area which contains cast
shadows, intensity saturations, and dark regions. (b) Shadows detected by the proposed
method using the set of parameter reported in section 4.2.1 (number of seeds569,
PA583.54%, SP599.84%, and CPU time510.96 s).
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chosen these two because they are recent, work with high-resolution aerial and

satellite imagery, and describe the algorithms with enough detail for them to be

implemented. Table 2 summarizes the results of this comparison in terms of their

accuracies. Two major points can be highlighted: (a) the advantage of employing the

c1c2c3 space instead of the RGB one, which presents the lowest statistics (PA, CA,

OA, SP), and (b) the good performance of our proposal, which excels the other two.

Figure 13 shows the resulting shadows of these two methods, where it is noticeable

the misclassification they produce for pixels belonging to swimming pools and low-

saturation areas (e.g. terrace roofs).

6. Conclusions and future work

In this paper, we have presented a procedure for automatically detecting shadows in

high-resolution satellite images, in particular for QuickBird. The proposed approach

is based on other works, reported in the computer vision literature, that were

developed for quite different images. We have exploited the response of one of the

components (c3) of a colour space named c1c2c3 to shadowed pixels. To overcome

the limitations that the c3 band presents, a region-growing procedure has been

developed that also takes into account some components of other colour space (S

and V ).

Although our approach needs the manual selection of certain parameters

(thresholds), they do not need to be tuned very precisely to achieve satisfactory

results. Experimentally, we have verified the reliability and effectiveness of the

method for a wide variety of image conditions, though the rate of true negatives

(non-detected true shadows) is still high for some applications like urban change

detection.

In future research, we would like also to exploit shadow areas for both restoring

the radiometric information and for inferring 3D information from them (e.g. the

height of the buildings).
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improved this manuscript. The #DigitalGlobe QuickBird imagery used in this

Table 2. Comparison of the performance of our method with two other recent techniques
proposed in the remote sensing field.

Method TP FN FP TN PA CA OA SP

RGB-based
method
(Huang et al.
2004)

15.49 7.14 2.63 74.74 68.45 85.49 90.23 96.60

c1c2c3-based
method
(Sarabandi
et al. 2004)

17.39 5.23 5.32 72.05 76.87 76.56 89.44 93.12

Our method 18.36 4.27 1.85 75.53 81.15 90.94 93.89 97.62

Huang et al. (2004) worked on the RGB colour space, and Sarabandi et al. (2004) used (as we
do) the c1c2c3 representation. The test image is the same as that in table 1.
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