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Abstract—Most approaches to visual odometry es-
timates the camera motion based on point features,
consequently, their performance deteriorates in low-
textured scenes where it is difficult to find a reliable
set of them. This paper extends a popular semi-direct
approach to monocular visual odometry known as
SVO [1] to work with line segments, hence obtaining
a more robust system capable of dealing with both
textured and structured environments. The proposed
odometry system allows for the fast tracking of line
segments since it eliminates the necessity of con-
tinuously extracting and matching features between
subsequent frames. The method, of course, has a
higher computational burden than the original SVO,
but it still runs with frequencies of 60Hz on a personal
computer while performing robustly in a wider variety
of scenarios.

I. Introduction
Visual odometry (VO) is gaining importance in robotic

applications, such as unmanned aerial vehicles (UAVs)
or autonomous cars, as an essential part of the navi-
gation systems. Solutions for the VO problem has been
addressed employing different sensors, such as monocular
or stereo cameras [2] [3] [4], RGB-D cameras [5] [6], or
a combination of any of them with an Inertial Measure-
ment Unit (IMU) [7]. The traditional approach consist
of the detection and matching of point features between
frames, and then, the estimation of the camera motion
through least-squares minimization of the reprojection
errors between the observed and projected points [8]. In
this context, the performance of such approaches deteri-
orates in low textured scenarios as depicted in Figure 1,
where it is difficult to find a large or well-distributed
set of image features. In contrast, line segments are
usually abundant in human-made scenarios, which are
characterized by regular structures rich in edges and
linear shapes. Dealing with line segments in images it is
not as straightforward as points, since they are difficult to
represent [9] and also require high computational burden
for the detection and matching tasks thus only a few
solutions have been proposed [10] [11], barely reaching
real-time specifications. Moreover, edge-based algorithms
have been also used for both solving the problem of
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Fig. 1. In low-textured environments, point-based algorithms
usually fail due to difficulties in founding a large number of features,
in contrast, line segments are usually abundant.

tracking [12] [13] [14], and estimating the camera motion
[15]. However, these methods require a rather costly
direct alignment which makes them less suitable to real
time, and also limits their application to narrow baseline
estimations. To the best of our knowledge, this paper
proposes the first real-time approach to Monocular Vi-
sual Odometry (MVO) that integrates both point and
line segment features, and hence it is capable of working
robustly in both structured and textured scenarios. The
source code of the developed C++ PL-SVO library and
illustrative videos of this proposal can be found here:
http://mapir.isa.uma.es

A. Related Work
Visual odometry algorithms can be divided into two

main groups. The first one, known as feature-based,
extract a set of image features (traditionally points)
and track them along the successive frames. Then, they
estimate the pose by minimizing the projection errors be-
tween the correspondent observed features and those pro-
jected from different frames. Literature offers us several
point-based approaches to the odometry problem, such
as PTAM [16], where authors report a fast SLAM system
capable of performing real-time parallel tracking and
mapping over thousands of landmarks. In contrast, the
problem of motion estimation with line features has been
less explored due to their inherent difficulties, specially to
monocular odometry. In [17] authors extend the Iterative
Closest Point (ICP) approach [18] to the case of stereo
odometry with line segments, where they substitute the
computation of costly descriptors in a one-to-multiple
line matching approach. In our previous work [19], we
present a stereo visual odometry system based on both
point and line segment features. The influence of each
feature is weighted with the inverse of their covariance
matrix, which is obtained by uncertainty propagation
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techniques over the reprojection functions. However, this
work still relies on traditional feature detection and
matching, and thus it has a high computational cost.

The other group, known as direct approaches, esti-
mates the camera motion by minimizing the photometric
errors between successive frames at several image loca-
tions. In [20] authors propose a direct approach, known
as DTAM, where they estimate the camera pose by
direct alignment of the complete intensity image between
each keyframe, employing a dense depth-map estimation.
However, this method requires GPU parallelization since
it process the whole image. For dealing with the high
computational requirements of direct methods, a novel
monocular technique is proposed in [21], where authors
estimate the camera motion in a semi-dense approach,
thus reaching real-time performance on a CPU. They
continuously estimate and track a semi-dense inverse
depth-map for regions with a sufficient image gradient,
thus only exploiting those areas which introduce valid
information to the system. Then, they estimate the cam-
era motion by minimizing the photometric error over the
regions of interest, hence combining the good properties
of direct algorithms with a sparse approach that allows
for fast processing.

B. Contributions
Point features are less abundant in low-textured and

structured scenarios, and hence, the robustness and ac-
curacy of point-based visual odometry algorithm dra-
matically decreases. On the other hand, detecting and
matching line segments demands high computational
resources, which is the main reason of the lack of real-
time approaches to visual odometry using these features.
In this work, we extend the semi-direct approach in [1]
to the case of line segments, which performs fast feature
tracking as an implicit result of a sparse-direct motion
estimation. Therefore, we take advantage of this sparse
structure to eliminate costly segment detection (we only
detect them when a new keyframe is introduced to the
framework), and descriptor computation, while main-
taining the good properties of line segments. As a result,
we contribute with a fast monocular odometry system
capable of working robustly in low textured scenarios
thanks to the combination of the information of both
points and segment features. In the following we describe
the proposed system, and validate the claimed features
with experiments in different environments.

II. System Overview

The proposed system can be understood as an exten-
sion of the semi-direct framework in [1], that not only
consider points but also segment features in the scene
and introduce both in the pipeline. This is a non-trivial
extension, since line segments present more complexity
than point features from a geometrical point of view. In
practice, this makes that certain image operations which
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Fig. 2. SVO framework, extracted from [1]. Our work extends the
concept of feature so that both points and segments in the scene
are considered for every step in the pipeline.

are almost trivial for points become more computation-
ally cumbersome for the case of segments. Hence, we
need to perform several approximations and take some
well-founded heuristic in order to save computational
resources. These will be seen in higher detail in the
Sections III and IV.

For the sake of completeness, we briefly review every
stage of the semi-direct framework [1], depicted in Figure
2 while showing how the partnering of this semi-direct
approach and the use segment features becomes mutually
beneficial. The semi-direct approach is divided into two
parallel threads, one for estimating the camera motion
and another one for mapping the environment.

In the motion thread, an initial motion estimate is per-
formed between consecutive frames by using a sparse di-
rect alignment approach (see Figure 3), which minimizes
the photometric error between patches using the 3D
warping provided by the known 3D features. This allows
for the fast tracking of features between frames as a result
of the semi-direct motion estimation, which eliminates
the need of performing frame-to-frame detection and
matching. This, which is fairly advantageous for point
features, becomes extremely beneficial for segments since
they are considerably more computationally expensive.
Instead, features are only detected when a new keyframe
is inserted, so that the overall cost of the LSD seg-
ments detection [22] becomes affordable. Furthermore,
by reducing the dimension of the optimization problem
to the estimation of the pose only epipolar geometry is
automatically fulfilled and we do not have to take care
of outlier matches.

Then, the second step (see Figure 4) of the motion
thread is to refine the feature projections given by the
transformation estimate from direct alignment, thus vio-
lating the epipolar constraints to reduce the drift of the
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camera. The feature refinement is performed by taking as
reference patch the one with the closest viewpoint. This
approach, again, is very beneficial for segments since it
limits large observations baselines during the tracking of
the segments. In consequence, it alleviates well-known
issues of line segments such as endpoints repeatability,
occlusions or deformation of the segments due to change
of view [11]. Finally, both the camera motion and the
map structure are refined by minimizing the reprojection
errors.

At this point, the matching with far features is fully
solved thanks to the intermediate continuous tracking
and we can apply specific feature-based refinement ap-
proaches that behave quite well for segment features, as
depicted in Figure 5.

To sum up, we see that the introduction of segments
in a semi-direct framework [1] can be done much more
seamlessly that for other more traditional approaches,
since the preliminary direct steps alleviate most of the
downsides that have historically prevented the use of
segments in Visual Odometry. Otherwise stated, the
motion as well as the mapping are enriched by the use
of segments without incurring in a significant overhead
of the overall system.

Concurrently, the map thread estimates the depth of
2D features with a probabilistic Bayesian filter, which is
initialized when a keyframe is inserted to the pipeline.
The depth filters are initialized with a high uncertainty,
but they converge to the actual values in a few iterations
and are then inserted to the map, becoming useful for
motion estimation. In the following, we describe in detail
each stage of the algorithm, and then validate it with
experiments in real environments.

III. Semi-Direct Monocular Visual Odometry

Let Ck−1 and Ck be the coordinate systems of a
calibrated camera at two consecutive poses, which are
related by the relative pose transformation Tk−1,k(ξ) ∈
SE(3), where ξ ∈ se(3) is the 6-vector of coordinates
in the Lie algebra se(3). The problem we face is that of
estimating the camera pose along a sequence of frames,
for which we denote Tk,w as the camera pose with respect
to the world’s reference system in the k-th timestep. For
that, let us denote as Ik the intensity image in the k-
th frame, and Ω as the image domain. We will denote
the point features as x, and its correspondent depth as
dx. In the case of line segments, we will employ both
the endpoints, denoted by p and q respectively, and the
line equation as l. The 3D point back-projected from
the image at timestep k is denoted as Xk, and can be
obtained through the inverse projection function π−1,
i.e. Xk = π−1(x, dx). The projection of a 3D point in the
image domain is obtained through the camera projection
model π, so that x = π(Xk). In the following, we will
extend the steps of SVO algorithm to the case of line
segments.
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Fig. 3. The relative pose between the current and the previous
frame parameterizes the position of the reprojected points in the
new image. We perform (sparse) image alignment to find the
pose that minimizes the photometric difference between image
patches corresponding to the same 3D point (blue squares). For
the segments points are homogeneously sampled between the 3D
endpoints. Note, in all figures, the parameters to optimize are drawn
in red and the optimization cost is highlighted in blue. This figure
has been adapted from [1].
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Fig. 4. The 2D position of each point is optimized individually
to minimize the photometric error in its patch. For the segments
the end points are similarly optimized. This alleviates errors prop-
agated from map and camera pose estimation. This figure was also
adapted from [1].
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Fig. 5. In the last motion estimation step, the camera pose and
the structure (3D points and segments) are optimized to minimize
the reprojection error that has been established during the previous
feature-alignment step. Similarly to the previous ones, this figure
has been adapted from [1].

A. Sparse Model-based Image Alignment
The camera motion between two consecutive frames,

Tk−1,k(ξ), is first estimated through direct image align-
ment of the sparse features tracked along the frames. Un-
like the point-based approach, we cannot directly align
the whole region occupied by line segment between two
frames, since it would be computationally expensive. For
that, we only minimize the image residuals between some
patches equally distributed all along the line segment, as
depicted in Figure 3. Let us define L as the image region
for which the depth of the endpoints is known at previous
time step k−1, and for which the endpoints p and q are
visible in the image domain at the current timestep Ωk:

L :=
{

p,q,wn | p,q ∈ Lk−1

∧ π
(
T(ξ) · π−1(p, dp)

)
∈ Ωk

∧ π
(
T(ξ) · π−1(q, dq)

)
∈ Ωk

}
(1)

where wn, with m = 2, ..., Nl − 1 referring to the
intermediate points defined homogeneously along the line
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segments.
Then, the intensity residual for a line segment δIl is

defined as the photometric difference between pixels of
the same 3D line segment point, which is:

δIl(ξ, l) = 1
Nl

Nl∑
n=0

∣∣∣Ik

(
π
(
T(ξ) ·wn

))
− Ik−1(wn)

∣∣∣ (2)

where in the case of n = 0 and n = Nl, the point
wn refers to the endpoints p and q respectively. Then,
we estimate the optimal pose increment ξ∗k−1,k that
minimizes the photometric error of all patches, for both
point and line segment features:

ξ∗k−1,k = argmin
ξ

{∑
i∈P
‖δIp(ξ,xi)‖2 +

∑
j∈L
‖δIl(ξ, lj)‖2

}
.

(3)
Similarly to [1], we employ inverse compositional formu-
lation proposed in [23], for speeding up the minimization
process. In this case, we seek for the linearized Jacobian
of the line segment residuals, which can be expressed as
the summatory of the individual point Jacobians for each
intermediate point wn sampled:

∂δIl(ξ, lj)
∂ξ

∣∣∣∣∣
ξ=0

= 1
Nl

Nl∑
m=0

∂δIp(ξ,wn)
∂ξ

∣∣∣∣∣
ξ=0

(4)

whose expression can be obtained of [1]. Then, we es-
timate the optimal pose by robust Gauss-Newton min-
imization of the above-mentioned cost function in (3).
Notice that this formulation allows for the fast tracking
of line segments as depicted in Figure 1, which is an open
problem due to the high computational burden employed
with traditional feature-based approaches [19].
B. Individual Feature Alignment

Similarly to [1], we individually refine the 2D positions
of each feature by minimizing the photometric error be-
tween the patch in the current image, and the projection
of all the 3D observations of this feature, which can be
solved by employing Lucas-Kanade algorithm [23]. In the
case of line segments, we only need to refine the position
of the 2D endpoints (see Figure 4), which defines the line
equation employed in the estimation of the projection
errors:

w′j = argmin
w′

j

∥∥Ik(w′j)− Ir(Aj ·wj)
∥∥2
, ∀j (5)

where w′j is the 2D estimation of the position of the
feature in the current frame (w′j stands equally for both
endpoints), and wj is the position of the feature in the
reference frame r. This is a bold assumption in the case
of line segments, since their endpoints are considerably
less descriptive than keypoints. For dealing with this, we
also perform a robust optimization of (5), and then we
relax this assumption by refining the 3D position of the
endpoints. Notice that it is necessary to employ an affine
warping Aj in this step, since the closest key frame for
which we project the feature is usually farther, and the
size of the patch is bigger than in the previous step.

C. Pose and Structure Refinement
After optimizing individually the position of each fea-

ture in the image by skipping the epipolar constraints,
the camera pose obtained in (3) must be further refined
by minimizing the reprojection errors between the 3D
features and the corresponding 2D feature positions in
the image (see Figure 5). For that, we consider repro-
jection errors between the 3D features and the camera
pose Tk,w, both in world’s coordinate frame, since it
considerably reduces the drift of the estimated trajectory.
The cost function when employing both type of features
is:

ξ∗k,w = argmin
ξ

{∑
i∈P
‖rp(Tk,w,Xi,k)‖2

+
∑
j∈L

∥∥rl(Tk,w,Pj,k,Qj,k, lj)
∥∥2
}

(6)

where rp stands for the projection errors in the case
of point features, and rl is the projection error of line
segments:

rl(Tk,w,Pj,k,Qj,k, lj) =
[

lj · π
(
Tk,w ·Pj,k)

lj · π
(
Tk,w ·Qj,k)

]
. (7)

This is solved iteratively with Gauss-Newton, for which
we need to include (6) in a robustified framework, for
which we employ the Cauchy loss function:

ρ(s) = log(1 + s). (8)

The optimization consist of three steps: i) we first
estimate the camera motion with all the samples ii) we
filter out the outliers, which are considered as those
features whose residual error lies above two times the
robust standard deviation of those errors iii) we fastly
refine the camera pose by optimizing with the inliers
subset. Finally, we refine the position of the 3D point
and line segment features through minimization of the
reprojection errors.

IV. Mapping
The map thread recursively estimates the 3D position

of the image features for which their depth is still un-
known. For that, authors of [1] implement a depth filter
based in a Bayesian framework, for which they model the
depth of the feature with a Gaussian + Uniform mixture
model distribution [24]. In the case of line segments
we need to estimate the 3D position of the endpoints,
since they are employed for both describe the feature
and estimating the reprojection errors. However, the
endpoints of line segments obtained through detectors
such as LSD [22] are not repetitive, which is a limitation
to employ them in monocular visual odometry. On the
other hand, one of the advantages of the fast tracking
employed here is that we explicitly seek for the exact
same line segment in the successive frames, so that we
continuously track the position of the endpoints. This
allows for the introduction of the endpoints in a similar
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(a) Living room (b) Office

Fig. 6. Sparse features tracked by PL-SVO in two frames extracted
from the ICL-NUIM dataset [25], where we can observe the impor-
tance of introducing line segments in such low-textured scenarios.

Bayesian framework, where the distribution of both end-
points is estimated when inserting new observations. As
a result, we obtain meaningful maps which can be used to
extract useful information about geometry of the scene.

V. Experimental Validation
In this section, we illustrate the benefits of includ-

ing line segments in motion estimation, specially when
working in low-textured environments. For that, we esti-
mate the trajectory of a monocular camera in several
sequences, from both synthetic and real datasets. All
experiments have been conducted on an Intel Core i5-
6600 CPU @ 3.30GHz without GPU parallelization.

A. Evaluation in ICL-NUIM Dataset [25]
First, we test our algorithm in the Imperial College

London and National University of Ireland Maynooth
(ICL-NUIM) dataset [25]. This dataset consist of two
different synthetic environments, one in an office and the
other one in a living room, for which several sequences
can be generated and rendered (see Figure 6). Table
III compares the performance of the proposed algorithm
against SVO [1] for the sequences lrkt-2 and ofkt-3. For
the sake of fairness, we have employed our current imple-
mentation of PL-SVO without introducing line segments
to the framework as baseline of comparison. Results show
a superior performance of PL-SVO in the first sequence
lrkt-2, which is capable of estimating the camera motion
along the whole trajectory (the rest of the sequence
is employed for initialization), while the point-based
approach only tracks the 34% of the sequence. In the
second sequence, ofkt-3, SVO shows a slight superiority
in terms of accuracy. However, it is worth noticing that
it is only capable of tracking a 57%, and hence, it is not
affected by higher errors introduced in the difficult parts
of the sequence.

B. Evaluation in TUM Dataset [26]
We also evaluate the performance of both SVO and

PL-SVO approaches in the TUM Dataset [26], which
consist of several sequences recorded with an RGB-D
camera in different environments, as depicted in Figure 7.
Table II contains the results for the considered sequences
from the TUM dataset. In general, we observe the supe-
rior performance of PL-SVO in most sequences, hence
confirming its robust behavior in multiple environments.

(a) Textured scene (b) Low-textured scene

Fig. 7. Sparse features tracked by PL-SVO in two different frames
of the TUM dataset [25].

However, the accuracy of motion estimation considerably
decreases in this dataset, where monocular techniques are
severely affected by motion blur and other negative ef-
fects resulting from the rolling shutter in RGB-D sensors.

C. Processing Time
Finally, we analyze the impact of introducing line

segments to the framework in the processing time. Table
I shows the average times employed in the different
stages of the algorithms. As one may first think, the
computational cost necessary for performing both sparse
image and feature alignment increases considerably when
including line segments, where the runtime of each stage
is augmented in 4 ms. However, our algorithm still
performs in real-time with frequencies of almost 60 Hz,
depending on the type of scene.

TABLE I
Mean average times in each stage of the algorithm for

both SVO and PL-SVO algorithms.

SVO [1] PL-SVO
Pyramid creation 0.26 ms 0.26 ms
Sparse Image Alignment 2.60 ms 6.58 ms
Feature Alignment 4.13 ms 8.61 ms
Pose and Structure Refinement 0.35 ms 0.76 ms
Total Motion Estimation: 8.60 ms 17.83 ms

VI. Conclusions
In this paper we have proposed a novel approach to

monocular odometry by extending the SVO algorithm
proposed by Forster et al. in [1] to the case of line
segments. Hence, we obtain a more robust system ca-
pable of dealing with untextured environments, where
performance of point-based approaches usually deterio-
rates due to the difficulties in finding a well-distributed
set of points. The semi-dense approach allows for the fast
tracking of line segments, thus eliminating the necessity
of detecting and matching whenever a new frame is intro-
duced, which is one of the main limitations of employing
this type of features. We validate the claimed features
in a series of experiments in both synthetic and real
datasets, confirming the robust behavior of this proposal.
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