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Abstract—Point-based stereo visual odometry sys-
tems typically estimate the camera motion by min-
imizing a cost function of the projection residuals
between consecutive frames. Under some mild as-
sumptions, such minimization is equivalent to maxi-
mizing the probability of the measured residuals given
a certain pose change, for which a suitable model
of the error distribution (sensor model) becomes of
capital importance in order to obtain accurate results.
This paper proposes a robust probabilistic model for
projection errors, based on real world data. For that,
we argue that projection distances follow Gamma
distributions, and hence, the introduction of these
models in a probabilistic formulation of the motion
estimation process increases both precision and ac-
curacy. Our approach has been validated through a
series of experiments with both synthetic and real
data, revealing an improvement in accuracy while not
increasing the computational burden.

I. Introduction

Most stereo visual odometry systems estimate camera
motion through the least-squares minimization [1], [2]
of a certain cost function C(ξ) of the residuals ∆pi(ξ),
defined as difference between the observations p′i of a set
of keypoints and their predictions p̂i(ξ) [3]:

∆pi(ξ) = p̂i(ξ)− p′i, (1)

where p̂i(ξ) is computed by back-projecting to 3D the
observed i-th image keypoint detected in the previous
frame, and then re-projecting it to the current one,
according to an estimation of the pose change ξ ∈ se(3)
between them. Typically, the cost function is derived
from the maximization of the probability of the pose
change given the residuals, so that minimizing C(ξ) (i.e.
estimating the optimal pose change ξ∗) is equivalent to
maximizing p(ξ |∆p). This is also equivalent to maximiz-
ing their likelihood given a certain pose change, under
the assumptions of independent and equally distributed
noise, and a uniform prior distribution over the poses:

ξ∗ = argmax
ξ

p(ξ |∆p) = argmax
ξ

p(∆p | ξ). (2)

In this context, finding a proper model of the residual
distribution becomes of capital importance as the results
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Fig. 1. Histogram of (left) the projection residuals in the x-
coordinate for the keypoints extracted from the sequence KITTI00,
and the corresponding fitted Student’s t-distribution (in green) and
Gaussian distribution (in red), and (right) the residual magnitudes
of the keypoints extracted from all the training sequences in the
KITTI dataset. The real distribution can be described accurately
with a Gamma distribution.

will be directly affected by its goodness of fit. Further-
more, such model should consider the presence of not
only noise but also outliers.

Commonly, keypoint predictions (and consequently
the projection residuals) are considered to be Gaussian-
distributed, since the observed keypoints are assumed
to be corrupted by Gaussian noise that is propagated
through linear approximations of the above-mentioned
back-projection and re-projection functions [4]. In prac-
tice, though, such approximations still present inaccura-
cies, as can be seen in Figure 1(a), which depicts the
distribution of the residuals in the image x-coordinate
computed from real data (which is similar to that of the
y-coordinate). As a consequence, assuming a Gaussian
distribution for p(∆p|ξ) leads to an unsuitable cost func-
tion whose minimization will yield inaccurate results. In
fact, according to the real distribution, a better approach
would be to model the residual in both the x and y image
coordinates by a Student’s t-distribution, whose shape is
similar to the Gaussian one but with heavier tails (refer
again to Figure 1(a)). This approach has been explored
in [5] and applied to RGB-D cameras.

Nevertheless, we propose to employ the magnitude of
the residual between observations and predictions r =
{ri(ξ) = ‖∆pi(ξ)‖2}, instead of the projection residual
∆p. Thus, we claim that modeling r as a Gamma distri-
bution (i.e. r ∼ Γ(θ, α)) is a better option than modeling
residuals as either a Gaussian or a t-distribution, since
the fitted model deviate less from the actual distribution
it approximates (see Figure 1(b)). Following this, and the
above-mentioned assumptions, the optimization problem



in (2) becomes:

ξ∗ = argmax
ξ

p(ξ | r) = argmax
ξ

p(r | ξ). (3)

The introduction of the Gamma distribution in the
optimization process allows us to derive a more suitable
cost function that leads to better results than assuming
that residuals follow either a Gaussian or a t-distribution,
as will be proved with a series of experiments.

The two parameters of such Gamma distribution
(namely shape and scale) are estimated at each time-
step from the actual histogram of all the involved resid-
ual magnitudes, being necessary a minimum number of
samples for the fit to be representative. The on-line
fitting procedure introduces little additional cost to the
optimization process while the benefits are two-fold: a
more precise camera pose estimation and more robust-
ness against outliers and noisy measurements than the
standard Gaussian-based approach. Even so, a very large
ratio of outliers may eventually degrade its performance,
so the usage of robustification methods is still advisable.

Our claim is supported by an extensive experimental
validation with both synthetic and real data, revealing
its suitability for performing visual odometry, specially
for stereo vision systems where observations in both
images can be employed. For that, our proposal has
been integrated into our previous stereo visual odom-
etry (SVO) system presented in [6]. The results show
significant improvements in accuracy whilst incurring in
a reduced computational footprint. An illustrative video
of our system and the SVO library source code can be
accessed in http://mapir.uma.es/rgomez.

II. Related Work
Visual-based motion estimation algorithms are

strongly affected by the presence of noisy data and,
specially, outliers, which do not follow the commonly
assumed Gaussian distribution for the residuals, hence
eventually leading the system to erroneous results.
Traditional approaches to this problem, as the one in
[7], often rely on variants of RANSAC to deal with
wrong measurements by generating a solution which is
in consensus with the majority of the dataset. However,
this technique has high computational requirements. In
[8], Person et al. presented a stereo visual odometry
system which takes advantage of monocular techniques,
as they argue that those techniques are more refined
and robust than those of stereo systems. For that, they
implement a delayed outlier identification procedure
based on an essential matrix RANSAC approach and
robust iterative triangulation. Other approaches, as
the one in [9], integrate robust probabilistic filters to
explicitly deal with outliers by estimating, for instance,
the depth at feature locations over multiple frames.
Then, these depth filters are updated at each frame
labeling as inliers those points with low uncertainty
in depth, hence being introduced into the map and
subsequently employed to estimate the camera motion.

Finally, other approaches introduce some robust cost
functions in the camera motion estimation, hence ob-
taining appropriate weights that reduces the impact of
wrong measurements. A first group proposes several
modifications of the well-known extended Kalman fil-
ter (EKF) in order to increase the robustness of their
systems against outliers and noisy measurements. In
[10] authors propose a robust EKF filter to deal with
outliers in real-time, by down-weighting the samples with
more probability of being outliers, for which they learn
the system dynamics thus avoiding manual parameter
tuning. In [11] the previous approach was generalized
and extended by introducing efficient smoothing and
filtering modifications for dealing with data corrupted
with non-Gaussian and heavy-tailed noise. The previous
work was also extended in [12], where authors proposed
to introduce a structured variational approximation with
a more robust and flexible behavior, and yet introducing
only a little increment in the computational complexity.
Another group of techniques model directly the error
distribution, and then perform a robust non-linear least-
squares minimization of these errors. In [5], Kerl et al.
perform robust odometry estimation for RGB-D cam-
eras by minimizing the photometric error between two
consecutive frames. They argue that their dense RGB-
D residuals can be better explained with Student’s t-
distributions, for which they derive a probabilistic for-
mulation including a robust sensor model based on real
world data. Recently, the work in [13] proposes a generic
self-tuning M-estimator which iteratively estimates the
parameters of the residual distribution, thus removing
the necessity of manually set such parameters. However,
this method needs to compute the importance weights for
each iteration of the least-squares problem, hence being
computationally expensive for small problems as the one
we address here.

III. Distribution of the Projection Errors and
Residuals

In this section, we empirically analyze the actual
distributions of both the projection residual p(∆p | ξ)
and the residual magnitude p(r | ξ) for the case of image
keypoints. For this purpose, we detect and match ORB
keypoints along a sequence of stereo images provided by
the KITTI collections of public datasets [14]. Then, the
observed keypoints are projected to the next frame by ap-
plying the ground truth pose increment (also included in
the dataset), and both the residuals and their magnitude
are computed. Finally, we adjust different distributions
to the data and evaluate their goodness of fit.

Regarding the projection residuals, we refer again to
Figure 1(a), which has been built from the sequence
"00" of the KITTI dataset. As stated before, it can
be seen that the residual in the x image coordinate
(and similarly for the y coordinate) does not follow a
Gaussian distribution. In fact, these data can be more
properly fitted by a t-distribution, as pointed out in [5].

http://mapir.uma.es/rgomez


TABLE I
Average goodness of fit with the K-S test for each

distribution, with a critical value of 0.0608 for α = 0.05

Proj. Residual Magnitude
Seq. Frames Feats Gaussian t-dist. Gamma
00 4540 777k 0.1455 0.0827 0.0474
01 1100 100k 0.2327 0.1447 0.0591
02 4660 1059k 0.1035 0.0638 0.0474
03 800 200k 0.1222 0.1518 0.0475
04 270 55k 0.0533 0.1199 0.0532
05 2760 478k 0.1023 0.0725 0.0492
06 1100 133k 0.1673 0.1256 0.0499
07 1100 199k 0.1790 0.1313 0.0464
08 4070 731k 0.1412 0.0916 0.0456
09 1590 273k 0.1429 0.0745 0.0481
10 1200 191k 0.1298 0.0534 0.0478

So, we may consider to use this distribution to derive
a suitable cost function that takes into account a better
approximation of the residual true distribution. However,
we claim that modeling the residual magnitude as a
Gamma distribution instead of the residual as either a
Gaussian or a t-student represents a more accurate fit of
the modeled variable.

To prove this, we also analyze the distribution of
the residual magnitude, shown in Figure 1(b), where all
the training sequences in the KITTI dataset have been
employed to build the histogram. It can be observed that
a Gamma distribution accurately describes the behavior
of the magnitude, as it presents a certain bias and also a
heavy tail. The goodness of the three fits (i.e. Gaussian
and t-distribution for the projection residual and Gamma
for the residual magnitude) are evaluated through the
Kolmogorov-Smirnov (K-S) test [15], which measures
the maximal difference between an empirical and a real
distribution function. Thus, for each sequence, a subset
of 103 keypoints has been randomly selected from all the
found features so that half of them are employed to derive
the distribution model, while the rest is used to perform
the test. Note that using separate datasets is mandatory
in order to obtain valid and distribution-free K-S test
results [16], hence allowing the comparison of different
distributions. This experiment has been repeated 103

times for each sequence, obtaining the average values
shown in Table I. In all sequences, the values below
the test’s critical value have been highlighted (which is
0.0608 for a significance value of α = 0.05).
As expected, the t-distribution approach approximates

better the real distribution of the residual than the Gaus-
sian model. Nonetheless, the results also reveal that the
Gamma distribution represents a more accurate model
for the residual magnitude than the t-distribution for
the projection residual in most datasets. Then, mod-
eling their magnitude as a Gamma distribution (and
consequently deriving a cost function of the residual
magnitude according to that) will lead to more accurate
results than employing a cost function of the projection
residuals based on the t-distribution.

Finally, it is important to remark that the number
of samples (i.e. observed keypoints) employed to fit the
distributions influences the quality of the approximation,
as will be further discussed in Section V.

IV. Motion Estimation with the Gamma
Distribution

In this section, we derive the equations to robustly
recover the 6D pose change ξ of a stereo camera using
the Gamma-based approach to model the behavior of
the residual magnitude. For that, let us formally define
the vector of residual magnitudes r(ξ) = {ri(ξ)} that
contains the projection distances of all the individual
observations, as defined in Section I. Then, we aim to
find the camera motion ξ∗ ∈ se(3) that maximizes the
posterior probability p(ξ | r) as stated in equation (3),
which we reproduce here for clarity:

ξ∗ = argmax
ξ

p(ξ | r) = argmax
ξ

p(r | ξ). (4)

Under the mild assumptions of ri(ξ) being indepen-
dent, estimating (4) is equivalent to minimizing the
negative log-likelihood of the residual magnitude (refer
to [17], [18] for further details):

ξ∗ = argmax
ξ

p(r | ξ) = argmin
ξ

{
−
∑
i

log p(ri | ξ)
}

(5)

Now, we model the magnitude r(ξ) with a Gamma
distribution, i.e. r ∼ Γ(α, θ), whose probability density
function (pdf) is given by:

f
(
x;α, θ

)
= 1

Γ(α)θαx
α−1e−x/θ for x > 0 and α, θ > 0

(6)
where α and θ are the so-called shape and scale param-
eters, respectively. Then, the individual likelihood of the
residual magnitude is proportional to:

p(ri | ξ) ∝ rα−1
i e−ri/θ (7)

where we have dropped the constant terms that do not
depend on ξ. Finally, by introducing this model into (5),
the estimator becomes:

ξ∗ = argmin
ξ

∑
i

{
ri/θ − (α− 1)log ri

}
(8)

which is equivalent to minimizing this cost function (fol-
lowing an Iteratively Re-Weighted Least Squares (IRLS)
approach):

ξ∗ = argmin
ξ

∑
i

w
(
ri(ξ)

)
r2
i (ξ) (9)

with w
(
ri(ξ)

)
being a weighting function defined by:

w
(
ri(ξ)

)
= ri/θ − (α− 1)log ri

r2
i

. (10)

For the sake of computational complexity, we fit the
Gamma distribution at each time-step with the Method
of Momentums, which employs the closed form solutions



for both the mean µ = αθ, and the variance of the
distribution σ2 = αθ2 (a complete comparative of several
methods for fitting Gamma distributions can be found
in [19]). However, using these parameters entails that
outliers also have influence in the estimation of both the
mean and variance. Therefore, it is desirable to employ
robust methods to estimate the distribution parameters
[20]. Thus, we employ the Median Absolute Deviation for
the standard deviation σ̂ and, subsequently, we estimate
a robust mean µ̂ by only considering the samples lying
less than three times σ̂.
Once the Gamma distribution has been fitted, we

derive the weighted cost function in equation (9), which
is optimized on the se(3) manifold through the well-
known Gauss-Newton equations (refer to [21] for a thor-
ough analysis on on-manifold optimizations). Finally,
although our proposed cost function presents some ro-
bustness against outliers due to the sublinear nature in
the residual magnitude of the weighting equation (10),
it is important to remark that a big amount of them
still may degrade the resulting ego-motion estimation.
Therefore, we have implemented a variant of the ERODE
outlier detector [22] with the main difference of using a
Cauchy distribution instead of a Huber loss function and
employed as an outlier-removal strategy for all the tested
approaches in the experiments.

V. Experimental Evaluation
This section presents two sets of experiments that ana-

lyze the effect in the localization accuracy of introducing
the proposed Gamma-based model in our robust SVO
system [6] in comparison to other approaches, namely: i)
non-weighted, ii) Gaussian-weighted, and iii) Student’s t-
distributed weighted. For the first approach, we perform
a standard least-squares minimization of the residuals
without defining any weight for them. For the last two,
we fit a Gaussian or a t-distribution to the computed
projection residuals, respectively, and derive a cost func-
tion from equation (5), which will define the weights for
the individual residuals.

A. Experiments with synthetic data
In this first set of experiments, we have generated

random stereo observations (keypoints) in two consec-
utive frames, related by a random camera motion. Thus,
image keypoints are randomly spread all over the first
stereo pair, by simulating the point locations in the left
image as well as their corresponding disparities. Then,
we project them to the current stereo frame according
to a random camera motion and, subsequently, Gaussian
distributed noise is added to each keypoint in both stereo
frames. Finally, we compute the motion estimation error
in different scenarios.

In these experiments, we have simulated camera mo-
tions that follow a uniform distribution between ±1 m
and ±3 deg, which emulates a camera moving at similar
speeds to those presented in [14]. The disparity of stereo
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Fig. 2. Rotation (top) and translation (bottom) errors over a
variable number of observations, employing different cost functions:
non-weighted (in red), Gaussian weighted (in blue), Student’s t-
distribution (in yellow), and Gamma distribution (in green).

points has been set to follow a uniform distribution
between [10, 30] pixels, while the camera intrinsic param-
eters are those specified for the KITTI dataset.
1) Impact of the Number of Observations:

As discussed in Section I, the number of keypoint cor-
respondences has a strong influence in the quality of
the fitted Gamma distribution. To assess this, we have
evaluated our SVO approach for a variable number of ob-
servations through the following Monte-Carlo simulation:
for each weighting method and number of observations,
we estimate the camera pose change for 1000 different
configurations of both observations and camera motions,
resulting in 1 million simulations. The outliers ratio has
been set to 20 % in this series of experiments.

Figure 2 plots the results for the evaluated methods,
where we have measured both rotation and translation
average errors (along with 95% confidence intervals,
plotted as solid bars), specified in deg/m and % of the
total length, respectively, with respect to the true cam-
era motion. As expected, both rotation and translation
errors show a slightly superior performance of the other
three methods in comparison to our approach for the
lowest number of observations, since there is not enough
information to fit a Gamma distribution properly. In
contrast, this tendency is inverted as the number of
observations increases, revealing our method to clearly
outperform the other three approaches in both precision
and accuracy, specially over 600 landmarks.
2) Impact of the Ratio of Outliers:

Now, we study the impact of the number of outliers in
the accuracy of the camera motion estimation, keeping a
fixed number of 200 keypoints. Again, we have performed
1 million simulations for 1000 different configurations of
observations and camera motions, respectively.

The results are depicted in Figure 3, where it is
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Fig. 3. Rotation (top) and translation (bottom) errors over all
sub-sequences of a given length in the KITTI dataset, employing
different cost functions: non-weighted (in red), Gaussian weighted
(in blue), Student’s t-distribution (in yellow), and Gamma distri-
bution (in green).

shown a clearly better performance of both Gamma and
t-distribution against the non-weighted and Gaussian-
weighted approaches, since the first ones present a ro-
bust behavior (as discussed in previous section). Gamma
and t-distribution approaches performs similarly in both
translation and rotation errors for lower ratios of outliers,
although the Gamma-based sensor model provide more
accurate results when increasing the number of outliers,
since they can be easily detected and removed from the
residual magnitude distribution.

B. SVO Evaluation in the KITTI Benchmark
In this section, we assess the impact of the different

approaches when performing robust camera ego-motion
estimation for the training sequences ("00" to "10") from
the KITTI dataset [14]. For that purpose, we have
evaluated the results by using again the same metrics
employed in the KITTI Benchmark, which computes
errors in both rotation and translation for different sub-
sequences lengths and speeds.
1) Performance at Different Sequence Lengths:

First, we compute both rotation and translation errors
relative to the distance traversed, for all the different
subsequence lengths considered in the dataset (100m,
200m,..., 800m). The results show a significant improve-
ment in both errors for all the different subsequences with
our method, which performs clearly better than the rest
of the approaches (refer to Figure 4).

Although the t-distributed weighting scheme also im-
proves the ego-motion estimation in comparison to the
Gaussian-weighted approach, our proposal yields better
results since it describes more accurately the actual
nature of the residual magnitude distribution. Moreover,
it can be seen that the relative improvement of our
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Fig. 4. Average rotation (top) and translation (bottom) errors
over all sub-sequences of a given length in the KITTI dataset,
employing different cost functions: non-weighted (in red circles),
Gaussian weighted (in blue triangles), Student’s t-distribution (in
yellow squares), and Gamma distribution (in green stars).

approach, in comparison with the rest, grows as the path
length increases. This is caused, in part, by the good
performance obtained regarding to rotations, since high
errors in rotation deviate the absolute trajectory from
the ground truth, hence increasing absolute translational
errors.
2) Performance at Different Speeds:

In this experiment, we analyze the impact of the different
weighting functions when performing visual odometry
for all the speeds considered in the KITTI Benchmark
(4m/s,6m/s,...,24m/s), by computing again the average
rotation and translation errors (refer to Figure 5). It
can be seen that our proposal clearly presents a superior
performance for all the considered speeds, specially over
60km/h. This is caused by an increasing number of wrong
measurements and outliers introduced to the system
when the camera is traveling at high speeds, due to
difficulties in feature tracking (those sequences usually
correspond to low-textured highway scenes). In these
situations, our proposed Gamma-based model performs
better than the rest of the methods since it describes
the actual nature of the residual magnitude distribution,
so that outliers and wrong measurements are down-
weighted properly, as claimed in this paper.
3) Computational Time:

Finally, we analyze the computation time employed by
each algorithm in the optimization process, for all the
frames in the training set of the KITTI dataset. Ex-
periments have been conducted on a single core of an
Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz processor
with 4GB RAM. Table II contains the average time
per frame employed for each algorithm, for a given
number of observations. As expected, the non-weighted
approach has the lowest computational footprint, as it
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TABLE II
Average optimization time per frame for a given number

of observations.

#Observations nWeight. Gauss. t-dist. Gamma
N ≤ 200 0.911 ms 1.034 ms 1.134 ms 1.113 ms

200 < N ≤ 300 1.399 ms 1.625 ms 1.783 ms 1.748 ms
300 < N ≤ 400 1.872 ms 2.212 ms 2.420 ms 2.378 ms
400 < N ≤ 500 2.329 ms 2.787 ms 3.038 ms 2.991 ms

N > 500 2.962 ms 3.590 ms 3.899 ms 3.854 ms

does not involve any weight estimation. On the other
hand, although the Gaussian weighted approach requires
less computational cost than the Gamma-weighted and
t-distributed weighted approaches, it performs similar
to the non-weighted approach (as demonstrated in the
previous experiments), thus not justifying its applica-
tion. Finally, our proposal slightly outperforms the t-
distributed weighting scheme, with a smaller computa-
tional burden, while increasing the accuracy in visual
odometry estimation. Hence, it is interesting to consider
the inclusion of the proposed Gamma-based model in
robust systems with higher requirements in accuracy
than in computational time.

VI. Conclusions
In this paper we have proposed a Gamma-based model

for the distribution of the projection residual magnitude
in keypoint-based stereo-visual odometry. This approach
is employed to derive a proper cost function of the resid-
ual magnitude which accurately weights each individual
observation according to their true distribution. Its min-
imization leads to a robust ego-motion estimation that
outperforms other weighting approaches that model pro-
jection errors as Gaussian or Student’s t-distributions.
Moreover, our proposal also presents robustness against
outliers, since the model reproduces the tail behavior of
the residual magnitude real distribution so that outliers
are properly down-weighted in the optimization process.

The claimed features have been proved with extensive
visual odometry experiments with both synthetic and
real data, where we compare our approach with the non-
weighted, Gaussian-distributed, and t-distributed ap-
proaches.
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