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Abstract— Robots are often equipped with 2D laser-
rangefinders (LRFs) and cameras since they complement well
to each other. In order to correctly combine measurements from
both sensors, it is required to know their relative pose, that is, to
solve their extrinsic calibration. In this paper we present a new
approach to such problem which relies on the observations of
orthogonal trihedrons which are profusely found as corners in
human-made scenarios. Thus, the method does not require any
specific pattern, which turns the calibration process fast and
simpler to perform. The estimated relative pose has proven
to be also very precise since it uses two different types of
constraints, line-to-plane and point-to-plane, as a result of a
richer configuration than previous proposals that relies on plane
or V-shaped patterns. Our approach is validated with synthetic
and real experiments, showing better performance than the
state-of-art methods.

I. INTRODUCTION

The combination of a laser-rangefinder (LRF) and a cam-
era is a common practice in mobile robotics. Some examples
are the acquisition of urban models [1] [2], the detection
of pedestrians [3], or the construction of semantic maps
[4]. In order to effectively exploit measurements from both
type of sensors, a precise estimation of their relative pose,
that is, their extrinsic calibration, is required. This paper
presents a method for such extrinsic calibration which relies
on the observation of three perpendicular planes (orthogonal
trihedron), which can be found in any structured scene, for
instance, buildings. This idea to calibrate the sensors from
the elements of the environment was inspired by our previous
work for RGB-D cameras [5] and LRFs [6]. In a nutshell, the
calibration process is performed by first extracting the three
plane normals from the projected junctions of the trihedron,
and then imposing co-planarity between the scanned points
and those planes.

A. Related Work

The most precise and effective strategy to perform the
extrinsic calibration between a camera and a LRF is by
establishing some kind of data association between the sensor
measurements. For that, the intuitive approach is to detect
the laser spot in the image, but this is rarely feasible since
most LRFs employ invisible light beams. Then, the common
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Fig. 1. Observation of a trihedron structure, which is defined by three
orthogonal planes {Π1,Π2,Π3} intersecting at three orthogonal lines
{L1, L2, L3}, by a rig formed by a 2D LRF and a camera.

practice is to establish geometric constraints from the asso-
ciation of different 3D features (e.g. points, lines and planes)
observed simultaneously by both sensors. Depending on the
nature of the detected features, two methodologies have been
considered in the literature. The first one employs point-to-
line restrictions, establishing correspondences between some
identifiable scanned points and line segments in the image.
A typical calibration target for this technique is the V-
shaped pattern proposed by Wasielewski and Strauss [7].
Their approach computes the intersection point of the LRF
scan plane with the V-shaped target, and then minimizes the
distance from the projected point to the line segment detected
in the image. In general, this procedure requires a large
number of observations to have a well-determined problem
and to reduce the error introduced by the mismatch between
the scan point and the observed line. To overcome this
limitation, in [8] the number of point-to-line correspondences
in each observation is increased to three by introducing
virtual end-points, and also the effect of outliers is lowered
down with a Huber weighting function.

A different strategy is the one proposed by Zhang and
Pless [9], which makes use of a planar checkerboard pattern.
Similarly to the camera calibration method in [10], they
first estimate the relative pose between the camera and the
pattern in each observation. Then, they impose point-to-
plane restrictions between the laser points and the pattern
plane to obtain a linear solution, which is employed as
initial value in a final non-linear optimization process. This
approach has two problems: the initial value may not be a
valid pose, since there is no guarantee that the rotation R ∈
SO(3), and it is often a poor guess which leads to a local
minimum. These disadvantages are addressed in [11], where
the authors reformulate the estimation as a linear Perspective
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n Point (PnP) problem, proving that three line-to-plane
correspondences provide at most eight solutions. They report
a minimal solution to the problem in a RANSAC framework
and refine it with a non-linear iterative optimization. The
main issue of this algorithm is its limited accuracy and its
numerical instability. These drawbacks have been recently
addressed by Zhou [12], with another improved version of
the Zhang and Pless proposal. They report better results
in accuracy and numerical stability with a novel minimal
solution, employing three line-to-plane correspondences as
well, estimating the rotation from a polynomial equation
system and then calculating the translation with a linear
system. However, their method still requires the use of a large
checkerboard pattern and suffers from a limited accuracy and
robustness due to the weakness of the applied constraints.

B. Contribution

This paper presents the first approach to the calibration of
a 2D LRF and a camera without the need of a specific cali-
bration pattern, which makes the method fast and simpler to
apply. Concretely, this solution only requires the observation
of a scene corner (orthogonal trihedron) commonly found
in any human-made environment. Moreover, unlike previous
approaches, the proposed method exploits both line-to-plane
and point-to-plane constraints, which yields a more accurate
and robust estimation.

The source code of the developed MATLAB library is
available online, and will be updated as research progresses.
An illustrative video of our calibration system and the source
code can be found here: http://mapir.isa.uma.es.

II. EXTRACTING CALIBRATION DATA FROM THE
TRIHEDRON

Our proposal to calibrate a camera-LRF system relies on
the observation of an orthogonal trihedron τ , defined as
a structure formed by three perpendicular planes, denoted
by {Π1,Π2,Π3} (see Figure 1). These planes intersect with
each other at three orthogonal lines, {L1, L2, L3}, so that all
planes and lines meet at the vertex C. The first step of our
method consists in detecting these trihedron features from
the observations of both sensors, as explained next.

A. Information from the Camera

1) Trihedron Detection and Tracking: A trihedron is
projected onto the image as three lines intersecting at a
vertex (see Figure 2). Hence, it can be defined as a 4-tuple
ξ = (c, ν1, ν2, ν3) , where νk represents the director
vector of the k-th line and c is the vertex. To gain in accuracy,
traditional methods for detecting line segments, such as the
LSD [13], are not appropriate since they do not force the
three lines to meet at a single point.

Instead, we propose a tracking method based on the fitting
of the structure ξ using the image gradient information. The
tracking is initialized automatically from the three intersect-
ing lines detected with the LSD detector in a RANSAC
framework. After this first step, a rectangular region Sk
is defined around each line as depicted in Figure 2 (the

Fig. 2. A single camera observation of a trihedron structure, which is
parametrized by its vertex c and the directions νk of the three lines. For
its tracking in an image sequence, a region Sk for each line is considered.

part of the line close to the vertex is discarded to avoid
unreliable gradients). Within these regions, only the pixels
with a gradient magnitude above a threshold G̃k, and angle
almost perpendicular to the line border are considered for the
fitting. Let ηk be the normal vector of the k-th line. Hence,
the distance from a generic pixel in the k-th region, pik, to
the k-th line is expressed as

dik =
(
pik − c

)> · ηk (1)

Then, the trihedron image parameters ξ are estimated with
a Levenberg-Marquardt optimization over the weighted non-
linear least squares problem, expressed as

argmin
ξ

3∑
k=1

Nk∑
i=1

Gik · dik
2

(2)

where the weights are the gradient magnitude Gik of the
pixels pik in the region, and Nk is the number of valid
pixels for each region Sk. The initialization for the trihedron
detection is only necessary in the first frame. After this, the
structure is tracked from the previous frame automatically.

2) Back-Projected Planes: The lines of the trihedron in
the image, lk, are defined by its direction νk and the vertex
c, as estimated above. Each line lk gives rise to a so-called
back-projected plane Ππ k containing the camera optical
center (see Figure 3), which normal vector nπ k is given by
the expression [14]

nπ k =
K>lk
‖K>lk‖

(3)

where the camera matrix K is supposed to be known.
3) Trihedron Plane Normals: From the computation of

ξ and nπ k, the relative rotation of the trihedron w.r.t. the
camera can be estimated as follows. The back-projected
plane and the trihedron plane, defined by their normal
directions nτ k, are orthogonal to each other (see Figure 3),
that is

nπ >
k · nτ k = 0 (4)

for all three planes k = {1, 2, 3} in the trihedron. Notice
that the line Lk is perpendicular to its opposite plane Πk,
and it is also co-planar to the back-projected plane Ππ k, as
depicted in Figures 1 and 3. Additionally, by imposing the
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Fig. 3. Scheme of the back-projected planes.

condition that the normal vectors are unitary, the following
six constraints apply:

Rτ > · Rτ = I3 (5)

with Rτ =
[

nτ 1 nτ 2 nτ 3

]
being the relative rotation of the

trihedron w.r.t. the camera. This states a quadratic equation
system which is solved efficiently by employing Gauss-
Newton optimization and on-manifold derivatives [15]. For
that, we need to re-formulate the system as a vector field
Φ : SO(3)→ R3, and to force the field Φ to be zero:

Φ( Rτ ) =

 nπ >
1 · Rτ · e1

nπ >
2 · Rτ · e2

nπ >
3 · Rτ · e3

 = 0 (6)

with e1 = [1 0 0]
>, e2 = [0 1 0]

>, and e3 = [0 0 1]
>.

Notice that this equation system has 8 possible solutions,
one for each quadrant, which might lead the method to a
wrong minimum. This can be overcome by initializing the
algorithm with a orientation in the actual quadrant, and by
comparing the sign of the solution with the projected image
directions. This optimization is run at each new observation
in the tracking process, thus, it is initialized with the solution
from the previous step.

B. LRF Data

The scene corner (trihedron) is sampled by the LRF
as three line segments, as shown in Figure 1, which can
be extracted in a number of ways [16]. Here, we have
implemented a segmentation method based on RANSAC,
which searches for the parameters {sνx,s νy, κ} of a 2D line
which maximizes the number of inliers fulfilling the next
model

sνx xi +s νy yi + κ ≤ ε (7)

with the scan points represented by {xi, yi}, and ε is a thresh-
old employed to filter the outliers. An interesting advantage
of this procedure is that unconnected collinear segments are
automatically clustered as the same line, thus the line models
obtained are more accurate. For the calibration process, we
are interested in the line directions νs = [sνx

sνy]
> and the

corner points q obtained at the intersection of the scan lines.

III. EXTRINSIC CALIBRATION APPROACH

A. Problem Statement

Let us define a Trihedron Observation TOi as a set formed
by the line segment directions in the scan νs , the scan
intersection points q, the trihedron plane normals nτ , and
the back-projected plane normals nπ , expressed as

TOi ≡ { νs i
k ,q

i
k , nτ i

k , nπ i
k} (8)

where k = {1, 2, 3} is the index of the plane correspondence,
and i = 1, ..., N is the index of the observations.

It can be verified that given a minimal sample of three TO
correspondences, the problem can be decoupled to obtain
the rotation and the translation separately, since both have
a closed-form solution. Hence, the optimization algorithm
consists of two steps.

First, we obtain the relative rotation between the cam-
era and the LRF, R ∈ SO(3), by imposing co-planarity
constraints between the lines and planes segmented (line-
to-plane). This condition is expressed as

nτ > · R νs = 0 (9)

where nτ ∈ S2 is the normal vector of the corresponding
plane, νs ∈ R3 is the direction of the scan segment in that
plane, and R ∈ SO(3) is the relative rotation of the LRF
w.r.t. the camera. Notice that the measurements from the
scan belongs to the planed defined by xs and ys (see Figure
1), and they can be transformed to 3D vectors by setting the
zs coordinate to be zero.

Secondly, we compute the relative translation t ∈ R3 by
imposing co-planarity constraints between the scan corner
points q, and the planes back-projected from camera center
through trihedron lines (point-to-plane). This condition is
given by

nπ > · (Rq + t) = 0 (10)

for each correspondence, with nπ ∈ S2 being the back-
projected plane normal.

B. Optimization

1) Formulation: Given a set of TOs extracted from dif-
ferent poses of the Camera-LRF rig, the aim is to find the
relative pose [R|t] that minimizes the errors of the constraints
in (9) and (10). For that, we can assume independence
between the TOs and that the measurements are affected by
unbiased Gaussian noise. Without loss of generality, we take
the camera pose as the reference coordinates.

Since the unknowns R and t are decoupled, the above
problem can be formulated as two independent maximum
likelihood estimation (MLE) processes for the given TOs,
whose solutions are obtained by solving the weighted non-
linear least squares problem expressed as

argmin
x

N∑
i=1

r>i wi ri (11)

where ri is the residual error defined for each problem,
and wi the weight of the corresponding residual from TOi.
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All the weights employed in this work derive from the
propagation of the uncertainty from the sensor measurements
(wi = Σ−1i ), which has been propagated analytically with
a first order approximation to the covariance matrix [17].
Finally, RANSAC is used to discard possible outliers in the
TO correspondences, before the estimation of the calibration.

2) Solving for the Rotation: The problem in (11) is
reformulated using Lie algebra so the optimization steps are
performed on the manifold tangent space so(3) [15]:

Rn+1 = eεnRn (12)

where Rn refers to the rotation value in the n-th iteration,
and eεn ∈ SO(3) is the infinitesimal pose increment. As
expressed in (9), the rotation is estimated imposing that the
LRF line segments belongs to the trihedron plane normals.
Hence, the residual error is given by

rik = nτ i
k

> · R νs i
k (13)

ri =
[
ri1 r

i
2 r

i
3

]>
(14)

3) Solving for the Translation: Once the rotation is es-
timated, the translation is recovered by imposing three co-
planarity conditions in the 3D space. Concretely, the scan
corner point qk (in the LRF reference frame) must lie on
the k-th back-projected plane defined by the normal nπ k,
as expressed in (10) (see Figure 3). Hence, the optimal
translation is obtained by solving the optimization problem
in (11) with Levenberg-Marquardt defining the following
residual error

rik = nπ i
k

> · (Rqik + t) (15)

for each observation TOi, and the correspondent weights ob-
tained by propagating the rotation uncertainty from previous
steps.

IV. EXPERIMENTAL RESULTS

In this section we validate the proposed approach with a
number of experiments with both synthetic and real data. We
compare our results with several methods, for which we have
implemented the paper versions of [7] [8], and also with the
method in [11].

A. Simulation

The first set of experiments has been designed to prove
the correctness of the proposed method and to compare our
results with the state-of-art methods. In our simulation envi-
ronment, a rig formed by a LRF and a camera is randomly
generated at different relative poses in the range of ±45o

and ±50 cm for the rotation and translation respectively. The
simulated sensors are characterized as the Sick LMS 200 and
the stereo camera Point Grey Bumblebeer2 employed in the
real experiments. In order to compare with the techniques
previously presented in literature, we have also simulated
two calibration targets besides the trihedron employed in our
algorithm. First, we have employed the traditional checker-
board with 8×8 squares, for those algorithms which exploits
point-to-plane constraints (see [11]). Also, we have created a
V-shaped target to compare with the point-to-line algorithms

[7] [8]. For the sake of fairness, all the targets used here
have similar dimensions, i.e. a L×L checkerboard, a corner
with a height of 2L and sides of L, and a trihedron with
sides of L, with L = 1.5 m. Notice that whereas the size
of the two targets has been set with realistic values, the
trihedron structures present in most structured scenes would
have bigger dimensions, which would produce better results
than those shown here.

The observations have been generated with variable levels
of unbiased and uncorrelated Gaussian noise, σs and σc for
both scan and camera observations, respectively. Also, we
have tested the effect of the number of correspondences in the
different methods by performing the same experiments with
variable amounts of correspondences. The number of Monte
Carlo simulations has been set to 500 configurations for each
calibration method. In order to estimate the accuracy of the
calibration results, the following error metrics are employed

eR = 2 arcsin


∥∥∥R− R̂

∥∥∥
F

2
√

2

 (16)

for the rotation error and

et =
∥∥t− t̂

∥∥ (17)

for translation, where [R|t] is the estimated pose and [R̂|̂t]
is the ground truth. The value of eR represents the minimal
angular distance between two rotations in SO(3) in radians,
while et is the Euclidean distance in meters between two R3

vectors.
In order to combine the noise information of both sensors

in one plot, the noises have been modeled with a variable
factor of proportionality kσ which multiplied by the standard
deviation of each sensor, i.e. σc = 1 pixel and σs = 0.03 m
for the camera and the LRF respectively, provides the noise
standard deviation for each sensor

σ̂j = kσσj (18)

with j = {c, s} for the camera and the scan, respectively.
The average errors of the relative rotation and translation are
shown in Figure 4 in degrees and meters, respectively. The
experiment has been performed with a fixed number of 20
correspondences. The graphic shows the better results of our
method in accuracy and precision.

The effects of the number of correspondences are repre-
sented in Figure 5, where the standard deviation of the LRF is
set to σs = 0.03 m, and that of the camera is set to σc = 1
pixel. We observe that errors decrease asymptotically with
the number of correspondences. Also, the results provided by
our method are superior to the state-of-art methods, specially
with low number of correspondences.

B. Real Data

The rig employed in our experiments is composed of a
Sick LMS 200 and a stereo camera Point Grey Bumblebeer2
(see Figure 6). The experiments consist in estimating the
calibration of the laser w.r.t. the left and right camera, so
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(a) Rotation error

(b) Translation error

Fig. 4. Simulated calibration results comparing our method with [11] [7]
and [8]. The experiments have been performed for 20 correspondences, and
are plotted for increasing levels of gaussian noise (proportional to kσ).

that we can compute the relative pose of the stereo set and
compare it with the calibration provided by the manufacturer,
which is considered here as ground truth (a similar procedure
was used in [18]). The results are showed in Table I for
a variable number of correspondences. We observe that the
average errors decrease when raising the number of trihedron
observations. We have also tested the calibration results

TABLE I
AVERAGE ERRORS OF REAL CALIBRATIONS WITH DIFFERENT NUMBER

OF CORRESPONDENCES.

TOs 5 10 20 50 100
eR (deg) 0.7912 0.6307 0.4218 0.3911 0.2927
et (cm) 1.1664 0.7809 0.6776 0.5787 0.4269

obtained with our method by projecting the laser points into
the image. This experiment is showed in Figure 8, where
the projected points from the LRF fit to the objects in the
scene. The line segments have been detected with the method
employed in Section II-B and have been represented with a
different color for each object. The experiment validates the
performance of our method as the line segments match with
the planar surfaces from the scene.

Also, we have performed an experiment which allows us
to observe the real LRF points on different surfaces. For

(a) Rotation error

(b) Translation error

Fig. 5. Simulated calibration results comparing our method with [11] [7]
and [8]. The experiments have been performed for a fixed noise level of
σs = 0.03 m and σc = 1 pixel, increasing the number of correspondences.

Fig. 6. Rig employed in the real simulations formed by a Point Grey
Bumblebeer2 and a Sick LMS 200.

that, we have employed the sensitivity of common cameras
to the infrared beams of some LRFs [19]. To avoid the use
of special infrared filters, we have recorded a scene in dark
conditions with long exposure times. An example of such
images is depicted in Figure 7, where the exposure time of
the stereo camera was set to 2 min. This experiment serves
for visual evaluation of the accuracy of our method, which is
evident as the lines segmented from the laser scans coincide
with the faces of the different boxes in the scene.

V. CONCLUSIONS

A new methodology for calibrating the extrinsic param-
eters of a rig formed by a 2D LRF and a camera has
been presented in this paper. It relies on the observations
of an orthogonal trihedron typically encountered as scene
corners in buildings and human-made structures. The method
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(a) Ground truth image (b) Projected LRF points in the illuminated scene

Fig. 7. (a) The real LRF beam of the Sick LMS 200 can be observed in the objects of dark scenes when the image is acquired with a high exposure
time. (b) The correctness of our estimation can be checked visually by comparing the real LRF beam trace in (a) with the projection of the LRF points in
the same illuminated scene with the estimated calibration.

Fig. 8. Projection of the LRF points that belongs to planar surfaces onto the
image with the estimated calibration. Our estimation is visually validated
as the projection of points fits with the planar objects in the image.

establishes correspondences between the plane observations
from the camera and the line segmented from the laser scans
data. The problem is solved in a probabilistic framework
which takes into account the uncertainty in the measurements
from the sensors to weight the optimization processes. Our
calibration technique has the advantage of being accurate and
easy to perform for the user, avoiding the need of specific
calibration patterns. The method has been extensively tested
in simulation and in real case experiments, yielding results
that validate the claimed features. Future work will focus on
reducing the errors caused by the assumption that the selected
corner is ideal by considering the orientation of the plane
normals as additional variables in the optimization process.
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