
1

Computer Vision and Image Understanding
journal homepage: www.elsevier.com

Certifiable Planar Relative Pose Estimation with Gravity Prior

Mercedes Garcia-Salgueroa,∗∗, Javier Gonzalez-Jimeneza

aMachine Perception and Intelligent Robotics (MAPIR) Group, System Engineering and Automation Department, University of Malaga, Campus de Teatinos,
29071 Malaga, Spain

ABSTRACT

In this work we propose a certifiable solver for the relative pose problem between two calibrated
cameras under the assumptions that the unknown 3D points lay on an unknown plane and the axis
of rotation is given, e.g. by an IMU. The problem is stated in terms of the rotation, translation and
plane parameters and solved iteratively by an on-manifold optimization. Since the problem is non-
convex, we then try to certify this solution as the global optimum. For that, we leverage four dif-
ferent definitions for the search space that provide us with different certification capabilities. Since
the formulations lack the Linear Independence Constraint Qualification and two of them have more
constraints than variables, we cannot derive a closed-form certifier. Instead, we leverage the iter-
ative algorithm proposed in our previous work Garcia-Salguero and Gonzalez-Jimenez (2023) that
does not assume any condition on the problem formulation. Our evaluation on synthetic and real data
shows that the smaller formulations are enough to certify most of the solutions, whereas the redundant
ones certify all of them, including problem instances with highly noisy data. Code can be found in
https://github.com/mergarsal.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

Estimating the relative pose between two cameras is the cor-
nerstone of many computer vision tasks, from visual odometry
to visual SLAM. Although the literature regarding this problem
is vast, there exists a strong focus on using the essential ma-5

trix for this task. However, degenerate configurations lead to
a family of solutions for the essential matrix, hence hindering
the extraction of the (unique) pose from it. This is the case in
which the 3D points that give rise to the observations lay on a
plane, see figure 1. This configuration, which is predominant in10

man-made environments, requires the consideration of another
relation between the observations via the so-called 2D homog-
raphy matrix Hartley and Zisserman (2003). As for the general
case, this point-to-point relation also allows us to retrieve the
relative pose and, additionally, the information about the un-15

known plane π.
In the general case, the homography matrix is estimated

through a linear solver from at least four points in correspon-
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dence Hartley and Zisserman (2003). However, when addi-
tional information is available, e.g. the gravity vector is inferred20

from an IMU, the degrees-of-freedom (DoF) of the homogra-
phy matrix decreases from 8 to 6. Although this knowledge
can be incorporated after the initial estimation, it also provides
us with a convenient prior that may simplify robust algorithms,
such as RANSAC Fischler and Bolles (1981), by reducing the25

number of iterations and the number of wrong inliers. The re-
duction of DoFs implies additional requirements on the solu-
tions that are not fulfilled by general solvers, and therefore our
interest in deriving an explicit solver for these cases.

In this work, we tackle the relative pose problem through the30

homography matrix assuming the axis of rotation is known, e.g.
inferred from an IMU. Unfortunately, the homography matrix
doesn’t inherit a clear structure from this information as the es-
sential matrix does and thus we pose the problem in terms of the
rotation, translation and plane parameters in order to reflect the35

prior information. This approach does not require decomposing
the homography matrix, thus avoiding the associated numerical
instabilities e.g. Malis and Vargas (2007), although it depicts
the nonconvexity of the problem, that is, it may have more than
one local minimum. Our goal is to solve this problem with op-40

timality guarantees, and while global solvers can be derived see

https://github.com/mergarsal
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section 2, we are interested in solving it in a more efficient way.
For that, we rely on the so-called certifiable algorithms, which
are able to certificate the optimality of a solution, but not obtain
it.45

Contributions: In this work we propose an efficient optimal-
ity certifiable solver that first estimates the solution and then
tries to certify whether the solution is the actual global opti-
mum. Our first contribution is a nonminimal, iterative solver
that obtains the pose (rotation and translation) and plane param-50

eters (normal vector) through an on-manifold optimization that
considers all the correspondences. This solution is, however,
only a minimum of the problem and so we do not know a priori
if it is the global optimum. Our second contribution is an opti-
mality certifier based on the dual problem that tries to certify the55

optimality of this solution without modifying it. This certifier
is only able to say whether the solution is the global optimum
or is inconclusive about its optimality, information that can be
leveraged by other applications to decide whether or not to use
the solution. To derive this relaxation and eventually the certi-60

fier, we first formulate the problem to have quadratic cost and
constraints, and since the tightness of the relaxation depends on
the set of constraints, we propose four different sets with up to
97 constraints and 21 variables. Because the formulations don’t
fulfill the Linear Independence Constraint Qualification (LICQ)65

and two of them have more constraints than variables, we can-
not derive the ’standard’ closed-form certifiers, see section 2.
Instead, we leverage the generic iterative algorithm for cer-
tification proposed in Garcia-Salguero and Gonzalez-Jimenez
(2023) which does not assume any condition on the formula-70

tion. Notice that the problem and formulation of this work is
different from Garcia-Salguero and Gonzalez-Jimenez (2023)
as we seek the homography matrix, thus involving a different
formulation of the problem. We evaluate the solver and cer-
tifier on synthetic and real data, considering degenerate con-75

figurations, and showcase that our proposal is able to estimate
and certify the solution for most non-degenerate configurations,
even with highly noisy data. We make the code available at
https://www.github.com/mergarsal.

Notation: We introduce here the notation employed in the80

manuscript. Bold, upper-case letters denote matrices e.g. H,
whereas bold, lower-case denotes (column) vector e.g., t, fi and
normal font letters e.g., a, b denote real scalar. We will denote
with Rn×m the set of n × m real-valued matrices, Sn ⊂ Rn×n the
set of symmetric matrices of dimension n×n and Sn

+ the cone of85

positive semidefinite (PSD) matrices of dimension n×n. A PSD
matrix will be also denoted by ⪰ , i.e., S ⪰ 0 ⇔ S ∈ Sn

+. The
operator vec(E) vectorises the given matrix E ∈ Rm×n column-
wise, and ⊗ denotes the kronecker product. We will denote the
trace of a matrix as tr(A) =

∑n
i=1 aii, A = [ai j] ∈ Rn×n. In this90

work, we identify 3D rotations with points in the rotation group
SO(3) .= {R ∈ R3×3|RT R = I3, det(R) = 1 } and define the
2-sphere as S2 .= {t ∈ R3|tT t = 1}.

2. Related work

We summarize here the main works regarding the relative95

pose (RP) estimation with known direction of rotation for pla-
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Fig. 1: In this work we aim to estimate the relative pose (RY, t) between cam-
eras {0} − {1} and the plane normal n from N pair-wise observations { fi, f ′i }
assuming the unknown 3D points lay on a plane π. Original camera poses ap-
pear with dashed lines and the corrected ones (Y-axis aligned with the gravity
vector) in solid lines.

nar configurations and also include some works where opti-
mality certifiers were proposed. Our previous work Garcia-
Salguero and Gonzalez-Jimenez (2023) contains a more de-
tailed related work, which includes the solvers for generic100

points. We refer interested readers to the references therein and
the main books for computer vision, e.g. Hartley and Zisserman
(2003), Ma et al. (2012) and convex optimization e.g. Boyd and
Vandenberghe (2004).

2.1. Solvers for the RPp from Planar Observations105

Given the observations of five generic points in the space
we can uniquely compute the RP between the cameras that
observed them, e.g. Nistér (2004); Stewenius et al. (2006);
Kukelova et al. (2008). However, when the 3D points lay on
a plane there exists a stronger relationship between the obser-110

vations and only four correspondences between the images are
needed to estimate the solution. This alternative approach is
required for these planar scenes, since they are one of the de-
generate configurations for the general solver Hartley and Zis-
serman (2003).115

Nevertheless, when the direction of rotation is known, the
number of required correspondences reduces to three, condition
that is not imposed by general (planar and nonplanar) solvers.
Thus, the returned solutions are not guaranteed to have the de-
sired form when the data is corrupted by noise. For these cases,120

specific solvers that integrate this information should be em-
ployed instead. Saurer et al. in Saurer et al. (2016) propose
a minimal, polynomial solver that requires only three corre-
spondences and estimates the homography taking into account
the information about the rotation. Ding et al. in Ding et al.125

(2019, 2020) improve the solver by exploiting the rank-one con-
straint and eliminating the rotation parameters from the result-
ing set, and mainly focus on (partially) uncalibrated configura-
tions. Other solvers in the literature assume a particular con-
figuration for the translation and/or plane normal, e.g. ground130

https://www.github.com/mergarsal
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plane, translation is parallel to plane or vertical plane, Ding
et al. (2020); Guan et al. (2018); Wadenbäck et al. (2016). We
refer the interested reader to these works and references therein
for more information.

Although these solvers can be integrated into robust frame-135

works such as RANSAC Fischler and Bolles (1981) to detect
and discard outliers, they come with a series of well-known
drawbacks. First, they usually require computing a Gröbner
basis and the roots of a high-order polynomial, which may be-
come unstable and slow. Second, since they only employ the140

minimum number of correspondences, they are more sensitive
to noise, whereas in real-world applications many correspon-
dences are usually found, which can be employed to achieve
robust pose estimations.

Nonminimal solvers do incorporate all the observations for145

the estimation, hence averaging and reducing the effect of the
noise on the solution. The most common approach is to state
a nonconvex optimization problem that minimizes certain cost
function on the desired domain. This implies that the optimality
of the solution cannot be guaranteed, since in general there exist150

many local minima. To the best of our knowledge, there don’t
exist in the literature non-minimal solvers for planar scenes and
with a known rotation axis between the cameras.

2.2. Optimality certificate

There exist other approaches that are able to obtain and/or155

certify the optimality of the solution. Solvers based on branch-
and-bound techniques have been proposed for the relative pose
problem with generic points, see e.g. Kneip and Lynen (2013);
Hartley and Kahl (2007) They have exponential complexity in
the worst case due to their exploratory nature. An alterna-160

tive technique relies on deriving a convex relaxation on the
semidefinite positive cone. This relaxation can be solved by off-
the-shelf solvers (SeDuMi Sturm (1999) or SDPT3 Toh et al.
(1999)) in polynomial time, and under some circumstances may
return the optimal solution to the original non-convex problem.165

The main drawback of these relaxations methods is that they
may not remain tight in all problem instances. Empirically, it
has been shown that increasing the number of constraints tight-
ens the relaxations. This also increases the computational time
required by the solvers, making them too slow to be used in170

practice.
Nonetheless, other approaches can be employed in these

cases. In Bandeira (2016) Bandeira shows that faster algorithms
can be leveraged to certify solutions to nonconvex problems,
without actually obtaining these solutions. The potential opti-175

mal solution is estimated by any classic iterative method, and
it is later certified or not as optimal, see e.g. Eriksson et al.
(2018); Briales and Gonzalez-Jimenez (2017b); Carlone et al.
(2015); Garcia-Salguero and Gonzalez-Jimenez (2021). Given
the efficiency of iterative solvers, these optimality certifiers ac-180

quired special relevance in computer vision applications. These
proposals compute a part of the certifier (the candidates to La-
grange multipliers) in closed-form and check whether the as-
sociated Hessian is positive semidefinite (PSD). This last step
is usually the most time-consuming, especially if the matrix is185

dense and/or has a large size. Additionally, in order to derive

these closed-form certifiers certain conditions must be fulfilled
by the formulation, among them, having no more constraints
than variables and the Jacobian of the constraints being full-
rank at the tested solution, condition known as Linear Indepen-190

dence Constraint Qualification (LICQ). Failure of any of these
conditions requires using another approach in general. In this
work, all the formulations lack LICQ and we rely on our pre-
vious contribution in Garcia-Salguero and Gonzalez-Jimenez
(2023) to certify optimality, where we proposed an iterative cer-195

tifier that does not assume any condition on the problem.

3. Quadratic formulation of the RP problem

3.1. Generic problem formulation

The RPp consists of estimating the rotation R and transla-
tion t between two camera poses given a set of N pair-wise ob-
servations ( fi, f ′i ), i = 1, . . . ,N originated from N unknown 3D
points of the scene. For the planar configuration, we assume the
3D points lay on an unknown plane π (see Fig. 1), and therefore
we can relate the observations by a full-rank 3 × 3 transforma-
tion, the so-called homography matrix H ∈ R3×3. Considering
the normal vector to the plane ñ ∈ S2 w.r.t. the first camera and
the distance from the first camera to the plane d, the homogra-
phy matrix for calibrated cameras has the form:

H ∼ R +
1
d

t ñT , (1)

where ∼ denotes up-to-scale. The translation t and distance d
can be only estimated up to a global scale and thus we let the
translation t absorbs the distance d, and the factor 1

d is omitted
in the remaining of the manuscript. We further assume that
the gravity vector is known, which is considered to be aligned
with the global Y-axis, see figure 3. This allows us to rotate
the two camera poses so that their Y-axes are also aligned with
the global Y-axis, i.e. with the gravity vector. This reduces the
degrees of freedom of the rotation R from three to one as we
need to estimate only the angle of rotation around the new Y-
axis. The new rotation, named here Y-rotation, has the form:

RY =

 c 0 s
0 1 0
−s 0 c

 ∈ SO(3)Y ⊂ SO(3), (2)

where c, s ∈ R such that c2 + s2 = 1, and SO(3)Y denotes the
space of rotation matrices with the form in (2). Notice that we
can also apply the information from the IMU by writing the 3D
rotation R as R = RY R̂ where R̂ is a XZ rotation that can be
derived from the IMU measurements, and thus, RY = RR̂T .
Then, the full homography matrix in eq. 1 can be written as
H = HY R̂ with HY = RY + t(R̂ñ)T the homography with RY
as rotation and as normal vector R̂ñ. As we only work with
this form for the homography matrix, we re-define the plane
normal n .= R̂ñ. We denote the set homography matrices with
Y-rotation HY by

HY .= {H ∈ R3×3 | H = RY+tnT , t ∈ R3, n ∈ S2, RY ∈ SO(3)Y}.
(3)
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The RP problem is stated as the minimization of the geomet-
ric error over HY Chum et al. (2005)200

f ⋆ = min
H∈HY

vec(H)T CHvec(H) (O)

where CH =
∑N

i=1( fi ⊗ (B1 f ′i ))( fi ⊗ (B1 f ′i ))T + ( fi ⊗ (B2 f ′i ))( fi ⊗

(B2 f ′i ))T ∈ S9
+, with B1, B2 ∈ R3×3 the generators

B1 =

0 0 0
0 0 1
0 −1 0

 , B2 =

0 0 −1
0 0 0
1 0 0

 . (4)

Appendix A includes this development. Notice that here, the
pair-wise observations ( fi, f ′i ) has been already corrected with
the information about the axis of rotation. In practice, we can
apply the rotation R̂ to the original relation fi ∼ H f̃ ′i for general
H through the relation H = HY R̂ as fi ∼ HY (R̂ f̃ ′i ), therefore205

considering the aligned pair-wise observations with f ′i = R̂ f̃ ′i
in Prob. O. Our goal is to solve problem O and obtain an opti-
mality certificate that guarantees that the estimated solution is
the global optimum.

3.2. Sets of constraints for HY
210

In the general case, the Euclidean homography has eight de-
grees of freedom (DoF). Since we consider Y-rotations, the DoF
are reduced to six and we need to introduce additional con-
straints for the solution to have the form in HY. In this part
we aim to define the set HY by a set of quadratic constraints,215

that will allow us to derive a convex relaxation for problem O.
Since the homography can be only defined up-to-scale, we

consider the normalized homography matrix H with frobenius
norm equals one. By fixing the scale we need to introduce the
non-zero scalar α ∈ R so that the equality H = αRY + αtnT

220

holds exactly. To simplify notation, we let the translation t ∈ R3

absorb the unknown scale α and introduce α into the rotation
matrix RY with RYα

.
= αRY. The elements of RYα followed

the same distribution as in Eq. (2), and with a little abuse of
notation we denote the scaled cosine and sine of the rotation225

RYα by c, s again, and so c2 + s2 = α2. Further, to make the
cost quadratic in the unknowns, we introduce the outer product
Q = tnT ∈ R3×3, which makes the homography matrix linear in
the unknowns RYα,Q, i.e. H = RYα + Q.

We first follow the formulation in Ding et al. (2019) which230

exploits the rank-1 condition of Q, and re-writes the equality
associated with the homography as H − RYα = Q. The rank-
one condition of the matrix Q and thus also H − RYα, can be
written as 9 quadratic constraints that come from all the 2 × 2
minors of the matrix being zero, i.e. all the 2 × 2 submatrices235

have determinant zero. These nine constraints, together with
the Frobenius norm of H equals one and the rotation constraint
of RYα give us 11 constraints that define the space HY in terms
of 12 variables: 9 for the homography, 2 for the rotation and
1 for the scale. We denote this set of constraints by HR, and240

since the homography matrix is one of the unknowns the cost
function does not need to be modified. In order to accommodate
the other variables, we padded the cost matrix with zeros when
needed.

Problem # variables # constraints
HR 12 11
QR 12 11

HRQ 21 69
H-RED 21 97

Table 1: Number of variables and constraints for each definition of the set HY.

A similar formulation with the same number of constraints
and variables arise by considering the expression RYα + Q in-
stead of H − RYα, thus removing the homography matrix H
as variable. The norm constraint of H can be re-written as a
quadratic form in terms of RYα and Q:

tr(HT H) = tr(RT
YαRYα) + tr(QT Q) + 2 tr(QT RYα) (5)

The rotation constraint for RYα remains unchanged while now245

the nine rank-1 constraints only involve the matrix Q, instead of
H − RYα. This definition with 12 variables and 11 constraints
is denoted by QR and since the homography is not a variable in
the problem, we need to adjust the cost function to the variables
RYα and Q. Since the homography is linear in these variables,250

the cost function will remain quadratic, and the new expression
for the cost can be derived by algebraic manipulation of CH (see
Supplementary material Section A).

Last, we aim to find a redundant formulation for the set HY.
We combine all the previous constraints in QR and HR to obtain255

a redundant formulation with (H)9+(R)3+(Q)9 = 21 variables.
Further, from the relation H = RYα+Q we can derive additional
quadratics constraints by multiplying H with the other variables
RYα and Q, for example, HH = RYαH + QH. Supplemen-
tary material Section B shows all the employed expressions.260

In total we obtain 97 quadratic constraints, which defined the
set denoted by H-RED, and from them we select a subset of
69 constraints, denoted by HRQ, which empirically appears to
perform well in terms of tightness. This subset allows us to
show the dependence of the proposed iterative certifier with the265

number of constraints, since both definitions H-RED and HRQ
have 21 variables. The different formulations with the number
of variables and constraints are found in Table 1.

4. Certifiable approach to the RPp

Since the problem and constraints for all the formulations270

are quadratic in the variables, problem O can be written as a
Quadratically Constrained Quadratic Program (QCQP), which
in general are NP-hard to solve. However, under some con-
ditions we can derive convex relaxations that approximate
well the original problem and even obtain its optimal solu-275

tion. Among the different options, we leverage the relaxations
with the form of semidefinite problems (SDP), which can be
solved by off-the-shelf tools in polynomial time Sturm (1999),
Toh et al. (1999). In this work, though, we aim to solve the
problem in a more efficient way. Instead of solving the relax-280

ation from scratch, we seek an optimality certificate that only
certifies a given solution. However, two of our four formula-
tions have more constraints than variables that precludes the
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used of closed-form certifiers, and all the sets contain the rank-
deficient constraint, that defines what is known as the Segre285

variety. From Bruns and Schwänzl (1990) we know that this
set is defined by 9 equations. However, the dimension of the
space is 5 and the Jacobian of the constraints has rank 4 Hauen-
stein et al. (2012). This puts an upper bound on the rank of
the full Jacobian, which makes the LICQ condition fail even290

for the minimal HR and QR. A similar argument holds for the
nonminimal formulations, as from (Decker and Schreyer, 2007,
Th. 4.1.12) the rank of the Jacobian has as upper bound the
difference between the number of variables 21 and the dimen-
sion of the space, which is 5 for all formulations. We empir-295

ically observe LICQ is not fulfilled for all problem instances.
Hence, we leverage our previous proposal in Garcia-Salguero
and Gonzalez-Jimenez (2023) and adapt it to this case. In sum-
mary, we employ an iterative algorithm to obtain the solution
(homography) to problem O (section 4.1) and then employ the300

iterative certifier (section 4.2) that indicates whether or not the
obtained solution is the global optimum.

4.1. Homography matrix estimation
We estimate the homography matrix by optimizing on its

manifold, procedure that allows us to decouple the problem305

(model), the domain and the solver. For the latter we employ
the (second order) Trust region solver (TNT)Boyd and Vanden-
berghe (2004), which has been shown to provide good conver-
gence properties, e.g. Briales and Gonzalez-Jimenez (2017a);
Garcia-Salguero and Gonzalez-Jimenez (2021). For the do-310

main we employ the representation of the homography ma-
trix in terms of rotation, translation and normal vector, as
SO(3)Y × R3 × S2. This representation has two main advan-
tages: first, the three domains are well-known and well-studied,
e.g. Absil et al. (2009); and second, the solution to the opti-315

mization is already a valid pose, which eliminates the decom-
position of the homography matrix into its elements, process
which we observe is unstable and prone to errors, see e.g. Malis
and Vargas (2007). Last, the employed solver requires second-
order information about the model, that is, gradient and (vector-320

product) Hessian. Since we consider the domain as the product
of manifolds, we can define the gradient and Hessian separately
for each variable. We refer the reader to Section C in the Ap-
pendices for further details about the domain operators and the
second-order model.325

4.2. Iterative optimality certifier
We include in this section the main aspects about the iterative

certifier, and refer the reader to the original work in Garcia-
Salguero and Gonzalez-Jimenez (2023) for further details. The
algorithm relies on the dual problem associated to the primal in
Problem O Boyd and Vandenberghe (2004). To derive the dual
problem, let us consider the general form of the primal problem
O under the set of m constraints xT Aix = ci for i = 1, . . . ,m
with x ∈ Rn the vector with all the unknowns, and Ai ∈ Sn, ci ∈

R the matricial form of the constraints. Similarly, we express
the cost vec(H)T CHvec(H) as xT Cx for C ∈ Sn

+. The primal is
then re-written as

f ⋆ = min
x∈Rn

xT Cx subject to xT Aix = ci, i = 1, . . . ,m. (P)
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Fig. 2: Rank of the Hessian during the evaluation of the certifier in Section 5
for the different formulations (see legend), including those with different cost
matrices.

The standard dual problem has the form

d⋆ = max
λ∈Rm

cTλ subject to C −
m∑

i=1

λi Ai ⪰ 0, (D)

where λ ∈ Rm are the Lagrange multipliers, c .= [c1, . . . , cm]T ∈

Rm and S .= C−
∑m

i=1 λi Ai ⪰ 0 is the Hessian of the Lagrangian.
Section D includes the development of problem D. Since the
dual is a relaxation of the primal, we have that

d(λ) ≤ d⋆ ≤ f ⋆ ≤ f (x) (6)

for any feasible primal x and dual λ points, i.e. points feasible
for their respective problems

The certifier tries to find a feasible dual point associated with
a given homography matrix (a primal solution) assuming strong330

duality holds, that is, d⋆ = f ⋆. In practice, the certification
solves the problem

g⋆ = min
λ∈Rm,S∈Sn

+

∥Sx∥22 +

∥∥∥∥∥∥∥S − C +
m∑

i=1

λi Ai

∥∥∥∥∥∥∥
2

F

(C)

We solve the problem by introducing the decomposition S =
YYT for Y ∈ Rn×k, which makes S PSD by construction, but
turns the problem non-convex. However, contrary to the origi-335

nal RPp problem, we know that if the cost g⋆ for (C) is zero (up
to some accuracy), then: (a) the primal solution is the global op-
timum; (b) the found dual solution is the optimum for the dual
problem; and (c) strong duality holds for the given problem in-
stance. In practice, we consider that the certification is positive340

if the cost normalized by the number of variables (normalized
cost) is below 1e − 9.

An interesting peculiarity of the employed certifier is its de-
pendence of the cost of the problem. We observe in Garcia-
Salguero and Gonzalez-Jimenez (2023) and here that the certi-345

fier empirically tends to the Hessian with minimum rank. We
also notice that changing the expression of the cost (and its
rank) leads to different Hessians and performances. While the
form of the cost cannot be modified for most problems, it is pos-
sible for the problem at hand. For the formulation HR the cost350
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Fig. 3: Configuration of the points, cameras and parameters for the considered
problem instances of the RPp for the simulated dataset. The lateral configura-
tion has tx as translation whereas the forward has tz.

acts on the homography HY, while the part for the rotation is
zero. However, for QR the cost is dense since it depends on both
Q, RY. Therefore, for the redundant formulations HRQ and H-
RED that have as variables HY,Q, RY, we can obtain differ-
ent combinations of the above-mentioned costs, making them355

sparse or dense. These redundant problems have 21 variables,
and so the cost matrix has size 21 × 21. If we only employ the
cost associated with HY the cost matrix has several entries to
zero. Further, the cost in terms of HY has at most rank nine and
at least rank eight for non-degenerate problem instances, which360

is also the rank for the 21×21 matrix. When the cost associated
with Q, RY is included together with the one for HY, the rank
of C increases up to 16 (maximum 21). Fig. 2 depicts the rank
of the Hessian in our experiments in section 5.1 for the different
formulations and costs: HRQ-M and H-RED-M are the formu-365

lations whose cost matrices have rank at most nine, and HRQ
and H-RED the formulations with ranks up to 21. These results
show that, in this case as well, the rank of the Hessian follows
the one of the cost matrix. We therefore include these formu-
lations on our evaluation since the computational time required370

by each of them during the certification may differ.

5. Evaluation

In this last section we evaluate the proposed pipeline for cer-
tification and the on-manifold estimation of the homography
matrix. Our solver OURS-H and the initialization DLT-H are375

compared against the minimal solver in Sweeney et al. (2014),
denoted by MIN. This minimal solver was devised for the es-
sential matrix Saurer et al. (2016), although it was reported to
perform similarly well even for the planar case. Since the one
devised for the homography matrix is not publicly available,380

we use the former instead. To the best of our knowledge, there
is no non-minimal solver for this problem published in the lit-
erature. Since MIN is minimal, we expect it to attain larger
errors although it may be faster than the proposed iterative al-
gorithm and so it is included here only to provide a baseline to385

our solver. For both synthetic and real data we run the solver
on ten random samples of three features each and keep the so-
lution with the lowest cost among them. We consider that all
the correspondences are inliers, even when high noise is ap-
plied and thus we do not use RANSAC at this stage. The data390

for the real experiments have been previously filtered with the
provided ground-truth pose. Last, notice that we use DLT-H
method as initialization for our solver as it provides pose and
plane parameters. Further, the result obtained with DLT-H is
only an approximation and it is included to show the accuracy395

of the method as initial guess. On the other hand, the minimal
MIN only returns the pose not the plane parameters, and there-
fore cannot be used to initialize our algorithm that estimates
both.

5.1. Evaluation on synthetic data400

We generate a set of random N world points lying on a plane
with dimension 6×6 units. The plane has normal vector parallel
to the world Z-axis and distance 3 units. We compute a random
pose for the first camera w.r.t. the world reference with max-
imum angle of rotation 0.5 rad and 2 units for the translation405

magnitude. Since the homography matrix considers the relative
normal and distance w.r.t. the first camera frame, this random
pose makes the parameters associated to the plane different for
each problem instance. The second camera pose is defined by
a Y-rotation with maximum angle 0.5 rad and three configura-410

tions for the relative translation: (a) general; (b) forward; and
(c) lateral. Additionally, we generate configurations with zero
translation with: (1) points on a plane; and (2) points on a gen-
eral position. Figure 3 shows the plane π with its parameters
w.r.t. the world frame {W}, and the two camera poses under415

general translation t, forward translation tz and lateral transla-
tion tx. We compute the observations by assuming a pin-hole
camera model and perturb them adding Gaussian noise with de-
viation σ on the image plane considering a focal length of 512
pixels. We also consider perturbation on the relative rotation by420

pre-multiplying a random rotation with angle θR ≤ 0.01[rad] to
the original Y-rotation. For the different setups we also vary the
number of correspondences from N ∈ {10, 15, 50, 100, 200} and
noise σ ∈ {0.0, 0.5, 1.5, 3.0}pix, and for each type of configu-
ration and set of parameters, we generate 300 random problem425

instances. Since we maintain the focal length fixed, varying the
noise changes the Signal-to-noise ratio.

Error in rotation: Figure 4 shows the rotation error in de-
grees for the different solvers w.r.t. the ground-truth. The first
row shows the errors for those cases with pure Y-rotation and430

the second those with noisy Y-rotation. From left to right, we
have the problems with (1) general motion; (2) lateral motion
along the X-axis; (3) forward motion along the Z-axis; (4) zero
translation with points on plane; and (5) zero translation with
points on general position. The X-axis indicates the level of435

noise applied to the correspondences and we fix the number of
correspondences to N = 50. As expected the error w.r.t. the
ground truth increases with the level of noise for all the solvers,
while the minimal MIN attains the largest errors in most prob-
lem instances since it only considers a subset of the available440

data. Notice that for configurations with zero translation, the
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Homography estimation: rotation error
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Fig. 4: Homography estimation: rotation error in degrees (log-scale): Rotation error for the solutions returned by each solver in degrees (see legend). Top row
shows the experiments with pure Y-rotation and bottom row where a small perturbation was added. From left to right: general motion (random translation); lateral
motion (translation along the X-axis); forward motion (along the Z-axis); zero translation with points on plane; and zero translation with general points. The number
of correspondences is fixed to N = 50. Notice the difference in the Y-scales.

error for the minimal solver is large until the noise applied to the
observations is high enough to break the degeneracy, whereas
for noisy Y-rotations the errors are large and independent of the
noise for all the solvers. Errors in translation follow the same445

tendency, and we don’t include them due to space limits.
Computational time: We conclude this part of the evalua-

tion with the computational time required by the iterative esti-
mation of the homography matrix. Table 2 includes the mean
and median computational time for all the experiments with all450

the noise levels and number of correspondences. The reported
time for OURS-H includes also the coefficient matrix creation,
whereas the value for MIN considers only the time required to
obtain the best solution. Notice that in general for highly noisy
data the iterative refinement may take longer since the initial455

guess lays far from the optimum.

5.1.1. Results for the iterative certifier
Figure 5 shows the normalized cost for the certifier for N =

50 correspondences, following the format of figure 4. The ratio
of certified solutions is included in the Supplementary mate-460

rial section F. The small formulation HR performs worse than
all the other options, although it is able to certify optimality in

Solver RY RY∆R
MIN 7.03 7.52

DLT-H 49.819 58.3444
OURS-H 169.8 261.4

Table 2: Computational times (in microseconds) required by the different
solvers for the configurations with pure Y-rotation RY and noisy Y-rotation
RY∆R.

most problem instances even for forward motions. Configura-
tions with zero translation and general points hinder specially
the performance of the HR certifier, and those with zero trans-465

lation and planar points also affect QR, and for noisy Y-rotation
this difference is emphasized. In general the minimal formu-
lations detect fewer optimal solutions than the redundant ones
which return optimality certificates even for large noise and low
number of correspondences, highlighting the importance of this470

type of certifiers for these challenging scenarios.

Computational time: For problem instances with an Y-
rotation as ground-truth, the certifier only requires one iteration
to return an optimality certificate for all the formulations. With
zero translation, this number increases up to 3 for HR, 2 for QR475

and 1.5 for the redundant HRQ, whereas the median is one for
all configurations and formulations. Table 3 shows the mean
and median times for the different formulations for all the noise
levels and number of correspondences. Notice that HR and QR
require similar times since both have the same number of con-480

straints (11) and rank of the Hessian (8). The redundant, how-
ever, with 97 constraints and rank 16 requires approximately
ten times more computational time than the minimal formula-
tions, although it remains circa 7 milliseconds. The problem in-
stances with noisy Y-rotation require more computational time.485

HR requires more iterations, thus consuming more time than
the similar formulation QR, while the redundant formulations
follow the the tendency that was previously seen. As a baseline
the SDP in H-RED implemented in matlab with cvx Grant and
Boyd (2014) as modeling tool and SDPT3 Toh et al. (1999) as490

IPM requires from 0.5 to 1 second per problem instance.
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Certifier: normalized cost
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Fig. 5: Certifier: normalized cost Normalized cost of the certifier for the different formulations (see legend) and level of noise (X-axis). We also include the cost
for the initialization with the same color, on the left of the final cost. Top row shows the experiments with pure Y-rotation and bottom row the experiments where a
small perturbation was added to the rotation. From left to right: general motion (random translation); lateral motion (translation along the X-axis); forward motion
(along the Z-axis); zero translation with points on plane; and zero translation with general points. The number of correspondences is fixed to N = 50. Notice the
difference in the Y-scales. We consider the certification positive if the cost is below 1e − 9
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Fig. 6: Figures 6a-6d show images from the real datasets, from left to right: TUM-far, TUM-near, OURS-short and OURS-long and Figure 6e depicts the cost for
the associated essential matrix attained by the different solvers for the same sequences, including those certified as optimal OURS-OPT.
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Fig. 7: Ratio of certified solution for first-order critical points (solid line) and
all solutions (dashed line) for the different formulations for all the sequences.

5.2. Evaluation on real data

To conclude this section we evaluate our proposal on
the real dataset TUM Sturm et al. (2012), sequences
fr3/nostructure texture near, denoted by TUM-near and495

fr3/nostructure texture far, denoted by TUM-far, both pub-
licly available and on our own two sequences which were
recorded with a mobile phone. These last two sequences,
denoted by OURS-short and OURS-long, show two differ-
ent posters placed on the floor, and hence contain a strong500

plane with texture. For the last two sequences we run the
colmap Schönberger and Frahm (2016) to obtain the ground-
truth poses. We include some of the images where we evaluate
our algorithm in figure 6, from left to right: TUM-far, TUM-
near, OURS-short and OURS-long.505

For all the sequences, we extract and match URF fea-
tures Bay et al. (2008) from consecutive images at least 5 cm
apart, and keep only those images with more than 10 corre-
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Rotation Problem Mean Median

R
Y

HR 0.851 0.768
QR 0.881 0.763

HRQ 6.3879 6.141
HRQ-M 4.358 3.886
H-RED 8.4163 8.4165

H-RED-M 6.358 5.605

R
Y
∆

R

HR 3.379 2.970
QR 2.8 1.59

HRQ 11.07 6.161
HRQ-M 13.2 6.895
H-RED 18.326 8.410

H-RED-M 19.03 8.768

Table 3: Computational times (in milliseconds) required by the certifier for each
formulation for the configurations with pure Y-rotation RY and noisy Y-rotation
RY∆R.

spondences. We don’t contemplate wrong correspondences
(outliers) on the data and filter the matches with the provided510

ground truth before feeding them to the solvers. Neverthe-
less, the proposed solvers are suitable for robust non-minimal
paradigms, such as LO-SAC Chum et al. (2003). Last, we ex-
tract an approximate Y-rotation from the ground-truth rotation
R by considering the first entry of the first row of the ground-515

truth rotation matrix as the cosine and the third entry of the first
row as the sine. We consider the rotation formed by these val-
ues as the ’ground-truth’ Y-rotation RY and use the XZ rotation
R̂ given by R̂ = RT

YR to ’correct’ the observations. Notice that
this process carries numerical errors due to the rounding of the520

original rotation, approximation of the Y-rotation, transforma-
tion of the observations, etc

Figure 6e shows the cost of the returned solution for the dif-
ferent sequences by all the solvers, considering also only those
solutions certified as optimal. For comparison, this cost only525

involves the rotation and normalized translation, i.e. the cost in
terms of the essential matrix. Last, we observe a remarkable
detail on these sequences in terms of the percentage of optimal
certificates. Recall that the initialization of the homography ma-
trix is estimated through the linear method that takes the eigen-530

vector associated with the least eigenvalue of the data matrix.
This is the general procedure, that is, it does not include the ro-
tation constraint. Further, the algorithm outputs a homography
matrix, from which the pose and plane equation are retrieved, in
order to later project the general 3D rotation matrix to a 2D ro-535

tation. Recovering the pose from the homography is not a trivial
task and several works have tackled it, see e.g. Malis and Vargas
(2007) and references therein. Given these factors we observe
that the initialization is not stable and different algorithms give
different poses from the same homography matrix. However540

and to the best of our knowledge this is the only publicly avail-
able initialization, since MIN doesn’t provide with the normal
vector n. In turn this implies that the iterative refinement of this
initial guess may get stuck in local minima and/or in a solution
that destabilizes the solver, that is, the solution is not a (first-545

order) critical point. Out of the 59139 problem instances tested
the solution was a critical point for 53876 (91.1%). Figure 7

shows the ratio of certified solutions considering only critical
points (solid lines) and for all solutions, including non-critical
solutions (dashed lines). We notice fewer certified solutions550

when considering noncritical points independently of the for-
mulation.

6. Conclusions and future work

This paper tackles the relative pose problem between two
calibrated cameras with known gravity prior, assuming the 3D555

points that originated the observations belonged to an unknown
plane π. These scenes, predominant in man-made environ-
ments, are degenerate configurations for approaches that rely
on the essential matrix. Instead, in these cases the relative pose
is retrieved through the homography matrix. We proposed a560

certifiable solver for this problem that first estimated the rela-
tive pose with an iterative algorithm and then, tried to certify
this solution as the global optimum. We stated the homogra-
phy estimation in terms of the relative pose and plane normal,
and solved the problem on the associated manifold. The certifi-565

cation step relied on the dual problem, a convex relaxation that
had been shown to depend on the employed formulation. There-
fore, we proposed four different definitions of the search space
that lead to certifiers with a different performance. Since the
formulations lacked the Linear Independence Constraint Qual-570

ification and two of them had more constraints than variables,
we employed our recent work for certification Garcia-Salguero
and Gonzalez-Jimenez (2023). Our evaluation showed that the
iterative algorithm returned solutions with the lowest cost, and
that the smallest formulations certified most of the solutions.575

Redundant formulations certified all solutions, even for highly
noisy problem instances. We made the code publicly available
at https://github.com/mergarsal.

In future work, we envision introducing this solver into a ro-
bust paradigm and use the proposal in conjunction with essen-580

tial matrix-based algorithms.
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Wadenbäck, M., Åström, K., Heyden, A., 2016. Recovering planar motion from
homographies obtained using a 2.5-point solver for a polynomial system, in:
2016 IEEE International Conference on Image Processing (ICIP), IEEE. pp.
2966–2970.

http://mapir.isa.uma.es/papersrepo/2023/2023_mercedes_AI_priorRPp_doc.pdf
http://mapir.isa.uma.es/papersrepo/2023/2023_mercedes_AI_priorRPp_doc.pdf
http://mapir.isa.uma.es/papersrepo/2023/2023_mercedes_AI_priorRPp_doc.pdf
http://mapir.isa.uma.es/papersrepo/2023/2023_mercedes_AI_priorRPp_doc.pdf
http://mapir.isa.uma.es/papersrepo/2023/2023_mercedes_AI_priorRPp_doc.pdf
http://dx.doi.org/https://doi.org/10.1016/j.artint.2023.103862
http://cvxr.com/cvx


11

Appendices685

Summary

This document includes details about the matrix form for the cost, the set of constraints employed in the main manuscript, the
on-manifold optimization for the homography matrix and further results for our evaluation.

A. Cost function for the homography-based RPp

In this section we derive the cost function for the Relative Pose problem (RPp) based on the homography matrix H in section A.1,690

and in terms of the rotation RY and the outer product Q = tnT in section A.2.

A.1. Cost function in terms of homography matrix

The homography matrix imposes a point-to-point relation between corresponding observations as fi ∼ H f ′i , where ∼ indicates
equality up-to-scale. To remove the scale ambiguity, we take the cross-product as fi × H f ′i = 03×1, which gives three expressions,
although only two of them are algebraically independent. For simplicity, we re-write the cross product fi× as the skew-symmetric
matrix [ fi]x ∈ R3×3 with form  0 −c b

c 0 −a
−b a 0

 (7)

for fi
.
= [a, b, c]T . The columns of [ fi]x are linear in fi and we express them as Bk fi ∈ R1×3 for k = 1, 2, 3 and Bk ∈ R3×3, that is,

[ fi]x = [B1 fi | B2 fi | B3 fi]. The matrices Bk are called generators and have the form

B1 =

0 0 0
0 0 1
0 −1 0

 , B2 =

0 0 −1
0 0 0
1 0 0

 and

 0 1 0
−1 0 0
0 0 0

 . (8)

With these, we write the i-th entry of fi × H f ′i as the generic form ϵ ik
.
= (−Bk fi)T H f ′i , where the unknown is the homography

matrix H and we use the fact that the i-th row of [ fi]x equals the i-th column with a minus sign.
In this manuscript we treat the values ϵ ik as residuals and minimize the sum of the squared values, that is, ϵ i1

2
+ ϵ i2

2 where we
discard ϵ i3 for being dependent. In order to express this cost in its matricial form, we first re-formulate the error ϵ ik as

ϵ ik = (−Bk fi)T H f ′i = −( f ′Ti ⊗ (Bk fi)T )vec(H) = −( f ′i ⊗ Bk fi)T vec(H) (9)

with vec(H) ∈ R9 the column-wise vectorization of H and we use the identity tr(AXB) = (BT ⊗ A)vec(X).695

To obtain the squared error, we consider that r2 = rT r for r ∈ R and thus ϵ ik
2
= ϵ ik

T
ϵ ik = vec(H)T ( f ′i ⊗ Bk fi)( f ′i ⊗ Bk fi)T vec(H).

Finally, the contribution to the total cost by the i-th pair of correspondences is

fi = vec(H)T
(
( f ′i ⊗ B1 fi)( f ′i ⊗ B1 fi)T + ( f ′i ⊗ B2 fi)( f ′i ⊗ B2 fi)T

)
vec(H) (10)

and the total cost is the sum of each contribution, i.e.

f (H) =
N∑

i=1

vec(H)T
(
( f ′i ⊗ B1 fi)( f ′i ⊗ B1 fi)T + ( f ′i ⊗ B2 fi)( f ′i ⊗ B2 fi)T )vec(H) = (11)

= vec(H)T ( N∑
i=1

( f ′i ⊗ B1 fi)( f ′i ⊗ B1 fi)T + ( f ′i ⊗ B2 fi)( f ′i ⊗ B2 fi)T
)

CH

vec(H) (12)

A.2. Cost function in terms of rotation and outer product

Consider the cost function for a homography H as f (H) = vec(H)T CHvec(H) and recall that H = RYα + Q. Since RYα is an
Y-rotation with form

RYα =

 c 0 s
0 α 0
−s 0 c

 (13)
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we can simplify the expression of its vectorization as vec(RYα) = Pr by introducing the 3D vector r = [c, s, α]T ∈ R3 and the
matrix

P =



1 0 0
0 0 0
0 −1 0
0 0 0
0 0 1
0 0 0
0 1 0
0 0 0
1 0 0


∈ R9×3. (14)

Now we can re-write the cost as

vec(H)T CHvec(H) = vec(RYα + Q)T CHvec(RYα + Q) = (15)

= vec(RYα)T CHvec(RYα) + vec(Q)T CHvec(Q) + 2vec(Q)T CHvec(RYα) = (16)

= rT PT CH P
CR

r + vec(Q)T CHvec(Q) + 2vec(Q)T CH P
CQR

r, (17)

where the matrices CR ∈ S3
+,CQR ∈ R9×3 are defined as

CR
.
=

CH1,1 + CH1,9 + CH9,1 + CH9,9 CH1,7 − CH1,3 − CH3,9 + CH7,9 CH1,5 + CH5,9
CH7,1 − CH3,1 − CH9,3 + CH9,7 CH3,3 − CH3,7 − CH7,3 + CH7,7 CH5,7 + CH5,3

CH9,5 + CH5,1 CH7,5 − CH3,5 CH5,5

 ∈ S3
+ (18)

and

CQR
.
=

CH1,: + CH9,:
CH7,: − CH3,:

CH5,:

 ∈ R9×3 (19)

being CHi, j the (i, j)-th entry of CH and CHk,: the k-th row of CH, indices starting at one.

B. Set of constraints for the homography matrix

This section lists the constraints used for each formulation. The minimal one HR is formed by

Nr. constraints: 9 rank(HY − RYα) = 1 (20)

Nr. constraints: 1 tr(HT
YHY) = 1 (21)

Nr. constraints: 1 c2 + s2 = α, (22)

providing us with 11 constraints on 12 variables (HY, RY).
The second minimal formulation QR is formed by

Nr. constraints: 9 rank(Q) = 1 (23)

Nr. constraints: 1 tr
(
(Q + RYα)T (Q + RYα)

)
= 1 (24)

Nr. constraints: 1 c2 + s2 = α, (25)

with 11 constraints and 12 variables (Q, RYα).700

For the redundant formulations, recall that the homography matrix has the form HY = RYα + Q, where Q is a rank-1 matrix and
RYα = αRY is the α-scaled of the Y-rotation RY. We leverage the following relations, which follow from the definition of HY given
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above:

Nr. constraints: 9 HYQT = RYαQT + QQT (26)
Nr. constraints: 9 HYQ = RYαQ + QQ (27)

Nr. constraints: 9 QT HY = QT RYα + QT Q (28)
Nr. constraints: 9 QHY = QRYα + QQ (29)

Nr. constraints: 9 HYRT
Yα = RYαRT

Yα + QRT
Yα (30)

Nr. constraints: 9 HYRYα = RYαRYα + QRYα (31)

Nr. constraints: 9 RT
YαHY = RT

YαRYα + RT
YαQ (32)

Nr. constraints: 9 RYαHY = RYαRYα + RYαQ (33)

Nr. constraints: 9 HYHT
Y = RYαHT

Y + QHT
Y (34)

Nr. constraints: 9 HT
YHY = HT

YRYα + HT
YQ (35)

Nr. constraints: 9 HYHY = RYαHY + QHY (36)

Nr. constraints: 1 tr
(
(HY − Q)(HY − Q)T ) = tr(RYαRT

Yα) = 3α2 (37)

Nr. constraints: 6 (HY − Q)(HY − Q)T = RYαRT
Yα = α

2I3 (38)

Nr. constraints: 6 (HY − Q)T (HY − Q) = RT
YαRYα = α

2I3 (39)

Out of the 112 constraints, 36 are linear dependent. The set H-RED is formed by: (a) these 76 constraints; (b) the set HR with
elevn (eqs. (20),(21),(22)); and (c) the set QR with nine (eqs. (23),(24)).

For the redundant formulation HRQ, we include those in: HR with eleven; QR with ten; nine from eq. (36) (HYHY); nine from
eq. (27) (HYQ); nine from eq. (29) (QHY); nine from eq. (30) (HYRT

Yα); nine from eq. (32) (RT
YαHY); nine from eq. (31) (HYRYα);

and nine from eq (33) (RYαHY). Out of the 85 constraints 16 are linear dependent.705

C. On-manifold estimation of the homography matrix

In this section we include the necessary information for the on-manifold estimation of the homography matrix, which includes:
the required operators associated with the geometry of the manifold (domain) and the quadratic model.

C.1. Domain

For the optimization we define the set as the product of manifolds R3 × S2 × SO(3)Y, which allows us to tackle each component710

separately. There are four operators that have to be defined for the domain: retraction, projection from tangent space, gradient and
(vector-product) Hessian. These functions are independent of the problem and can be found in the literature, e.g. Absil et al. (2009).
We include them here for completeness, and refer the interested readers to this reference. Roughly, these operators allow us to pass
from the Euclidean space where all the operations are computed to the Riemmanian space when needed.

Euclidean For the Euclidean space we do not have to take into account any additional operation, meaning that the retraction,715

projection, gradient and Hessian remain unchanged, i.e., identity.

Sphere We employ a projection-based retraction defined as:

Retrt(u) =
t + u
||t + u||

(40)

where t ∈ R3 is a point on the manifold and u ∈ R3 is a point of the tangent space.
With the same notation, the tangent space projector is

Pt(u) = u − tT tu. (41)

The Riemmanian gradient at a point t ∈ R3 on the manifold is obtained by projecting the Euclidean gradient ∇ft(t) as

grad ft(t) = Pt(∇ft(t)). (42)

Last, the Riemmanian vector-product Hessian depends on the point t on the manifold, the Euclidean gradient ∇ft(t) and the
Euclidean vector-product Hessian ∇2 ft(t)[u]. It is computed as

Hess ft(t)[u] = Pt(∇2 ft(t)[u]) − tT∇ft(t)u (43)
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Rotation The projection-like retraction is given by:

RetrR(Y) = UVT , R + Y = UDVT (44)

where R ∈ R3×3 is a point on the manifold and Y ∈ R3×3 is a point of the tangent space. To guarantee that the solution is a rotation
matrix, we check the determinant of UVT . If it is negative, we multiply the last column of U by −1.

The tangent space projector is
PR(Y) = Y − Rsymm(RT Y) (45)

where symm(•) takes the symmetric part of the argument, and again R is a rotation matrix and Y is a matrix on the ambient space.720

The Riemmanian gradient at a point R is obtained by projecting the Euclidean gradient ∇fR(R)

grad fR(R) = PR(∇fR(R)). (46)

Last, the Riemmanian Hessian depends on the point R, the Euclidean gradient ∇fR(R) and the Euclidean vector-product Hessian
∇2 fR(R)[Y]. It is computed as

Hess fR(R)[Y] = PR
(
∇2 fR(R)[Y] − Ysymm

(
RT∇fR(R)

))
(47)

C.2. Euclidean quadratic model

We provide next the Euclidean, quadratic model in terms of the components R, t and n. Only for this model, we consider the
matrix R as the 3D extension of the 2D rotation, which allows the next development to be extended to any kind of 3D rotation, e.g.
Y-rotation.

As in section A we can write the cost function in terms of the matrix Q and the 3D rotation R.725

vec(H)T CHvec(H) = vec(R)T CHvec(R) + vec(Q)T CHvec(Q) + 2vec(Q)T CHvec(R). (48)

Let us define the matrices N = n ⊗ I3 ∈ R9×3 and T = I3 ⊗ t ∈ R9×3, such that vec(Q) = Nt = Tn ∈ R9. Equivalently, the
column-wise vectorization of R is r.

The Euclidean gradient for each component has the form:

∇fR(R) = 2CHr + 2CHTn ∇ft(t) = 2NT CHNt + 2NT CHr ∇fn(n) = 2TT CHTn+ 2TT CHr. (49)

The Hessian vector-product reads

∇2 fR(R)[VR,Vt ,Vn] = 2CHvec(VR) + 2CHNVt + 2CHTVn (50)

∇2 ft(t)[VR,Vt ,Vn] = 2NT CHvec(Vr) + 2NT CHNVt + Mt;nVn (51)

∇2 fn(n)[VR,Vt ,Vn] = 2TT CHvec(Vr) + MT
t;nVt + 2TT CHTVn (52)

with the matrix Mt;n
.
= 4NT CHT + 2mat(rT CH) ∈ R3×3, and mat(•) reshape the argument into a 3 × 3 matrix.

D. Dual problem and iterative certifier outline730

This section includes the standard development of the dual problem and the basic aspects about the iterative certifier employed
in this work, see Garcia-Salguero and Gonzalez-Jimenez (2023) for further details.

D.1. Standard dual problem

To formulate the original problem in (O) we first introduce the vector x ∈ Rn with all the unknowns that appear in the formu-
lation. Thus, for HR we stack the column-wise vectorization of H and vec(RYα) = [c, s, α]T and for QR we use Q ∈ R9 and
vec(RYα). For the redundant formulations HRQ and H-RED we stack H,Q, vec(RYα). The cost is written in terms of this vector
as vec(H)T CHvec(H) = xT Cx. For HR, HRQ and H-RED the matrix C ∈ Rn has CH is its top-left corner and zero elsewhere. For
QR we use the equivalent form given in section A, which is also used for the formulations denoted by HRQ-M and H-RED-M.
Equivalently, the constraints for all the formulations are quadratic in their respective unknowns and can be written in the general
form xT Aix = ci for i = 1, . . .m with Ai ∈ Sn and ci ∈ R. This also includes the rank-one condition of Q and H − RYα, which we
express as the nine 2×2 minors of the matrix being zero. The primal (O) is re-formulated as a Quadratically Constrained Quadratic
Problem (QCQP) in its standard form

f ⋆ = min
x∈Rn

xT Cx subject to xT Aix = ci, i = 1, . . . ,m. (53)
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The dual problem is defined as Boyd and Vandenberghe (2004)

d⋆ = max
λ∈Rm

min
x∈Rn
L(x, λ), (54)

where λ .= [λ1, . . . λm]T ∈ Rm are the Lagrange multipliers (one for each constraint) and L(x, λ) is the Lagrangian:

L(x, λ) .= xT Cx +
m∑

i=1

λi(ci − xT Aix) = xT (C −
m∑

i=1

λi Ai)x + λT c, (55)

with c .= [c1, . . . , cm]T ∈ Rm. The inner optimization minx∈Rn L(x, λ) is the so-called dual function, and from the expression of the
Lagrangian, we see the dual function doesn’t have a finite minimum except when the matrix S .= C −

∑m
i=1 λi Ai ∈ Sn is positive735

semidefinite (PSD). In that case, the minimum is achieved at x⋆ such that x⋆T Sx⋆ = 0 and the optimal cost of the minimization
is λT c. Since we are interested only oi finite values, we restrict our analysis to this case, which allows us to re-formulate the dual
problem as

d⋆ = max
λ∈Rm

cTλ subject to C −
m∑

i=1

λi Ai ⪰ 0, (D)

which is convex by construction and an instance of a Semidefinite Positive Problem, which can be solved with off-the-shelf tools.
The dual problem is a relaxation of the primal and therefore the optimal, dual cost d⋆ is a lower bound on the optimal, primal cost
f ⋆, formally:

d(λ) ≤ d⋆ ≤ f ⋆ ≤ f (x) (56)

for any feasible primal x and dual λ points. We say that strong duality holds if d⋆ = f ⋆, and therefore there exists (at least) one
dual feasible point that attains the same cost than the primal solution.740

E. Outline of the iterative certifier

The employed certifier, as the ones available in the literature, aims to find a dual, feasible solution λ such that its associated cost
is equal (up to some tolerance) to the cost attained by the given primal solution. If such point can be found, then we conclude that:
(1) strong duality holds from d⋆ = f ⋆; (2) the dual point is the optimal solution to the dual problem; and (3) the given, primal
solution is the optimal for the original, nonconvex problem.745

In order to find this dual point, we assume strong duality holds and therefore, d⋆ = λT c = f ⋆ = xT Cx. Further, from the dual
function we know that the optimal primal solution fulfills the condition xT Sx = 0. Since the Hessian S is PSD by definition (the
dual point is feasible), then xT Sx = 0⇔ Sx = 0n×1. This last condition implies the first one while it provides with a direct relation
between the primal x and dual λ solutions. Therefore, we seek the Lagrange multiplier λ that fulfills

Sx = 0n×1 and S ⪰ 0. (57)

Since the Hessian S depends linearly on the vector λ, we can re-write the expression Sx = 0n×1 as J(x)λ = Cx, where J(x) ∈ Rn×m

is the Jacobian of the constraints {Ai}, i = 1, . . . ,m evaluated at the primal point x. Notice that we can obtain an unique solution λ in
closed-form from this relation provided: (1) the number of constraints m is at most the number of variables n; and (2) the Jacobian
J(x) is full rank (LICQ). If at least one of the conditions is not met, then there may exist a family of optimal, dual solutions.
The formulations leveraged in this work lack LICQ and two of them have m > n, and thus, we rely on the iterative certifier in750

Garcia-Salguero and Gonzalez-Jimenez (2023) since it does not require these conditions.
The proposal states the certification as a feasibility problem that tries to find λ ∈ Rm such that conditions (57) are met, without

estimating λ in closed-form. To solve the problem, we minimize the errors ∥Sx∥22 and
∥∥∥S − C +

∑m
i=1 λi Ai

∥∥∥2
F and we conclude the

certification is positive if the optimal cost of this problem is zero (in practice, below 1e − 09). To solve the problem efficiently, we
decompose the matrix S = YYT with Y ∈ Rn×r being the low-rank decomposition of S with rank r.

g⋆ = min
λ∈Rm,Y∈Rn×r

∥∥∥YYT x
∥∥∥2

2 +

∥∥∥∥∥∥∥YYT − C +
m∑

i=1

λi Ai

∥∥∥∥∥∥∥
2

F

(C)

The problem is nonconvex and so there may exist more than one local minimum. However, we know that the optimal cost should
be zero which allows us to discard the potential local minima. The problem is solved on the associated manifold that raises from the
equivalence between points YY = (YO)(YO)T for all orthogonal matrices O ∈ Rr×r. With the current implementation, this requires
the value of r to be exact, that is, Y has to be full-rank during the process. Therefore, this rank is dynamically adjusted during the755

optimization to maintain the completeness of the space.
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Homography estimation: translation error
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Fig. 8: Error for the translation direction in degrees (log-scale) for each solver with N = 50 correspondences. Top row shows the experiments with pure Y-rotation
and bottom row where a small perturbation was added.

F. Further experiments on real synthetic data

In this section we include further results of our evaluation on synthetic data.
Translation error
Figure 8 includes the translation error only considering the direction for each solver for N = 50 correspondences for the synthetic760

experiments following the format in figure 4, from left to right: general motion (random translation); lateral motion (translation
along the X-axis); and forward motion (along the Z-axis). We do not include the translation error for the problem instances with
pure rotation as we are measuring direction error.

Quality of initialization of the certifier
We measure the quality of the initialization of the certifier by the sum of the eigenvalues which are zeroed, shown in figure 9.765

For zero noise, all the formulations have zero (∼ 1e − 17) as minimum eigenvalue. Generally the eigenvalue increases with the
level of noise for all the camera configurations, although the effect is more apparent with the minimally constrained formulations
HR and QR, although HR empirically performs worse than QR. The overconstrained HRQ reduces the eigenvalue by a factor of
ten w.r.t. HR and QR. In most problem instances all the formulations attain minimum eigenvalues below 1e − 04, which shows
that the initializations are close to a good minimum of the problem (the closer this value is to zero, the better the initialization). In770

terms of configurations lateral and forward movements hinder the performance of this stage. For noisy Y-rotation, the eigenvalue
increases for all the configurations including with zero noise, being in average an order of magnitude larger than with the noiseless
Y-rotation. All the configurations have the same effect over the certifiers (around 1e − 04), with HR having the worst outliers.

Ratio of certified solutions
Figure 10 shows the ratio of certified solutions for N = 15 (dashed lines) and N = 50 (solid lines) for all the formulations (see775

legend) under different level of noise (X-axis). We follow the format in figure 9. We consider the certification positive if this cost
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Certifier: sum zeroed eigenvalues
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Fig. 9: Certifier: sum zeroed eigenvalues Sum of the zeroed eigenvalues of the solution from the certifier initialization. Legend shows the different formulations
and the X-axis the applied level of noise. Top row shows the experiments with pure Y-rotation and bottom row the experiments where a small perturbation was
added to the rotation. From left to right: general motion (random translation); lateral motion (translation along the X-axis); forward motion (along the Z-axis); zero
translation with points on plane; and zero translation with general points. The number of correspondences is fixed to N = 50. Notice the difference in the Y-scales.

is below 1e − 09. We draw the next set of conclusions. First, for problems with noiseless Y-rotation, including those with zero
translation, all the formulations perform well even for large noise 3 pix , except HR. For noisy Y-rotation, the certifiers break
earlier. Redundant formulations are able to certify still most solutions when the translation is not zero, and the performance doesn’t
depend on the level of noise. Noisy Y-rotation and zero translation hinder the performance of the certifier, although the redundant780

formulations certify more than 70% of the solutions.
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Certifier: ratio certifier solutions
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Fig. 10: Certifier: ratio certifier solutions Ratio of certified solutions for the different formulations (see legend) and level of noise (X-axis). Top row shows the
experiments with pure Y-rotation and bottom row the experiments where a small perturbation was added to the rotation. From left to right: general motion (random
translation); lateral motion (translation along the X-axis); forward motion (along the Z-axis); zero translation with points on plane; and zero translation with general
points. We show the ratio for N = 15 as dashed lines and for N = 50 for solid lines.


