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Certifiable solver for real-time N-view triangulation
Mercedes Garcia-Salguero1 and Javier Gonzalez-Jimenez1

Abstract—Cutting-edge field robotic systems, such as UAV or
autonomous cars, demand fast and optimal solutions for any
component at the core of their critical navigational tasks. Among
them, we focus on the triangulation of image points from multiple
views, which is a cornerstone for more complex tasks such
as visual localization and SLAM. In this paper we present a
fast and certifiable solver for the N-view triangulation problem
that doesn’t require any specific optimization software package
and can be implemented with any linear algebra library. The
proposal relies on a series of linear convexifications which, in the
limit, recovers the original problem, allowing us to solve problem
instances with N = 10 views in 150 microseconds on a standard
desktop computer. On real data our solver obtains and certifies
the optimal solution in more than 99% of the problem instances.
We make the code available at https://github.com/mergarsal.

Index Terms—Mapping, Optimization and Optimal Control,
Computational Geometry, Optimality Certification, Convex Re-
laxation

I. INTRODUCTION

CAMERAS are prevalent sensors in mobile systems, such
as autonomous cars, UAVs and robots in general. The

information provided by the camera(s) is employed by many
visual (detection, recognition, etc) and critical navigational
tasks, i.e. the localization of the robot and the creation of the
environment’s map. This map, whose accuracy is crucial for
the correct and safe operation of the system, can be estimated
together with the localization, task known as Simultaneous
Localization and Mapping (SLAM) [1], [2], or can be stored
to estimate only the localization later. Maps based on ob-
served features are formed usually by 3D world points, whose
coordinates are defined in general by these features and the
observers’ poses. The estimation of the coordinates is known
as triangulation, and when the features are obtained from
images, the information required to triangulate the point is
reduced to the observation on the image and the camera pose
(or projection matrix). For the above-mentioned robotic appli-
cations based on visual information, the number of views is
usually above four, which can be considered as the last ”mini-
mal” case [3]. These non-minimal problem instances make the
triangulation more robust to noise in the observations but also
more complex, as it was shown in previous works [4], [5].
Arguably, the simpler approach is the linear method [3] that
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Fig. 1: Scheme of the N-view triangulation problem. Given a
set of N projection matrices P1, . . . ,PN , we aim to correct
the error-corrupted observations p̂1, . . . , p̂N so that they tri-
angulate exactly the (unknown) 3D point Q.

leverages a singular value decomposition of the matrix formed
by the projection matrices and observations. This method finds
the intersection on the rays from the camera centers toward
the observations (see Fig. 1), and thus returns the solution
only when the observations are noiseless. When the data is
corrupted by noise, this intersection doesn’t exist and the linear
method only obtains suboptimal solutions since the minimized
error does not have any geometric meaning. An alternative
algorithm is the so-called midpoint method, that returns the
point in the middle of these rays. The midpoint method tends
to obtain good solutions, specially when each observation is
properly weighted [6]. Nevertheless, it is usually considered
that the ’optimal’ approach for the triangulation problem is to
correct the noisy observations so that the 3D point is recovered
exactly by, for example, the above-mentioned linear method
[3], [4]. This correction is understood as modifying these
observations, seeking the ’minimum’ change that assures the
uniqueness of the 3D point. Since the definition of ’minimum’
is not fixed, different solvers based on different norms, e.g.
ℓ1, ℓ2, ℓ∞ have been proposed in the literature.

In this manuscript we work with the ℓ2 norm that turns the
triangulation problem into a non-convex problem even for two
views [4]. This implies the existence of local optima, where
iterative algorithms can be trapped without notice. Whereas
polynomial solvers, as the one proposed in [4] for the 2-
view triangulation, are guaranteed to find the global optimum,
they quickly become intractable and/or unstable for more than
2 views, see [5]. Nonetheless, there exist other alternatives
to these polynomial solvers that are also able to obtain and
certify optimal solutions. In particular, convex relaxations of
the original non-convex problem seem to perform well in most
problem instances and can be solved by off-the-shelf tools such
as SEDUMI [7] or SDPT3 [8] in polynomial time, and have
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been recently leveraged for other computer vision problems,
e.g. [9]–[13]. This was the approach followed by Aholt et
al. in [14] for the N-view triangulation, in which the authors
stated the problem in terms of the bilinear constraints that fully
identify the space for non-coplanar cameras [15]. However,
since the number of constraints is

(
N
2

)
, and problem instances

with more than 10 views are not rare in real applications (see
Section IV), the problem soon acquires dimensions that cannot
be handled by current off-the-shelf tools and the proposal
becomes too slow or runs out of memory, precluding its usage
in real-time applications and/or systems with limited resources.
Cifuentes [16] proposed another approach that didn’t rely
on the bilinear constraints but still can be solved by the
above-mentioned tools. The proposal performs well even for
coplanar cameras although it is slower than [14]. Whereas
recent efforts have been directed to develop certifiable solvers
that can handle large-scale problems, they all assume some
conditions regarding the constraints of the problems. One
of these conditions implies the Jacobian of the constraints
being full-rank, the so-called Linear Independence Constraint
Qualification (LICQ) [17, Def. 12.4], which doesn’t hold for
the N-view triangulation problem, thus making those solvers
unsuitable. Further, most iterative algorithms that aim to solve
constrained problems also assume this condition, e.g. IPOPT
[18] and SNOPT [19], and in general Sequential Quadratic
Programming (SQP) [17, Assumption 18.1]. Indeed, previous
works have proposed modifications for these general algo-
rithms to handle lack of LICQ, e.g. [20], [21] 1

Contribution: In this work we contribute a novel solver
for the N-view triangulation problem and a fast optimality
certifier that says whether the solution is the optimum or it is
inconclusive, both being faster than existing realizations [14].
Our solver corrects the observations under the ℓ2 norm so
that they are originated from a unique (unknown) 3D point,
condition that for non-coplanar configurations is enforced by(
N
2

)
bilinear constraints [15]. Our proposal consists of relaxing

the original, non-convex problem into linear problems that can
be solved by any algebraic library, such as Eigen [22], through
a rank revealing decomposition, e.g. Complete Orthogonal De-
composition (COD) or Singular Value Decomposition (SVD),
and it is able to solve problem instances with N = 10 views
in less than 150 microseconds and even problems with 500
views (1000 variables and more than 127000 constraints). On
real data, we obtain the same results that the other ℓ2 optimal
solver in [14] in a fraction of time. These two features make
our proposal suitable for real-time applications with limited
resources.

II. RELATED WORK

In this Section we mainly focus on the proposals for the N-
view triangulation problem with more than four views. The 3D
world point that originates the N observations in N different
views can be recovered with a set of linear equations if the
observations are noiseless. Since error is always present, this
linear method only provides a suboptimal solution [3]. As an

1Since the problem at hand only has equality constraints, LICQ is equivalent
to Mangasarian-Fromovitz Constraint Qualification (MFCQ) [17, Def. 12.6].

alternative, we may select the 3D point in the middle of the
rays, method which is known as the midpoint method [3]. This
approach, that can be also extended from two to N views,
may provide good results specially when a weight for each
observation is introduced [6]. The linear and midpoint methods
have in common that they don’t modify the observations, but
try to explain the data through the ’best’ 3D point. Another
way to tackle the problem is thus to modify the observations
so that they give rise to a single 3D world point. This last
approach is the so-called ’optimal’ method in the literature [3].
The term ’optimal’ here shouldn’t be understood as the global
optimum is always achieved by these solvers since in general
the triangulation problem is non-convex with multiple local
minima [4]. Whereas previous works have tackled the minimal
problems with less than five views under different norms, e.g.
[4], [23], the literature for the non-minimal configurations is
limited, see [14], [24], [25] and [26] for a recent review.

In this work we seek the minimum correction under the ℓ2
norm, thus making the triangulation problem non-convex in
general. This implies that iterative algorithms cannot guarantee
that the returned solution is the global optimum [25], which
may affect negatively the applications that leverage them.
Aholt et al. in [14] propose to solve the N-view triangula-
tion problem by describing the domain only through bilinear
constraints [27] and relaxing the problem as a semidefinte
program (SDP) that can be solved with guarantees. Cifuentes
in [16] proposed an alternative method and formulation for
the N-view triangulation problem that overcomes some of the
drawbacks in [14], although it’s slower due to the employed
formulation. Since the number of constraints increases with
the number of views, the relaxations [14], [16] soon become
too computational expensive in terms of memory and time to
be used or even solved given the current limits of off-the-shelf
tools. While recent efforts have been put into developing faster
tools for these convex relaxations, they usually assume a set
of conditions that are not met for the problem at hand.

Large-scale problems aren’t new in the literature of convex
relaxations, being more predominant in the robotic field,
e.g. [28], [29]. These previous works try to overcome the
dimensionality problem by leveraging alternative certifiable
algorithms. Among these alternatives, we focus on optimal-
ity certifiers based on Lagrangian duality, which certify the
optimality of the solution but do not obtain it and have been
shown to perform well in practice while being computational
efficient, see e.g. [28] (2D SLAM), [29] (3D SLAM) or [30]
(rotation averaging).

III. PROBLEM FORMULATION AND RESOLUTION

In this work we leverage the theory about the ”multiview
ideal” that can be found in e.g. [15], [27]. In order to keep
the manuscript short and accessible, we don’t include any of
these theoretical aspects and we refer the interested reader to
those references for further details.

A. Problem formulation
The N-view triangulation problem aims to obtain the 3D

coordinates of the point Q that generates a set of N ob-
servations pi ∈ R2 according to their projection matrices
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Fig. 2: Mean and median computational time (Y-axis) in
seconds required to solve a single problem instance with N
views (X-axis) and noise σ = 3.0 pix (a) with our solver
(number of constraints M are shown for each N ); (b) with
the SDP in [14] with CVX [31] and SDPT3 [8], using
the function ”fmincon” and the commercial software SNOPT
[19] through their MATLAB interface. Mean and median are
practically the same for all the solvers except for SNOPT,
whose median is shown as the green, dashed line. We don’t
provide the data for N = 50 views for ”fmincon” and SNOPT.
The costs for our solver and the SDP [14] were the same, but
”fmincon” and SNOPT return solutions with larger costs.

Pi ∈ R3×4, i = 1, . . . , N . Due to noisy data, the point Q
cannot be recovered exactly, and thus we seek the minimum
correction xi ∈ R2 in the ℓ2 sense of the observations pi that
assures the existence of Q. For that we leverage the M =

(
N
2

)
bilinear or epipolar constraints, one per each pair of distinct
poses, through the epipolar matrix Ei,j ∈ R3×3 as it was
done in [14]. This set of constraints has been shown to fully
define the relation between the observations under a general
configuration of cameras although it fails for coplanar motions,
including collinear setups, see e.g. [15], [27]. Empirically,
though, we show in Section IV, that this exception only
holds for exact configurations and a small perturbation in the
configuration can break the degeneracy.

Formally, we seek the correction xi ∈ R2 associated with
the i-th observation p̃i ∈ R3 such that p̃i + Sxi is the exact
projection of the 3D point Q, with S = [I2|02×1]

T ∈ R3×2

and p̃i ∈ R3 is the homogeneous form of pi (last entry to one).
By concatenating all the corrections in a single column vector
x = [x1T , . . . ,xNT

]T ∈ R2N , the N-view triangulation
problem based only on bilinear constraints has the form [14]

f⋆ = min
x∈R2N

∥x∥22 (O)

subject to (p̃i + Sxi)TEi,j(p̃j + Sxj) = 0, i ̸=j=1,...,N

We assume that a (real) solution exists, i.e., a point that
generates the observations exists, and that not all the observa-
tions lie close to the epipoles [3]. Problem O is an instance of
a Quadratically Constrained Quadratic Problem (QCQP), that
is non-convex and in general NP-hard to solve. In order to
estimate the global optimum of this problem in an efficient
way, we first re-write it in a more standard form. All the
constraints can be written in terms of the variable vector x by

padding with zeros when necessary as (p̃i + Sxi)TEi,j(p̃j +
Sxj) = xTAkx + 2aT

k x + bk = 0, k = 1, . . . ,M , with
Ak ∈ S2N , ak ∈ R2N and bk ∈ R. The generic QCQP is

f⋆ = min
x∈R2N

∥x∥22 (QCQP)

subject to xTAkx+ 2aT
k x+ bk = 0, k = 1, . . . ,M

Notice that the form of the constraints in Prob. O defines a
pattern on Ai,ai, bi and some cases that are not possible, e.g.
bi ̸= 0 and ai = 02N . From problem QCQP we can derive
convex relaxations in the form of semidefinite problems that
can be solved in polynomial time by off-the-shelf solvers [14].
Unfortunately, these tools have polynomial time complexity in
the number of variables and constraints, making them too slow
to be employed in real-time systems. Our own implementation
of these relaxations shows that for more than 50 views the
solver becomes very slow, requiring more than 30 seconds
to solve a single problem. To overcome this limitation, we
propose a fast solver that is able to certify optimality but
runs in microseconds for N = 10 views. Figure 2 shows the
computational time in seconds required by the different solvers
(Y-axis) as a function of the number of views (cameras) (X-
axis): Fig. 2a with our proposal; and Fig. 2b with the other
solvers through their matlab interface (the SDP in [14] with
CVX [31] as modeling tool and SDPT3 as solver; using
”fmincon” with ’sqp’ as algorithm; and using SNOPT [19]).
Notice that the solvers in Fig. 2b are slower than our proposal,
requiring more than 80 milliseconds to obtain a solution for
N = 10 views, whereas our solver requires less than 0.15
milliseconds. The mean and median times are the same for
all the solvers, except for SNOPT. The median for N = 10 is
greater than 80 ms.

B. Fast solver

The key idea behind our proposal is to approximate the
feasible set of the original problem QCQP with linear con-
straints, which allows us to solve the approximation via,
e.g. a complete orthogonal decomposition (COD) or Singular
Value Decomposition (SVD), available in most mathematical
libraries e.g. Eigen [22], making our proposal suitable for
most devices. In the limit and under some conditions, these
approximations recover the original problem, hence returning
a feasible solution for QCQP. The approximations are obtained
by taking the first-order approximation of the quadratic con-
straints at the current solution x0, that is, the Taylor expansion
at this point. Formally, the problem to solve reads

f⋆
l = min

x∈R2N
∥x∥22, (L-K)

subject to

(2aT
k + 2xT

0 Ak)x+ (bk − xT
0 Akx0) = 0, k=1,...,M.

We form the data matrices

Cl = [2a1 + 2A1x0| . . . |2aM + 2AMx0]
T ∈ RM×2N , (1)

dl = [b1 − xT
0 A1x0, . . . , bM − xT

0 AMx0]
T ∈ RM . (2)

The solution xl to problem L-K is the minimum-norm min-
imizer of ∥Clxl + dl∥2. We assume that there exists at least



4

one solution xl for which the error ∥Clxl + dl∥2 is small.
Empirically, this error is always zero. The algorithm consists
in solving linear systems and updating the coefficient matrix
Cl and vector dl with the previous solution xl−1 to obtain
the new solution xl, stopping when two consecutive solutions
are the same. Note that the feasible set of the subproblems
coincides with the polynomial solved by Newton’s method for
multivariate problems for rank deficient matrices that pretends
to find one of the roots of the system [32]. If the algorithm
converges to xl = xl−1 and the residual of Clxl+dl = 0M×1

is zero (up to some accuracy), then the final solution is feasible
for the original prob. O. Assuming that the original problem
has more than one feasible, real solution (see [4]), we are left
to certify that the solution is also the optimum for Prob. O.

Remark 1: Assuming that the solution xl is feasible for
the original QCQP, then the matrix Cl is the Jacobian of
the quadratic constraints in Prob. QCQP evaluated at the
point xl. The rank of the Jacobian is associated with the
codimension of the space defined by the constraints (from
the Jacobian criterion [33, Th 2.3]), that, as it was shown in
[27], is 2N − 3 for all feasible solutions, while the Jacobian
is a M × 2N matrix. Since the Jacobian is not full-rank the
Linear Independence Constraint Qualification (LICQ) doesn’t
hold, which is the condition assumed by most solvers (Section
II). This condition is also assumed by iterative algorithms for
constrained problems, e.g. Sequential Quadratic Programming
(SQP) [34, Ch. 18]. While previous works have tackled con-
straint degeneracy in SQP and have proposed modifications of
the algorithm, our evaluation showed that these modifications
make the algorithms slow (see Fig. 2). We must say, however,
that the rank-deficiency of the Jacobian is more apparent the
closer the estimation is to the feasible set.

C. Optimality certification

Whereas it is possible to employ one of the convex re-
laxations proposed in [14] for the certification, in this work
we aim to provide fast alternatives. Thus, we rely on the
dual problem of Prob. QCQP (Appendix A and [14]), but
derive an optimality certificate, which is sufficient but not
necessary for optimality, see Sec. II. Thus, we don’t solve
the dual problem from scratch, but rather leverage it to certify
a given solution. Assuming that strong duality holds and that
the global optimum x is given, we are left to find Lagrange
multipliers λ ∈ RM such that CT

l λ = 2x for which the
Hessian H(λ) is positive semidefinite (PSD)

H(λ)
.
=

(
I2N −

∑M
i=0 λiAi −

∑M
i=0 λiai

−
∑M

i=0 λia
T
i −

∑M
i=0 λibi − xTx

)
. (3)

Recall that Cl ∈ RM×2N is the Jacobian of the constraints
evaluated at the feasible primal point x, hence being rank
deficient for N ≥ 4, thus making the solution to CT

l λ =
2x not unique. Empirically we observe that the minimum-
norm solution is actually feasible for the dual problem, i.e.
the Hesian H(λ) in Eq. (3) is PSD. Although this is just an
observation we show in Section IV that this solution certifies
all the problem instances. Our certifier has therefore two steps:
(1) compute the Lagrange multipliers in closed-form; and (2)

check the eigenvalues of the Hessian evaluated at that point.
With this approach, the certifier will fail to certify optimality if
at least one of the next three conditions is met: (1) the solution
x is not optimal; (2) strong duality doesn’t hold; or (3) the
minimum-norm λ isn’t the optimal solution.

Algorithm 1: N-view triangulation solver
Data: N noisy observations p̃i and projections Pi

Result: Corrected observations p̃i + Sxi; cert. ISOPT
// Create constraints

1 Create M =
(
N
2

)
constraints between pairs of images;

2 l← 1, x0 ← 02N ;
3 repeat

// Update coefficient matrices
4 Update Cl,dl with xl−1 from Eqs. (1),(2);

// Compute new solution
5 Solve ∥Clxl + dl∥2 for minimum-norm xl;
6 l← l + 1 ;
7 until convergence or max. iters;
8 Compute Q from corrected observations;
9 if solution is feasible for (O) AND Q is exact then

// Check suff. cond. optimality
10 if Hessian in certifier (Eq. (3)) is PSD then

// Solution is optimal
11 ISOPT = True ;
12 else

// assumptions don’t hold
13 ISOPT = inconclusive ;

14 else
// Solution not feasible

15 ISOPT = inconclusive ;

D. Algorithm

Our proposal is summarized in Alg. 1. We define conver-
gence when two consecutive solutions xl and xl−1 are close
in the sense ∥xl − xl−1∥22 ≤ 3 · 10−10. We limit the number
of iterations to five, and for feasibility we require that the
ℓ2 norm of the constraints for the final solution xl is below
the threshold ϵ5 = 5 · 10−11. The last condition is checked
for sanity: due to numerical errors on the matrices and the
threshold applied to the rank of Cl, the decomposition doesn’t
necessarily match exactly the coefficient matrix, which may
lead to non-zero residuals for the linear system. We consider
that the corrected observations are originated by a real point Q
if the least singular value of the matrix from the linear method
is below the threshold ϵ5 = 5·10−11. Last, we consider that the
solution is optimal if the minimum eigenvalue of the Hessian
is greater than ϵmin = −1 · 10−09.

IV. EVALUATION

We performed the evaluation on a standard desktop with 32
GB RAM, i7− 3770 CPU, 3.4 GHz and Ubuntu 16.04.
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Fig. 3: Error for the 3D reconstruction of the point (least singular value) with N = 10 views as a function of the noise level
(X-axis) in the configurations with (a) general; (b) planar; (c) linear; (d) noisy planar; and (e) noisy linear motion.

A. Evaluation on synthetic data

We follow the procedure in [14] to generate the synthetic
data: we define a set of N = 10 random 3D points at a
distance d units from the origin on a ball with radius d/4
and avoid points far away from the cameras by limiting this
radius to 8 units. Next we generate sets of N poses that define
the configuration (motion) of the problem. In the first set,
we generate random poses with translation within a ball of
5 units and angle of rotation bounded above by 0.5 rads. In
the second set (planar motion), the camera follows a circular
path of radius 5 units centered at the point [0, 0, d], that is, the
center of the motion is also the center of the point cloud, and
all the cameras point towards this same point. In the last set
(linear motion), the camera moves horizontally along the X-
axis with zero rotation and maximum parallax of 5 units. The
last two sets are degenerate configurations for our formulation,
see [27], although they are common in autonomous cars, e.g.
a long road. However, we notice that this degeneracy is only
present for these exact paths and a small perturbation on
the translation and/or rotation can break it. In practice, as
we see on the evaluation on real data, e.g. the CORRIDOR
dataset, the noiseless setup is not usually found and real-
world situations are better modeled by these perturbations.
To show this behavior, we run our algorithm also with the
noisy motions, which were generated by adding a rotation of
0.002 rads to the original rotation. For all the configurations
we obtain the observation on each camera by assuming a
pinhole camera model with focal length 512 and image size
5122. We perturb the observations by adding Gaussian noise
with standard deviation σ in pixels on the image plane. We
consider the noise levels σ ∈ {0.5, 1.5, 3.0, 5.0}pix and
generate N ∈ {5, 10, 50, 100, 200} different camera poses,
that is,

(
N
2

)
= {10, 45, 1225, 4950, 19900} constraints. For

each configuration we generate 50 problem instances.
In all the problem instances, the ℓ2 norm of the constraints

was numerically zero (under 1e − 20), thus the solution
returned by our solver was feasible for prob. O. In Figure
3 we report the least singular value for the original observa-
tions DLT, the result with our initialization O-INIT without
refinement (line 2 in Alg. 1); and the final result of our
algorithm OURS. In this figure the first three columns show
from left to right the general, planar and collinear cameras,
whereas the last two columns stand for noisy planar and

collinear cameras. Notice that for general and noisy cameras
the solver returns always observations that generate exactly a
3D point, while this is not the case for some of the problems
for planar and linear paths (the degenerate configurations).
Last, the sufficient condition in Sec. III-C certified all the
solutions where the algorithm converges to a feasible solution
(that is, all but pure planar and linear motions) and we obtain
minimum eigenvalues of the Hessian of the order of 1 ·10−12.
Empirically, we obtain non-feasible and non-certified solutions
for highly noisy problem instances, e.g. σ = 100pix and
N = 5, 6 views. For problems with N = 9 views failure of
the algorithm starts from σ = 200pix. We also notice that
the proposal becomes unstable for noise σ = 1000pix, even
for N large.

Computational time: Figure 2a shows the mean compu-
tational time in seconds required by the proposed certifiable
solver for different number of views (X-axis) with general
motion and noise σ = 3 pix, averaging the results for 20
random problem instances. Above each black circle we report
the number of constraints M =

(
N
2

)
. We estimate the solution

for problem instances with N = 10 views are solved in 60
microseconds and in 20 microseconds for N = 5 views. We
provide next the computational time required for problem with
up to 200 views. The initialization (line 2 in Alg. 1) and the
refinement (lines 7 − 9) are the same operation, and thus
they take the same time with independence of the camera
configuration (provided it’s not degenerate) and noise. As a
function of the number of views N , we have in average (µs):
N = 5 goes to 9.655; N = 10 to 21.922; N = 50 to
1892; N = 100 to 22984.8; and N = 200 to 316516.0. The
number of iterations ranges between one and three depending
on the level of noise (increasing) and the number of views
(decreasing). For lateral motions we obtain similar times
independently of noise to those for general motions with low
noise. On the other hand, for orbital paths we obtain the
times of general motion for large noise. For the certifier, we
observe that the required computational time only depends
on the number of views (hence the number of constraints),
but not on the noise level nor the configuration. In average
for N = 5 views the certifier requires 30 microseconds,
for N = 10 it takes 89 microseconds, for N = 50 goes
to 5.12 milliseconds, for 100 views to 54 milliseconds and
for N = 200 views to 748 milliseconds. Note that this
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condition is only evaluated on the final solution, and involves
the estimation of the M Lagrange multipliers, which is the
most consuming step, requiring the next values: for N = 5 it
takes 20 microseconds, for N = 10 goes to 42 microseconds,
for N = 50 to 4.3 milliseconds, N = 100 to 57.5 milliseconds
and N = 200 to 695 milliseconds. Although the certifier
increases the computational time of Alg. 1, our proposal is
still faster than the state-of-the-art.

B. Evaluation on real data

To conclude we evaluate our algorithm on real data with
the sequences: CORRIDOR, DINOSAUR, MODEL HOUSE 2 and
NOTREDAME 3. Table I collects the information about these
sequences, including the number of problem instances with
more than 4 and 10 views. The time required by our algorithm
to triangulate all the points is reported in column TIME SOL.,
whereas column TIME CERT. reports the time required to
certify these solutions, both in milliseconds. Note that the
total time is obtained by adding both columns. The most
consuming problem instance in terms of total time (estimation
and certification) in µs is included in column MAX. TIME,
followed by the number of views of the problem instance. Note
that our proposal is faster than other certifiable methods (see
the reported results in [14]). Further, the algorithm converges
to a feasible solution for more than 99% of the problem
instances (column ϵ5-OPTIMAL), whereas the certifier was able
to certify all these feasible solutions as the global optima.

V. CONCLUSIONS AND FUTURE WORK

Robotic systems, such as autonomous cars or UAVs, require
fast, optimal solutions for their critical navigation tasks, e.g.
localization and mapping. Typically, the map is represented
by a set of 3D points originated from their observations.
Estimating the coordinates of such points given N views, the
so-called N-view triangulation problem, is key for having a
precise and consistent world representation. In this work we
proposed a fast and certifiable solver for this problem that
relied on a series of linear approximations of the triangulation
problem which in the limit, provided a solution for the original
problem, that was later certified as optimal by the proposed
certifier. The proposal is based on basic operations that are
available in any linear algebra library, e.g. Eigen and was able
to find and certify the optimal solution in 150 microseconds
for N = 10 views. The evaluation on synthetic and real
data showed that the proposal consistently found and certified
optimal solutions.

As future work, we project to improve the present algorithm
since currently the decomposition of the coefficient matrix has
to be computed at each iteration, even though the matrix Cl

is just a perturbation of the previous Cl−1. Additionally, we
are interested in analyzing wherever the proposed algorithm
can be extended to other problems.

2https://www.robots.ox.ac.uk/∼vgg/data/mview/
3http://phototour.cs.washington.edu/datasets/
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APPENDIX A
DUAL PROBLEM FOR THE PRIMAL PROB. QCQP

To derive the dual problem, we introduce an homogeneous
variable y ∈ R into the primal problem (QCQP) as

f⋆ = min
x∈R2N ,y∈R

xTx, (D)

subject to [xT , y]

(
Ai ai

aT
i bi

)
Ãi

[xT , y]T = 0, y2 = 1.

Then, the dual problem has the form d⋆ =
maxλ∈RM ,ρ∈R d(λ, ρ), where d(λ, ρ) is the dual function
defined as d(λ, ρ) = minx∈R2N L(x, y,λ, ρ) and the
Lagrangian L(x, y,λ, ρ) = [xT , y]H[xT , y]T + ρ, which
has a finite minimum w.r.t. x equal to zero iff the Hessian
H(λ, ρ) is positive semidefinite (PSD) with

H(λ, ρ)
.
=

(
I2N −

∑M
i=0 λiAi −

∑M
i=0 λiai

−
∑M

i=0 λia
T
i −

∑M
i=0 λibi − ρ

)
. (4)

Restringing our attention to finite values, the dual problem
d⋆ = maxλ∈RM ,ρ∈R ρ, subject to H(λ, ρ) ⪰ 0. Assuming
strong duality, i.e. d⋆ = ρ = f⋆ and that the given solution
x ∈ R2N is the global optimum, and so f⋆ = xTx we
have the relation H(λ,xTx)[xT , y]T = 0M×1 with y = 1,
from which we derive the expression for λ ∈ RM as
2[Aix + ai, . . . ,AMx + aM ]λ = 2x. If the solution λ to
this linear system is feasible for the dual (Hessian is PSD),
then by weak duality: (1) strong duality holds; (2) λ and x
are the global optima for their respective problems.
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