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Abstract

Redundant and complementary information from different types of sensors boosts
the robustness of autonomous systems, making them more reliable and safer. In partic-
ular, inertial measurement units (IMUs) are increasingly being integrated with cameras
for that purpose, since the information provided by the IMU helps to simplify some
visual problems and improves the accuracy of the results. In the context of estimating
the motion of a camera, which is the problem we address in this work, the gravity vec-
tor delivers by the IMU reduces the unknown rotation to only one degree of freedom
instead of three, hence simplifying the relative pose problem (RPp). Despite this sim-
plification, the RPp is still nonconvex, therefore the quality (optimality) of the solution
returned by iterative solvers cannot be guaranteed. These suboptimal solutions may
have serious consequences for applications that have this solver as a key block, and
may even cause their complete failure.

In this paper, we contribute a certifiable solver for the RPp with gravity prior. We
propose an iterative certifier that does not assume any condition on the problem, and
returns an optimality certification even for an overconstrained formulation with 28 con-
straints in less than 1.5 milliseconds. Since the certifier doesn’t obtain the solution to
the problem, we also provide a fast, iterative on-manifold estimation of the relative
pose, which is shown to return solutions with lower costs than other nonminimal solvers
in less time. We make the code available at https://www.github.com/mergarsal

Keywords: relative pose problem; optimality certificate; redundant constraints;
gravity prior;

1. Introduction

Autonomous vehicles, such as self-driving cars, robots or unmanned aerial systems,
are required to perform to a very high level of safety. These vehicles are very complex
systems with many critical components that must be designed to avoid or, at least,
to auto detect any defect or malfunctioning. A common and necessary component5

in most of these systems is the computation of the incremental pose of the vehicle
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Figure 1: In this work we aim to estimate the relative pose (RY, t) between cameras {0, 1} from N pair-wise
observations { fi, f ′i }

N
i=1, being RY a rotation around the Y-axis.

from visual data, i.e. the relative pose of an onboard camera(RPp). Specifically, it is
a key block of the Simultaneous Localization And Mapping (SLAM) pipeline [1, 2,
3]. Cameras are the most common sensor in SLAM, since they are compact, cheap,
energy efficient, and suitable for other tasks (e.g. object detection and recognition,10

scene classification, ...). While many of the existing implementations of SLAM rely
only on visual data (observations from the poses), it is a fact that the integration of
visual and inertial data from inertial measurement units (IMUs), if available, leads
to simpler formulations and more accurate solutions. From the IMU we can obtain,
among others, the gravity vector, which gives us the angles of the cameras with respect15

to this axis, hence reducing the three degrees of freedom of the rotation from three to
one, see figure 1.

The gold-standard approach to RPp is Bundle Adjustment (BA), where the pose
and the 3D coordinates of the points are jointly estimated. Since BA is iterative, a good
initialization is required to converge to the global optimum. The common approach20

to obtain this initial guess is to leverage a simplification of the problem where the 3D
coordinates of the points are not computed [4, 5]. Even if the axis of rotation is known
from the IMU, this problem turns to be also nonconvex, that is, the optimality of the
solution cannot be guaranteed. This is not a minor issue since such solution will be
further used by other higher level components of the autonomous system to determine25

the global position of the vehicle or the pose of an obstacle in its path. Thus, being able
to certify the quality of the solution at an early stage is key for a safe operation of the
system.

Whereas for the general case (that using only the images) several nonminimal op-
timal solvers are available [6, 7, 8], for the particular case where the axis of rotation30

is known, only one solver is reported in the literature [9]. The latter is a polyno-
mial solver whereas the generic ones rely on Interior-Point Methods (IPM), both being
slow in practice. Faster certifiable algorithms can be devised as it was done in, e.g.
[10, 11, 12] (see section 2). The driven idea behind these approaches is to estimate the
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solution by any efficient iterative method and then to certify the solution. Most of these35

approaches develops a closed-form expression for the first stage of the certifier, which
puts a limit on the number of variable and constraints, precluding the use of over-
constrained (tighter) formulations, and assumes the Linear Independence Constraint
Qualification (LICQ), which leads to the full rank of the Jacobian of the constraints.
As with the general case, the LICQ doesn’t hold for the RPp with known gravity vector40

even for the smallest formulations.
Contribution: In this work we aim to solve efficiently the RPp with known gravity

vector with an optimality certificate. We state the problems in terms of the essential
matrix E and minimize the squared normalized epipolar error ε2

i = ( f T
i E f ′i )2.

To make the solver efficient, we opt for estimating the essential matrix by an itera-45

tive algorithm that enforces the known condition about the rotation. Since the algorithm
is iterative, we cannot guarantee that the returned solution is the global optimum. Thus,
we also contribute an optimality certifier based on duality theory that does not require
LICQ nor limit the number of variables and constraints of the problem. Since the cer-
tifier depends on the definition of the space, we provide four different formulations for50

the set of essential matrices with known rotation axis, with increasing number of con-
straints, following the work in [13], which leads to two overconstrained formulations.

An exhaustive evaluation with both synthetic and real data is performed, where we
show that the on-manifold estimation is faster and more stable than other nonminimal
solvers and attains solutions with lower cost, even when the known axis of rotation55

is noisy. Further, for small formulations our certifier is able to return an optimality
certificate in less than one millisecond, and for an overconstrained formulation with 28
constraints, it returns the certificate in 1.5 milliseconds.

We make the code publicly available at https://github.com/mergarsal.

Notation: Bold, upper-case letters denote matrices e.g. E,H, whereas bold, lower-
case letters denote (column) vectors e.g., t, fi and normal font letters e.g., a, b denote
real scalar. Rn×m is the set of n×m real-valued matrices, Sn ⊂ Rn×n the set of symmetric
matrices of dimension n× n and Sn

+ the cone of positive semidefinite (PSD) matrices of
dimension n × n. A PSD matrix will be also denoted by � , i.e., S � 0 ⇔ S ∈ Sn

+. The
3 × 3 skew-symmetric matrix [t]x is the equivalent matrix form for the cross-product
with a 3D vector t = [t1, t2, t3]T , i.e., t × (•) = [t]x(•) with

[t]x =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 (1)

The operator vec(E) vectorises the given matrix E ∈ Rm×n column-wise. The60

kronecker product is denoted as ⊗. We will denote the trace of a matrix as tr(A) =∑n
i=1 aii, A = [ai j] ∈ Rn×n. We identify 3D rotations with points in the rotation group

SO(3) .
= {R ∈ R3×3|RT R = I3, det(R) = 1 } and define the 2-sphere as S2 .

= {t ∈
R3|tT t = 1}.

2. Related work65

We summarize here previous works regarding the relative pose estimation with
known axis of rotation and those where optimality certifiers were proposed.
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2.1. Minimal solver

Given the observations of five generic points we can compute the relative pose be-
tween the calibrated cameras that observed them, see e.g. [14, 15, 16]. Nevertheless,70

when the axis of rotation is known the number of correspondences required for esti-
mating the pose is reduced to three. Thus general solvers are not guaranteed to return
a solution with the desired rotation when the observations are corrupted by noise. In-
troducing this information simplifies the problem and guarantees that the rotation has
the desired form. Fraundorfer et al. [17] propose a minimal solver for this problem75

that employs only three pair-wise correspondences. Ding et al. in [18] eliminate the
rotation and translation parameters from the original constraints, obtaining a reduced
set of quadratic and cubic constraints. Sweeney et al. in [19] propose a minimal solver
by re-writing the problem as a generalized eigenvalue problem, avoiding the resolution
of the polynomial system.80

However, and although these solvers can be integrated into robust paradigms such
as RANSAC to detect and discard outliers, they come with well-known drawbacks.
First, they usually require to compute a Gröebner basis and the roots of a high-order
polynomial, which may become unstable and slow. Second, since they only employ
the minimum number of correspondences they are more sensitive to noise.85

2.2. Nonminimal solver

In real-world applications many correspondences are usually found and thus non-
minimal solvers that incorporate all the observations are leveraged instead. A simple
approach applies a linearization of the problem, known as Direct Linear Transform
(DLT), which is faster and more stable than minimal solvers. However, the solution90

comes without guarantees to be a valid real pose. A common method that overcomes
this is to state the problem as a nonconvex optimization on the desired domain. In
general, this approach may encounter many local minima and therefore the optimality
of the solution is not guaranteed, though in practice, they have shown to achieve good
performance, see e.g. [20, 21, 22, 23, 24]. Interestingly, Ding et al. in [9] propose95

for the relative pose problem with known rotation axis an alternative approach which
decouples rotation and translation following the work in [6]. A Gröbner basis is then
derived to solve this nonminimal solver, guaranteeing that the solution is the global
optimum. The proposal though becomes unstable for some problem instances, as we
observe in the experiments of Section 5.100

2.3. Optimality certificate

Given the nonconvexity of the problem, solvers that are able to certify the optimal-
ity of the solution are highly desired. Branch-and-bound techniques have been pro-
posed for the general relative pose problem, see e.g. [6, 25]. Due to their exploratory
nature, they may have exponential complexity in the worst case, which prevents their105

application in practice. An alternative technique leverages a convex relaxation of the
problem on the semidefinite positive cone, which can be solved in polynomial time
by off-the-shelf solvers such as SeDuMi [26] or SDPT3 [27], and under some circum-
stances they may return the optimal solution to the original, nonconvex problem. For
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the general formulation (only with visual data) this was the approach followed in [7, 8].110

The main drawback of these works is that the adopted relaxations may not remain tight
for all problem instances, meaning that the returned solution is not feasible for the orig-
inal problem. Empirically, it has been shown that increasing the number of constraints
tightens the convex relaxations, although it also increases the computational time re-
quired by the solvers. Previous works [28, 29, 30] have focused on developing fast and115

stable solvers for problems with large number of constraints and variables, although
they are restricted to some domains (for example, rotations) or assume that the prob-
lems met other conditions that hold generally, for example, the Linear Independence
Constraint Qualification (LICQ), strict complementarity (primal and dual solution have
no common nullspace) and maximum complementarity (optimal primal and dual so-120

lutions has maximal rank among all optimal solutions). We later show that all these
conditions don’t necessarily hold for the relative pose problem as formulated in this
work, which hinders the application of the above-mentioned solvers to our problem
and motivates our work.

Certifiable algorithm125

An alternative to the above-referred global optimization methods consists of finding
a solution by any classic iterative method and then certifying whether such solution is
the global optimum [10, 12, 31, 11, 32]. Given the efficiency of iterative solvers, these
optimality certifiers acquire special relevance in real-world applications. Most of these
proposals compute a part of the certifier (the Lagrange multipliers) in closed-form and130

check whether the associated Hessian is positive semidefinite (PSD). This last step is
the most time consuming part, specially if the Hessian matrix is dense and/or has large
size. Additionally, in order to derive a closed-form for the multipliers, the problem
must also fulfill some conditions. First, the number of constraints must be non-greater
than the number of variables, which limits the number of constraints and precludes in135

most cases the introduction of redundant constraints. Second, the coefficient matrix
associated with the lagrange multipliers (the Jacobian of the constraints evaluated at
the potential optimal solution) must be full rank (LICQ). In our previous work [32]
where the general RPp was addressed, we showed that LICQ does not hold. To attain
LICQ, we drop one of the constraints of the feasible set, relaxing the original problem.140

This is possible because only one constraint must be removed, given a low number of
combinations (six) which do not deteriorate the performance of the certifier. However,
if more constraints have to be removed (as for the formulations employed in this work),
the number of combinations explodes, making the approach impractical.

3. Formulation for the relative pose problem145

The RPp consists of estimating the rotation R and translation t between two cam-
eras given a set of N pair-wise observations ( fi, f ′i ), i = 1, . . . ,N originated by N 3D
points. When these points are in general position, the relative pose can be estimated
by computing the essential matrix E ∈ R3×3 [33]. In this work we assume the gravity
vector is known (for example, provided by an IMU), which allows us to simplify the
relative rotation between the two views and reduces the degrees of freedom from three
to one. The simplified rotation has as axis of rotation the gravity one (the Y-axis, see
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figure 3a) and thus it has the form:

RY =

 c 0 s
0 1 0
−s 0 c

 , (2)

where c, s ∈ R such that c2 + s2 = 1. For simplicity, we call this kind of rotation
Y-rotation, and denote the set of these rotations by RY with

RY .
= {R ∈ R3×3 | R = RY, c2 + s2 = 1, c, s ∈ R}, (3)

Then, the essential matrix E = [t]xR for a Y-rotation has the explicit pattern

EY =

 e1 e2 e3
e4 0 e5
−e3 e6 e1

 , (4)

with only six unknowns e1, . . . , e6 and 3 degrees of freedom. Section A in the Sup-
plementary material shows that any essential matrix with the form in eq. (4) has an
associated Y-rotation. We define the set of real essential matrices with the form in
eq. (4) by EY,

EY .
= {E ∈ R3×3 | E = [t]xR, t ∈ S2, R ∈ RY}. (5)

The RPp is stated as an optimization problem that minimizes the sum of normalized
squared epipolar errors ε2

i = ( f T
i E f ′i )2 over EY,

f ?E = min
E∈EY

vec(E)T CEvec(E) (O)

with CE =
∑N

i=1( fi ⊗ f ′i )( fi ⊗ f ′i )T ∈ S9
+.

Our goal is to solve problem O and obtain an optimality certificate that guarantees
that the estimated solution is the global optimum. For that, we leverage concepts from
duality theory, specifically the dual problem, see [34]. To derive this auxiliary prob-
lem we need to reformulate problem O, i.e. the cost function and the set of constraints,150

as quadratic functions on the variables, hence obtaining a Quadratically Constrained
Quadratic Problem (QCQP). This reformulation doesn’t simplify the problem, but al-
lows us to derive the dual problem in a simpler way. Since the cost function is already
quadratic in the entries of the variable E (the unknown), we will focus now on the
definition of the set EY.155

3.1. Definitions of the essential matrix set
While other characterizations of this set exist, in this work we leverage those col-

lected in [13]. Adapting these sets to essential matrices with the form in eq. (4) is
straightforward by considering the pattern of E, that is, considering the null and re-
peated entries.160

The different parameterizations are related to two important elements associated
with the relative pose: the translation vectors t, q ∈ R3 (the epipoles). The vector t
is the left nullspace of the associated E and the vector q = RT t is the right nullspace
considering that E = R[q]x = [t]xR.
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Right formulation: We exploit the unitary condition of the rotation matrix R to
obtain the characterization:

E
.
= {E ∈ R3×3|ET E = [q]x[q]T

x , q ∈ S
2}, (6)

where q is the right nullspace of E. For our problem, this set, denoted by RIGHT,165

provides seven constraints and requires nine variables.
Left formulation: This description also exploits the unitary condition of the rota-

tion matrix R:
E
.
= {E ∈ R3×3|EET = [t]x[t]T

x , t ∈ S2} (7)

where t is the left nullspace of E. This set, denoted by LEFT, provides seven con-
straints and requires nine variables. We combine LEFT and RIGHT, discard linear
dependent constraints and obtain a third set, denoted by BOTH, with 13 (redundant)
constraints and 12 variables.170

Adjugate formulation: The following set of constraints forces the singular values
of a 3 × 3 real matrix E to be σ1 = σ2 = 1 and σ3 = 0:

qT q = 1 tT t = 1 (8)

Eq = 03×1 ET t = 03×1 (9)

tr(EET ) = 2 Adj (E) = qtT , (10)

where t, q are the left and right nullspaces of E, respectively and Adj (E) is the adjugate
matrix of E. We join all these definitions to obtain the last set ADJ with 28 constraints
and 12 variables.

3.2. Lagrangian dual problem

These sets are all equivalent yet provide different convex relaxations and perfor-
mance in terms of certification. To derive these relaxations from the original problem
QCQP, we first re-write it in the generic form:

f ? = min
X∈X

vec(X)T Cvec(X) (QCQP)

whereX is a generic feasible set defined by m quadratic constraints on the entries of the175

matrix X (the unknown), equivalently x = vec(X) ∈ Rn. The constraints are defined as
vec(X)T Aivec(X) = xT Aix = ci ∈ R, with Ai ∈ Sn for i = 1, . . . ,m.

Two well-known convex relaxations have been leveraged in the literature for prob-
lems with the form in QCQP: the Shor’s relaxation and the dual problem. The first one
relaxes the problem as a semidefinite problem (SDP) that can be solved by off-the-shelf180

solvers in polynomial time in the number of variables and constraints. Under a pure
c++ implementation previous works [8, 13] have reported low computational times
circa 6 − 12 milliseconds per problem instance.

The dual problem for problems like QCQP is also a SDP, but allows us to derive
an optimality certifier under some conditions. This certifier tends to be faster than the
above-mentioned approaches and achieves good performance in terms of certification,
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that is, it can certify most of the optimal solutions. To derive it, we first define the
(generic) dual problem for the (generic) primal QCQP

d? = max
λ
λT c, subject to S = C −

m∑
i=1

λi Ai � 0. (D)

Here, c = [c1, . . . , cm]T ∈ Rm and S ∈ Sn is the Hessian of the Lagrangian. The feasible
set of the dual D are all the vectors λ ∈ Rm, called Lagrange multipliers, that make185

their associated Hessian S positive semidefinite (PSD).
From duality theory [34] we know that the optimal cost of the dual problem repre-

sents a lower bound on the cost of the primal QCQP for any pair of primal (x)-dual(λ)
feasible points for QCQP-D, formally: d(λ) ≤ d? ≤ f ? ≤ f (x).

4. Optimality certification190

For some problem instances the inequality d? ≤ f ? is tight, meaning that the opti-
mal costs of both problems are the same, and we say that strong duality holds. While
for the problems here considered we cannot guarantee a priori that strong duality holds,
we empirically observe it in section 5. This relation is the driven idea behind the op-
timality certificate: Given a potentially optimal solution x? for the primal O, we try195

to find a feasible dual point λ? for its dual with same cost f ? = d?. If such solution
exists, then the provided primal solution is the global optimum. Notice that we have
assumed that a primal solution for the problem is provided. How this solution has been
estimated is not relevant as long as it is feasible for the primal problem. We propose
in this work to leverage the machinery of Riemmanian optimization to estimate both200

the primal and dual solutions. To estimate the primal solution, we follow the approach
in [32] and we include at the end of this Section only the main aspects. We refer the
reader to this reference and the Supplementary material section E for further details.
The remaining of this Section is devoted to the estimation of the optimality certificate
in its general form.205

The condition that both costs (d? = f ?) are the same can be re-written in terms of
the variables of the problem as f ?−d? = x?T Cx?−λ?T c = x?T Cx?−

∑m
i=1 λ

?
ix?T Aix? =

x?T (
C−

∑m
i=1 λ

?
i Ai

)
x? = x?T S?x? = 0, since the optimum x? is feasible for prob. QCQP

and thus, x?T Aix? = ci for all i = 1, . . . ,m. Since the dual point λ? is feasible, we
know that its associated Hessian S? is PSD. Thus, we have that x?T S?x? = 0 ⇔210

S?x? = (C −
∑m

i=1 λ
?

i Ai)x? = 0n×1 for the optimal primal-dual (x?, λ?) points. This
last relation allows us to re-formulate the condition that the dual gap is zero by the
equivalent condition that the primal solution x? must lay on the nullspace of the Hes-
sian S?, i.e. S?x? = 0n×1.

We want to point out that we are not solving the relaxation from scratch, but as other215

proposals have done previously (see section 2), we assume that strong duality holds and
try to obtain a certificate of it. As we indicate before, if the number of constraints is
not greater than the number of variables and if the LICQ holds, then a closed-form for
the Lagrange multipliers can be derived. While these requirements have been shown
to be met for other problems, they don’t hold for any of the formulations considered in220
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this work. For the general RPp in [32] we proposed to remove one of the constraints to
attain LICQ, hence relaxing the original problem. We avoid that approach here since
it doesn’t perform well when applied to the redundant formulations (the relaxations
become too loose to be used in practice). Instead we propose an alternative approach
that also allows to certify solutions but in an iterative manner, admitting more constraint225

than variables and problems without LICQ. It also handles problems where the set of
dual optimal solutions is not a singleton and where strict and maximal complementarity
between optimal solutions don’t hold.

The certification problem can be reformulated as a feasibility problem for a primal
solution x as

find λ such that S = C −
m∑

i=1

λi Ai � 0 and Sx = 0n×1. (F)

Inspired by previous works [35, 29], we opt here for minimizing the constraints
S = C −

∑m
i=1 λi Ai and Sx = 0n×1, thus obtaining a relaxation of the form

f ?F = min
S∈Rn×n,λ∈Rm

‖Sx‖22 +

∥∥∥∥∥∥∥S − C +

m∑
i=1

λi Ai

∥∥∥∥∥∥∥
2

F

(R-F)

subject to S � 0.

Notice that if a solution exists for problem F, then the optimal cost of R-F is zero, and
it is necessarily f ?F > 0 otherwise.230

Since the problem R-F is convex and always feasible (see Supplementary mate-
rial Section B), we can rely on the Burer-Monteiro low-rank approach [36] to solve
it. For that, we decompose the matrix S ∈ Sn

+ as the outer product of Y ∈ Rn×k, i.e.
S = YYT , and the rank of S is bounded above by k < n. With this parameterization, the
resulting matrix YYT is already symmetric and PSD. Problem R-F is then re-written in
terms of Y as

f ?F = min
Y∈Rn×k ,λ∈Rm

∥∥∥YYT x
∥∥∥2

F +

∥∥∥∥∥∥∥YYT − C +

m∑
i=1

λi Ai

∥∥∥∥∥∥∥
2

F

(R-Y)

Before continuing, we must say that problem R-Y is non-convex, and thus, we
cannot guarantee that the iterative algorithm returns the global optimum. However, as
indicated above, we seek the zero-cost solution and thus, any solution with a different
cost cannot certify optimality, either because it’s suboptimal (a local minimum of the
problem) or because any of the assumptions made are incorrect. Note that we cannot235

apply the same logic to the RPp directly, since the cost of the global optimum is not
known a priori (in the presence of noise).

Further, notice that we don’t assume any value for the rank of the matrix S, and
thus the dimension of Y. This rank is associated with the tightness of the relaxation,
the concept of strict complementary and maximal complementarity, see e.g. [37]. For240

most problems with strong duality we have strict complementary, that is, the rank of
S is n − 1. Further, off-the-shelf solvers, such as SeDuMi or SDPT3, are central path
following algorithms that return maximally complementarity solutions [38, Sec. 4.1.2],
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Figure 2: Fig. (a) Rank of the Hessian during the evaluation of the certifier in Section 5 for the different
formulations (see legend) for the essential matrix. The rank of the cost matrix C is, in all cases, at least
five. Fig. (b) Cumulative distribution of the difference between the cost attained by our proposal and the cost
attained by solving the feasibility problem R-Y with off-the-shelf tools.

i.e. primal and dual solutions with maximal rank among all optimal solutions, as De
Klerk et al. in [39] proved in Theorem 2.1. This behavior makes these two conditions245

difficult to detect and/or identify in practice.
For the RPp as formulated in this work these assumptions don’t hold. First, due to

the pattern of the primal problem QCQP, there exist optimal solutions with rank larger
than one. Provided strong duality holds, this necessarily implies that there exists at
least one Hessian with rank less than n − 1 but also with rank n − 1 (different PSD250

Hessian matrices), and therefore, there exists also more than one dual optimal solution.
Since we can have a rank-1 primal solution and a dual solution with rank less than n−1,
the strict and maximal complementarity conditions fail. Notice that all these conditions
tend to hold for most problem instances, and together with LICQ, are assumed in most
solvers. However, and since our interest is focused on optimality certification, any of255

these dual solutions is valid for certification and we don’t need to assume any of these
conditions. In fact, we observe that our proposal, on the other hand, empirically tends
to the dual solution S with low rank. Notice that this is a desired feature, since the
complexity of problem R-Y depends on the rank k of Y, as we will elaborate later. This
also implies that the optimality certificate returned by our algorithm will not fulfill the260

strict complementarity condition: nevertheless, since the solution is optimal for the
dual problem, it is equally valid and sufficient for certification.

To the best of our knowledge, the minimum rank of the Hessian for a given problem
instance is not known a priori. However for the different formulations of the RPp as
considered in this work these ranks are stable as we show in figure 2a 1, and tend to265

five for all the formulations, even though the size of the (symmetric) Hessian matrix is
nine for LEFT and RIGHT, and twelve for BOTH and ADJ. In order to provide users
with a generic tool, we believe an automatic detection of this rank will be useful for the

1These values are extracted from our evaluation in section 5
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potential users and/or for other problems. The idea behind this automatic detection is
similar to the Riemmanian staircase proposed in [36]. We start by solving the problem270

R-Y with rank 1 ≤ k < n. If during the optimization we detect a rank deficient solution
Y, we reduce the rank and re-run the optimization using the previous solution as initial
guess. This reduction is required to maintain the completeness of the space, see e.g.
[40], as we will explain later. If the optimization with rank k ends and the cost is
not zero, we try to increase the rank by one and re-run the optimization. To estimate275

this (k + 1)-rank matrix we deploy the line search algorithm in [36] applied to the
previous Hessian of the Lagrangian and, in case of failure, the initialization of the
algorithm. Alg 2 includes the pseudo-code of this logic. We provide further details in
Supplementary material section C. The main drawback of this staircase-like certifier is
that it implies more than one iteration of the optimization in problem R-Y with different280

rank(s). Empirically, though, we observe that for the Relative pose problem the number
of iterations is low.

Initialization for the iterative certifier: The initial rank is thus really important
since an accurate estimation means fewer iterations of the certifier. We propose to
relax the domain of S in problem R-F as Sn

+ ⊂ Sn. Among all the solutions to this285

relaxation, we are interested in the one with minimum norm ‖λ‖2. For this particular
solution, the Hessian S can be seen as a perturbation of the data matrix C. Then, we
seek the minimum norm solution to the linear system (potentially under-determined)
J(x)λ = b(x), where J(x) = [A1x, . . . , Amx] ∈ Rn×m is the Jacobian of the constraints
and b(x) = Cx ∈ Rn×1, all of them depending on the data matrix, the constraints, and290

the solution. The minimum norm solution is found via the pseudo-inverse of the Jaco-
bian J(x). Since LICQ doesn’t hold for the RPp as formulated in this manuscript, this
Jacobian is rank-deficient for any feasible solution for problem QCQP for all the con-
sidered formulations. This deficiency has to be taken into account while computing the
pseudo-inverse, and in practice, we apply a threshold 1e − 09 to the singular values to295

avoid numerical instabilities. A feasible solution for R-F can be obtained by projecting
this initial guess Ŝ through an eigenvalue decomposition. If Ŝ ∈ Sn is the Hessian evalu-
ated at λ with minimum 2-norm, not necessarily PSD, and Ŝ = U diag(µ1, . . . , µn)UT is
its spectral decomposition, we can obtain the closest PSD matrix in the Frobenius sense
as S = U diag((µ1)+, . . . , (µm)+)UT ∈ Sn

+, with the operator (a)+ = max(0, a), a ∈ R.300

Notice that this initialization can be also employed to obtain solutions with rank k + 1
when the line search algorithm is not able to estimate it.

Solving problem (R-Y): We solve problem R-Y by leveraging the Riemmanian
machinery and separating the domain, the solver and the problem. As solver we employ
the trust-region method as it was done in previous works, see e.g. [41, 32]. For the305

domain, it is necessary to recall that we seek the m-D vector λ and the n × k matrix
Y, knowing that S = YYT . Under this relation, we can notice that there exists an
equivalence between points Y,W ∈ Rn×k as Y = WO with O ∈ O(k) and so S =

YYT = WWT . To respect this aspect, we leverage the geometry defined in [42, 43]
which takes into account the equivalence. The operators associated with it are found in310

Supplementary material section D. Under this definition, the space is not complete and
the geometry breaks down when Y is rank deficient [40, 42], which again motivates
our interest in finding the correct rank for the solution. Last, the quadratic model (cost,
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gradient and vector-product Hessian) for the generic certifier as in R-Y can be written
in terms of the variables. We provide them in the Supplementary material section D.315

The initial guess for Y is given by Y = U diag((µ1)+, . . . , (µk)+) W.L.O.G. since the
employed characterization of the set contemplates the equivalence.

The most consuming operation associated with the chosen geometry is the projec-
tion onto the tangent space of an ambient point [44]. This involves the solution of the
Lyapunov equation of size k, being k the rank of Y. This makes our algorithm spe-320

cially suitable for problems with low rank Hessian S, i.e. when strict complementarity
does not hold even for tight relaxations. For example, the Hessian for our formulation
ADJ tends to the rank of the minimal LEFT and RIGHT, making the certifier only
slightly slower, see Table 3b. For problems where the rank of the Hessian is larger,
this operation may slow the certifier. A naive approach to avoid this operation relies325

on dropping (overlooking) the relation between equivalent points in the manifold and
optimizing over the n × k Euclidean space for the variable Y. The main advantage of
this approach is that there is no need of detecting the deficiency of the solution nor
estimating a solution with larger/smaller rank during the optimization, thus avoiding
increasing/decreasing the rank. That is, we can project the solution from the initializa-330

tion to obtain a PSD matrix, and feed the naive problem in R-Y with the n × (n − 1)
matrix. We perform only one iteration but the final solution may not have rank n − 1.
The main drawback regards the convergence since equivalent points from the point
of view of S are not considered as such with this simplification. This may cause the
algorithm to “jump“ from one equivalent point to another. In spite of this, in our exper-335

iments the time required by both approaches were similar and provide similar results
regarding the final cost. Our implementation allows the user to choose the domain of
Y.

Implementation details: The full algorithm of the proposed iterative certifier is
summarized in Alg. 1. We discuss now some aspects regarding the implementation.
First, to avoid triggering the rank deficient condition at the first iteration, we compute
the initial guess for problem R-Y by applying a tolerance τeigen-init = 1e − 04 to the
eigenvalues µ1 ≤ µ2 ≤ . . . µm divided by the maximum eigenvalue µn, i.e. we zeroed
all the ratii µi/µm under τeigen-init. This gives us the initial rank of the potential solution.
This initial threshold τeigen-init is larger than the one that detects rank deficient points
τeigen = 1e − 06 during the optimization. Second, we stop the optimization of the
second problem if the cost is below a given threshold τcost. Since the cost is the sum of
the squared entries of Sx and S − (C +

∑m
i=1 λi Ai), we normalize it by the size n of the

vector x ∈ Rn×1

f ?F-N =
1
n2 ‖Sx‖22 +

1
n2

∥∥∥∥∥∥∥S − C +

m∑
i=1

λi Ai

∥∥∥∥∥∥∥
2

F

. (11)

Thus, we stop the optimization if the cost f ?F without normalization reaches the value
τcost = 1e − 09 or the normalized cost f ?F-N goes under τcost-norm = 1e − 11. Empirically340

we observe that non-certified solutions have associated costs close to 1e − 06. The
algorithm stops when the rank of the matrix Y is larger than n − 1. Further, if the line
search algorithm is unable to find a new solution, we leverage the initial guess and
continue the process. Alg 2 shows the process to increase the rank of the solution Y.
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Algorithm 1: Iterative optimality certifier
Data: Solution to problem QCQP x; data matrix C; set of constraints {Ai}i;

initial lagrange multipliers λ0 (optional)
Result: lagrange multipliers λ; Hessian S; optimality certificate isOpt
// Obtain initial guess

1 (λ0,S0)← Solve system J(x)λ = b(x) for λ0 with minimum 2-norm;
2 Decompose solution S0 to obtain Y0 with rank k;
// j = 0

3 repeat
4 (λ j+1,Y j+1)← Solve problem R-Y with (λ j,Y j)
5 if cost below threshold then

// Solution is optimal

6 isOpt = True ;
7 λ? ← λ j+1;
8 S? ← S j+1 ;
9 else if we can continue then

// Test another solution

10 if Y j+1 rank deficient then
// Reduce rank

11 k ← k − 1 ;
12 Update Y j+1 with rank k;
13 else

// Increase rank

14 k ← k + 1 ;
15 Update Y j+1 with rank k;

16 else
// We couldn’t test more solutions

17 isOpt = unknown

18 until convergence or max. iters or max. rank;

Estimation of the essential matrix: As with the certifier, we propose to estimate345

the essential matrix by optimizing on its manifold. Since the process is similar to the
general case devised in [32], we provide here only the basic information and refer the
reader to the Supplementary material section E for more information. For the solver
we employ again the trust-region method.

Domain: Regarding the domain, we employ the classic representation based on the350

rotation and translation up-to-scale. For the essential matrix following the definition in
eq. (4), we have that EY = [t]xRY, where RY is a 2D rotation as in eq. (2). Hence,
our domain for this problem is S2 × SO(2). It is well-known that in the general case
some issues may arise with this simplification, since each essential matrix corresponds
to four different configurations of translation and rotation [33]. Two different rotations355

are associated with the same essential matrix: one of them is the “true“ rotation and
the other one is the result of the rotation followed by a reflection w.r.t. the translation
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Algorithm 2: Increasing rank of solution Yog

Data: Solution to problem R-Y with rank r; initial Hessian S0
Result: Solution Ynew with rank r + 1
// Run linear-search algorithm

1 α← 16e − 6;
// Compute cost for original solution

2 fog = cost(Yog) ;
// Compute search direction

3 vmin ← searchDirection(Yog) (see Supplementary material C);
4 i← 0;
5 repeat

// Obtain new solution along direction

6 Yi ← retract(Yog, αvmin) ;
// Compute cost

7 fi ← cost(Yi);
8 if fi < fog and rank(Yi) ≡ r + 1 then

// Accept this solution

9 Ynew ← Yi ;
10 break ;
11 α← α/2;
12 i← i + 1;
13 until while i < maxIters and solution not improved;
14 if Linear-search failed, use initial Hessian H0 then

// Decompose initial Hessian H0
15 (U, D2)← eigenDecomposition(H0) ;
16 Ynew ← U[:,1:r+1] D[:,1:r+1] ;

vector. In this work we restrict the rotation space to 2D, and hence the reflected rotation
does not appear since it will be not a Y-rotation in general. In practice, we did not
observe any additional solution to the problem nor a decrease on the performance of360

the optimization. A theoretical proof of the existence or not of any symmetric solution
is out of the scope of the present manuscript.

Model: The employed solver requires second-order information about the model,
that is, gradient and (vector-product) Hessian in terms of the variables of the problem.
Since we consider the domain as the product of manifolds, we can define the gradient365

and Hessian separately for each variable. We leverage the full model and extend the
2D rotation to a 3D rotation. This allows us to re-use the model derived in [32] with
minor modifications.

5. Evaluation

In this last section we evaluate the proposed iterative certifier and the on-manifold370

variable estimation, and compare the latter with the state-of-the-art works in different
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(a)

Form. Mean (median)
LEFT 1.1674 ( 0.548 )

RIGHT 1.0872 ( 0.509 )
BOTH 1.2415 ( 0.632 )
ADJ 1.4336 ( 0.768 )

(b)

Figure 3: Fig. 3a shows the configuration of the points, cameras and parameters for the considered prob-
lem instances used in the synthetic evaluation. Table 3b reports the computational times (in milliseconds)
required by the certifier for each formulation for the configurations with pure Y-rotation RY.

situations. We consider the minimal solver denoted by MIN-E by [19] and the non-
minimal, optimal solver denoted by OPT-E in [9]. From all the proposed options in
that work, we select the one which is not based on Sturm sequences since it appears
to be more stable although slower. The minimal solver MIN-E was taken from the375

SfM library Theia [4] (by the same main author), and the solver for the non-minimal
OPT-E was kindly provided by the authors. Since the minimal solver MIN-E requires
only three points, we sample five random subsets from the whole set and keep the
solution with the lowest cost. Additionally, we will provide also the results given by
the initialization DLT-E employed for the on-manifold estimation. This initialization380

is similar to the classic DLT method, but we impose the constraints in the set (4) by
operating over the corresponding columns and rows of the full 9 × 9 matrix to obtain a
6 × 6 matrix.

5.1. Evaluation on synthetic data
We place the first camera frame at the origin (identity orientation and zero transla-385

tion) and generate a set of random 3D points within a frustum with depth ranging from
three to eight units measured from the first camera frame and inside its Field of View
(FoV) of 100 degrees. Then, we generate a random pose for the second camera such
that the relative rotation is a Y-rotation. The relative translation depends on the set of
experiments which we define later. We enforce that all the 3D points lie within the390

second camera’s FoV (also 100 degrees). Figure 3a depicts a simple scene. We create
the correspondences with a pin-hole camera model and add Gaussian noise with devi-
ation σ (in pixels). The noise is applied on the normalized image plane, considering a
focal length of 512 pixels for both cameras. After the perturbation, the observations are
normalized to have Euclidean norm one. We consider three different configurations in395

terms of the relative translation: (a) general translation, where we assign to the trans-
lation a random vector with Euclidean norm two; (b) forward translation, where the
second camera moves two units in the Z-direction; and (c) lateral translation, similar
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Essential matrix: Normalized cost
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Figure 4: Essential matrix: Normalized cost: Cost of the solutions normalized by the one for OURS-E
(in magenta). We don’t include the results for MIN-E for being too large in comparison (see Supplementary
material section G where these results are included). Values above one indicates that the cost for the solver
was larger than that for OURS-E. Top row shows the experiments with pure Y-rotation and bottom row the
experiments where a perturbation was added to the rotation. Left column: translation is a random vector;
middle column: lateral translation on the X-direction; and right column: forward motion (Z-axis). The
number of correspondences is fixed to N = 50. Results with zero noise are not shown for being numerically
zero for all the solvers. Note the scale difference between general and lateral motion and forward motions
(right column), and the number of outliers returned by OPT-E.

to a classic stereo configuration, the second camera is placed along the X-direction at
two units of distance from the first one.400

We will also consider perturbation on the relative rotation by pre-multiplying a
random rotation with angle θR ≤ 0.01[rad] to the original Y-rotation. For the different
setups we also vary the number of correspondences from N ∈ {10, 15, 50, 100, 200}
and noise σ ∈ {0.0, 0.5, 1.5, 3.0}. Since we maintain the focal length fixed, varying
the noise changes the Signal-to-noise ratio. For each type of configuration and set of405

parameters, we generate 300 random problem instances.

5.1.1. Results for the variable estimation
While the rotation error is an intuitive measurement of the quality of the solution,

the cost attained by the solutions indicates which one is actually closer to the true
global optimum, which is the main goal of this work. To limit the length of the main410
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Solver Synthetic data (µs) Real data (µs)
DLT-E 38.9434 ( 29 ) 78.3212(71)

OURS-E 77.6539 ( 73 ) 140.733(124)
MIN-E 10.9514 ( 10 ) 7.0121(6)
OPT-E 214.2631 ( 207 ) 332.0242(169)

Table 1: Computational times in microseconds required as mean(median) by the solvers for (a) synthetic
data (first column); and (b) real data (second column).

manuscript, we only include here the results with the costs and include in the Sup-
plementary material section F these rotation errors for the considered configurations.
The cost attained by each solver normalized by OURS-E for all the configurations for
problem instances with N = 50 correspondences as a function of the noise (X-axis)
is shown in figure 4. Supplementary material section G includes more results, includ-415

ing a comparison with the minimal MIN-E, which are not included in the manuscript
due to space limits. Values above one indicate that the cost attained by the solver was
larger than the one for OURS-E. For all our experiments, this was always the case even
with OPT-E except in six problem instances with forward motion and noisy RY: 3 for
N = 10 and 3 for N = 15 (results are included in Supplementary material). For those420

cases, OURS-E returns solutions with larger cost than OPT-E, but lower than MIN-E.
Further, for the general and forward motion the normalized costs of our initial guess
DLT-E and the solver OPT-E are similar. For lateral motions, though, OPT-E performs
better than DLT-E. In general, we observe some unstable results for OPT-E, seeing as
outliers in fig. 4, even for problem instances with a non-minimal number of correspon-425

dences and/or low noise. Further, even though OPT-E is technically an ’optimal’ solver,
we observe empirically that a solution with lower cost exists (which is found by our
proposal), mainly due to numerical instabilities/inaccuracies. This behavior highlights
the necessity of a refinement of the solution, as the one proposed in this manuscript,
even for ’optimal’ solvers.430

Computational time: Table 1 collects the computational time required by each
solver as mean(median) in microseconds for (a) the synthetic data (first column); and
(b) real data (second column). We didn’t observe any considerable variance of the
times with respect to the configurations and hence, all the motions are considered to
compute the above-mentioned metrics. Notice that the proposed solver is faster than435

OPT-E.

5.1.2. Results for the iterative certifier
Quality of initialization
We measure the quality of the initialization by the minimum eigenvalue of the ma-

trix S and the sum of the eigenvalues which are zeroed. We move the results to the440

Supplementary material section F and include here the main observations. For zero
noise, all the formulations have zero (∼ 1e−17) as minimum eigenvalue. Generally the
eigenvalue increases with the level of noise for all the camera configurations, although
the effect is more apparent with the formulations with fewer constraints. In most prob-
lem instances all the formulations attain minimum eigenvalues below 1e− 04. In terms445
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Certifier: normalized cost
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Figure 5: Certifier: normalized cost: Normalized cost as in eq. (11) for the different formulations (see
legend), level of noise (see X-axis) and the three considered configurations (from left to right): general,
lateral and forward translation. First row shows the results for pure Y-rotation and the second row those
for noisy Y-rotation. We consider the solution as optimal when the cost drops below 1e − 11. Notice the
difference in the Y-scales.

of configurations we observe a similar behavior for the general and lateral movements,
while forward returns the worst solutions.

For noisy Y-rotation, the eigenvalue increases for all the configurations including
with zero noise, being in average an order of magnitude larger than with the noiseless
Y-rotation. Forward movements are still the ones with the worse performance, reaching450

eigenvalues circa 1e − 03.
Performance of certifier: Problem (R-Y)
Figure 5 shows the normalized costs for the different configurations for N = 50

correspondences. The values of the costs are included in the Supplementary material
section F. From fig. 5 we notice that the minimal formulations LEFT and RIGHT seem455

to perform worse, but still are able to certify solutions even with large noise σ = 3.
The redundant formulations BOTH and ADJ have similar performance regardless of
the camera configuration and certify most of the solutions. For noisy Y-rotations, this
difference is more notable. For these cases the noise applied to the observations does
not seem to affect the certifiers, but the camera configuration plays an important role.460

Lateral movements seem to be less critical for the certifier and still some solutions are
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certified. Forward movements on the other side increase the normalized cost up to
1e−08 for the minimal formulations. In general the minimal formulations detect fewer
optimal solutions than the redundant one, which returns optimality certificates even for
large noise and low number of correspondences, highlighting the importance of this465

type of certifiers for these particular challenging scenarios. We include the number of
certified solutions for these synthetic experiments in Supplementary material section F.

Comparison with SDP solver: We compare the performance of our iterative certifier
with the one obtained by solving the SDP in prob. R-F with off-the-shelf tools, in this
case, with SDPT3 [27] modeled by CVX [45, 46]. Notice that the solution attained470

by the SDP isn’t necessarily the same than the one obtained by our approach. Hence,
we only compare the costs for both approaches for problem R-Y ( fpro j for the cost
attained by the proposal and fsdp for the cost by the off-the-shelf tools), which are
included in figure 2b as the cumulative distribution of the differences. We observe that
the costs are practically the same for all problem instances, although they are closer475

for the redundant formulations. Therefore, our heuristic certifier is able to obtain the
global solution for problem R-Y, and hence a valid optimality certificate for the RPp.

Computational time: To finalize the evaluation on synthetic data we summarize
here the computational time required by each formulation. These metrics only con-
sider cases with certified optimal solutions, since the algorithm only stops when all the480

possible ranks for the Hessian are checked. Thus, these metrics can be also employed
by the user to stop the certification if the execution time is too large w.r.t. that expected.
We didn’t observe any substantial variation of the times with respect to the camera
configurations. However, the level of noise and number of correspondences do impact
the performance, also affecting the number of iterations required by the certifier. For485

the extreme cases with large noise (e.g. 3 pixels), and low number of correspondences
(e.g. 10), the averaged number of iterations goes up to 2 for all the formulations. For
more common cases, the mean remains below 1.2 for all the configurations. For noisy
Y-rotation, the level of noise and number of correspondences does not affect the cer-
tifier and the averaged number of iterations reaches 2 for all formulations, although it490

is slightly better for ADJ. Nevertheless, for all the configurations, noise and number of
correspondences the median number of iterations is one, even for noisy Y-rotations.

Table 3b shows the mean and median times for each formulation for problem R-
Y. Recall that these values include all the noise level and number of correspondences,
which, as explained above, affect the certifier. We must highlight here that for the495

problem instances with noiseless Y-rotation the certifier returns a solution in 1.5 mil-
liseconds, even for the over-constrained formulations.

5.2. Evaluation on real data

To conclude this Section we evaluate our proposal on large scale real datasets which
are publicly available. The employed datasets are the next:500

1. KITTI dataset [47]: The sequences were recorded by a moving vehicle with a
forward pointing camera. The next sequences are considered: road-2011-09-26-
drive-0027-sync denoted by KITTI: ROAD-27; road-2011-09-30-drive-0016-
sync denoted by KITTI: ROAD-30; road-2011-09-26-drive-0029-sync denoted
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Real data
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Figure 6: Real data: Cost value for the considered solvers for all the datasets is shown in fig. 6a. Fig. 6b
shows the Cumulative sum (normalized) of the normalized cost returned by the certifiers. The graphics for
BOTH and ADJ overlap.

by KITTI: ROAD-29; and road-2011-09-26-drive-0032-sync denoted by KITTI:505

ROAD-32.
2. TUM dataset [48]: The images were taken by hand-held cameras and show dif-

ferent scenes with texture. We consider the sequences: freiburg3 teddy denoted
by TUM-teddy; freiburg3-structure-texture-far denoted by TUM-struct-far;
and freiburg3-structure-texture-near denoted by TUM-struct-near.510

3. Notredame 2: The unordered images show Notredame from different point of
views and were taken by hand-held cameras. There are 715 images. Since the
set is not sequential, we take all the combinations.

4. EuRoC-MAV dataset [49]: The images were taken by an autonomous aerial ve-
hicle in a machine hall. We consider all the sequences: MH-01-easy denoted by515

MH1; MH-02-easy denoted by MH2; MH-03-medium denoted by MH3; MH-04-
difficult denoted by MH4; and MH-05-difficult denoted by MH5.

We want to recall that this work focused on the certification of the solution, rather
than in the robustness of the solvers. Therefore, we do not contemplate wrong corre-
spondences (outliers) on the data and filter the matches with the provided ground truth520

before feeding it to the solvers. We keep all the problem instances with at least 50
correspondences. Nevertheless, the proposed solvers are suitable for being embedded
into robust nonminimal paradigms. The gravity prior in these sequences is estimated
and applied as follows: We obtain a 2-decimal approximation of the ground-truth grav-
ity vector. This limitation on the accuracy of the measurement allows us to model525

noisy vectors, as in the previous Section. We obtain the associated rotation, which
is later applied to the observations. These operations on the observations provide us

2http://phototour.cs.washington.edu/datasets/
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with ’noisy’ problem instances, which are closer to those encountered in real-world
applications. Further, for the KITTI dataset we assume that the cameras are already
aligned, i.e. RY = I3 since the movement is supposed to be ’planar’, although this530

doesn’t match the ground-truth results. We believe this last case is relevant since it’s a
common assumption for this kind of configurations.

Figure 6a shows the cost of the returned solution for the different datasets (con-
sidering all the sequences) by all the solvers. As with the synthetic data, the minimal
solver MIN-E attains large errors. The linear method DLT-E performs well in most535

problem instances, while the non-minimal OURS-E and OPT-E return similar solu-
tions, although our proposal always attain the lowest cost of all the methods.

Figure 6b depicts the cumulative sum (normalized) of the normalized cost of the
certifiers for all the considered datasets. The behavior of the formulations doesn’t
change on the real data, with the redundant BOTH and ADJ being able to certify more540

solutions that the minimal LEFT and RIGHT.
In terms of computational time, we didn’t observe any substantial change with

respect the synthetic experiments and all the formulations, including the redundant
ones, return an optimality certification in less than 1.5 milliseconds.

6. Conclusion and future work545

In this work we have tackled the Relative Pose problem (RPp) between two central
cameras with known gravity vector. This information allows to reduce the three degrees
of freedom for the rotation to only one. Our proposal relied on a efficient estimation of
the essential matrix and a fast iterative optimality certifier based on the dual problem.
This certifier leveraged the low-rank decomposition of the Hessian of the Lagrangian.550

Since the certifier depended on the formulation of the set of essential matrices, we
provided four different set of constraints that were shown experimentally to perform
different in terms of certification. We evaluated our proposal exhaustively on synthetic
and real data. The estimation of the variable was shown to return solutions with lower
cost than other nonminimal solvers while being more stable. The certifier worked with555

large noise and returned optimality certificates for all formulations in less than 1.5
millisecond.

As future work we contemplate the extension of this certifier to the N-view trian-
gulation problem, and introduce our proposal in robust paradigms, such as Graduated
Non-convexity (GNC) [50] (with the Black-Rangarajan duality [51]).560
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A. Essential matrix with form (4) has a Y-rotation.

In this section we show that any matrix with the form given in (4) has a Y-rotation
when decomposed as [t]xR. Matrices with this form have a specific pattern given by

EY =

 e1 e2 e3
e4 0 e5
−e3 e6 e1

 , (12)

where the Y-rotation is

RY =

 c 0 s
0 1 0
−s 0 c

 , (13)

and c, s ∈ R such that c2 + s2 = 1705

=⇒: Consider a 3D vector t ∈ S2 and the Y-rotation as in (2). The associated
essential matrix has the form

E = [t]xR =

 −t2s −t3 t2c
t3c + t1s 0 t3s − t1c
−t2c t1 −t2s

 , (14)

where the matrix [t]x is defined as

[t]x =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 . (15)

The form for EY follows from the above relation.

⇐=: Consider a 3 × 3 essential matrix E = [ei, j]3
i, j=1 whose elements fulfill the

constraints in eq. (4). Since E is an essential matrix, we can decompose it as the
product [t]xR for t ∈ S2 and a 3D rotation matrix R = [ri, j]3

i, j=1 ∈ SO(3). For E to have
a Y-rotation as R, three additional relations must be fulfilled. These requirements can
be written in terms of the elements of t and R as

e1,1 − e3,3 = 0 ⇔ −t3r2,1 + t2r3,1 + t2r1,3 − t1r2,3 = 0 (16)
e1,3 + e3,1 = 0 ⇔ −t3r2,3 + t2r3,3 − t2r1,1 + t1r2,1 = 0 (17)

e2,2 = 0 ⇔ t3r1,2 − t1r3,2 = 0 (18)

We can re-write these expressions as−r3,2 0 r1,2
r2,1 r3,3 − r1,1 −r2,3
−r2,3 r3,1 + r1,3 −r2,1


KR

t1t2t3
 = 03×1 (19)

Since t ∈ S2 it cannot be the null vector due to the norm constraint. It follows that
the 3 × 3 matrix KR has at most rank 2. Next we analyze each possible rank.
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Rank zero: Assume that KR has zero rank, and so KR = 03×3. This implies that
r3,2 = r1,2 = r2,1 = r2,3 = 0, and r3,3 = r1,1, r3,1 = −r1,3. Since R is a rotation710

matrix, due to the orthogonal constraint we have that r2,2 = ±1. Filling the entries of
the matrix with these values and defining c .

= r1,1 and s .
= r1,3, we obtain a Y-rotation

when r2,2 = +1 and a Y-rotation with the same angle followed by a reflection around
the Y-axis if r2,2 = −1. The determinant of the latter is not positive, hence being an
orthogonal transformation and not a rotation as assumed. Then, KR with rank zero715

implies that R is a Y-rotation.
Rank one: Assume that KR as rank 1. Thus, we can decompose it as the outer

product of two real 3D vectors u, v as KR = uvT . Observe that KR1,2 = 0; then, either
v2 = 0 or u1 = 0 (or both at the same time).

Consider u1 = 0, which leads to the first row of KR to be zero. Then r3,2 = r1,2 = 0.720

Since R is still a rotation matrix, we have that r2,2 = ±1 and in turn r2,3 = r2,1 = 0.
Since R must be a rotation, we have that r2,2 = 1, r1,1 = r3,3 ans r1,3 = −r3,1. Then, KR
has rank zero and not one, and we fall onto the previous case where R was a Y-rotation
by construction.

Let us now consider v2 = 0. This leads to the second column of KR being zero.
Then, r3,3 = r1,1 and r3,1 = −r1,3. Since R is still a rotation matrix, any column and row
has (Euclidean) norm one, and so r1,2 = r3,2 = r2,1 = r2,3. We also have that

r1,1r3,1 + r1,2r3,2 + r1,3r3,3 = 0 =⇒ r2
1,2 = 0, (20)

and so r1,2 = 0, leading to the two previous scenarios with R being a Y-rotation. Then,725

the rank one condition cannot be achieved with v2 = 0 either. We conclude that KR
does not have rank one under any condition.

Rank two: Last, we contemplate the case in which KR has rank 2. As we have
shown previously, a Y-rotation leads to a matrix KR = 03×3. Then, we will assume that
R is not a Y-rotation. Consider then a KR which is not the zero matrix but has rank-two.730

Its right-nullspace is then one-dimensional and it is given by t.
Recall that the set of constraints imposed by eq. (4) are functions of the essential

matrix, not the rotation matrix. From classic computer vision theory we know that
two rotations are associated with the same essential matrix, R and PR, being P the
reflection w.r.t. the translation vector t (the right nullspace of KR) defined as P =735

2t tT − I3. Therefore, if R fulfills the constraints, so does RP
.
= PR for the appropriated

t. From the above development, we know that the matrix KR evaluated at RP must
have either rank 0 or rank 2.

Consider the (2,2) entry of this matrix, denoted by (RP)2,2. This entry has the form
(in terms of R and t):

(RP)2,2 = r2,2(t2
2 − t2

1 − t2
3) + 2r1,2 t1 t2 + 2r3,2 t2 t3. (21)

We can re-write this expression in matricial form by defining the matrix B so

(RP)2,2 = tt

−r2,2 r1,2 0
r1,2 r2,2 r3,2
0 r3,2 −r2,2


B

t. (22)
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Matrix B has as eigenvalues {−1; +1;−r2,2}. Since we assume that R is not a Y-rotation,
then r2,2 , 1. See that if r2,2 = 1, then eq. (19) holds since the eigenvector is [0, 0, r2,2]T .
In this case, the matrix KR is the zero matrix by construction. We are interested in the
other cases. Of interest for us is the eigenvector associated with the eigenvalue +1. Up
to scale, this eigenvector has the form

u =

 r1,2
r2,2 + 1

r3,2

 . (23)

This vector is, in fact, the right nullspace of KR for the considered R. To prove this,
consider each of the three entries of the expression KRu = [(KRu)1, (KRu)2, (KRu)3]T .
The first entry has the form:

(KRu)1 = −r3,2r1,2 + r1,2r3,2 = 0 (24)

For the second and third entries, it is necessary to remind that any rotation matrix
its adjugate agrees with its transpose, Adj (R) = RT . Out of the nine identities that
follow from this equivalence, we will leverage the next four:

r1,1 = r2,2r3,3 − r2,3r3,2 (25)
r3,3 = r1,1r2,2 − r1,2r2,1 (26)
r1,3 = r2,1r3,2 − r2,2r3,1 (27)
r3,1 = r1,2r2,3 − r1,3r2,2 (28)

With these expressions at hand, we can now derived the last two entries of KRu.

(KRu)2 =

Eq. (26) 0

r3,3 + r2,1r1,2 − r1,1r2,2 +

Eq. (25) 0

r2,2r3,3 − r2,3r3,2 − r1,1 = 0 (29)

where we substituted the expressions in (25) and (26). For the last entry, we have that:

(KRu)3 =

Eq. (28) 0

r3,1 − r2,3r1,2 + r2,2r1,3 +

Eq. (27) 0

r1,3 − r2,1r3,2 + r2,2r3,1 = 0 (30)

where we substituted the expressions in (27) and (28).
Recall that we are treating the case where the 3 × 3 matrix KR has rank 2, and

hence its nullspace is one-dimensional, which we associated with the translation vector
t. Form the above development we see that the vector u with form in (23) defines
this right nullspace, that is, t ∼ u. Hence, the pair (R,u) fulfills the constraints for
E to have the pattern in (4). Notice, however, that the vector u was the eigenvector
associated with the eigenvalue +1 of B. Re-scaling the vector u to have norm one,
we have that uT Bu = +1. Since this expressions is the matricial form of the entry
(RP)2,2 of the matrix RP, we have that (RP)2,2 = 1. Note that RP is a rotation matrix
by construction; in order to fulfill the orthogonal constraints with (RP)2,2 = 1, the next
entries must be equal to zero: (RP)1,2 = (RP)2,1 = (RP)2,3 = (RP)3,2 = 0, that is, RP
has the general form

RP =

a 0 b
0 1 0
c 0 d

 (31)
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for the four scalars a, b, c, d.740

Since t has norm one, we have that PT = P and so PT P = PPT = I3 with
det(P) = +1. Therefore, for any rotation R we have that RT

PRP = RPRT
P = I3 with

det(RP) = +1, hence being a rotation matrix, i.e. RP is a Y-rotation.
For any rotation R, the matrix KR evaluated at that rotation is rank deficient (with

rank generally 2). Its right nullspace is given by t. We can form the rotation RP = PR,745

with P = 2t tT − I3 (the reflection w.r.t. t). The rotation matrix RP is a Y-rotation by
construction. Since RP and R are the two rotations derived from the same essential ma-
trix E for a given t, it follows that for any essential matrix E that fulfills the constraints
we can always derive a factorization with a Y-rotation.

To wrap-up this section, we have proven that any essential matrix that fulfills the750

set of constraints given by the pattern in (4) has a factorization in which one of the
rotation matrices is a Y-rotation. Further, for a given Y-rotation R and translation t,
the “reflected“ rotation RP = PR with P = 2t tT − I3 also fulfills the constraints, as
expected. The 3× 3 matrix KR evaluated at R is the zero matrix, while evaluated at RP
the matrix KR has rank 2, and its right nullspace is given by t.755

B. Problem (R-F) is convex

In this section we show that problem (R-F) is a convex problem, i.e. it minimizes
a convex cost function over a convex set. First, since the feasible set is the Cartesian
product of two convex sets (the Euclidean space and the cone of positive semidefinite
matrices), then it is also convex [34, Sec. 2]. Next we prove that the cost function is
also convex. Recall that the objective takes the form:

f ?S = min
S∈Rn×n

‖Sx‖2F︸︷︷︸
f1

+

∥∥∥∥∥∥∥S − C +

m∑
i=1

λi Ai

∥∥∥∥∥∥∥
2

F︸                   ︷︷                   ︸
f2

. (32)

Let s .
= vec(S) ∈ Rn2

and the vector with all the unknowns y .
= [s, λ1, . . . , λm]T ∈ Rnn+m

and so
f1 = ‖Sx‖2F =

∥∥∥(xT ⊗ In)s
∥∥∥2

2 =
∥∥∥X̃y

∥∥∥2
2 (33)

with the matrix X̃ ∈ Rn2+m only has non-zero values in its top-left n × n2 entries with
the block (xT ⊗ In) ∈ Rn×n2

.
The second term in the objective is written in a similar way as:

f2 =

∥∥∥∥∥∥∥S − C +

m∑
i=1

λi Ai

∥∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥∥s − c +

m∑
i=1

λiai

∥∥∥∥∥∥∥
2

2

=
∥∥∥Ãy − c

∥∥∥2
2 (34)

with Ã ∈ Rn2×(n2+m)

Ã =
(
In2 a1 . . . am

)
. (35)

Functions f1 and f2 are convex since their Hessians X̃T X̃ and ÃT Ã, respectively,
are always positive semidefinite independently of the matrices X̃ and Ã. The full cost760

is the sum of them and thus it is also convex [34, Sec. 3.2], proving the claim.
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C. Line search algorithm for extended point with lower cost

This section explains the line search algorithm employed to obtain a solution Y j+1
with rank k + 1 from a solution Y j with rank k for the iterative certifier. The algorithm
follows the same idea than the Riemmanian staircase [36]: use the Hessian of the765

Lagrangian to find a search direction for the next solution. In our proposal it is the
rank of the matrix Y (associated with the Hessian S of the original problem) the one
which is extended. The extension does not affect the lagrange multipliers and thus we
are interested only on the contribution of the matrix Y. As in [36], the naive extension
with a zero column Y+

.
= [Y, 0n×1] leads to rank-deficient solution, hence triggering the770

stop condition, since the extended Y is a stationary point of rank k. Nevertheless, the
Hessian of the problem evaluated at this point Y+ gives us a search direction for the
next k + 1 rank solution.

Let us define the direction Ẏ = [0n×k |v] ∈ Rn×(k+1), where v is the search direction
that we want to computed from the Hessian. The Hessian for this problem HF ∈

R(nk+m)×(nk+m) evaluated at a generic point Y × λ ∈ Rn×k × Rm can be written in terms
of three blocks HYY ∈ Rnk×nk,Hλλ ∈ Rm×m,HYλ ∈ Rnk×m (these blocks depend on the
point but we omit this dependency for clarity). The full Hessian is expressed by

HF
.
=

(
HYY HYλ
HT

Yλ Hλλ

)
. (36)

Thus, the Hessian vector product from section D on the direction [VY ,Vλ] is∇2 fF[VY ,Vλ] =

HF[VY ,Vλ] ∈ Rnk+m. For the extended version we have that Vλ = 0m×1 and VY =775

vec(Ẏ). Since we need to compute a vector that makes it negative, we study the ex-
pression [VY ,Vλ]T∇2 fF[VY ,Vλ] = VT

YHYYVY . Therefore, we are only interested on
the top-left block, HYY. Further, since Ẏ is all zeros except its last column, its vec-
torization has the form VY = vec(Ẏ) = [0, . . . , 0

nk

, v] and thus, from HYY we will need

to compute only the bottom-right n × n block. Through a symbolic computation we780

obtain that this block is given by 2YYT xxT + 2xxT YYT + 4(YYT −C +
∑m

i=1 λi Ai). The
eigenvector associated with the smallest eigenvalue of this block is considered as the
search direction v.

D. On-manifold iterative certifier

In this section we include the information regarding the iterative certifier of section785

4: the operators associated with the manifold and the quadratic model.

D.1. Domain

This problem optimizes over the product Rm × Sn
+. Since we are considering the

Cartesian product, we can tackle each component separately in terms of operators.
There are four operators that have to be defined: retraction, projection from tangent790

space, gradient and Hessian. These functions are independent of the cost. Roughly
these operators allow to pass from the Euclidean space where all the more consuming
operations are computed to the Riemmanian space. Since the Lagrange multipliers
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are only real, the operators associated with them are the identity functions. For the
PSD matrix, these operators depend on the geometric definition of the space. In this795

work, we rely on the low-rank factorization s S = YYT , with Y ∈ Rn×k full rank.
The optimization can be performed in the n × k-Euclidean space. However, under this
decomposition of S we can derive two different, full rank matrices Y,W that originates
the same PSD matrix S. These two matrices are related by a k × k matrix O which
is orthogonal, Y ∼ WO. Other matrices O give different yet equivalent points OY800

from the point on view of the cost and the relation S = YYT . Hence, this equivalence
has to be taken into account when optimizing any function, since equivalent points are
considered as different by the naive version on only the Euclidean space. The operators
reflect this characteristics.

We employ a projection-based retraction defined as

RetrY(U) = Y + U, (37)

where Y ∈ Rn×k is a point on the manifold and U a point on the (horizontal) tangent805

space.
The horizontal tangent space projector is

PY(H) = H − YΩ, (38)

where Y ∈ Rn×k is a point on the manifold, H a point on the ambient space, and
Ω is a skew-symmetric matrix. Ω is the unique solution to the Sylvester equation
Ω(YT Y) + (YT Y)Ω = YT H − HT Y.

The Riemannian gradient at a point Y is the Euclidean gradient of the function810

evaluated at the point. The Riemmanian Hessian is also the Euclidean Hessian and no
further operation is required.

D.2. Euclidean quadratic model

In this last part we include the Euclidean quadratic model for the certifier.
Recall that the optimization problem has the form

f ?F = min
Y∈Rn×k ,λ∈Rm

∥∥∥YYT x
∥∥∥2

F +

∥∥∥∥∥∥∥YYT − C +

m∑
i=1

λi Ai

∥∥∥∥∥∥∥
2

F

(39)

The cost is quartic in Y ∈ Rn×k and quadratic in λ as

fF = xT YYT YYT x+tr(YYT YYT )+tr
(
(C−

m∑
i=1

λi Ai)T (C−
m∑

i=1

λi Ai)
)
−2 tr

(
YYT (C−

m∑
i=1

λi Ai)
)
.

(40)
For the gradient and Hessian it is useful to re-write the cost fF highlighting one
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lagrange multiplier. Hence, we have that:

fF = tr(YYT xxT YYT ) + tr(YYT YYT )+ (41)

+ λ2
i tr(AT

i Ai) − 2λi tr
(
Ai(C −

m∑
j=1, j,i

λ j A j)
)
+

+ tr
(
(C −

m∑
j=1, j,i

λ j A j)T (C −
m∑

j=1, j,i

λ j A j)
)
+

+ 2λi tr
(
AT

i YYT )
− 2 tr

(
(C −

m∑
j=1, j,i

λ j A j)YYT )
. (42)

The Euclidean gradient ∇ fF = (∇ fFλ,∇ fFY) has the elements

∇ fFλ = [∇ fFλ1, . . . ,∇ fFλm]T ∈ Rm×1, (43)

with

∇ fFλi = 2λi tr(AT
i Ai) + 2 tr

(
AT

i (YYT − C +

m∑
j=1, j,i

λ j A j)
)

(44)

For the Y part we will need some basic notions of multivariate calculus. Let us
define the generic expression g(Y) = tr(YYT AYYT ). We can obtain a second-order
approximation by evaluating Y + H and discarding higher order terms as

g(Y + H) = tr
(
(Y + H)(Y + H)T A(Y + H)(Y + H)T )

= (45)

= tr
(
(YYT + 2YHT + HHT )A(YYT + 2YHT + HHT )

)
=

= tr(YYT AYYT )
g(Y+H)

+

+ 2 tr(YYT AYHT ) + 2 tr(AYYT YHT )
〈∆g(Y),H〉

+ 2 tr(YHT AYHT ) + 2 tr(AYHT YHT ) + 4 tr(HYT AYHT )
〈∆2g(Y)H,H〉

. (46)

Hence, taking into account that A = (xxT + In×n) we have that the gradient is

∇ fFY = 2YYT xxT Y + 2xxT YYT Y + 4(YYT )T Y + 4(
m∑

i=1

λi Ai − C)T Y ∈ Rn×k (47)

The vector-product Hessian is given in a similar form as∇2 fF[Vλ,VY] = (∇2 fFλ[Vλ,VY],∇2 fFY[Vλ,VY])
with

∇2 fFλ[Vλ,VY] = [∇2 fFλ1, . . . ,∇
2 fFλm] ∈ Rm×1, (48)

where

∇2 fFλi = 4 tr(AiYVT
Y ) + 2

m∑
j=1

Vλ j tr(AT
j Ai). (49)
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For the element corresponding with the Y we have that

∇2 fFY[Vλ,VY] = 4YVT
Y Y + 4VYYT Y + 4YYT VY+ (50)

+ 4(
m∑

i=1

λi Ai − C)T VY+

+ 2VYYT xxT Y + 2YVY
T xxT Y + 2YYT xxT VY+

+ 2xxT VYYT Y + 2xxT YVT
Y Y + 2xxT YYT VY+

+ 4
m∑

i=1

Vλi AiY (51)

E. On-manifold estimation of essential matrix815

In this section we include the necessary information for the on-manifold estimation
of the essential matrix: the required operators associated with the geometry of the
manifold and the quadratic models.

E.1. Domain
As mentioned in the main manuscript, for the optimization we define the set as the820

product of manifolds S2 × SO(2). Since we are considering the product, we can tackle
each component separately in terms of operators. There are four operators that have to
be defined are independent of the problem: retraction, projection from tangent space,
gradient and Hessian. Roughly these operators allow to pass from the Euclidean space,
where all the more consuming operations are computed, to the Riemmanian space.825

Sphere We employ a projection-based retraction defined as:

Retrt(u) =
t + u
||t + u||

(52)

where t is a point on the manifold and u is a point of the tangent space.
The tangent space projector is

Pt(u) = u − tT ut (53)

with t is a point on the manifold and u a vector in the ambient space.
The Riemmanian gradient at a point t is obtained by projecting the Euclidean gra-

dient ∇ft(t)
grad ft(t) = Pt(∇ft(t)). (54)

Last, the Riemmanian Hessian depends on the point t, the Euclidean gradient ∇ft(t)
and the Euclidean vector-product Hessian ∇2 ft(t)[u]. It is computed as

Hess ft(t)[u] = Pt(∇2 ft(t)[u]) − tT∇ft(t)u (55)

Rotation The projection-like retraction is given by:

RetrR(Y) = UVT , R + Y = UDVT (56)
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where R is a point on the manifold and Y is a point of the tangent space. To guarantee
that the solution returned is a rotation matrix, we check the determinant of UVT . If it
is negative, we multiply the last column of U by −1.830

The tangent space projector is

PR(Y) = Y − Rsymm(RT Y) (57)

where symm(•) takes the symmetric part of the argument, R is a rotation matrix and Y
is a matrix on the ambient space.

The Riemmanian gradient at a point R is obtained by projecting the Euclidean
gradient ∇fR(R)

grad fR(R) = PR(∇fR(R)). (58)

Last, the Riemmanian Hessian depends on the point R, the Euclidean gradient ∇fR(R)
and the Euclidean vector-product Hessian ∇2 fR(R)[Y]. It is computed as

Hess fR(R)[Y] = PR
(
∇2 fR(R)[Y] − Ysymm

(
RT∇fR(R)

))
(59)

E.2. Euclidean quadratic model

Last, we include here the Euclidean model. Recall that we consider the matrix R as
the 3D extension of the 2D rotation which is the to-be-estimated variable. The vectors835

t is a real 3D-vector.
The cost can be written as [32]

1
2

eT Ce =
1
2

tT Mt t =
1
2

rT MRr (60)

with Mt =
∑N

i=1( fi × R f ′i )( fi × R f ′i )T = R̃T CR̃ ∈ S3
+ and MR =

∑N
i=1( f ′i ⊗ [ fi]x t)( f ′i ⊗

[ fi]x t)T = R̃T CT̃ ∈ S9
+, where R̃ = (RT ⊗ I3)B, B ∈ R9×3 is the matrix that holds for

vec([t]x) = Bt and T̃ = I3 ⊗ [t]x.
The Euclidean gradient ∇fR,t(R, t) = (∇fR(R),∇ft(t)) reads:

∇fR(R) = MRr, ∇ft(t) = Mt t. (61)

The action of the Euclidean Hessian on the vector (VR,Vt) is calculated by applying
multivariate calculus as

∇2 f [VR,Vt] = (∇2 fR(R)[VR,Vt],∇2 ft(t)[VR,Vt]), (62)

with

∇2 fR(R)[VR,Vt] = MRVr + MT
R,tVt , ∇2 ft(t)[VR,Vt] = MtVt + MR,tVR (63)

where Mt;r(R, t) .= Mt;r(R, t) ∈ R9×3 is defined as follows.840

Recall that the cost function in eq. (60) can be written as

1
2

eT Ce =
1
2

tT R̃T CR̃t =
1
2

rT R̃T CT̃r (64)
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and that

MR,t =
∂(∂ f (R, t))

∂r∂t
=
∂(Mt t)
∂r

∈ R3×9, (65)

with
Mt t = R̃T CR̃t = R̃T CT̃r ∈ R3. (66)

Recall that R̃T ∈ R3×9 and let r̃i ∈ R1×9 be the i-th row of the matrix, i.e.,

R̃T =

 r̃1
r̃2
r̃3.

 (67)

See that we can express each row as r̃i = rT Bi, where Bi ∈ R9×9 are sparse matrices
(shown in equation (69)). Then, the i-th row of Mt t is given by

r̃iCT̃r = rT BiCT̃r, (68)

and its derivative w.r.t. r is 2BiCT̃r ∈ R9×1. The gradient MR,t is obtained by stacking
the derivatives of each row.

B1 =



0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0


, B2 =



0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0


, B3 =



0 −1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0


(69)

F. Further experiments on synthetic data for the certifier

Figure (7) shows the minimum eigenvalue for the solutions to problem (R-Y). We
follow the same format than in the main paper, i.e., first row has the problems with845

pure Y-rotation and the second row those with noisy Y-rotation. From left to right, we
have problems with general, lateral and forward motion. We only plot the results for
N = 50 correspondences, while the X-axis indicates the level of noise. Recall that the
focal length is fixed to 512 pixels. Figure (8) shows the absolute costs for the same set
of experiments than in fig. (5) with the same format. Last, we include the number of850

certified optimal solutions (cost of the certifier below the given threshold), normalized
by the number of problem instances.

For the noiseless motions, BOTH and ADJ certify all solutions. LEFT and RIGHT
only failed to certify solutions for problems with N = 10, 15 and large noise. Even for
these cases, the per-unit values are above 0.9. The worst performance is seen with the855
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Certifier: minimum eigenvalue
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Figure 7: Minimum eigenvalue of the solution from the initialization problem (R-Y). Top row shows the
experiments with pure Y-rotation and bottom row the experiments where a small perturbation was added
to the rotation. Left column: translation is a random vector; middle column: lateral translation on the X-
direction; and right column: forward motion (Z-axis). The number of correspondences is fixed to N = 50.

forward motion. For noisy motions the tendency is similar, but we obtain more non-
certified solutions. Recall that the certification depends on the provided solution and
the data. Figure 9 shows the per-unit certified solutions for (from left to right): general,
lateral and forward motions, for problem instances with N = 50 points and increasing
level of noise (X-axis).860

G. Further experiments on synthetic data for the on-manifold estimation

In this section we include the comparison between the different solvers employed
to estimate the essential matrix.

First, we include in figure 10 the cost for the different solvers (including the min-
imal MIN-E) normalized by the one by OURS-E (Y-axis) for problem instances with865

N = 15 correspondences and noise level σ = 0.5, 1.5, 3.0 pixels (X-axis). We fol-
low the same format that in the main document. The first row shows the errors for
those cases with pure Y-rotation and the second those with noise Y-rotation. From left
to right, we plot the configurations with general, forward and lateral translation. No-
tice that even for these small problem instances, MIN-E attains larger costs than the870
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Certifier: absolute cost

0 0.5 1.5 3
Noise [pixels]

0

1

2

3

4

5

F
in

al
 c

os
t c

er
tif

ie
r

10 -8

ADJ
BOTH
RIGHT
LEFT

(a)

0 0.5 1.5 3
Noise [pixels]

0

0.5

1

1.5

2

2.5

3

3.5

F
in

al
 c

os
t c

er
tif

ie
r

10 -8

(b)

0 0.5 1.5 3
Noise [pixels]

0

2

4

6

8

10

12

F
in

al
 c

os
t c

er
tif

ie
r

10 -8

(c)

0 0.5 1.5 3
Noise [pixels]

0

1

2

3

4

5

6

7

8

F
in

al
 c

os
t c

er
tif

ie
r

10 -7

(d)

0 0.5 1.5 3
Noise [pixels]

0

0.5

1

1.5

2

2.5

3

F
in

al
 c

os
t c

er
tif

ie
r

10 -7

(e)

0 0.5 1.5 3
Noise [pixels]

0

1

2

3

4

5

6

F
in

al
 c

os
t c

er
tif

ie
r

10 -6

(f)

Figure 8: Certifier for Essential matrix: absolute cost: Absolute cost as in problem (R-Y) for the different
formulations (see legend), level of noise (see X-axis) and the three considered configurations (from left to
right): general, lateral and forward translation. First row shows the results for pure Y-rotation and the second
row those for noisy Y-rotation. Notice the difference in the Y-scales.

Certifier: number certified solutions
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Figure 9: Number of certified solutions per-unit for noisy camera motions (left to right): general, lateral and
forward translation, for N = 50 points and increasing level of noise.
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Normalized cost N = 10
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Figure 10: Normalized cost N = 10: Cost by the different solvers, including MIN-E, normalized by the cost
attained by OURS-E for problem instances with N = 10. Values above one indicate costs larger than those
of OURS-E. Top row shows the experiments with pure Y-rotation and bottom row the experiments where a
small perturbation was added to the rotation. Left column: translation is a random vector; middle column:
lateral translation on the X-direction; and right column: forward motion (Z-axis).
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Normalized cost N = 15
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Figure 11: Normalized cost N = 15: Cost by the different solvers, including MIN-E, normalized by the cost
attained by OURS-E for problem instances with N = 15. Values above one indicate costs larger than those
of OURS-E. Top row shows the experiments with pure Y-rotation and bottom row the experiments where a
small perturbation was added to the rotation. Left column: translation is a random vector; middle column:
lateral translation on the X-direction; and right column: forward motion (Z-axis).

rest of the solvers. This difference is more accentuated for problems with more corre-
spondences, and thus we don’t include the results for this solver for making the plots
difficult to analyze. Notice, on the other hand, that DLT-E and OPT-E also obtain larger
errors than OURS-E.

Figures 11 and 12 present the errors for problem instances with N = 15, 100 corre-875

spondences, respectively, for all the solvers except MIN-E. In general, as we indicate
in the main manuscript, OPT-E returns solutions with larger errors despite being tech-
nically optimal, hence the necessity of the refinement proposed in this work. In some
cases, the large cost by OPT-E shows numerical instabilities associated with the un-
derlying tools. We must say, though, that while OURS-E obtains solutions with lower880

costs, for some problem instances (3 for N = 10 and 3 for N = 15 for forward move-
ments with noisy rotations), our solver performs worse than OPT-E.

Further experiments on synthetic data We will now focus on problems with low
number of correspondences. Our goal is to highlight the different performance of the
state-of-the-art solvers and the one proposed in this work. For this set of experiments,885

we consider problem instances with number of correspondences from 8 to 12, noise
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Normalized cost N = 100
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Figure 12: Normalized cost N = 100: Cost by the different solvers, including MIN-E, normalized by the
cost attained by OURS-E for problem instances with N = 100. Values above one indicate costs larger than
those of OURS-E. Top row shows the experiments with pure Y-rotation and bottom row the experiments
where a small perturbation was added to the rotation. Left column: translation is a random vector; middle
column: lateral translation on the X-direction; and right column: forward motion (Z-axis).
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Normalized cost N = 8, Point cloud 5 units
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Figure 13: Normalized cost N = 8, Point cloud 5 units: Cost by the different solvers, including MIN-E,
normalized by the cost attained by OURS-E for problem instances with N = 8 for problem instances with
point clouds defined between 5 and 8 units from the world frame.
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Normalized cost N = 8, maximum parallax 5 units
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Figure 14: Normalized cost N = 8, Maximum parallax 5 units: Cost by the different solvers, including
MIN-E, normalized by the cost attained by OURS-E for problem instances with N = 8 for problem instances
with maximum parallax 5 units.
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levels from 0.6 to 1.0 pix . In addition, we tested two different scene configurations:
(a) point cloud with minimum distance of 5 units from world frame; and (b) maximum
parallax of 5 units. Figures 13 and 14 show the normalized error for all the solvers
(including MIN-E) for N = 8 correspondences and varying noise level (X-axis) for (a)890

minimum distance 5 units; and (b) maximum parallax 5 units, respectively. We follow
the same format than in the other figures. Notice that, despite the problem instances
being close to the minimal case, the non-minimal solvers attain better solutions (with
lower costs) than the minimal solver. We observe a large number of outliers for both
MIN-E and DLT-E for all the considered configurations. Whereas this could be related895

to the small optimal cost, we notice that these gross outliers don’t appear for the optimal
solver OPT-E. We provide in figures 15 and 16 the same results but only for OPT-E and
OURS-E. Notice that for most cases, but not all of them, our solver is able to obtain
better solutions. For reference, we include in figures 17 and 18 the results under the
same setups for problems with N = 12 correspondences. For the other solvers the900

results were similar, and thus we only show the comparison with OPT-E. We observe
that we obtain better results with more correspondences, as expected, as we show for
problem instances with N = 15, 50, 100 in previous figures. Interesting, our solver
performs better for problem instances with maximum parallax 5 units, and the number
of cases in which OPT-E attains better results is reduced. As with the non-minimal905

problem instances, forward motions hinder the performance of OPT-E (see the different
scale for the Y-axis), even for N = 8 correspondences.

Rotation error Last, we include the error in rotation in figure 19 for the the dif-
ferent configurations of cameras and N = 50 correspondences. We follow the same
format where the X-axis indicates the level of noise applied to the correspondences.910

As expected, the minimal solver MIN-E has large error when the noise of the obser-
vations is large. Notice that for forward motions the solver OPT-E becomes unstable,
attaining large errors. This is also observed when the rotation is not a pure Y-rotation
(fig. (19f)). When the number of correspondences increases up to 100 − 200, we also
obtain large errors for OPT-E. These errors do not appear in our proposal, not even915

with forward motions with and without noisy rotation. We want to point out as well the
low error attained by the initial guess in DLT-E in almost all the problem instances and
camera configurations. For noisy Y-rotations the errors are larger and independent of
the noise. We obtain large values even for noiseless correspondences for all the solvers.
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Normalized cost N = 8, point cloud 5 units
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Figure 15: Normalized cost N = 8, point cloud 5 units: Cost by the optimal solvers OPT-E and OURS-E
normalized by the cost attained by OURS-E for problem instances with N = 8 for problem instances with
point clouds defined from 5 units.
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Normalized cost N = 8, maximum parallax 5 units
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Figure 16: Normalized cost N = 8, Maximum parallax 5 units: Cost by the optimal solvers OPT-E
and OURS-E normalized by the cost attained by OURS-E for problem instances with N = 8 for problem
instances with maximum parallax 5 units.
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Normalized cost N = 12, point cloud 5 units
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Figure 17: Normalized cost N = 12, point cloud 5 units: Cost by the optimal solvers OPT-E and OURS-E
normalized by the cost attained by OURS-E for problem instances with N = 12 for problem instances with
point clouds defined from 5 units.
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Normalized cost N = 12, maximum parallax 5 units
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Figure 18: Normalized cost N = 12, Maximum parallax 5 units: Cost by the optimal solvers OPT-E
and OURS-E normalized by the cost attained by OURS-E for problem instances with N = 12 for problem
instances with maximum parallax 5 units.
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Rotation error
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Figure 19: Rotation error: Rotation error for the solutions returned by each solver. Top row shows the
experiments with pure Y-rotation and bottom row the experiments where a small perturbation was added
to the rotation. Left column: translation is a random vector; middle column: lateral translation on the X-
direction; and right column: forward motion (Z-axis). The number of correspondences is fixed to N = 50.
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