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Abstract—This paper tackles the resolution of the Relative
Pose problem (RPp) with optimality guarantees by stating it
as an optimization problem over the set of essential matrices
that minimizes the squared epipolar error. We relax this non-
convex problem with its Shor’s relaxation, a convex program
that can be solved by off-the-shelf tools. We follow the empirical
observation that redundant but independent constraints tighten
the relaxation. For that, we leverage equivalent definitions of
the set of essential matrices based on the translation vectors
between the cameras. Over-constrained characterizations of the
set of essential matrices are derived by the combination of these
definitions.

Through extensive experiments on synthetic and real data, our
proposal is empirically proved to remain tight and to require
only 7 milliseconds to be solved even for the over-constrained
formulations, finding the optimal solution under a wide variety
of configurations, including highly noisy data and outliers. The
solver cannot certify the solution only in very extreme cases,
e.g. noise 100 pix and number of pair-wise correspondences
under 15. The proposal is thus faster than other over-constrained
formulations while being faster than the minimal ones, making
it suitable for real-world applications that require optimality
certification.

Index Terms—relative pose problem; essential matrix; optimal-
ity guarantee; convex relaxation; redundant constraints

I. INTRODUCTION

This work tackles the central, calibrated Relative Pose
problem (RPp), in which given a set of N pair-wise fea-
ture correspondences between two images coming from two
(central and calibrated) cameras, we seek the relative rotation
R and baseline b (line joining the two camera centers [1])
between these two cameras, as it is shown in Figure 1.

Solving the RPp is the cornerstone of visual odometry appli-
cations [2]-[4] and other more complex computer vision tasks,
such as Simultaneous Localization and Mapping [5], [6] or
Structure from Motion [7]-[9]. Although the gold standard for
RPp poses it as a 2-view Bundle Adjustment (that minimizes
the re-projection error [1], [10]), it is also a hard, non-convex
problem which suffers from local minima. Therefore, it is a
common and recommended practice to initialize it with the
estimate obtained from a simpler formulation, typically based
on the squared epipolar error. This algebraic error is related to
the epipolar constraint [1] that associates a pair-wise feature
correspondence (f;, f/) with the unknown relative baseline b
(as a 3D vector) and the rotation R (as a 3 X 3 matrix) and
it is defined by the expression fI ([b]xR)f! = 0, where [b]x

Fig. 1: Given a set of N pair-wise correspondences (f;, f/)
between two central and calibrated cameras 1 — 2, in this
work we aim to estimate the relative rotation R and baseline
(position) b between these two frames.

denotes the cross product with b (see Eq. (1)). In the noiseless
case the equality holds exactly; however, in the presence of
noise f1 ([b]xR)f! = ¢; # 0, which is defined as the epipolar
error.

One common approach to the resolution of this simplified
RPp based on the epipolar error relies on the introduction
of the so-called essential matrix E = [b]xR [1], [11], that
allows us to write the epipolar error for each observation ¢;,
which is quadratic in the entries of the unknowns (rotation
and baseline), as a linear constraint in the entries of the
essential matrix, i.e. ¢ = fiT Ef! [1]. Due to the scale
ambiguity, this problem has only five degrees of freedom.
Hence, five correspondences in general position suffice to
obtain a solution to the problem (the so-called five-points
algorithm). Although this minimal approach can be embedded
into robust frameworks, e.g. RANSAC, it is not guaranteed
that the computed solution is optimal in the presence of
noise. Introducing more correspondences has been shown to
improve the accuracy of the solution [12]-[15]. In particular,
the direct linear transformation (DLT) method requires eight
or more pair of observations to estimate a solution. This
solution, however, is not necessarily an essential matrix, since
this method obviates its internal constraints [1], [16]. A
(potential suboptimal) solution can be achieved by projecting
the estimate onto the set of essential matrices [1]. Other



methods [13], [17]-[20] propose to refine an initial estimate,
e.g. from the five points algorithm, directly on the manifold
of essential matrices. However, given the non-convexity of the
problem, these approaches cannot guarantee the optimality of
the solution.

A common approach to the global resolution of a non-
convex problem consists of the description of a relaxation for
the given problem, whose global optimum is easier to reach
in general. The solution to this relaxation usually provides
with all the information required to estimate an approximation
of the actual global solution to the original problem. The
quality of this approximation, however, depends on the own
relaxation. If the relaxation happens to be tight, meaning
it approximates well the original problem, then it provides
also with a certificate of optimality for the solution to the
original non-convex problem. This was the approach followed
by Briales et al. in [14] and Zhao in [15], where two different
convex semidefinite relaxations were derived for the RPp. This
was also the underlying process followed in [21], where we
proposed an algorithm to certify if a solution to the RPp is
optimal. That work, however, builds upon a specific relaxation
of the original problem, that may happen to not be tight for
some problem instances. In those cases, the proposal is unable
to certify the optimality of the solution, even if it is the
optimum. To overcome this limitation, previous works [14],
[22], [23] have shown that the introduction of additional,
independent constraints leads to tighter relaxations. Over-
constrained formulations for the RPp, such as the one in [14],
empirically remain tight under challenging scenes, even with
high noise and low number of correspondences. However, the
computational time required by the off-the-shelf tools to solve
the problem depends on the number of constraints and vari-
ables. Therefore, special care must be payed when selecting
redundant formulations since they may become too slow to
be employed in real applications. Further, these redundant
constraints are highly dependent on the problem variables and
the intrinsic nature of the search space. If the domain can be
defined in different forms potentially with different variables,
as the set of essential matrices does, then the combination of
those definitions can be leveraged to obtain a redundant set of
constraints.

Contributions: In this work we leverage and combine
different characterizations of the set of normalized essential
matrices as the feasible set of the RPp based on the mini-
mization of the squared normalized epipolar error. The final
problem has 15 variables and 28 (redundant) constraints and
presents a convex SDP relaxation that is proved empirically to
remain tight in almost all the problem instances tested and can
be solved in less than 7 milliseconds on a standard computer,
hence being faster than other overconstrained formulations
[14]. We first employ separately two different minimal set of
constraints (LEFT and RIGHT) in Section IV that fully define
the essential matrix set. Although they tend to remain tight,
each of them fails to estimate the optimal solution in some
common scenarios. The combination of these independent
sets of constraints leads to a redundant formulation (named

BOTH) in Section V-A which empirically proves to be tighter
than any of the two previous ones. We incorporate another
characterization of the set of essential matrices, obtaining the
last redundant problem (ADJ) with only 15 variables and 28
constraints in Section V-B.

Last, we carry out extensive experiments on both synthetic
and real data in Section VI, covering a broad set of problem
regimes, including problem instances with corrupted random
correspondences (high noise or 100% outliers). These experi-
ments support the claims of this work regarding the tightness
and show that our last redundant characterization (ADJ) is
able to maintain the tightness in almost all the cases, failing
only (in less than 10% of the cases) in very unrealistic cases,
when the number of correspondences is very low (under 15)
and very high noise (more than 50 pix ). All the proposed
solvers are able to estimate and certify the solution to the RPp
in less than 7 milliseconds.

Although Section VI shows empirically that strong duality
holds in most of the cases for all the proposed formulations, a
formal demonstration of this behavior is not provided. Please,
notice that while we approach the Relative Pose problem
through the essential matrix, the relative rotation and baseline
can be easily recovered from it by any classic computer vision
algorithm [1].

II. RELATED WORK

Local optimization methods, as the one presented in Section
I, are not the only option when tackling the non-minimal N-
point problem. There exists other approaches for this non-
convex optimization that are able to obtain and/or certify the
optimality of the solution. Some of the most relevant are
commented next.

Hartley and Kahl [10] decouple the rotation from the trans-
lation while estimating the essential matrix with a cost function
that minimizes the L., norm and solve the problem by a
globally optimal Branch-and-Bound. Kneip and Lynen [24] en-
force the coplanarity of the epipolar plane (an algebraic error),
which serves to determine the relative rotation independently
of the translation. The proposed eigenvalue formulation was
solved by an efficient Levenberg-Marquardt and Branch-and-
Bound scheme. In [19], Yang et al., based on [10], incor-
porate ourliers and solve an inlier-set maximization problem
via Branch-and-Bound. Nevertheless, due to its exploratory
nature, Branch-and-Bound presents slow performance and an
exponential computational time in worst-case scenarios.

Other approaches rely on the re-formulation of the original
problem as a Quadratically Constrained Quadratic Problem
(QCQP). Although these problems are still NP-hard to solve
in most of the cases, we can find relaxations that can be
actually solved and that may provide some useful information
about the global optimal solution to the original problem.
Of interest are those relaxations that are tight, which means
we can recover from them the exact optimal solution to the
original non-convex QCQP with an optimality certificate. One
of these relaxations is the so-called Shor’s relaxation [25],
in which we relax the QCQP onto a Semidefinite Positive



problem (SDP), which can be actually solved up to arbitrary
accuracy in polynomial time by off-the-shelf tools. These
relaxations have been exploited for different problems in
the literature, e.g. Rotation Synchronization [26]-[28] and
Pose Synchronization [29], [30]. This was also the approach
followed recently by Zhao in [15], in which a minimal QCQP
formulation (12 variables and 7 constraints) leads to a small
SDP relaxation that can be solved in 4ms. Another relaxation
that has been exploited previously in the literature for other
problems is the dual problem [31]. Recently, Garcia-Salguero
et al. [21] leverage this relaxation (a convex SDP problem)
and propose an algorithm that is able to certify the solution to
the non-minimal N-point Relative Pose problem (RPp). This
certifier is based on a specific formulation of the original
problem, with a minimally constrained definition of the set of
essential matrices. Although these minimal formulations enjoy
the advantages of small convex relaxations, they turn out to
be not always tight in practice. Nevertheless, these relaxations
and their behavior depends on the specific parameterization
of the search space, in this case the set of essential matrices;
changing the explicit expressions, i.e. the constraints, that de-
fine this set lead to different relaxations, that could potentially
work when others do not.

It has been shown in previous works, see e.g. [32]-[34], that
the introduction of independent but redundant constraints [35,
Ch.3] strengthen the SDP relaxations (both Shor’s and the dual
problem) This was the approach followed by Briales et al.
in [14]. The authors formulate the non-minimal Relative Pose
problem based on the epipolar error through the rotation and
translation components. The introduction of redundant con-
straints lead to an empirically always tight Shor’s relaxation.
However, the high number of variables and constraints yields
a quite large SDP problem which requires 1 — 2 seconds to be
solved under a MATLAB implementation. Recently, Zhao et al.
in [23] also introduce redundant constraints for the generalized
essential matrix problem.

However, finding a good relaxation that remains tight in
most of the problem instances while still being able to be
efficiently solved (reduced number of variables and con-
straints) is not trivial. A limited number of variables hinder
the applications of some ”tricks”, e.g. constraints that relate
the variables of the problem but do not define the search
space, as the ones cleverly exploited in [14], [34] and [23].
Still, multiple definitions of the same search space under the
same set of variables are usually not available. A notorious
exception, widely reported in the literature, see e.g. [14], [33],
[36], is that of exploiting the orthogonality of both rows and
columns of orthogonal, square matrices, i.e. elements of O(d).

For the essential matrices, there exist just a few global
definitions. Faugeras et al. [11] proposed a cubic characteri-
zation of the set of essential matrices that does not require the
introduction of new variables, i.e. the definition only depends
on the entries of E. A similar derivation, also cubic and
in terms of the own essential matrix, was shown by Zhao
[15]. The constraints associated with these definitions must be
quadratic in order to be able to formulate the problem as a

QCQP. A common approach for this is to introduce auxiliary
variables, as in [11].

III. NOTATION

In order to make clearer the mathematical formulation
in the paper, we first introduce the notation used hereafter.
Bold, upper-case letters denote matrices e.g. F, @, while bold,
lower-case denotes (column) vector e.g., t,  and normal font
letters e.g., a,b denote scalar. Additionally, we will denote
with N the set of natural numbers (including the zero), with
R™* ™ the set of n x m real-valued matrices, S* C R?»*"
the set of symmetric matrices of dimension n x n and S7
the cone of positive semidefinite (PSD) matrices of dimension
n X n. A PSD matrix will be also denoted by > , ie.,
Q = 0« Q € S}. We denote by @ the direct sum such
that Ay ® A @ ... @ A, is a block-diagonal matrix with
(block) diagonal terms given by A; € R™*™ n, m,; €
N, ¢=1,...,r. The 3 x 3 skew-symmetric matrix [t] is the
equivalent matrix form for the cross-product with a 3D vector
t = [t1,to,t3]T, ie., t x (o) = [t]« (o) with

0 —t3 to
[t]x = | t3 0 - (1)
—ty t1 O

The columns of a matrix A € R™*™ are denoted by g; €
R™,j =1,...,n', and its rows as a; € R*,i = 1,...,m.
The operator vec(E) vectorises the given matrix E € R™*"
column-wise, i.e. vec(E) = [»7,... 0,717, o; € R™ and
7 =1,...,n. That is,

€1 €2 €3
E=|es e5 eg )
€7 €8 €9

and so M = [61, 64,67]T and e = [61, €9, 63]T.

The kronecker product is denoted as ®. We will denote
the trace of a matrix as tr(A) = Y 1" ai, A = [a;] €
R™*™_ Further, for simplicity we will employ tr(AB) =
A e B VA, B € S™ In this work we identify rotations with
points in the rotation group SO(3) = {R € R*3|RTR =
I3, det(R) = 1 } and define the 2-sphere as S? =
{t € R3|tTt = 1}. We will denote by A \ B the classic
difference or relative complement of the sets A and B, i.e.
A\B={x|x € A and = ¢ B} and by AU B the union of
the sets A and B defined as AUB ={x |x € A or x € B}.
We will denote the cardinality of the set A (the number of
elements in the set) by |.A|. Last, and always trying to keep
the notation and ideas as clear as possible, we will use the
same letter (e.g. L) to denote a set (£, font: mathcal), the set
of indices associated with this set (£, font: mathscr (rsfso))
and the specific elements of the original set (L, font: mathbf)
but with different fonts, that is: L = {L;,j € £}.

lg is a rotated 90 degreees clockwise.
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Fig. 2: Maximum error in rotation (Fig. 2a) and translation
(Fig. 2b) in 90% of the problem instances between the solution
obtained by minimizing the epipolar and the reprojection
error for different level of noise (see legend) and number of
correspondences (X-axis).

IV. MINIMAL RELATIVE POSE PROBLEM FORMULATION
BASED ON NULLSPACES

We follow previous works in the literature that introduce the
essential matrix F into the problem and minimize the sum of
normalized squared epipolar errors e? [13], [15], [17], [21].
This error is algebraic and represents only an approximation of
the (geometric) reprojection error. Nevertheless, as we show in
Fig 2, the solution obtained by this approximation tends to the
one estimated with the reprojection error when the number of
correspondences is large, even for highly noisy observations.
This figure shows the maximum error in rotation and trans-
lation (in degrees) obtained in 90% of the problem instances
between both solutions for different level of noise and number
of correspondences. To obtain the solution with the geometric
error, we iteratively minimize (implemented with Ceres [37])
the reprojection error initializing the algorithm with the ground
truth and the solution from our solver, and keeping the result
with the lowest cost.

The cost function f(E) = Y1 €2 can be written as a
quadratic form on the elements in E by defining the positive
semi-definite (PSD) matrix S%. > Q = Zf;l Q;, with Q; =
(fl ® f)(fl ® fi)T € SY. Formally, the RPp reads:

N

rg;%;(szEfi)Z = min vec(E)"Qvec(E), (0)

f*

that, for non-minimal problems with N > 8 correspondences
and except in degenerate cases [1] has an unique global
minimizer up to sign. In problem O, E stands for the set
formed by the normalized essential matrices:

E={EcR>3 | E=[t]xR, RcSO(3), tcS?}. (3)

This set admits different parameterizations (see Section II).
In the context of building problem relaxations, the chosen
definition of the set has a drastic effect on the performance of

the method. In practice, we always seek a minimal parameter-
ization of the search space that still assures the robustness of
the algorithm.

A. Minimal definition of the essential matrix set

From the definition in (3) we see that the left nullspace of
any essential matrix is one-dimensional (non-null) and it is
identified with the translation vector ¢ (see Figure 3). Further,
we can define also the essential matrix as E = R[RTt],
and so its right nullspace is also one-dimensional and it is
identified with the translation (unit) vector ¢ = RTt. These
elements are the calibrated epipoles [1] and hence, they are
endowed with geometric meaning, as it is shown in Figure 3.
The next two minimal characterizations arise naturally from
these two equivalent definitions and the nullspaces t, q.

Definition 4.1 (Description R of the Essential Matrix Set):
We can exploit the unitary condition of the rotation matrix R
to obtain the characterization:

Eige = {E € R**|E"E = [q]«[q]}.q¢"q=1}, &)

where q is the right nullspace of E.

Definition 4.2 ( Description L of the Essential Matrix Set):
[11, Prop. 2] The following description of the essential matrix
set exploits also the unitary condition of the rotation matrix
R for its derivation:

Eie = {E € RP3|EET = [t] [t]L,tTt = 1,t e R3} (5)

where t is defined as the left nullspace of E. Note the
symmetry between this parameterization and the one proposed
in Def. 4.1.

The derivation of this definition is found in Theorem 1 in
[15] and/or by noting that E7 is essential iff E is.

Fig. 3: Nullspaces t,q = R™'t of the essential matrix E. For
any pair of correspondences (f;, f/), the “calibrated* epipolar
lines Ef;, ET f vanish at the homogeneous coordinates of

t, g, respectively.
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Each definition provides with different sets of seven inde-
pendent and distinct constraints. The set R is formed by the
definition in Def. 4.1 as:

(D:gf+a3+af=1

@) o1 — 3 — g3 =0

3): o oy — g — g3 =0

@): 03705 —qf — g3 =0, 6)
(5): ooy + qrge =0

(6): & o3 + qigz = 0

(7): a3 + qags = 0

X
Il

where o; € R3 is the i-th column of the essential matrix
E. For simplicity, we will denote by Rnorm = {1}, Rdiag =
{2,3,4}, Rogiag = {5,6,7} the set of indices for the unitary
norm, diagonal and off-diagonal constraints, respectively, and
its union as & = {Rnorm U Rdiag U Rodiag }-

On the other hand, the description given in Def. 4.2 provides
with the set £ as:

(): 2 4+t3+13=1

(2): e;Te; — 12— t% =0

(3) 62T62 — t% — t% =0

4): esTes —t2 -2 =0, @)
5): e1Tes +t1ta =0
T
T

o
If

(6) e es+ tltg =0
(7): es” e3 +1tat3 =0

where e; € R3 denotes the i-th row of the essential matrix
E. Let us denote by Luorm = {1}, Laiag = {2,3,4}, Lodiag =
{5,6, 7} the sets of indices for the unitary norm, the diagonal
and off-diagonal constraints, respectively, and its union as the
set of indices £ = {ZLnom U Laiag U Lodiag }- These equations
were first given in [15].

B. Block SDP Relaxations for the Nullspace-based Minimal
Parameterizations

We obtain then two equivalent problems to the original
problem O by writing explicitly the set E with the two set

of constraints Eje; and Eygpne, respectively. However problems
like Prob. O are instances of QCQP, which in general are non-
convex due to the number of quadratic constraints and NP-hard
to solve in most cases [31]. Nevertheless, under certain con-
ditions it is possible to derive tractable relaxations that allow
us to obtain and certify the optimal solution to the original,
non-convex problem. These relaxations have been proposed
previously for other problems (see Section II), showcasing a
good performance and proving its usability. Empirically we
show in Section VI that this relaxation, which we introduce
next, is also able to solve this non-convex problem for most
problem instances, hence making it solvable in practice. For
that, we first re-formulate our problems as the standard QCQP
by introducing the vector with all the unknowns: the essential
matrix and the corresponding translation vector (depending on
the chosen definition of the set of essential matrices). Since
both are similar, let us call this vector by = = [eT,uT]T €
R'2, where e € RY is the essential matrix E vectorized by
columns and w is the corresponding translation vector. The
problem O is written as

f* = min 7 Cz, subject to T Ajx =c¢;,i=1,...,7
weRlZ

(QCQP)
where the 12 x 12 matrix C is the data matrix ¢ padded
with zeros and the forms =7 A,z = ¢;,i = 1,...,7 de-
fine the different constraints. By introducing the PSD matrix
X € R'2%12 we obtain the so-called Shor’s relaxation of the

problem QCQP:

C e X, subjectto A;@¢ X =c¢;,i=1,...,7.

(SDP)
As we show in Figure 4 and explain in the Supplementary
material A, for the definitions considered in this work, all the
relaxations of the form in problem SDP have a block-diagonal
pattern that is leveraged to simplify the optimization without
losing information.

Remark 1: The sparsity of the problem and its effect on
the optimal solution to the SDPs is related to the notion of
chordal sparsity, as it was pointed out previously in [15]. We
refer the reader to this work and references therein for more

*= min
X cR12x12



details, and to the recent work [38] for a similar application
to polynomial problems through moment relaxations.?

Right-Nullspace based formulation: We can define the
vector variable for the standard QCQP as zgigh = [€”, g7 €
R'2. With respect to this vector, the problem with the con-
straint set in Eq. (6) is block-diagonal with two blocks of
size 9 x 9 and 3 x 3, see Figure 4a. Let us define the lifted
matrices as: X, = eel € Ssj_ and X, = qq’ € Sﬁ_. The
block SDP that is actually solved is

g]; - Xee]Rggl,queRsx3 Qe X (SDP-R)
R,%e Xq =1, i € Roorm
subject to Rie * Xet Riq ® Xq =0, 1€ R \%norm,
Xer 0
X, =0

where we have defined the quadratic forms associated with
the set R given in (6) as {S'? > R;® ® R;?};ca, such that
each constraint is of the general form: e’ R;°e + ¢’ R;%q =
ri, 1 € R, where ; € R.

Left-Nullspace based formulation: Similarly, the vector
variable for the standard QCQP is xr. = [e?,t7]T € R'2,
and again, the problem with this variable and the constraint
set in (7) is block-diagonal with two blocks of size 9 x 9 and
3 x 3, see Figure 4b. Similarly, we define the lifted matrices
as X, = ee” € S% and X; = tt” € S3, and the block SDP
that is actually solved by the solver is

gﬁ B XeERgigl})I}teRlixs Q * Xe (SDP-L)
th o X¢=1, J € ZLoom
subject to Lie X+ L' e X, =0, jeZ \ienorm’
Xe =0
Xt~ 0

where we have defined the quadratic forms associated with the
set £ given in (6) as {S2 5 L;® & th}jegg , such that each
constraint is of the general form: e’ L;°e+t"L;*t =1;, j €
%, where [; € R.

Tight solution: Note that in both problems, each block
has a norm constraint applied implying that the block cannot
be the null matrix, i.e. it cannot have zero rank: the norms
for the blocks X, X, are specified by the constraints in
Prorms Ruorm, respectively, while the norm for the block X
is inferred by its relation with the other terms for both
characterizations. Since the original problem O has a unique
solution (up to sign), we know that in order to consider the
relaxation as tight, each block must have rank 1 for both
problems (see Supplementary material A).

Nevertheless, while the formulations in Eq. (7) and (6) enjoy
the benefit of having a minimal number of constraints, they
lose tightness in certain scenarios, even in common scenarios,
as we will show in Section VI

2We thanks an anonymous reviewer for the latter reference.

Problem Set of constraints | Set of indices | Cardinality
(SDP-L) L £ 7
(SDP-R) R R 7
R R 7
(SDP-B) r ) 6
R R 6
(SDP-ALL) L £ 6
A o 16

TABLE I: Set of constraints for each problem, the set of in-
dices associated with each set of constraints and the cardinality
of both sets, e.g. |[R| = || = 7 in Problems SDP-R, SDP-L
and equal to 6 in Problems SDP-B and SDP-ALL

V. REDUNDANT SET OF CONSTRAINTS AND TIGHTER
RELAXATIONS

With the only goal of finding a tighter SDP relaxation
associated with the Relative Pose Problem, we introduce
redundant constraints in the problem.

A. Joining left and right-nullspace-based definitions

Since we already have two different definitions of the
essential matrix set in Def. 4.1 and Def. 4.2, we propose
here to fuse them into a joint (redundant) characterization of
the same set. This characterization requires, however, more
variables (15: E,t,q) than those that leverage the minimal
parameterizations in sets in Def. 4.1 (13: E, q) and in Def. 4.2
(13: E,t). While each set of constraints R, L provides with
seven independent expressions, the joint of both feasible sets
does have a linearly dependent constraint in the expressions
associated with the diagonal entries of EE” or ETE. We
discard one of these constraints in the set £ 3. With a little
abuse of notation and to keep the results clear, let us denote
this reduced set once again as &, whose cardinality is now 6
(c.f. Table I). Therefore our joint characterization has only 13
independent constraints and 15 variables.

Sparse SDP Relaxation: As it was mentioned above, the
set of constraints in Eq. (6) and (7) present a block-diagonal
structure in terms of the vectors Trign: and Xpef, respectively.
Their union in terms of xpon = [el,tT,q7]T € R is,
therefore, also block-diagonal, see Figure 4c. In this case,
the lifted matrices in terms of the vector xp., are defined
as Xo = ee’ €S, Xq =qq" €S}, X, =tt" € 3.
The SDP is written in its block-diagonal form in terms of these
lifted blocks as:

gé = XeeR9X9,H)1(iSquR3X3 e X, (SDP-B)

Li'eX; =1, J € £nom
R%e X, =1, 1 € Rnorm
R°eX.+R;%¢X,=0, €%\ Rnom

subject to L;° e X, + L’ e X; =0, j €%\ ZLoom:
X =0
X =0
X, = 0.

3We remove the expression e1 7 e; —t3 — t2 = 0.



where all the data matrices Q,L;®, R;®, ... are the same than
those in problems SDP-R and SDP-L.

Tight solution: Since each block has a norm applied, i.e.
their rank is strictly positive (see the previous problems SDP-
R and SDP-L) and the solution is still unique, we say that the
relaxation in problem SDP-B is tight iff each block has rank
1.

Unfortunately, this extended problem is still not always
tight, as showcased by the experiments in Section VI, although
it is tighter than the previous problems SDP-R and SDP-L.

B. Introducing more constraints: SVD-based approach

The different parameterizations employed so far are defined
in terms of geometric variables such as the baseline b and
the rotation R. The essential matrix, however, admits a sec-
ond yet equivalent definition in terms of its Singular Value
Decomposition (SVD) [11], [39]. Concretely, any essential
matrix can be decomposed as E = U diag(o,0,0)VT where
U,V € SO(3), diag(a) € R™*™ denotes the diagonal matrix
whose diagonal is formed by the entries of a € R™ and
o € R, (non-negative reals). Given the scale ambiguity of
E wlo.g we can fix o = 1.

Theorem 5.1 (Polynomial Description of the Essential Ma-
trix Set):

A 3 x 3 real matrix has two non-null singular values equal
to one and one zero singular value, i.e. it is an element of the
set of normalized essential matrices [11], [39], iff it fulfills
the following set of polynomial constraints:

tr(EET) = 2,
det(E) = 0, } ®)
) =1

Eagj = {E € R**?
tr (Adj (EE"

where Adj (E) denotes the adjugate of the matrix E. Proof
in Supplementary material Section B.

The constraints in Th. 5.1 are equivalent to those proposed
by Faugeras and Maybank [11, Prop. 3]. We provide the
proof in the Supplementary material Section C and thanks
an anonymous reviewer for pointing out this relation. Before
continue, the reader may notice that only three constraints are
provided in Th. 5.1 . Since the set of constraints are equivalent
to those in [11, Prop. 3], the proof provided in the same paper
in Section 4.2 also applies here, and the constraints in Th. 5.1
are restricted to real matrices.

Whereas Th 5.1 defines the set of normalized essential
matrices, it can be generalized to the non-normalized set (the
non-null singular values do not need to be equal to one)
by scaling the constraints, that is: tr(EET) = 202 and
tr(Adj (EET)) = o4, for any matrix E with singular value
o. The sufficient condition is similar to that in Th. 5.1.

Still, the constraints in Th. 5.1 are polynomial and thus,
cannot be directly incorporated into our primal QCQP problem
in order to derive the associated SDP. We provide next a set
of quadratic constraints equivalent to Th. 5.1.

Definition 5.1 (Description A of the Essential Matrix Set):
The following set of quadratic constraints is equivalent to the
set proposed in Th. 5.1.

tr(EET) =2
Adj(E) = gt"

Eq = 03x1
t"E =043

q'q=1 9)
the=1, (10)

where t, q are the left and right nullspaces of E, respectively
and Adj (FE) is the adjugate matrix of E.

Supplementary material Section D includes the relation
between Def. 5.1 and the one in Th. 5.1. Notice that, in
general, Adj (E) = +qt”, but since q and t are identified
with points in S2, the sign ambiguity is absorbed by any of the
vectors and we can simply the expression to Adj (E) = qt”.

Thus, a 3 x 3 real matrix E is a normalized essential
matrix #ff it fulfills the constraints in Definition 5.1 since these
quadratic constraints are equivalent to the polynomial set in
Th. 5.1 and the latter defines the set of normalized essential
matrices.

The explicit forms of the constraints in Def. 5.1 are given
as:

(D: o1 To; + Ty + 0370 =2

(2): eseg — eges = t1q1 G +a+ag=1

(3): eses — ezeg = taqy (1): e1Tg=0

(4): eaeg — ezes = t3qy (12): ex’qg=0
A= (5): eger — eqeg = 11q2 (13): e3"q =0

(6): e1e9 — ezer = taqo t% + t% +t2=1"

(7): ezeq — ereg = t3qs (14): Tt =0

(8): eqeg —eser = t1q3 (15): Tt =0

(9): eser —ereg = taqs (16): 3Tt =0

(10): e1e5 — eaeq = t3q3

(11)

where e; is the i-th element of the 9D vector e = vec(E). Let
us for simplicity define the set of indices Anom = {1}, Hagj =
{2, ey 10}, ﬂﬂght = {117 127 13}, ﬂleﬁ = {14, 15, 16} corre-
sponding with the norm of the essential matrix (tr(EET) =
2), the adjugate expression (Adj (E) = qt”) and the right and
left nullspaces (Eq = 031, tT E = 0,3), respectively. We
define its union as A = {Anom U Hright U Hiere U Hagj }-

See that this equivalent characterization only depends on the
nullspaces of E. This means we can combine the constraints
of this parameterization with those from our previous char-
acterization with both nullspaces in Problem SDP-B without
introducing new variables. We note that two of the constraints
associated with the diagonal terms EE” and ET E in the sets
Def. 4.2 and Def. 4.1 became dependent when introducing
the constraints in Def. 5.1. Without confusion, let us denote
these sets of linear independent constraints * by £, R, A, with
cardinality 6, 6 and 16, respectively (see Table I). Therefore,
this characterization has only 28 independent constraints and
15 variables.

T

4We remove the expressions e1 - e1 —t%—t% =0ando Toy —qg —q§ =0.



Remark 2: Here we introduce redundant constraints to the
RPp that define the set of normalized essential matrices. Note
that this procedure is different to the (automatically) generated
constraints by Lassarre’s moment relaxations for polyomial
problems with available tools such as GLOPTIPOLY 3 [40].
Our approach follows the idea exploited in previous works
(see Section II) with rotation matrices.

By writing explicitly the set of constraints in Def. 5.1 in
terms of the vector variable xpq = (e, t7,¢7]T € R'
we can re-formulate the original problem in Eq. (O) as a
standard QCQP. Unlike the others problems SDP-R, SDP-L
and SDP-B where the sparsity pattern was easily identified in
terms of the corresponding variable vectors (see Figures 4a-
4c), the definition in A presents six equations associated with
the nullspaces (with indices in #jes, Ayign) that do not follow
the same pattern as the other constraints and the objective
function (which have a well-defined block-diagonal structure).
These constraints have an anti-block-diagonal structure, as
shown in Figure 4d. In practice, however, the problem is
also block-diagonal for any optimal solution. Notice that the
anti-block-diagonal constraints are trivially satisfied by the
zero blocks. Further, this block-diagonal solution will have
rank greater than one even when the relaxation is tight, as
the previous formulations. Central-path algorithms, as the
one leveraged by off-the-shelf tools such as SEDUMI and
SDPT3, will return this solution [41] instead of the rank one.
Therefore, we can restrict, as in the previous formulations, the
feasible points to be block-diagonal. Empirically we verify that
removing the anti-block diagonal constraints (e U Sright)
does not affect the tightness of the relaxation nor affects the
computational cost of the resolution of the problem. Please,
notice that in the solvers are actually dropping the off-diagonal
constraints, i.e. the determinant requirement, without notice.
Since these constraints are employed with the previous ones,
we known that the returned solution will have null determinant
if the relaxation is tight. Nevertheless, the constraints alone
may yield solutions with non-null determinant. This is an
interesting behavior which we pretend to study on the future
since it may jeopardize convex relaxations with this structure.

In what follows, we drop the anti-block diagonal constraints
in the set of constraints .4 for clarity. This allows to directly
write the SDP relaxation with this feasible set as a block
problem. Note that the SDP relaxation with all the constraints
can be derived in a similar manner. As before, let us define
the lifted matrices as X, = eel ¢ Si and X,uq =
(7, q")T[t", q"] € S5. See that the adjugate constraints in
Def. 5.1 relate both nullspaces and hence, only one block is
defined for them, in contrast with the two blocks in Problem
SDP-B. The block SDP relaxation is written in terms of these
matrices as

Gg=_ omin  QeX, (SDP-ALL)
X €R?XO, X, EROX
subject to
(L;* @ 0353) ® Xpun = 1, J € £rom
(03x3 @ R?) @ Xy = 1, i € Rnom
Aje X, =2, k € Anorm
R°eX.+ (0353 P RN e Xy =0, i€R\Rnom
R,ce X, + (th @ 03x3) ® Xoun =0, j €L\ Loom
Afe X, + Al e Xy =0, k € oy
X~ 0
X = 0
(12)

where we have defined the quadratic forms associated with
the set A as A§ & AZ’q € S for k € dnorm U Hagj
such that each constraint is of the general form e’ Afe +
[tT, qT]AZ’q[tT, 7" =a, k€ HAnorm U oagj Where ay, € R.
The remaining matrices have the same form than in the
previous problems SDP-R, SDP-L.

Tight solution: Note that both blocks, X, X1 have norm
constraints: in this case, the norm of X, is given by the
constraint &, and the norm for X,,; is given by the
constraints %o, &norm. Since the problem still admits only
a unique global minimizer, the tight solution has two blocks
of rank 1 each.

VI. EXPERIMENTAL VALIDATION

In this Section we prove through extensive experiments on
both synthetic and real data the claims stated in this work.

A. Experiments on Synthetic Data

We carried out two types of experiments. In Section VI-Al
we generate random instances of the RPp with “usual® pa-
rameters. In Section VI-A2 we increase the noise and include
outliers in order to show that our final formulation in problem
SDP-ALL remains tight in almost all the cases, while main-
taining an attractive computation time.

Generation of Random Data: We generate random prob-
lem instances by following the procedure given in previous
works [14], [21], which we summarize it here for complete-
ness. We place the first camera frame at the origin (identity
orientation and zero translation) and generate a set of random
3D points within a frustum with depth ranging from one to
eight meters measured from the first camera frame and inside
its Field of View (FOV). Then, we generate a random pose for
the second camera whose translation magnitude is constrained
within a spherical shell with minimum radio ||¢||min, maximum
radio ||t||max and centered at the origin. We also enforce
that all the 3D points lie within the second camera’s FOV.
Next, we create the correspondences as unit bearing vectors
and add noise by assuming a spherical camera, computing
the tangential plane at each bearing vector (point on the
sphere) and introducing a random error in pix sampled



from the standard uniform distribution, considering a focal
length of 800 pixels for both cameras. Outliers are generated
by assigning a random unit vector to the correspondence
associated with the second frame.

Compared methods: We compare the four different for-
mulations proposed in this work (LEFT coincides with the
proposal in [15]) and includes that by Briales et al. in [14].
The different formulations will be denoted by: LEFT (Problem
SDP-L); RIGHT (Problem SDP-R); BOTH (Problem SDP-
B); ADJ (Problem SDP-ALL); and [14] as BKG. Although
BKG employs a different formulation for the RPp based on
the rotation and the position components (in this work, the
translation vector denoted by t), the underlying problem is
the same.

Note that other certifiable approaches for the RPp do exist,
as we illustrate in Section II. Here, however, we compare
only the above-mentioned certifiable solvers based on SDP
relaxations [14], [15]. Our reasons behind this are the follow-
ing. First, in [15] and [14] the authors independently reported
that their respectively SDP solvers consistently attain lower
rotation errors than the minimal methods (five, six and eight
points-algorithms, see Section II) and the non-minimal solver
by Kneip and Lynen in [24] w.r.t. the ground truth relative
pose, which can be considered as the state-of-the-art solvers
both for accuracy and efficiency. The different formulations
proposed in this work have the same or more number of
constraints than the minimal SDP in [15], hence we expect to,
at least, observe the same performance in terms of accuracy,
if not better. The computational times are also similar under a
C++ implementation with SDPA [42] as IPM on a standard
PC with CPU 7 —4702MQ, 2.2GHz and 8 GB RAM: LEFT
takes 5 milliseconds, RIGHT goes to 4.7 milliseconds, BOTH
to 7.4 milliseconds and ADJ to 7 milliseconds. These times
include the creation of the data matrix @), the extraction of the
solution & from X™ (the optimal solution of the SDP) and the
projection of x onto the space of essential matrices.

1) Experiments on Usual Synthetic Data: In this set of ex-
periments, we fix the available parameters when generating the
data (FOV, parallax, noise and number of correspondences),
and vary one of them each time to show the influence of
each individual parameter. By default, we fix the FOV to 100
degrees, the translation parallax to ||t||2 € [0.5,2.0] (meters),
the noise level to 0.5 pix and the number of correspondences
to 100. In the experiments we let the focal length fixed,
since it was shown in [21] that varying the focal length
has the same effect of varying the noise level and field
of view (changes in the signal-to-noise ratio). We generate
problem instances with number of correspondence in N €
{8,9,10,11,12, 13, 14, 15, 20,40, 100, 150,200} and varying
noise opoise € {0.1,0.5,1.0,2.5} pix, parallax ||t||mez €
{0.7,1.0,2.5,4.0} and FOV € {70,90,120,160}. Please,
notice that in this work we consider only non-minimal problem
instances with more than N = 8 correspondences. For each
configuration of number of correspondences and parameters,
we generate 200 random problem instances. Due to space
restrictions and the similarity on the conclusions, we only

include in Figure 5 the results for noise 0.5 pix (results
for noise 2.5 pix can be found in Supplementary material 2
Figure 6). Figure 5 (a) shows the dual gap between the optimal
dual cost and the essential matrix obtained after projection
on the feasible set [1]. Observe that for ADJ, the dual gap
is constant, while for the smallest formulations it decreases
with the number of correspondences and noise level. A more
intuitive metric of this behavior is the error ¢, of the estimated
rotation R w.r.t. the ground truth R, measured in terms of
geodesic distance, and the translation error ey,,s as the angle
(in degrees) between the (normalized) translation vector t and
the ground truth £, i.e.

tr(RTRy) — 1 180
€rot = ArcCos (%) — [degrees] (13)
s
~ 1
€trans = ArCCOS (tTtgt> 180 [degrees] (14)
T
Figure 5 (b) shows the rotation error and figure 5 (c)

the translation error for the four proposed solvers. Last, we
compare the obtained solution with that from BKG, and plot
the ratio between each cost in Figure 5(d). Notice the tendency
of the cost being closer to the one by BKG when the
number of constraints is non-minimal. From this last figure
we notice that the redundant formulation ADJ performs in
most cases similarly to BKG, which can be considered as the
state-of-the art given the obtained results, while requires less
computational time for its resolution.

2) Experiments on extreme synthetic data: In this set of
synthetic experiments we show the performance of the pro-
posed formulations in the presence of high noise level (up to
100 pix) and high ratio of outliers (up to 100%). First, we fix
the FOV and maximum parallax to their default values, and
vary the noise level as o € {5,10, 50,100} together with the
number of correspondences (outliers are zero). Second, we let
the noise be 0.5 pixels, fix the number of correspondences to
100 and introduce an increasing percentage of outliers (with
step 10%) up to 100%. For each combination of parameters,
we generate 200 random problems. We want to remark that
in these experiments we do not filter the outlier and simply
feed the algorithms with all the correspondences. Due to space
limits, we move the graphics to the Supplementary material
2 Section G Figure 7, and include here the main conclusions
from them. In these cases, the dual gap is large for the minimal
formulations LEFT and RIGHT, and the redundant BOTH,
even when the number of correspondences is non-minimal. For
ADJ, though, the dual gap is similar to the “normal problem
instances in Figure 5 except for a few problem instances with
N < 15. The poor performance of the minimal solvers and
BOTH is also reflected in the costs attained by their solution
w.r.t. BKG. A similar conclusion is derived from the problem
instances with outliers, and the smaller solvers fail to return
the global optimum even with only 10% of outliers.

B. Experiments on Real data

To conclude our experimental validation, we evaluate the
performance of the above-mentioned methods on real data.



Synthetic data: common parameters
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Fig. 5: Synthetic data: common parameters: Dual gap for the obtained solution after projection onto the set of essential
matrices (a), error in rotation in degrees (b), error in translation in degrees (c), and cost normalized by the one obtained by

BKG (d) for the set of experiments with noise 0.5 pix (noise

6e — 04 in normalized coordinates). Similar graphics for noise

2.5 pix (noise 3e — 03 in normalized coordinates) can be found in Supplementary material 2 Figure 6.

We sample pairs of images from 18 different sequences of the
ETH3D dataset [43], which covers both indoor and outdoor
scenes. They also provided with ground-truth data and intrinsic
calibration parameters. To generate the correspondences, we
extract and match 100 SURF [44] features. The corresponding
bearing vectors are computed by employing the pin-hole
camera model with the provided intrinsic parameters for each
image. We conduct two types of experiments with the same
sequences of images and extracted features. Since the results
are similar to those obtained in the synthetic experiments, we
move the graphics to the Supplementary material 2 Section H
Figure 8 and include only the main conclusions.

Experiments on real data with outliers: The first set
pretends to show the performance of the different methods
under real data, including outliers, i.e. we feed the methods
with all the points. Since the data contains outliers, LEFT,
RIGHT and BOTH fail to return the optimal solutions for
some problem instances (large normalized cost). ADJ, on the
other side, shows the same robust performance.

Experiments of real data with pre-filtered outliers: The
goal of this set is to reflect the performance of the different
formulations only under real noise, without outliers. To discard
outliers, we filter the matches with the provided ground
truth and keep only those correspondences whose associated
squared epipolar error w.r.t. the ground truth essential matrix
is lower than a fixed threshold eqor, i.e. We consider as inliers
all the correspondences (f;, f/) such that (f/7 Eg f;)? < €error-
We avoid the explicit used of a filtering stage (e.g. RANSAC)
to decouple the performance of said stage and the different
methods tested in this work. In this case, the costs are lower
but the minimal solvers still fail to estimate the optimal
solution (the percentage of suboptimal solutions remains above
20%). ADJ and BKG always return the optimal solution.

VII. CONCLUSIONS AND FUTURE WORK

In this work we have leveraged equivalent quadratic (global)
definitions of the set of essential matrices which rely on the
translation vectors of the relative pose between cameras. The
Relative Pose problem is stated as an optimization problem
over the set of essential matrices that minimizes the (squared)
normalized epipolar error. We have combined these definitions
to derive over-constrained problems. Despite the number of
variables and constraints, all our formulations were solved
in less 7 milliseconds on a standard computer, making our
proposal suitable for real-world applications. The final formu-
lation with 28 constraints and 15 variables allowed to derive
a convex relaxation that remained tight under a wide variety
of configurations, even with random correspondences (noise
level of 100 pix and 100% of outliers). Thus, our proposal
is tighter than smaller formulations while being faster than
over-constrained formulations.

Our results show that these formulations can be leveraged
in other certifiable approaches, such as certifiers, which could
potentially perform better than those based on minimal rep-
resentations [21]. Since the tightness of the formulations is
maintained even with outliers, our proposal is also suitable
to be included in robust schemes, such as the combination
of Graduated Non-Convexity [45] and the Black-Rangarajan
duality between outlier rejection and line processes [46].
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