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ABSTRACT

Planar scenes predominate in man-made environments, e.g. interior or facades of buildings and in
ground images from aerial vehicles. Points lying on those surfaces can be reconstructed from their
observations in two images. However, generic reconstruction algorithms output 3D points not lying
on the plane, thus obtaining inaccurate reconstructions. The problem also turns to be non-convex with
many local minima, hence hindering the performance of iterative method. Therefore, being able to
obtain and certify the optimal solution to this problem is of special relevant for these applications. In
this paper we first propose a fast and certifiable algorithm that both estimates and certifies the optimal
solution to the triangulation problem. From this formulation, we also present an optimality certificate
that tells us whether a given solution (obtained by any solver) is the global optimum. Last, from
this certificate we derive a sufficient (but not necessary) optimality condition that allows us to certify
optimality in less than one microsecond. We test the proposed algorithms on extensive experiments
on both synthetic and real data. Code is made available at https://github.com/mergarsal.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The triangulation problem consists of estimating the 3D
structure of the scene from a set of (potentially) noisy obser-
vations and known projective matrices (pose and calibration
parameters). This task is at the core of more complex appli-
cations, among others Simultaneous Localization and Mapping
(SLAM) or Structure-from-Motion (SfM) see e.g. Kang et al.
(2020); Artieda et al. (2009); Karrer and Chli (2020); Gomez-
Ojeda et al. (2019); Mur-Artal et al. (2015); Triggs et al. (1999);
Arndt et al.. Previous works have approached this problem for a
generic scene, see e.g. Hartley and Sturm (1997); Kanatani et al.
(2008); Lindstrom (2010). However, in some applications the
nature of the scene is known, and thus, it imposes some extra
restrictions to the 3D reconstruction. In many real-world scenes
like the interior and facades of buildings Hoegner et al. (2016);
Koch et al. (2019); Wefelscheid et al. (2011), city environ-
ments Poullis and You (2011); Sportouche et al. (2009); Laveau
et al. (1998) or ground images from aerial vehicles (at high al-
titude) Caballero et al. (2009); Lu et al. (2018); Jurevičius and
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Marcinkevičius (2019), there exists a predominance of planar
structures. Hence, being able to recover and guarantee that the
reconstructed scene is planar is of special relevance for multiple
and diverse applications.

Whereas the gold-standard approach (bundle-adjustment)
addresses the joint problem of estimating both motion (pose
displacement) and structure, see e.g. Faugeras and Lustman
(1988); Bartoli and Sturm (2003); Bartoli et al. (2001), the non-
convexity of the problem requires good initial guesses to con-
verge to the optimal solution. On the other side, the relative
motion can be decouple from the structure and estimated with
high accuracy. Therefore, we focus here only on the triangula-
tion problem given motion, which is still a non-convex problem
with many local minima. Obtaining the 3D world point that
originates the pair-wise correspondences is a trivial task in the
noiseless case, since the “rays“ emanating from the optical cen-
ter towards these correspondences for each camera do intersect
in the space at the real 3D point (see Figure (1)); its coordinates
can be estimated, for example, with the linear method presented
in Hartley and Zisserman (2003). When dealing with noisy cor-
respondences, we can still leverage the same linear method to
estimate a suboptimal solution. It is usually preferred in these
cases to correct the observations so that the rays intersect in
the space exactly. For 3D points on a plane (planar triangula-
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Fig. 1: The back-projection of noisy observations ( f̂ , f̂ ′) gives us rays that do
not meet at a 3D point. To end up with an intersection we need to correct those
observations in some optimal way such that a 3D point can be recovered (green
point X′). If the 3D point is known to lie on a plane π, some extra restric-
tions must be applied to the problem to obtain X (blue point), with corrected
observations ( f , f ′)

tion problem) Chum et al. Chum et al. (2005) proposed a poly-
nomial solver, akin to the general one by Hartley and Sturm
Hartley and Sturm (1997). The method requires finding all
the roots of a 8-th degree polynomial, and later selecting the
real one with the lower cost. Whereas this method is optimal,
the tools required are usually unstable and/or slow. Kanazawa
and Kanatani Kanazawa and Kanatani (1995) proposed ear-
lier a first order approximation, which was later improved by
Kanatani and Niitsuma in Kanatani and Niitsuma (2011). The
last method, which tends to converge to the global optimum, is
at its core iterative and thus, comes without optimality guaran-
tees.

Contribution: In this work, we propose a set of certifi-
able solvers for the two-view planar triangulation problem. We
base our proposals on duality theory Boyd and Vandenberghe
(2004), which provides us with the necessary tools to certify
optimal solutions to non-convex problems.

We start by proposing a certifiable solver in Algorithm (1)
in Section (4) that both obtains a solution to the problem and
certifies that such solution is the global optimum. Since other
solvers may be employed to estimate the solution, for exam-
ple, bundle-adjustment or any iterative solver akin to Kanatani
et al. (2008), we present in Section (5) an optimality certificate
to certify if a given solution to the problem is the global opti-
mum. This certification algorithm, summarized in Alg. (2), is
simple and only involves solving a linear least-squares system
on two variables and a scalar computation, thus not requiring
any specific optimization tool. Importantly, this certifier allows
us to derive in Th. 5.2 an even simpler sufficient condition for
optimality (not necessary) that eliminates the resolution of the
linear least-squares system while being able to certify optimal-
ity in less than one microsecond.

The performance of the proposals is showcased with an ex-
tensive set of experiments on both synthetic and real data in
Section (6). Therefore, our main results are provided in Alg. 1,
Th. 5.1 (also Alg. 2) and Th. 5.2. We refer the reader that is
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Fig. 2: Reconstructed points (red crosses) with a generic triangulation solver
do not, in general, lie on the real 3D plane (black circles).

only interested in their usage to these items and to Section 6 for
the empirical evaluation of the proposals. We make the code
available at https://github.com/mergarsal.

Notation: Through the paper, we denote matrices by bold
upper-case letter, e.g. A, E, and by bold, lower-case letter, b,
(column) vectors. The symbol λ denotes the Lagrange multi-
plier. The non-negative orthant is R+, that is, R+

.
= {a ∈ R|a ≥

0} and the set of n × n positive semidefinite (PSD) matrices by
Sn

+. For simplicity, we indicate that the matrix H is PSD as
H ∈ Sn

+ or H � 0. The set of orthogonal matrices of dimension
n × n is denoted by O(n) .= {A ∈ Rn×n|AT A = In, AAT = In}.

2. Related work

In this Section we summarize the most extended approaches
to reconstruct 3D points on planes. We group the different ap-
proaches into two sets depending on which error they minimize
in order to find the unknown 3D world point: (a) algebraic error;
and (b) image error. To conclude the Section, we list certifiable
algorithms similar to those proposed here that can be found for
computer vision and robotics problems. We limit this Section
to those works that consider two views and the triangulation
problem. We refer the reader to Bartoli et al. (2001); Faugeras
and Lustman (1988) and references therein for the structure and
motion estimation from two images on planar scenes and Bar-
toli and Sturm (2003); Szeliski and Torr (1998) for an extension
to multiple views.

Algebraic error: Given two noiseless observations from
two cameras with known projective matrices, we can esti-
mate the 3D point that originates them by the so-called lin-
ear method Hartley and Zisserman (2003); Hartley and Sturm
(1997). When the observations are corrupted by noise, this
method can still be leveraged and the solution is the one that
minimizes an algebraic error. The solution in this case, though,
may have a poor quality and other methods are usually preferred
Hartley and Sturm (1997). An alternative solver is the so-called
midpoint method Beardsley et al. (1994); Yang et al. (2019) that
returns as solution the midpoint in the common perpendicular
to the two rays, which is the point that minimizes the sum of
squared distances to each ray. For the general case, Lee and
Civera Lee and Civera (2019) proposed a weighted midpoint
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algorithm that was reported to recover good solutions close to
the “optimal“ ones, which we list below.

All these solvers, though, do not consider the strong require-
ments of the points laying on a plane (see the comparison in
Figure (2)). To overcome this, previous works see e.g. Mi-
cusik and Wildenauer (2017); Wefelscheid et al. (2011); Poullis
and You (2011), fit the reconstructed (general) 3D points to the
plane. The solution is only suboptimal and in the presence of
noise, there is no guarantee that the fitted points are consis-
tent with the plane derived from the homography matrix. An-
other approach that only requires one image, see e.g. Bartoli
and Sturm (2001), reconstructs the 3D point from only one ob-
servation and the homography matrix by intersecting the ray
from the observation with the 3D plane. Errors in the obser-
vation lead to an inconsistent structure for future images, that
is, a corresponding (also noisy) observation on another image
may not necessary be the image of the previously recovered 3D
point. While the solutions to all these solvers may be fed to it-
erative algorithms for their refinement, there is no guarantee of
convergence to the global optimum.

It is usually preferred to leverage another set of solvers de-
fined as optimal algorithms Hartley and Zisserman (2003).
Please notice that this was the original designated name, which
in the context of this paper may lead to understandable confu-
sion. In these optimal algorithms the term “optimal“ implies
that the solvers correct the original observations so that they
give rise to a unique point in the space, that is, the “rays“ from
the camera centers towards the corrected observations intersect
at a single point. Since the problem is non-convex, the solution
does not need to be the global optimum if an iterative solver is
used. The core of this paper relies on certifiable solvers, which
we introduce later on this Section, that can actually certify opti-
mality. When necessary, we will explicitly indicate if the solver
is able to certify optimality or just correct the matches.

Image error: By assuming a pin-hole camera model, the im-
age reprojection error is defined as the distance from the orig-
inal observations to the image projection of the unknown 3D
point. The corrected observations are sought to be the closest
to the original ones in terms on some norm. For the general
case the chosen norm, e.g. `2, `1, `∞, leads to different opti-
mal solutions that attain different results regarding distance to
the original 3D points and observations Lee and Civera (2019).
For the planar triangulation problem, the different approaches
have been limited to the minimization of the `2. This norm was
shown in Chum et al. (2005) to be the Maximum Likelihood
Estimation (MLE) under a Gaussian noise assumption. In the
same paper, the authors proposed a polynomial solver, akin to
the general one by Hartley and Sturm Hartley and Sturm (1997),
that obtains the solution by computing the roots of a 8-th poly-
nomial in one variable and selecting the real root with the low-
est cost. However, polynomials solvers are slow and/or unsta-
ble, and more simple, although iterative approaches, are usually
preferred. Kanazawa and Kanatani Kanazawa and Kanatani
(1995) proposed earlier a first order approximation, which was
later improved by Kanatani and Niitsuma in Kanatani and Niit-
suma (2011). The last method, which tends to converge to the
global optimum, is at its core iterative and thus, comes without

optimality guarantees.
Nevertheless, there exist other approaches that both allow to

obtain and certify optimal solutions for non-convex problems.
Next we list the main approaches that stand on the same theory
that the proposals on this manuscript, highlighting their advan-
tages with respect to the other methods. We refer the interested
reader to the references in those works for a complete compar-
ison.

Certifiable algorithms: The two-view triangulation prob-
lem is non-convex with many local minima. A tight relaxation
of the problem consists of a simpler problem that approximates
the original one. Duality theory Boyd and Vandenberghe (2004)
provides with a set of useful tools and relaxations that under
some conditions (strong duality) allow to recover the solution
to the original problem and certify it as optimal. Additionally,
polynomial optimization based on Lassarre’s hierarchy pro-
vides with tighter although more complex relaxations. In this
work, though, we focus on the dual problem and refer the reader
to Lasserre (2008) for further information about the polynomial
approach. Among the dual-based approaches, we must high-
light one of these relaxations known as Shor’s relaxation, which
for problems with quadratic objective and constraints (QCQP)
can be solved by off-the-self tools with polynomial complexity.
This approach is faster than the other family of global solvers
that rely on Branch-and-Bound global optimization, with worst
case exponential complexity. Shor’s relaxation appears in pre-
vious works, to name a few: pose graph optimization Rosen
et al. (2019); Briales and Gonzalez-Jimenez (2017a), relative
pose problem with central cameras Zhao (2020), generalized
relative pose problem Zhao et al. (2020), the N-view triangu-
lation problem Aholt et al. (2012); Cifuentes (2021) (the latter
being a stronger albeit slower relaxation) and point cloud regis-
tration with outliers Yang and Carlone (2019). Another convex
relaxation that appears in the literature is known as the dual
problem. For QCQP, the dual problem can be also solved in
polynomial time. Provided strong duality holds, this problem
is able to certify solutions. From the solution to the dual prob-
lem and with strong duality, we can also estimate the solution
to the original one if strict complementary also holds. These
situations tend to be fulfilled for a wide set of problems and
have been leveraged by previous works, e.g. SLAM Briales and
Gonzalez-Jimenez (2016), registration with basic elements Bri-
ales and Gonzalez-Jimenez (2017b). Our first certifiable solver
builds upon this last relaxation and jointly solved for the orig-
inal (primal) and dual problems, allowing to both estimate and
certify the returned solution as the global optimum.

Nonetheless, as it has been reported in the literature and is
well-known by the research community, iterative solvers tend
to converge to the global optimum of the non-convex problem,
although without guarantees. Bearing in mind this behavior,
previous works have proposed optimality certificates, that only
certify solutions to the problem but not obtain them. Such can-
didates to optimal solutions can be estimated by other means
in a efficient, although iterative way, thus the importance of the
certification. These certificates are faster to compute than the
above-mentioned solvers and for some problems, they consist
on only a least-square system and a eigenvalue decomposition.
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In Eriksson et al. (2018) the authors certify the rotation averag-
ing problem. A further step was taken in Briales and Gonzalez-
Jimenez (2016); Carlone et al. (2015); Carlone and Dellaert
(2015) for the certification of solutions to the SLAM problem.
A similar certification algorithm was presented in Iglesias et al.
(2020) for the point cloud registration with missing data and
Yang et al. (2020) for outliers. In Garcia-Salguero et al. (2021)
we proposed the certification for the relative pose problem be-
tween calibrated cameras. The second part of this manuscript
follows the same approach and propose the first optimality cer-
tification algorithm of this kind for the two-view planar trian-
gulation problem.

Nevertheless, for some problems we can derive an even sim-
pler optimality condition that is sufficient but not necessary. If
this condition is tight, then it can certify most of the optimal
solutions. The certification is usually faster than the certifier,
thus making it a better option for applications in which speed
of computation is a strong requirement. The published suffi-
cient conditions are, however, very limited. In Eriksson et al.
(2018) Eriksson et al. proposed such condition for the rotation
averaging problem. This work was followed by Iglesias et al.
in Iglesias et al. (2020) and extended to the point cloud regis-
tration including missing data. Hartley and Seo in Hartley and
Seo (2008) bounded an optimality zone for the general N-view
triangulation problem in which the cost was guaranteed to be
convex. This bound depends on the cost of the solution, an up-
per and lower bound on the inverse depth of the 3D point and
requires the computation of the eigenvalues of a 3 × 3 matrix.
In contrast, the last part of this manuscript presents a sufficient
condition for the two-view planar triangulation problem that di-
rectly bounds the norm of the optimal solution and whose slow-
est step consists in computing the least singular value of a 4× 2
matrix.

3. Problem formulation

In this work we consider the two-view planar triangulation
problem, where we assume the unknown 3D world point X be-
longs to a given plane π. Considering a perspective camera
model Hartley and Zisserman (2003), this point X is projected
onto the views via the projection matrices as the observations
f̂ , f̂ ′ ∈ R3. Given the plane π, the cameras’ projection matrices
and the potentially noisy observations f̂ , f̂ ′, we aim to recon-
struct the 3D point X that originates them, by correcting these
correspondences to f , f ′ ∈ R3, respectively, so that the rays
from them meet at a 3D point that belongs to the plane π. Fig-
ure (2) illustrates why the second constraint cannot be omitted.

The plane π induces a homography H between the views
Hartley and Sturm (1997), consequently relating the correspon-
dences by f ′ ∼ H f , where ∼ denotes equality up-to-scale. To
eliminate the scale ambiguity from this relation we take the
cross-product as

[ f ′]xH f = 03×1. (1)

Let us define the matrices

T1 =

0 0 0
0 0 −1
0 1 0

 , T2 =

 0 0 1
0 0 0
−1 0 0

 , T3 =

0 −1 0
1 0 0
0 0 0

 .
(2)

We can write the three equations in condition (1) as

f ′T TT
1 H f = 0, f ′T TT

2 H f = 0, f ′T TT
3 H f = 0. (3)

Only two of the above three equations are algebraically inde-
pendent, and thus two constraints1 are necessary and sufficient
for a pair of observations to be generated by a 3D point on the
plane π.

We then seek the observations ( f , f ′) closest to the data
( f̂ , f̂ ′) such that (3) are fulfilled. Assuming Gaussian noise,
the MLE is given when the distance function is the `2 Chum
et al. (2005). We state the problem in terms of the corrections
∆ f ,∆ f ′ ∈ R2, although the formulation is equivalent to the one
in Chum et al. (2005) and Kanatani and Niitsuma (2011):

f ? = min
∆ f ,∆ f ′∈R2×R2

‖∆ f‖2 +
∥∥∥∆ f ′

∥∥∥
2 (O)

subject to
( f̂ ′ + GT ∆ f ′)T TT

1 H( f̂ + GT ∆ f ) = 0

( f̂ ′ + GT ∆ f ′)T TT
2 H( f̂ + GT ∆ f ) = 0

where G = [I2|02×1] ∈ R2×3. The variables of the problem are
∆ f ,∆ f ′ ∈ R2, which increments the first two entries of f̂ , f̂ ′,
respectively, and so f = f̂ +GT ∆ f (similar for f ′). Thus, we de-
fine the observations f̂ , f̂ ′ on the normalized image plane, i.e.,
they are homogeneous 3D vectors with last entry one. Thus,
the corrected observations f , f ′ also belong to the normalized
image plane. Notice that the error minimized in this problem is
indeed geometric Chum et al. (2005).

This problem, though, it is non-convex and NP-hard to solve.
We can, nevertheless, leverage concepts from duality theory in
order to solve and certificate solutions in a simpler manner. For
that, we need to re-write problem (O) in a more standard form.
We define the vector of unknowns w = [∆ f T ,∆ f ′T ]T ∈ R4 and
x = [wT , y]T ∈ R5, with y ∈ R the element (and later variable)
that makes the constraints homogeneous. In terms of x we can
re-write the constraints as ( f̂ ′ + GT ∆ f ′)T TT

1 H( f̂ + GT ∆ f ) =

wT A1w + y2bT
1 w + c1y2 = 0⇔ xT B1x = 0 (and similar for the

second constraint) with

Bi =

(
Ai bi

bT
i ci

)
∈ S5, i = 1, 2 (4)

with S5 the space of symmetric matrices of size 5. Due to the
homogenization we incorporate the additional constraint y2 =

1 ⇔ xT Lx = 1 with L = 04×4 ⊕ 1 ∈ S5
+, where ⊕ is the direct

sum of two matrices and S5
+ the cone of positive semidefinite

matrices of size 5. We write the cost in terms of the variable x
as wT w = xT Qx with Q = I4 ⊕ 0 ∈ S5

+.
The standard problem is given by

f ? = min
x∈R5

xT Qx (QCQP)

subject to xT B1x = 0, xT B2x = 0, xT Lx = 1

1We use the first two: f ′T TT
1 H f = 0 and f ′T TT

2 H f = 0.
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While this problem is still non-convex, it allows us to de-
rive a convex relaxation, the so-called dual problem Boyd and
Vandenberghe (2004), that can certify and even obtain the op-
timal solution provided strong duality holds. We state next the
main results from this convexification and refer the reader to
Appendix A for the full derivation of the dual problem and the
set of conditions. Following the standard procedure, see (Boyd
and Vandenberghe, 2004, App. B.1), the dual problem has the
final form:

g? = max
λ1,λ2,ρ∈R

ρ (D)

subject to Hλ
.
=

(
I4 − λ1 A1 − λ2 A2 −(λ1b1 + λ2b2)
−(λ1b1 + λ2b2)T ρ − λ1c1 − λ2c2

)
� 0

where the symbol � (resp. �) implies positive definite PD (resp.
positive semidefinite PSD), and Hλ denotes the Hessian of the
Lagrangian.

Necessary and sufficient optimality conditions Assuming
strong duality holds g? = f ?, we can derive the next sufficient
and necessary conditions. Note that if strong duality doesn’t
hold, these conditions don’t provide any information since we
have that g? < f ? with strict inequality. We seek points for the
primal x = [wT , 1] and dual problem (λ1, λ2, ρ) such that the
following conditions are fulfilled:

I4 − λ1 A1 − λ2 A2 � 0 (5)
(I4 − λ1 A1 − λ2 A2)w = (λ1b1 + λ2b2) (6)

ρ = wT w (7)

wT A1w + 2bT
1 w + c1 = 0 (8)

wT A2w + 2bT
2 w + c2 = 0 (9)

An alternative convex relaxation, known as the Shor’s relax-
ation, that also allows to obtain and certify the optimal solution
under some conditions is provided in the Supplementary mate-
rial Section (Appendix B).

Solution to system (5)-(9) Therefore, we seek the solution(s)
to the system of equations in (5)-(9). From Equation (6), we
have that w = S−1

λ (λ1b1 + λ2b2), which is unique if Sλ has full-
rank. In what follows, we assume that the matrix is positive def-
inite. While this seems a strong assumption, we observe exper-
imentally in Section (6) that it is the case in all the experiments.
A proof similar to that in Hmam (2010) is being considered but
let as future work. Assuming positive definiteness, we can re-
formulate the constraints in (8) and (9) in terms of λ1, λ2, as
polynomials of degree 9. From all the solutions to this polyno-
mial system of two equations in two variables, we are interested
in those that make Sλ � 0. The set of conditions in Eqs. (5)-(9)
is leveraged by the proposed certifiable algorithms in Sections
4 and 5. Note that for the problem at hand, this set has a special
form since the data follows a the pattern given by Prob. QCQP.

4. Efficient primal-dual solver

First, we propose a fast primal-dual solver that (1) estimates
the solution of Prob. QCQP and (2) certifies it as the global

optimum. This solver relies on the set of Eqs. (5)-(9), hence
assuming strong duality. Further, given the pattern of the data
matrices, this solver can be efficiently implemented, as we ex-
plain in this Section. The primal-dual solver is summarized in
Alg. 1, whereas the remaining of this Section focuses on the
development of the expressions for the solver.

Finding the solution to Eq. (A.9) involves the inversion of
the Hessian Hλ, which is evaluated at each potential candidate
solution (λ1, λ2). We propose here a re-formulation of the prob-
lem that avoids the computation of the inverse, thus simplifying
the form of the constraints and the condition that Sλ � 0. The
transformation is similar to that proposed in Hmam (2010). For
the considered constraints in problem (QCQP) we have that

GTT
1 HGT =

(
0 0

h3,1 h3,2

)
, GTT

2 HGT =

(
−h3,1 −h3,2

0 0

)
, (10)

where hi, j is the (i, j)-th entry of H and T1,T2 the 3×3 matrices
given in (2). Let us consider the SVD of TT

2 H = UDVT , with
D = diag(s, 0) and s = 1

2 (h2
3,1 + h2

3,2)1/2. Due to the structure of
TT

1 H, we also have that

UT GTT
1 HGT V =

(
0 0
−s 0

)
. (11)

Let us define the orthogonal matrix

O =

(
02×2 U
VT 02×2

)
, (12)

and the vector v = Ow ∈ R4. We can write the original prob-
lem (QCQP) in terms of v by a change of variables. The cost
function f (w) = wT w = vT v has the same value under the
change for any point. For the constraints we define the matrices
C1 = OA1OT and the vector r1 = Ob1 ∈ R4 (similar for the sec-
ond expression) and wT A1w+2bT

1 w+ci = vT C1v+2rT
1 v+ci = 0.

Following the same procedure, we obtain optimality conditions
of the form of (5)-(9) but in terms of v,Ci, ri. Nonetheless, for
this representation we have that

I4 − λ1C1 − λ2C2 =


1 0 −λ2s 0
0 1 λ1s 0
−λ2s λ1s 1 0

0 0 0 1

 , (13)

whose inverse is given by

(I4 − λ1C1 − λ2C2)−1 =

1
s2(λ2

1 + λ2
2) − 1

s2λ2
1 − 1 s2λ1λ2 −sλ2 0

s2λ1λ2 s2λ2
2 − 1 sλ1 0

−sλ2 sλ1 −1 0
0 0 0 s2(λ2

1 + λ2
2) − 1

 (14)

With a little abuse of notation, let us denoted by Sλ the new
matrix Sλ = I4 − λ1C1 − λ2C2. The sum λ1C1 + λ2C2 has as
eigenvalues {−m,m, 0, 0}with m = 1

2 (h2
3,1 +h2

3,2)1/2(λ2
2 +λ2

1)1/2 =

s(λ2
2 + λ2

1)1/2. For Sλ to be PSD, it is required that

1 − m ≥ 0⇔ 2/(h2
3,1 + h2

3,2)1/2 ≥ (λ2
2 + λ2

1)1/2. (15)
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Algorithm 1: Primal-dual solver for two-view planar
triangulation

Data: Noisy observations ( f̂ , f̂ ′), homography matrix H
Result: Corrected observations ( f , f ′); optimality

certificate isOpt
// Compute transformation

1 Compute SVD of GTT
2 HGT : set s,O;

2 // Compute data for observation

3 Compute vectors r1 = Ob1, r2 = Ob2;
4 Compute scalars c1 = f ′T TT

1 H f , c2 = f ′T TT
2 H f ;

5 Compute initial guess, e.g. λ10 = − 1
2

c1
rT

1 r1
, λ20 = − 1

2
c2

rT
2 r2

6 Compute coefficients for Newton’s method2

// Find zero

7 repeat
8 Evaluate constraints k1(λ1, λ2) in Eq. (16) and

k2(λ1, λ2) in Eq. (17) ;
9 Evaluate Jacobian (J(λ1i, λ2i))−1 (closed-form);

10 Update multipliers with Eq. (18);
11 until convergence or max. iters;
12 Estimate v? = (I4 − λ

?
1 C1 − λ

?
2 C2)−1(λ?1 r1 + λ?2 r2)

(Eq. (14));
13 Transform back w? = OT v?;
14 Update observations with w?;
15 if λ?1

2
+ λ?2

2 < (1 − εmin)/s2 then
// Solution is optimal

16 isOpt = True ;
17 else
18 isOpt = unknown ;

We then need to find the solution to the polynomial system

k1(λ1, λ2) = (λ1r1 + λ2r2)T S−T
λ C1S−1

λ (λ1r1 + λ2r2)

+ 2rT
1 S−1

λ (λ1r1 + λ2r2) + c1 = 0 (16)

k2(λ1, λ2) = (λ1r1 + λ2r2)T S−T
λ C2S−1

λ (λ1r1 + λ2r2)

+ 2rT
2 S−1

λ (λ1r1 + λ2r2) + c2 = 0 (17)

such that 2/(h2
3,1 + h2

3,2)1/2 ≥ (λ2
2 + λ2

1)1/2.
Among all the methods that can be employed to solve this

system, we choose Newton’s method, which requires of a good
initialization to converge to the solution. By noting that the first
term of the constraints tends to zero and the matrix Sλ to the
identity of size four, we propose to initialize each variable by
λ10 = − 1

2
c1

rT
1 r1

and λ20 = − 1
2

c2
rT

2 r2
.

Last, Newton’s method updates the variables at i-th iteration
as (

λ1i+1
λ2i+1

)
=

(
λ1i
λ2i

)
− (J(λ1i, λ2i))−1

(
k1(λ1i, λ2i)
k2(λ1i, λ2i)

)
(18)

being J(λ1i, λ2i) ∈ R2×2 the Jacobian of [k1, k2] w.r.t. each vari-
able whose entries are polynomials in λ1, λ2. The inverse has
an explicit (and simple) form since the matrix is 2 × 2. The
coefficients for both the Jacobian and k1, k2 depend only on the
problem data and then, they are computed just once for problem
instance.

With these, we can finally provide the algorithm in Alg. (1)
that both estimates the solution to (QCQP) and an optimality
certificate for it. We set the convergence when the increase
between consecutive estimations remains below a threshold
εupdate = 5e − 17 or the value of the constraints drops to
εconstraints = 5e−17. We apply a threshold εmin = +1e−05 to the
PSD condition for the Hessian Hλ. Please, note that all these
thresholds were employed during our evaluation in Section 6.
However, they can be adjusted by the users and we provide
these values here for simplicity and as guidelines. For safety
reasons, we limit the number of iterations to 10, although we
observe in Section (6) an average of 3 − 4 iterations even with
highly noisy observations. The highlighted part marks the vari-
ables that can be re-used for all the problem instances under the
same camera projections P, P′.

Last, let us remark that currently our solver does not guaran-
tee to find the optimal solution since a pair of scalars (λ1, λ2)
fulfilling constraints k1, k2 may not exist. We observe experi-
mentally in Section (6) that a feasible dual point (λ1, λ2) does
exist in all the tested problem instances. A theoretical proof of
this behavior is projected as future work.

Affine case: When the homography is affine, h3,1 = h3,2 = 0
and so s = 0, then the PSD condition in (5) is trivially satisfied
with Sλ = I4 � 0. Therefore, the norm of the lagrange mul-
tipliers is bounded above by 2/(h2

3,1 + h2
3,2)1/2 = 2/0 (see also

Eq. (15)), that is, any solution to the system in Eqs. (16), (17) is
the global optimum. The solution is estimated in closed-form,
as pointed out in Chum et al. (2005). In this case, the optimal
multipliers are computed as(

λ?1
λ?2

)
=

1
2

1
rT

1 r1rT
2 r2 − rT

2 r1rT
1 r2

(
rT

2 r2 −rT
2 r1

−rT
1 r2 rT

1 r1

) (
c1
c2

)
(19)

and the primal solution is w? = λ?1 r1 + λ?2 r2. Please, note that
the initialization presented above follows from a simplification
of this case.

5. Optimality certificates

Other methods can be employed to estimate a solution to
Problem (O) (not necessarily the optimum), see Section (1). It
is useful then to be able to certify if the given solution is the
global optimum. This section shows how to compute this opti-
mality certificate and then to derive a simpler sufficient condi-
tion for optimality. As the primal-dual solver, the next two con-
ditions are derived from Eqs. (5)-(9) and assume strong duality
holds. Further, the results of this Section, collected in Th. 5.1
and Th. 5.2, also assume a primal solution is given, i.e. f , f ′
and equivalently x, v, w. Following the end results on these
theorems, we provide their derivation which is not required to
employ them.

Optimality certificate: The optimality certificate is based
on the optimality conditions given in Eqs. (5)-(9) and is sum-
marized in the next Theorem.

2The coefficients for the constraints and the entries of the Jacobian can be
found in plain format in https://github.com/mergarsal

https://github.com/mergarsal
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Algorithm 2: Optimality certificate
Data: Corrected observations ( f , f ′), homography

matrix H
Result: optimality certificate isOpt
// Compute candidate to multiplier

1 Compute λ̂ from Eq. (20);
// Compute minimum eigenvalue Sλ

2 Compute scalar m = 1
2 (h2

3,1 + h2
3,2)1/2(λ2

2 + λ2
1)1/2;

// Check dual gap (sanity)

3 dual gap = wT w + λ1c1 + λ2c2 + (λ1b1 + λ2b2)T w
4 if dual gap < εgap and 1 − m > +εmin then

// Solution is optimal

5 isOpt = True ;
6 else
7 isOpt = unknown ;

Theorem 5.1 (Optimality certificate). Let w = (∆ f ,∆ f ′) be a
potentially optimal solution for the primal problem in (QCQP).
The entries of the 2D vector λ = [λ1, λ2]T are computed as

(A1w + b1|A2w + b2)
R4×2

λ = w
R4

. (20)

and are the candidates to Lagrange multipliers. If the Hessian
evaluated at this candidate λ as Sλ = I4 − λ1 A1 − λ2 A2 is PSD
and wT w = −(λ1b1 + λ2b2)T S−1

λ (λ1b1 + λ2b2) − λ1c1 − λ2c2 =

ρ holds, then it follows that (1) strong duality holds between
(QCQP) and (D); (2) the solution w is the optimum of (QCQP);
and (3) the solution (λ1, λ2, ρ) is the optimum to (D).

Proof 5.1. The primal and dual solutions fulfill the set of con-
straints in the system (5)-(9). 2

Algorithm (2) summarizes the optimality certificate derived
from Th. (5.1). Due to numerical errors, we apply two thresh-
olds to the optimality conditions; (1) feasibility, i.e. the matrix
Sλ being PSD, is substituted to Sλ � +εminI4 with εmin = 1e− 5;
and (2) strong duality (dual gap equals zero) is defined as
dual gap ≡ | f (w) − d(λ1, λ2)| ≤ εgap = 1e − 10. As in Alg. 1,
these thresholds are included as guidelines and the users are al-
lowed to change them if required. Note that the Alg. (2) can
be inconclusive about the optimality of the given solution. This
may happen if the solution is not optimal or if the underlying
dual problem is not a tight relaxation of the problem (QCQP).
In our extensive experiments, this situation was not found.

Sufficient condition for optimality: While Theorem (5.1)
is already simple, it allows us to derive a more straightforward
certificate without explicitly computing the lagrange multipliers
λ. The sufficient condition for optimality is summarized in the
next Theorem

Theorem 5.2 (Sufficient condition). For a problem instance
with the form in Prob. O, with homography matrix H =

{hi, j}
3
i, j=1 ∈ R3 and data B = [b1, b2] ∈ R4×2, b1 =

1
2 [ f ′T TT

1 HGT , f T HT T1GT ]T ∈ R4 (similar for b2) any feasi-
ble primal solution w ∈ R4 with norm bounded above by

‖w‖2 ≤ (1 − εmin)σ(B)/(h2
3,1 + h2

3,2)1/2 (21)

for a threshold εmin > 0 is the global optimum for the problem,
which follows from the dual problem be tight.

Proof 5.2. Let us employ again the transformed problem with
data Ci, ri, ci and variable v ∈ R4. It was shown that the Hes-
sian Sλ is PSD iff (1−εmin)2/(h2

3,1+h2
3,2)1/2 ≥ (λ2

2+λ2
1)1/2 = ‖λ‖2,

where we have introduced once again the threshold εmin. Since,
in the least-squares sense, the 2D vector λ = (C1v + r1|C2v +

r2)†v, we can bound from above the norm of λ and so

‖λ‖2 ≤
∥∥∥(C1v + r1|C2v + r2)†

∥∥∥
2‖v‖2 (22)

≤ 2(1 − εmin)/(h2
3,1 + h2

3,2)1/2, (23)

where
∥∥∥(C1v + r1|C2v + r2)†

∥∥∥
2 denotes the 2-norm of the

pseudo-inverse of the matrix Cv
.
= (C1v + r1|C2v + r2) ∈ R4×2.

In this case, the norm is equal to 1/σ with σ = σ(Cv) the min-
imum singular value of Cv. Please, observe that 1/σ‖v‖2 ≤
(1 − εmin)2/(h2

3,1 + h2
3,2)1/2 is sufficient for Sλ to be PSD but

not necessary. Now, let us re-write the matrix Cv as the sum
Cv = (C1v|C2v) + (r1|r2) and for short, B = (r1|r2) ∈ R4×2. Ap-
plying Weyl’s inequality to the minimum singular value σ(Cv)
we have that:

|σ(Cv) − σ(B)| ≤ ‖(C1v|C2v)‖2. (24)

Our objective is to bound σ(Cv) from below. Assume that
σ(B) ≥ σ(Cv) then

|σ(Cv) − σ(B)| = σ(B) − σ(Cv) ≤ ‖(C1v|C2v)‖2 ⇔
⇔ σ(B) − ‖(C1v|C2v)‖2 ≤ σ(Cv). (25)

In the other case in which σ(B) ≤ σ(Cv) we have that σ(B) −
‖(C1v|C2v)‖2 ≤ σ(Cv) still holds since the norm-2 of any matrix
is always non-negative. We then have that

‖w‖2 ≤ 2(1 − εmin)/(h2
3,1 + h2

3,2)1/2(σ(B) − ‖(C1v|C2v)‖2
)

≤ 2(1 − εmin)/(h2
3,1 + h2

3,2)1/2σ(Cv) (26)

since (1− εmin)2/(h2
3,1 + h2

3,2)1/2 is non-negative by construction.
The structure of (C1v|C2v) is

(C1v|C2v) =
1
2

(h2
3,1 + h2

3,2)1/2


0 v3
−v3 0
−v2 v1
0 0

 , (27)

and so its singular values are given by 1/2(h2
3,1 + h2

3,2)1/2(v2
3)1/2

and 1/2(h2
3,1 + h2

3,2)1/2(v2
1 + v2

2 + v2
3)1/2. The norm-2 of the ma-

trix is the maximum singular value and we can re-formulate the
Equation in (26) as

‖v‖2 + ‖(I3 ⊕ 0)v‖2 ≤ 2‖v‖2 (28)

≤ 2(1 − εmin)/(h2
3,1 + h2

3,2)1/2σ(B)
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from which it follows that ‖w‖2 = ‖v‖2 ≤ (1 − εmin)σ(B)/(h2
3,1 +

h2
3,2)1/2. Observe that the RHS of the above equation does not

depend of the solution and that the term (1 − εmin)σ(B)/(h2
3,1 +

h2
3,2)1/2 provides an upper bound on the cost of the problem,

that is, all the feasible solutions whose costs remains below this
value are guaranteed to be optimal.

Last, notice that for the affine case the norm of the solution is
bounded above by σ(B)/0, that is, any feasible solution is the
global optimum (see Section (4)). Next section is devoted to
showcase that the proposed solvers and certificates do work in
practice.

6. Evaluation

In this section we evaluate experimentally the performance
of the solver in Algorithm (1), denoted as DUAL, and the cer-
tificates in Alg (2) and the condition in Eq. (21) on both syn-
thetic (in Section (6.1)) and real data (in Section (6.2)). We
compare the solvers against the polynomial solver (named as
POLY) in Chum et al. (2005) that also certifies optimality and
against the iterative solver in Kanatani and Niitsuma (2011)
(denoted as ITER), which does not guarantee that the returned
solution is the global optimum. We also include the poly-
nomial solver for the general triangulation Hartley and Sturm
(1997) HS-G and the solution returned by the linear method
SVD Hartley and Zisserman (2003). Notice that HS-G and
POLY follow the same approach and the main difference be-
tween them is that POLY is devised for planar scenes. We im-
plement all the solvers according to the original papers and for
the polynomial resolution, we employ the algorithm provided
in http://www.crbond.com/download/misc/rpoly.cpp.

6.1. Evaluation on synthetic data

We generate a grid (see Figure (4)) of size 9×7 units with 15
columns and 19 rows (285 evenly-space points) on a plane with
normal [0, 0, 1] w.r.t. the world frame W and distance from the
origin d0 units (Z-axis). Each point on this grid is estimated sep-
arately since the considered algorithms only admit two views.
We place the first camera C at a random pose with maximum
angle of rotation 0.5 rad and random translation with norm 1
unit w.r.t. the wold frame; the second camera C′ is obtained fol-
lowing a set of conditions which will be defined later and for
each configuration we generate 10 random problem instances.
We consider the pin-hole camera model and perturb the obser-
vations in each image by a Gaussian noise with zero mean and
standard deviation σ = 0.5, 1, . . . , 8. The image size is 10242

and the focal length is 512. We let the distance d0 vary from
d0 = 1, . . . , 64.

We evaluate our solver on five different configurations for
the camera poses: (1) ’general’: the second pose is generated
as the first one; (2) ’lateral’: the second camera has a relative
translation w.r.t. the first one with form t = [a, b, 0]T and zero
rotation; (3) ’stereo’: the translation from the first camera to
the second has form t = [1, 0, 0]T and zero rotation (simulat-
ing a rectified stereo setup); (4) ’diagonal’: relative poses with

translation t = 1/
√

3[1, 1, 1]T and zero rotation; and (5) ’for-
ward’: the second camera has relative translation t = [0, 0, 1]T

and zero rotation. The cameras with fixed translation direction
(’stereo’, ’diagonal’ and ’forward’) are perturbed with uniform
noise with standard deviation 0.01 and zero mean. This leads
to more than one million of different triangulation problems.

Results for the primal-dual solver in algorithm (1): Fig-
ures (3) shows the errors between the observed points and the
corrected ones for the noise levelsσ = 0.5, 2.5, 5.0, 8.0 pix (X-
axis) and d0 = 4 unit (first row) and d0 = 32 units (second row).
We consider the `1 (Figures (3f), (3f)), `2 (Figures (3g), (3g))
and `∞ (Figures (3h), (3h)) of the solution w for each solver
(except SVD). Figures (3a), (3e) show the Euclidean distance
between the reconstructed 3D points and the ground-truth data.
Observe first that ITER, due to its iterative nature, get trapped
into local minima hence returning poor solutions with large
costs and errors. In general, the error in 2D are similar for all
the solvers. The general HS-G attain lower errors in observation
since the planar constraint is not imposed. However, its errors
in 3D are larger than those for POLY and DUAL, and similar
to the linear solver SVD. Notice that POLY and DUAL attain
the same errors in all the graphics. Figure (6a) shows the er-
ror in the `2 sense between the corrected observations obtained
with our method DUAL and the polynomial solver POLY as a
cumulative distribution function. We include the results for all
the experiments since the values of the difference were similar
for all the considered noise level and distance d0 to the plane.
Observe that the graphic resembles a step, and for more than
80% of the problem instances the value of the error was below
5e − 13.

Computational time: We provide next the computational
time required by each algorithm for all the synthetic experi-
ments. The evaluation was performed in a desktop PC with
CPU i7 − 4702MQ, 2.2GHz and 8 GB RAM. Additionally, we
provide the distribution of times for all the configurations by
all the algorithms except ITER in Figure 5. We don’t include
ITER since it is slower than the other options. The solvers
required the same time for all the different camera configura-
tions, and hence we provide the mean (avg) and standard de-
viation (std) for all of them. DUAL requires 3.1 microseconds
(avg) with 2.2 microseconds as std, POLY goes to 7.7 microsec-
onds (avg) and 3.4 microseconds (std). The iterative solver
ITER, which usually takes 20 iterations, requires 1.3 millisec-
onds (avg) and 1.1 milliseconds (std). The general polynomial
solver HS-G is similar to POLY, with (avg) 7.6 microseconds
and (std) 3.9 microseconds. Our solver is then at least two times
faster than POLY. On the other hand, solving the dual prob-
lem from scratch with SDPT3 as Interior Point Method (IPM)
and CVX as modeling tool in matlab requires 0.27 seconds
per problem instance, hence being slower than all the previous
solvers. Note, though, that since our solver returns both pri-
mal and dual solutions, they can be leveraged as initial guess
by these IPMs when our algorithm cannot certify optimality.

Now we break down the different stages of Alg. (1). We also
observe here a similarity between the times for all the camera
configurations and hence only provide the mean (avg) and stan-
dard deviation (std) for all of them. We consider the next five

http://www.crbond.com/download/misc/rpoly.cpp
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Synthetic data: errors
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Fig. 3: Synthetic data: errors Errors (log-scale) of the corrected matches for the different considered solvers: first column shows the Euclidean 3D error for the
reconstructed world point; and second, third and fourth columns show the 2D observation errors measured as `1, `2 and `∞, respectively for all the different solvers.
First row has the experiments for a plane parallel to the x-y plane w.r.t. the world frame at distance to the origin d0 = 1 unit and second row d0 = 32 units.
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Fig. 4: Setup of the synthetic experiments with a plane of size 9×7 units and 285
points. The first camera’s pose C has a random rotation R and translation t w.r.t.
the world frame W. The second camera’s pose C′ depends on the configuration
of the experiment (more in the text).
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other options. These results include all the configurations tested on the evalua-
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Synthetic data: comparison
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Fig. 6: Synthetic data: comparison. Figure (6a) depicts the cumulative distribution function (CDF) of the difference in the `2 sense between the solutions of POLY
and DUAL. Figure (6b) shows the CDF for the multipliers obtained by Alg. (1) and Alg. (2) for the same problem instances. Figure (6c) depicts the cost of the
optimal solution for DUAL (blue boxplot and black circles) and the upper bound estimated from Eq. (21) (orange boxplot and green squares).

stages of the Algorithm (all the values are in microseconds):
(1) Problem initialization -line 1-: (avg) 0.3397, (std) 0.4307;
(2) data initialization -lines 3 − 5-: (avg) 0.4356, (std) 0.4456;
(3) polynomial coefficients estimation -line 6-: (avg) 1.355,
(std) 1.1899; (4) root finding -lines 7 − 11-: (avg) 0.8671, (std)
0.6012; and (5) solution recovery -lines 12− 18-: (avg) 0.0574,
(std) 0.2763. The root finding algorithm requires 3.5 iterations
in average (wit std 2.4 iterations). Therefore, our algorithm can
be improved in terms of computational time by implementing a
faster root finding algorithm within the desired interval, which
is not contemplated here.

Results for the certifiable algorithm (2): This section eval-
uates the accuracy of the certifiable algorithm in Alg. (2). Con-
sidering the previous results, we consider as ground-truth the
primal-dual solution from Alg. (1). We perform the same eval-
uation with the solutions for POLY and obtain similar results.
Figure (6b) shows the difference as CDF in the `2 sense between
the multipliers estimated by Alg. (1) and Alg. (2) for the solu-
tion returned by the former. Observe that the difference remains
under 5e − 12, and show that Alg. (2) is able to certify all the
optimal solutions. Regarding computational time, the slowest
stage in Alg. (2) is the estimation of the candidate to dual point
λ̂ with Eq. (20). In total, the certification requires 2.3 microsec-
onds (avg) and 1 microsecond (std). Recall that this Algorithm
only certifies a solution, it does not obtain it.

Results for the sufficient condition: To conclude this part of
the evaluation, we test the performance of the sufficient condi-
tion in Eq. (21). The condition was applied to all the solutions
returned by DUAL, and 100% of the cases the condition was
able to estimate optimality, i.e., the sufficient condition is tight
in practice. Figure (6c) shows the bound on the cost derived
from the sufficient condition (orange boxplot) and the cost at-
tained by the global optimum of the problem (blue boxplot). We
also sample randomly some of the results and plot the specific
values as circles (green for the condition and black for the cost).
Notice that the sufficient condition is tight in practice. Check-
ing the sufficient condition requires less than 1 microsecond per

problem instance.

6.2. Evaluation on real data

We conclude the evaluation of our algorithms with an exten-
sive set of experiments on real data. We select the next datasets
that provide with different camera configurations and scenes
that are found in real-world applications:

1. Ground images from an aerial vehicle [dataset] Liu and Ji (2020).
The images have texture with many buildings and roads.
The buildings’ height are negligible w.r.t. the ground plane
and the whole scene can be approximated by a single
plane with known equation. We use the next sequences,
each of them with 200 pair of images: val-009-77,
denoted by Aerial: 009-77; val-013-68, denoted by
Aerial: 013-08; test-002-50, denoted by Aerial: 002-50;
test-003-73, denoted by Aerial: 003-73; test-009-67,
denoted by Aerial: 009-67; and test-011-38, denoted by
Aerial: 011-38.

2. Road images from a car [dataset] Andreas Geiger et al. (2013).
The sequences were recorded by a moving vehicle with
a forward pointing camera. The road is visible in all
the images and presents some strong features. The
next sequences are considered: from the KITTI dataset:
road-2011-09-26-drive-0027-sync (185 pair of images),
denoted by KITTI: ROAD-27; road-2011-09-30-drive-
0016-sync (277 pair of images), denoted by KITTI:
ROAD-30; road-2011-09-26-drive-0029-sync (428 pair
of images), denoted by KITTI: ROAD-29; and road-2011-
09-26-drive-0032-sync (390 pair of images), denoted by
KITTI: ROAD-32.

3. Indoor scenes [dataset] J. Sturm et al. (2012). The im-
ages show a set of planes (at least one in all the se-
quences) with some texture provided by a set of posters.
The ground plane, when visible, does not provide any
suitable feature and we rely only on the posters for
the triangulation. We consider the next sequences:
freiburg3-nostructure-texture-far (73 pair of images)
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Real data: samples

(a) (b) (c) (d)

Fig. 7: Real data: samples Figures (7a)-(7d) show sample images from the considered datasets with the set of correspondences marked in magenta circles: Aerial:
009-77 in Fig. (7a); Fig. (7b) -top- KITTI: road-27 and -bottom- KITTI: road-29; TUM-struct-far in Fig. (7c); and of kt1 in Fig. (7d).

denoted by TUM-nonstruct-far; freiburg3-nostructure-
texture-near-withloop (326 pair of images) denoted by
TUM-nonstruct-near; freiburg3-structure-texture-far
(180 pair of images) denoted by TUM-struct-far; and
freiburg3-structure-texture-near (210 pair of images)
denoted by TUM-struct-near.

4. Interior building images [dataset] A. Handa et al. (2014).
The sequences show two different indoor scenes with
texture and structure. Strong features on planar surfaces
appear several times on the images. Floor and walls
also provide some features. We consider the next four
sequences: lr kt1 (321 images) (denoted by the same
name); lr kt2 (292 images); of kt1 (321 images); and of
kt3 (413 images).

Samples of the sequences with the set of correspondences
marked in magenta are shown in shown in Figure (7). All
datasets provide us with ground-truth poses, point clouds (or
depth images) and intrinsic calibration data, and a total of 4615
pair of images. To generate correspondences we extract and
match SURF features Bay et al. (2008), filtering those that do
not lie on the dominant planes. This also allows us to dis-
card outliers. We correct the matches with the above-mentioned
solvers.

Figures (8e)-(8h) depict the `2 norm of the correction for the
different solvers and datasets following the above-mentioned
groups. Due to space limits and the similarity of the results, we
move the errors in the `1 and `∞ sense to the Supplementary
material Section (Appendix C). Notice that DUAL and POLY
attain the same 2D error, while ITER is unstable for some prob-
lem instances, as it was observed in the synthetic evaluation.
Notice also that the general solver HS-G also becomes unstable,
which appears as outliers in the graphics. We test the similarity
between the solutions from DUAL and POLY by measuring the
difference in the `2 sense. We obtain a similar distribution of
the errors than in the synthetic evaluation. The graphics can be
found in the Supplementary material Section (Appendix C).

We also measure the difference between the lagrange mul-
tipliers obtained by Alg. (1) and the certifier in Alg. (2) and
observe that the multipliers agree with at least 1e − 15 of accu-
racy in all the cases, and so the certifier is able to certify all the
solutions to the non-convex problem (O). Last, we include here
the results for the bound in Figures (8e)- (8h) derive from the
sufficient condition in Eq. (21) following the same format than

in Figure (6c). Notice that for these problem instances the suffi-
cient condition is also able to certify all the optimal solution as
such. For the aerial sequences in Figure (8e) the upper bound is
σ(B)/0.

7. Conclusions and future work

In this work, we have tackled the two-view triangulation
problem under the restriction that the 3D unknown world points
must lie on a plane. Based on duality theory, we have proposed
a primal-dual solver that is able to both estimate and certify
the solution to this non-convex problem. The solver is insen-
sible to high noise and always return a feasible solution. It is
also faster than the other certifiable algorithm in Chum et al.
(2005), and the difference between the solutions remains un-
der 1e − 11 for most problem instances. From the formula-
tion of this solver, we have derived an optimality certificate
that allows to certify a given feasible solution for the origi-
nal problem. This certifier is shown to work in practice and is
able to certify all the solutions in 2.3 microseconds. Moreover,
based on this certifier we derived a sufficient (but not neces-
sary) condition for optimality that also works in practice, tak-
ing less than one microsecond to certify solutions. We carried
out extensive experiments on both synthetic and real data that
prove the utility of our proposals. The code is made available
at https://github.com/mergarsal.

As future work, we devised to extend this approach to more
than two views and to include these certifiable solvers into com-
plete pipelines. We also contemplate to prove theoretically than
the proposed relaxation is tight even with highly noise observa-
tions.
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Real data: results
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Fig. 8: Real data: results Figures (8a)-(8d) show the `2 norm (log-scale) of the correction for the different solvers and datasets (see legends and text). Figures
(8e)-(8h) depict the cost of the optimal solution for DUAL (blue boxplot and black circles) and the upper bound estimated from Eq. (21) (orange boxplot and green
squares). For the aerial images (Fig. (8e)), the upper bound has the form σ(B)/0.
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Jimenez, J., 2019. Pl-slam: A stereo slam system through the combination
of points and line segments. IEEE Transactions on Robotics 35, 734–746.

Hartley, R., Seo, Y., 2008. Verifying global minima for l 2 minimization prob-
lems, in: 2008 IEEE Conference on Computer Vision and Pattern Recogni-
tion, IEEE. pp. 1–8.

Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision.



13

Cambridge university press.
Hartley, R.I., Sturm, P., 1997. Triangulation. Computer vision and image un-

derstanding 68, 146–157.
Hmam, H., 2010. Quadratic optimisation with one quadratic equality con-

straint. Technical Report. DEFENCE SCIENCE AND TECHNOLOGY
ORGANISATION EDINBURGH (AUSTRALIA) ELECTRONIC . . . .

Hoegner, L., Tuttas, S., Stilla, U., 2016. 3d building reconstruction and con-
struction site monitoring from rgb and tir image sets, in: 2016 12th IEEE
International Symposium on Electronics and Telecommunications (ISETC),
IEEE. pp. 305–308.

Iglesias, J.P., Olsson, C., Kahl, F., 2020. Global optimality for point set regis-
tration using semidefinite programming, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8287–8295.

[dataset] J. Sturm, Engelhard, N., Endres, F., Burgard, W., Cremers, D., 2012.
A benchmark for the evaluation of rgb-d slam systems, in: Proc. of the In-
ternational Conference on Intelligent Robot Systems (IROS).
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Appendix A. Dual problem for the non-convex problem
(QCQP)

In this Section we provide the derivation of the set of con-
ditions in Eqs. (5)-(9). For that, we follow the standard pro-
cedure for QCQPs with the form in Prob. QCQP that can be
found in the literature and textbooks, e.g. Boyd and Vanden-
berghe (2004). We then restrict ourselves to problems with the
specific form and refer the reader to this reference for further
information.

The dual problem for the primal QCQP is defined as:

g? = max
λ1,λ2,ρ∈R

min
x∈R2N

L(x, λ1, λ2, ρ), (A.1)

where L(x, λ1, λ2, ρ) is the Lagrangian

L(x, λ1, λ2, ρ) = xT Qx − xTλ1B1x − xTλ2B2x − ρxT Lx + ρ =

(A.2)

= xT (Q − λ1B1 − λ2B2 − ρL)x + ρ. (A.3)

The dual function d(λ1, λ2, ρ) = minx∈R2N L(x, λ1, λ2, ρ) has fi-
nite minimum iff the Hessian of the Lagrangian Hλ

.
= Q −

λ1B1 − λ2B2 − ρL is semidefinite positive, i.e. Hλ � 0. In this
case, the minimum value of the expression xT Hλx is zero, and
the Lagrangian takes ρ as minimum cost. Since we are inter-
ested in finite values for the dual problem, we can restrict our
development to this case, and so the dual problem has the final
form

g? = max
λ1,λ2,ρ∈R

ρ (D)

subject to Hλ
.
= Q − λ1B1 − λ2B2 − ρL � 0

where the symbol � (resp. �) implies positive definite PD (resp.
positive semidefinite PSD). Considering the form of the matri-
ces B1, B2 in Eq. (4) and that L is a zero matrix with the bottom,
right corner entry to one, we have that the Hessian of the La-
grangian Hλ has the explicit form

Hλ =

(
I4 − λ1 A1 − λ2 A2 −(λ1b1 + λ2b2)
−(λ1b1 + λ2b2)T ρ − λ1c1 − λ2c2

)
, (A.4)

and by the Schur’s complement of the block matrix Hλ (Boyd
and Vandenberghe, 2004, Sec. A.5.5) we can re-write the con-
dition that Hλ � 0 as the next three relations

Sλ
.
= I4 − λ1 A1 − λ2 A2 � 0 (A.5)

− (λ1b1 + λ2b2)T S−1
λ (λ1b1 + λ2b2) − λ1c1 − λ2c2 ≥ ρ (A.6)

λ1b1 + λ2b2 ∈ R(I4 − λ1 A1 − λ2 A2), (A.7)

being R(A) the range of the matrix A.

Strong duality: Since the dual problem (D) is a relaxation
of the primal (QCQP), the chain of inequalities holds

g(λ1, λ2, ρ) = ρ ≤ g? ≤ f ? ≤ f (w) (A.8)

for any primal w and dual (λ1, λ2, ρ) feasible points, i.e. points
in the domain of the problems (QCQP) and (D), respectively.

If the relaxation is tight, then g? = f ? and the dual (con-
vex) problem permits us to certify the solution of the primal.
We are thus interested in finding a pair of primal-dual feasi-
ble points (x, λ1, λ2, ρ) such that the costs attained by them are
equal. These solutions will be the global optimum of the respec-
tive problems, and provide us with an optimality certificate. In
this case we have that

x?T H?
λ x? = 0⇔ H?

λ x? = 05×1, (A.9)

where H?
λ is the Hessian matrix Hλ evaluated at the optimal

(and feasible) points (λ?1 , λ
?
2 , ρ

?). Since x? is feasible for the
primal, we know that its last entry is one WLOG3 and we can
re-write condition (A.9) as the two relations:

S?λw? = (I4 − λ
?
1 A1 − λ

?
2 A2)w? = (λ?1 b1 + λ?2 b2) (A.10)

ρ = −λ?1 c1 − λ
?
2 c2 − (λ?1 b1 + λ?2 b2)T w? = w?T w? (A.11)

where the last equality in (A.11) follows from w? being primal
feasible. Collecting all these conditions leads up to the set in
Eqs. (5)-(9)

Appendix B. Shor’s relaxation for the non-convex problem
(QCQP)

An alternative convex relaxation for the primal (QCQP) is
given by Shor’s relaxation

h? = min
X∈R5

tr(QX) (SDP)

subject to

tr(B1X) = 0
tr(B2X) = 0
tr(LX) = 1

Problem (SDP) is an instance of a semidefinite problem
(SDP) which is convex by construction and can be solved
by off-the-shelf tools in polynomial time, e.g. SeDuMi Sturm
(1999) and SDPT3 Toh et al. (1999). Provided that some spec-
tral conditions on the solution X? hold, we can recover and cer-
tify the optimal solution of the non-convex (QCQP) from X?.
In this work, we leverage instead the dual (D), which both es-
timates and certifies the optimum for (QCQP) in a simpler and
more efficient way.

Appendix C. Further results of real data

In this Section we include the graphics for the evaluation on
real data that due to space limits and/or similarity with other
results were not included in the manuscript.

Figures (C.9a)-(C.9d) show the `1 norm (log-scale) of the
correction for the different solvers and datasets. Figures (C.9e)-
(C.9h) depict the same results under the `∞ norm. Notice that
ITER and HS-G become unstable for some problem instances,
while DUAL and POLY attain always the same errors.

3Since +x and −x are solutions to the (QCQP), we can select the one with
the last entry equal to +1
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Real data: further results
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Fig. C.9: Real data: further results: Figures (C.9a)-(C.9d) show the `1 norm (log-scale) of the correction for the different solvers and datasets. Figures (C.9e)-
(C.9h) show the results for the `∞ norm.

Figures (C.10a)- (C.10d) show the difference as CDF be-
tween the solutions of POLY and DUAL for the different
datasets and sequences. These errors are similar to the ones on
synthetic data in Figure (6a) and are all below 5e− 11. We also
measure the value of the homography constraint in the `2 sense
for the solution returned by DUAL. Figures (C.10e)- (C.10h)
depict the cumulative distribution function of this value for the
different sequences. Observe that for all the problem instances
the value of constraint remains under 1e − 10.
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Real data: comparison
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Fig. C.10: Real data: comparison First row shows the cumulative distribution function (CDF) of the difference between the solutions returned by DUAL and
POLY for the different datasets and sequences (see X-axis). The second row shows the CDF of the homography constraint (in the `2 sense) for the solution returned
by DUAL.


