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Abstract

The Relative Pose problem (RPp) seeks for the relative rotation and translation between
two central, calibrated cameras given a set of pair-wise feature correspondences. The RPp
is a fundamental block for many 3D computer vision tasks, and hence, the quality of the
estimated relative pose is of key importance for the correct performance of these applications.
Nonetheless, the RPp is a non-convex problem that presents multiple local minima. Recent
non-minimal solvers provide relatively fast certifiable solutions, usually relying on a convex
relaxation of the problem; however, there is no guarantee a priori that these relaxations return
the optimal solution, i.e. are tight.

This work presents a sufficient condition to guarantee that a given solution of the Relative
Pose problem (RPp) is the global optimum, in a faster way than evaluating a certifiable
algorithm (up to 4 times faster). We state RPp as an optimization problem that minimizes the
squared normalized epipolar error over the set of normalized essential matrices. The proposed
condition is derived through spectral analysis and builds up on the recently proposed certifiable
algorithm in [1]. The results of extensive experiments, with both synthetic and real data, support
that by using the proposed conditions we can detect a large number of optimal solutions for
most common problem instances.

Index Terms

Relative Pose problem; sufficient optimality condition; optimality certification; spectral
analysis

I. INTRODUCTION

The Relative Pose problem (RPp) aims to estimate the relative rotation R and translation t be-
tween two central, calibrated cameras given a (noisy) set of N pair-wise feature correspondences
(fi,f

′
i ), as shown in Figure (1). The estimation of the relative pose is the cornerstone of visual

odometry [2], [3] and more complex 3D computer vision applications, including Simultaneous
Localization and Mapping (SLAM) [4]–[6] and Structure-from-Motion (SfM) [7], [8]. The
gold standard approach for RPp formulates it as a 2-view Bundle-adjustment that minimizes
the reprojection error [9]. This problem is highly non-convex [8] and a good initialization,
usually derived from a simplification of the problem, is crucial for a successful estimation [10],
[9].

Common approaches for solving the RPp state it in terms of the estimation of the essential
matrix E [9, Sec. 9], a 3 × 3 matrix that encapsulates all the information about the relative
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Fig. 1: The RPp seeks the relative rotation R and translation t up-to-scale between two central,
calibrated cameras (1 − 2) from a set of N pair-wise feature correspondences (fi,f

′
i) i =

1, . . . , N . Figure taken from [1].

pose. The essential matrix relates each pair of correspondence points (fi,f
′
i) through the so-

called epipolar constraint f ′T
i Efi = 0. For noisy correspondences, though, this relation does

not hold exactly, and so f ′T
i Efi = ϵi ̸= 0. Thus, a common method to compute the matrix

E is through the minimization of the (squared) epipolar error ϵ2i = (f ′T
i Efi)

2 [9, Sec. 9].
This basic cost function and more elaborated constructions upon the same concept of keeping
minimum the epipolar error, like in [11], [12], lead to non-convex optimization problems,
presenting multiple local minima, see e.g. [1], [13].

The relative pose, and thus the essential matrix, has only five degrees of freedom: three for
the 3D rotation and two for the 3D translation direction, since the scale cannot be recovered
for central cameras [9]. Since the epipolar constraint is linear in the entries of the E, only five
points are necessary to estimate it. This is known as the minimal solver (five-point algorithm,
5-PT ) [14], [15], that can be embedded into robust frameworks, such as RANSAC [13], [16]. A
simpler method that also estimates the essential matrix is the well-known eight-point algorithm
(8-PT ), which, although originally devised for the fundamental matrix (the equivalent entity
for uncalibrated cameras), can be adapted to the calibrated case, i.e. for E [9], [17]. Minimal
solvers are highly sensible to noise in the data, hence iterative algorithms that consider all the
correspondences (non-minimal solvers) are usually employed, since they achieve better results
in the presence of noise [11], [12], [18], [19]. Usually, non-minimal solvers take an initial
guess from a minimal solver [11], [14]–[16], [20]–[22] and iteratively refine the solution on
the manifold of essential matrices. The main motivation behind this approach is the fact that,
although the RPp is non-convex, iterative solvers perform well in practice and repeatedly attain
the global solution [11], [12], [19]. Nevertheless, most of the times these methods are sensitive
to the given initialization, both for accuracy, optimality and convergence rate [1], [13], [23].
The quality of this initial guess, though, cannot be measured a priori. In summary, given the
non-convexity of RPp, there is no guarantee that the solution found by non-minimal solvers is
the global optimum.

Though certifiable solvers have been recently proposed for the RPp [13], [23]–[25], they
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usually come with the drawback of being inefficient because off-the-shelf tools employed for
their resolution have polynomial [26], [27] (or even exponential) time complexity. Special
attention has been given recently to the semidefinite positive relaxations (convex) of RPp [23],
[24], since they can be actually solved in polynomial time and tend to recover the solution to
the original problem in most problem instances, even with high noisy data and low number of
correspondences. Also in this line, it was recently proposed in [1] a fast optimality certification
algorithm that leverages another convex relaxation of the RPp, and is able to certify if a given
solution is optimal or is inconclusive about its optimality. Since the certification does not require
convex optimization tools and the relative pose can be estimated by any solver, in practice the
computational cost of the algorithm is lower than the above-mentioned methods.

Although for most problem instances the certifiable solvers that leverage convex relaxations
have shown to recover and certify the solution to the original problem, there is no guarantee to
do so. An approach that usually helps to shed some light on why these solvers perform well in
practice is through analyzing sufficient conditions for optimality. These conditions are derived
from an explicit parameterization of the problem, and assure that, if fulfilled, strong duality
holds for a given solution and problem instance, i.e. the convex relaxation is able to estimate the
solution to the original, non-convex problem. Thus, the conditions are a mechanism to detect
optimality. They tend to be also simpler (and hence, faster) to compute than others certifiable
approaches for the same problem including fast certifiers, if they exist; however, they are just
sufficient and not necessary for optimality. If the condition is tight, though, it can certify most
of the optimal solutions for a wide variety of problem instances. Such sufficient conditions do
appear in the literature for other problems and are proved to be tight and useful in practice.
In [28] Eriksson et al. proposed a sufficient condition for the problem of rotation averaging,
while Iglesias et al. in [29] presented a similar condition for the point cloud registration with
missing data. Interestingly, Hartley and Seo in [30] showed that it is possible to bound an
optimality zone for the triangulation problem with known rotation or known plane, allowing to
certify if a given solution is optimal.

A. Contributions

In this line, and exploiting the certifiable algorithm in [1], we propose a fast and simple
sufficient optimality condition for the RPp.

We formulate the problem as an optimization program that minimizes the squared, normalized
epipolar error over the set of normalized essential matrices. This condition is defined through
meaningful terms that help to understand the hardness of the problem instance. The certifier
from which we derive our condition relies on a specific relaxation of the set of essential matrices;
however, five other relaxations can be applied to obtain similar yet different certifiers. Any of
them is suitable for certification and hence, also as starting point for our condition. We begin
with the derivation of one of them and then illustrate how the final form of our condition is
extended to any other relaxation of the set of essential matrices, i.e. to any certifier. Further, we
are able to detect a priori which relaxation provides the best (wider) region of optimality for a
given problem instance. Additionally, and given the simplicity of our condition, we state under
which conditions it can be guaranteed that a given problem instance and a given relaxation attain
strong duality, i.e. the certifier associated can detect the optimal solution. For that, we analyze
the form of the eigenvector associated with the smallest eigenvalue of the data matrix (formed
by the pair-wise correspondences), without explicitly providing any solution. This statement is
actually related to the output of the 8-PT algorithm and the Direct Linear Transform (DLT)
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method, the natural extension of the 8-PT to all the correspondences [9]. Through extensive
experiments on both synthetic and real data, our condition is proved to be tight in practice for
common scenarios, while being faster to compute than any other certifiable approach, including
the certifier.

Before continue, we want to remark that our work builds upon the assumption that a set of
relaxations is tight, which cannot be assured a priori. Nevertheless, empirically we show that
it is indeed tight and thus our proposal works on real problem instances. Our main results are
stated in Theorem (3.1) and Corollary (3.1.2).

B. Notation

We denote (column) vectors by bold, lower-case letters, e.g. e, and matrices by bold, upper-
case letters, e.g. E. The operator vec(E) vectorizes the matrix E column-wise. We denote the
kronecker product by ⊗ and the direct sum by ⊕. The identity matrix of size n is denoted by
In and the zero matrix of size n × m by 0n×m. The set of symmetric matrices of size n is
denoted by Sn and the cone of positive semidefinite (PSD) matrices by Sn+. A matrix Q that is
PSD is also indicated as Q ⪰ 0. We reserve λ for the Lagrange multipliers, µ for eigenvalues
and σ for singular values. Last by [t]× we denote the 3× 3 skew-symmetric matrix that forms
the cross-product with the 3D vector t = [t1, t2, t3]

T , i.e., t× (•) = [t]×(•) with

[t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 .

II. RELATIVE POSE PROBLEM AND OPTIMALITY CERTIFICATION

A. Relative Pose problem

This works tackles the Relative Pose problem (RPp) between two central calibrated cameras,
given a set of N pair-wise correspondences (fi,f

′
i), which are the images in the two different

views of N (unknown) world points, see Figure (1). We pose the RPp as an optimization
problem over the set of normalized essential matrices E, defined as [9], [31]

E = {E | E = [t]×R, t ∈ S2,R ∈ SO(3)}, (1)

where S2 is the 2-sphere
S2 .

= {t ∈ R3 | tT t = 1} (2)

and SO(3) is the set of 3D rotations as 3× 3 matrices,

SO(3) = {R ∈ R3×3 | RRT = I3,det(R) = +1}. (3)

The cost function is defined as the sum of the squared, normalized epipolar error [9], [32]
for each pair-wise observation ϵ2i = (f ′T

i Efi)
2, where we have identified these observations

with points in the 2-sphere. This has been the approach followed by previous works [23], [24],
and although more complex cost functions have been proposed, this is already a non-convex
problem that presents many challenges.

For the purpose of this work, the problem has to be written as a Quadratically Constrained
Quadratic Program (QCQP) [33]. Hence, the set of essential matrices has to be defined explicitly
and globally; among all the definitions available for the essential matrices [17], [24], a minimal
representation is preferred. We employ the minimal parameterization proposed by Faugeras et
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al. in [17] and recently leveraged in [1], [24]. This definition provides with a set of seven
independent constraints given by:

h0 ≡ tT t = 1 (4)

h1 ≡ eT1 e1 = t22 + t23 , h6 ≡ eT1 e2 = −t1t2 (5)

h2 ≡ eT2 e2 = t21 + t23 , h5 ≡ eT1 e3 = −t1t3 (6)

h3 ≡ eT3 e3 = t21 + t22 , h4 ≡ eT2 e3 = −t2t3 (7)

where ei ∈ R3 stands for the i-th row of the matrix E and t is the translation vector associated
to E.

We write the RPp as a standard QCQP by introducing the positive semidefinite (PSD) data
matrix Q9 = 1

N

∑N
i=1(f

′
i⊗fi)(f

′
i⊗fi)

T ∈ S9+ 1 such that the cost function f(E) =
∑N

i=1
1
N ϵ2i

is written as f(E) = vec(E)TQ9 vec(E). The constraints are also expressed in their quadratic
forms as hi ≡ xTAix = ci for i = 0, . . . , 6, where Ai ∈ S12, ci ∈ R and the vector x
contains all the variables of the problem, i.e. x

.
= [vec(E)T , tT ]T ∈ R12. By defining the

matrix Q12
.
= Q9 ⊕ 03×3 ∈ S12+ the RPp has the standard QCQP form:

f⋆ = min
x∈R12

xTQ12x subject to xTAix = ci, i = 0 . . . , 6 (O)

B. Optimality Certification

This problem is, however, non-convex and thus, presents multiple local minima. We proposed
recently in [1] a fast algorithm that allows to certify the optimality of a given solution x̂ for this
same problem, leveraging the minimal parameterization of the set of essential matrices in (6). It
was shown that this parameterization cannot be leveraged in such form and a relaxation becomes
necessary in order to derive a suitable fast certifier: one of the six constraints associated with
E (Equations (5)-(7)) must be dropped.

Since the condition derived in this paper relies on the specific form of the certifier and the
associated relaxation of the set (6), let us concretize them. Among all these six relaxations we
choose the one given by the feasible set

h0 ≡ tT t = 1 , h5 ≡ eT1 e3 = −t1t3 (8)

h1 ≡ eT1 e1 = t22 + t23 , h4 ≡ eT2 e3 = −t2t3 (9)

h2 ≡ eT2 e2 = t21 + t23 , h3 ≡ eT3 e3 = t21 + t22 (10)

For this relaxation and assuming strong duality holds (see [1, Th. 5.1]), the closed-form
expression for dual candidate λ̌ given a potential solution x̂ to the original problem (O) is
expressed as

[A0 | A1 | A2 | A3 | A4 | A5](I6 ⊗ x̂)λ̌ = Q12x̂, (11)

where λ̌ ∈ R6 are the Lagrange multipliers and recall that I6 is the identity matrix of size 6. We
say that the solution x̂ is optimal iff the Hessian of the Lagrangian Ȟ(λ̌)

.
= Q12−

∑5
i=0 λ̌iAi

is positive semidefinite, i.e. Ȟ(λ̌) ⪰ 0 .
This certification requires (1) the estimation of the candidates to Lagrange multipliers λ̌ in

(11) and (2) the computation of the minimum eigenvalue of Ȟ(λ̌). Since there exist 6 different

1The scale 1
N

does not affect the solution of the problem since does not depend on E, but it is necessary for our
condition to be independent on the number of correspondences. The reason behind this is provided in the Supplementary
material (C).
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Fig. 2: We can express the Hessian H(λ) as the sum of block-diagonal matrices
Q̂12,A0, . . . ,A6 with the same pattern: two blocks of size 9× 9 and 3× 3. We show here all
the constraints for completeness; for the relaxation employed through the paper, the multiplier
λ6 is not included. See text for more details.

relaxations, we can derive also 6 closed-forms for dual candidates and their associated Hessian
matrices. It is not known a priori which relaxation performs better (in terms of certification)
and hence, in the worst case, 6 different certifications must be carried out.

III. A SUFFICIENT CONDITION FOR OPTIMALITY

In this paper we aim to provide a simpler sufficient condition that guarantees that the solution
x̂ is optimal. The intuitive idea is to define a region of solutions for which the positive semi-
definiteness of the Hessian Ȟ(λ̌) is guaranteed without computing explicitly its eigenvalues
nor the vector λ̌. Despite the soundness of this concept, such a condition has not been proposed
for the RPp to the best of our knowledge.

Our main results are stated below:
Theorem 3.1 (Sufficient Optimality Condition): Let a problem instance has as data matrix

Q9 ∈ S9+. Let the 9D eigenvector associated with the smallest eigenvalue be e0 and its 3× 3
form E0. The 3D left eigenvector associated with the smallest eigenvalue of E0 is t0, and the
12D vector x0 = [eT0 , t

T
0 ]

T . Let i be the index associated with the best relaxation, such that
the minimum singular value σi

null(x0) of Ai
P(x), obtained by dropping the corresponding rows

and columns of Ag(x) and Pg, is the maximum over all the relaxations (see (D)). A given
solution x = [eT , tT ]T to the problem (O) with cost value ϵ2 ≤ ϵ0, being ϵ0 ≥ 0 a threshold,
is guaranteed to be optimal (with an optimality certificate) and strong duality holds for the
(relaxed) dual problem and the original problem (O) if

η(Q9,x) ≤ ϵ0σ
i
null(x0), (12)
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holds where

η(Q9,x)
.
=

√
eTQ2

9e+ (ϵ2)
2
+ (ϵ0 − ϵ2)

∥∥Ai
P(x− x0)

∥∥
F + ϵ2σi

null(x0). (13)

Corollary 3.1.1: In the noiseless case, the sufficient condition derived from any relaxation is
able to certify the solution as optimal.

Proof 3.1: In this case, all the correspondences fulfill the epipolar constraint exactly, that
is, ϵi = 0 for all i, and hence ϵ2 = 1

N

∑N
i=1 ϵ

2
i = 0. Further, since ϵ2 = eTQ9e = 0 and

e ̸= 09×1, it follows that Q9 has an eigenvalue equal to zero. We defined e0 as the eigenvector
associated with the smaller eigenvalue, but since the solution x lays in the nullspace of the
data matrix Q9, we have that x = x0. Then, x − x0 = 0 =⇒ AP(x − x0) = 0 and
eTQ2

9e = eT0 Q9Q9e0 = 0. Therefore, η(Q9,x) = 0 ≤ ϵ0σ
i
null(x0) and since the right-hand

side (RHS) is always non-negative, the solution x is certified as optimal independently of the
term σi

null(x0), i.e. for any relaxation.
Further, given the form of the condition in Theorem (3.1), we can derive an even simpler

condition that guarantees that strong duality holds for a given problem without providing
explicitly any solution

Corollary 3.1.2: Let ki
.
= ki(Q9, e0), i = 0, 1, 2 be three scalar functions of Q9 and e0, as

defined in Theorem (3.1), whose explicit forms are provided in the Supplementary material (E).
If the expression √

k1 + k20 +
√
k2ϵ0 −

√
k2k0 + k0σ

i
null(x0) ≤ ϵ0σ

i
null(x0), (14)

holds, then (1) strong duality holds for this problem (with certificate); (2) the output from the
8-PT algorithm (DLT) lies sufficiently close to the global optimum to be considered as optimal;
and hence (3) any refinement of this output leads to the global optimum.

Proof 3.2: Although this may seem a strong claim, the intuition behind it is pretty simple:
The expression in (14) is the explicit form of our condition in Theorem (3.1) applied to the
output of the 8-PT algorithm (DLT) in terms of the SVD decomposition of E0. Due to space
limits, we provide the proof in the Supplementary material (E).

The remainder of this Section is devoted to obtain these results. We evaluate the performance
of our optimality condition in Section (V).

We start by simplifying the certification algorithm in Section (II-B). First, recall that the
closed-form expression for λ̌ in (11) assumes that strong duality holds, i.e. the optimal cost of
the original problem f⋆ and the dual problem d⋆ [33] are equal up to some accuracy. Since
the dual problem for this relaxation has the form [1, App. C]

d⋆ = max
λ̌

λ̌0 subject to Ȟ(λ̌) ⪰ 0 (D-R)

we have that f⋆ = d⋆ = λ̌0. Let us denote the cost value attained by the solution x̂ by
ϵ2

.
= f(x̂). The certifier assumes that f(x̂) = f⋆ and so λ̌0 = ϵ2. In what follows, we will

drop the hat to clear notation. Hence, we can simplify the expression in (11) by “moving“
the first lagrange multiplier λ0 to the right-hand side and substituting it with ϵ2. This reduced
closed-form is formally given by

[A1 | A2 | A3 | A4 | A5](I5 ⊗ x)λ = Q12x− ϵ2A0x, (15)

with λ = [λ1, . . . , λ5]
T ∈ R5. For short we will denote

A(x)
.
= [A1 | A2 | A3 | A4 | A5](I5 ⊗ x) (16)

Q̂12
.
= Q12 − ϵ2A0 = Q12 − ϵ2

(
09×9 ⊕ I3

)
= (Q9 ⊕−ϵ2I3). (17)
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The Hessian for this reduced certifier is given by H(λ) = Q12−A0ϵ
2−

∑5
i=1 λiAi, which

is the sum of seven block-diagonal matrices with two blocks of size 9 × 9 and 3 × 3, as we
show in Figure (2). Hence, H .

= H(λ) is also a block-diagonal matrix. Let us denote the
top-left 9× 9 block by HE and the bottom-right 3× 3 block by Ht. The matrix H is PSD if
and only if each block is also PSD and we only need to analyze these two individuals blocks
instead of the full matrix. The explicit expressions for these blocks HE ,Ht are given by (see
also Figure (2)):

HE .
= Q9 − (B1 ⊕B1 ⊕B1), Ht .

= −ϵ2I3 −B2. (18)

where B1,B2 are 3× 3 symmetric matrices with the form:

B1
.
=

 λ1 0 λ2/2
0 λ3 λ4/2

λ2/2 λ4/2 λ5

 , B2
.
=

−λ3 − λ5 0 λ2/2
0 −λ1 − λ5 λ4/2

λ2/2 λ4/2 −λ1 − λ3

 . (19)

See that, by definition, any PSD matrix has as minimum eigenvalue a non-negative number.
Hence, we can re-write the two PSD conditions as µE ≥ 0, µt ≥ 0, where µE , µt are the
minimum eigenvalues of the matrices HE ,Ht, respectively. In order to accommodate numerical
errors, we will ask the minimum eigenvalues to be greater than a negative threshold −ϵ0, with
ϵ0 ≥ 0.

Weyl’s inequality for eigenvalues [34, Sec. 4.3] allows us to express this PSD conditions in
terms of the eigenvalues of the B1,B2. Let us define the minimum eigenvalue of Q9 by µQ,
the minimum eigenvalue of B1 by µB1

min and its maximum eigenvalue by µB1
max (similarly for

B2 and µB2
min, µ

B2
max). Therefore, Weyl’s inequality assures that:

µE ≥ µQ − µB1
max, and µt = −ϵ2 − µB2

max, (20)

where we use the fact that µmin(−X) = −µmax(X) for any matrix X and that the minimum
eigenvalue of a block-diagonal matrix is the minimum eigenvalue among all blocks. Notice that
in the second expression equality holds since I3 is the identity matrix of size 3.

By restricting the right-hand sides of each inequality in (20) to be greater than −ϵ0, we are
automatically assuring that µE , µt are also greater than this threshold.

µQ − µB1
max ≥ −ϵ0 ⇔ µB1

max ≤ µQ + ϵ0 (21)

−ϵ2 − µB2
max ≥ −ϵ0 ⇔ µB2

max ≤ ϵ0 − ϵ2 (22)

Note that the right-hand side of the inequality (21) is always greater than zero since Q9 is
PSD by construction and ϵ0 ≥ 0. On the other hand, the right-hand side of (22) may be less than
zero if the sum of the residuals ϵ2 is greater than the threshold ϵ0. In what follows, we assume
that the expression ϵ0 − ϵ2 ≥ 0 holds, which in turn imposes a condition on the cost attained
by the optimal solution. While the condition ϵ0− ϵ2 ≥ 0 may appear as a strong assumption, it
is necessary to recall that the derived optimality condition will be sufficient but not necessary.
That is, we expect the condition to fail for some problem instances, specially those with large
noise and/or low number of correspondences, as we show empirically in Section (V). For those
problem instances in which the final condition can work, generally the cost of the solution ϵ2

will be smaller than the threshold ϵ0. While we contemplate to analyze the case in which the
assumption ϵ0 − ϵ2 ≥ 0 does not hold, problem instances with optimal cost of the magnitude
of ϵ0 present highly noisy data, which may hinder the tightness of the relaxations making the
optimality condition to fail eventually.
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Instead of working with the (signed) maximum eigenvalues, we will treat their absolute values
and introduce the spectral radius ρ(B1), ρ(B2) for each matrix. By definition, the spectral radius
of a matrix B1 takes the form ρ(B1)

.
= max(

∣∣µB1
min

∣∣ , ∣∣µB1
max

∣∣) and hence, for any eigenvalue
µi of the matrix (including the extremes) µi ≤ |µi| ≤ ρ(B1). We can further restrict the
inequalities in (21), (22) as:

µB1
max ≤

∣∣µB1
max

∣∣ ≤ ρ(B1) ≤ µQ + ϵ0 (23)

µB2
max ≤

∣∣µB2
max

∣∣ ≤ ρ(B2) ≤ ϵ0 − ϵ2. (24)

Our interest in the spectral radius is its relation with any matrix norm ∥•∥ since the inequality
ρ(X) ≤ ∥X∥ holds for any matrix X . We bound the spectral radius in (23),(24) with the
frobenius norm of each matrix as

ρ(B1) ≤ ∥B1∥F ≤ µQ + ϵ0 (25)

ρ(B2) ≤ ∥B2∥F ≤ ϵ0 − ϵ2 (26)

For this relaxation, the Frobenius norms have the form:

∥B1∥2F = λ2
1 + λ2

3 + λ2
5 + (λ2/

√
2)2 + (λ4/

√
2)2 (27)

∥B2∥2F = (λ3 + λ5)
2 + (λ1 + λ3)

2 + (λ1 + λ5)
2+

+ (λ2/
√
2)2 + (λ4/

√
2)2. (28)

These norms can be reformulated as quadratic forms in the entries of λ by introducing two
positive definite matrices Ŝ, P̂ ∈ S5+ such ∥B1∥2F = λT Ŝ−1λ and ∥B2∥2F = λT P̂−1λ. These
matrices depend on the chosen relaxation and for the one performed in this work (10) they
have the form

Ŝ−1 .
= diag(1, 1/2, 1, 1/2, 1), P̂−1 .

=

2 0 1 0 1
0 1/2 0 0 0
1 0 2 0 1
0 0 0 1/2 0
1 0 1 0 2

. (29)

Consider now two full-rank matrices S,P ∈ R5×5 such that Ŝ = SST and P̂ = PP T . See
that Ŝ−1 = S−TS−1 and P̂−1 = P−TP−1 hold since P T is the transpose of P (similar for
S). Let us define two vectors λ̃ = [λ̃1, . . . , λ̃5]

T and λ̂ = [λ̂1, . . . , λ̂5]
T as linear combinations

of the original Lagrange multipliers λ such that P λ̃ = Sλ̂ = λ. Then, we can write the
frobenius norms in (27), (28) in terms of these vectors as ∥B1∥F =

∥∥∥λ̂∥∥∥
2
=

∥∥S−1λ
∥∥
2

and

∥B2∥F =
∥∥∥λ̃∥∥∥

2
=

∥∥P−1λ
∥∥
2
. We are left to bound the norms of λ̂, λ̃.

Remark 1: Before continuing, we want to point out that the matrices P ,S are not uniquely
defined. See that Ŝ, P̂ are symmetric by construction, and thus they admit an eigendecompo-
sition of the form Ŝ = USD

2
SU

T
S and P̂ = UPD

2
PU

T
P . We can define the matrices P ,S as

S = USDSOS and P = UPDPOP, where OP,OS are orthogonal matrices of size 5. Due to
the form of our main result, this ambiguity does not present any problem. For now, we will
just refer to these matrices without any explicit form, and clarify later the reasons for this.

Recall that the Lagrange multipliers were obtained from equation (15). Hence, the 5D vectors
λ̃, λ̂ are obtained as

A(x)P λ̃ = Q̂12x and A(x)Sλ̂ = Q̂12x. (30)
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Let us define the matrices AP(x)
.
= A(x)P and AS(x)

.
= A(x)S. With them, the solu-

tions to the linear overdetermined systems in (30) are obtained in a least squares sense 2 as
λ̃ = AP(x)

†
Q̂12x, λ̂ = AS(x)

†
Q̂12x, where AP(x)

†
,AS(x)

† are the Moore-Penrose pseudo-
inverses of AP(x),AS(x), respectively.

We can relate the ℓ2 norm of λ̃, λ̂ with compatible matrix-vector norms of these expressions
and introduce them as upper bounds on the frobenius norms in (27) and (28) as∥∥∥λ̂∥∥∥

2
≤

∣∣∣∣∣∣∣∣∣AS(x)
†
∣∣∣∣∣∣∣∣∣

2

∥∥∥Q̂12x
∥∥∥
2
≤ µQ + ϵ0, (31)∥∥∥λ̃∥∥∥

2
≤

∣∣∣∣∣∣∣∣∣AP(x)
†
∣∣∣∣∣∣∣∣∣

2

∥∥∥Q̂12x
∥∥∥
2
≤ ϵ0 − ϵ2, (32)

where
∣∣∣∣∣∣∣∣∣AP(x)

†
∣∣∣∣∣∣∣∣∣

2
is the spectral norm of the matrix, i.e. the maximum singular value of

AP(x)
†, which in turn is the inverse of the minimum non-zero singular value of AP(x)

3 (and
similar for AS(x)). Let the minimum singular values of AP(x) and AS(x) be σA(x) and
σS(x), respectively. Then, we can express the conditions in (31),(32) as∥∥∥Q̂12x

∥∥∥
2
≤ (µQ + ϵ0)σS(x), (33)∥∥∥Q̂12x

∥∥∥
2
≤ (ϵ0 − ϵ2)σA(x), (34)

See that σA(x) ≤ σS(x) by construction of P ,S (see Supplementary material (A)) so that
the next chain of inequalities holds∥∥∥Q̂12x

∥∥∥
2
≤ (ϵ0 − ϵ2)σA(x) ≤ (ϵ0 − ϵ2)σS(x) ≤ (µQ + ϵ0)σS(x).

Hence, we only need to analyze the inequality in Equation (34).
The matrix AP(x) and thus the minimum singular value σA(x), however, depends on the

solution x. To remove this dependency, let us first define the one-dimensional eigenspace
associated with the smallest eigenvalue of the data matrix Q9 by e0. After reshaping it into
a 3 × 3 matrix, the left eigenvector associated with its smallest eigenvalue is t0. Let us also
define the vector x0 = [eT0 , t

T
0 ]

T and the matrix AP(x0) with the same construction as AP(x).
Further, let AP(x− x0) have this same structure such that AP(x) = AP(x0) +AP(x− x0).

We leverage again the Weyl’s inequality but for singular values. Let the minimum singular
value of AP(x0) be σnull(x0). Then, Weyl’s inequality relates these values as

|σA(x)− σnull(x0)| ≤ |||AP(x− x0)|||2, (35)

where again |||AP(x− x0)|||2 is the spectral norm of AP(x − x0). We want to replace the
singular value σA(x) in (34) (which depends on x) by the value σnull(x0) (which only depends
on the data Q9). To do this, our substitution must always represent a lower bound on the upper
limit (ϵ0 − ϵ2)σA(x). Then, the worst case is given when σnull(x0) ≥ σA(x) and so

0 ≤ σnull(x0)− σA(x) ≤ |||AP(x− x0)|||2 ⇔ (36)
σnull(x0)− |||AP(x− x0)|||2 ≤ σA(x) (37)

2Due to numerical errors, the right-hand side on the system does not lie in the span of the coefficient matrix, and
the “closer“ solution in the least squares sense is computed.

3Recall that the singular values are, by definition, non-negative.
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Since (ϵ0 − ϵ2) ≥ 0, we have that (ϵ0 − ϵ2)(σnull(x0)− |||AP(x− x0)|||2) ≤ (ϵ0 − ϵ2)σA(x).
See that in the other case where σA(x) ≥ σnull(x0), this inequality also holds since the ℓ2
norm of any matrix is always non-negative.

Then, condition (34) is guaranteed to hold if the expression∥∥∥Q̂12x
∥∥∥
2
≤ (ϵ0 − ϵ2)(σnull(x0)− |||AP(x− x0)|||2) (38)

holds. Further, since |||AP(x− x0)|||2 ≤ ∥AP(x− x0)∥F for any matrix AP(x−x0), we can
give a simpler condition∥∥∥Q̂12x

∥∥∥
2
+ (ϵ0 − ϵ2)∥AP(x− x0)∥F + ϵ2σnull(x0) ≤ ϵ0σnull(x0), (39)

where ∥AP(x− x0)∥F has a closed-form expression on the entries of x− x0.
Notice that the expression in (39) can be re-written in such a form that represents an upper

bound on the actual absolute value of the minimum eigenvalue of the Hessian by dividing the
left-hand side (LHS) by the term σnull(x0). Last, we want to point out that the matrix AP(x)
appears in the sufficient condition as a frobenius norm and as a singular value. This makes the
explicit form of P not important, provided some relation with the matrix P̂ holds. We provide
the proof in the Supplementary material (B).

IV. A UNIFIED SUFFICIENT CONDITION: INTRODUCING THE OTHER RELAXATIONS

Nevertheless, the sufficient condition proposed in (39) depends on the specific relaxation
employed (set (10)). Other relaxations of the same set given in (6) lead to similar, yet different
certifiers, and thus, a different sufficient condition can be derived from any of them for the
same problem. Notice that we can choose any of them to certify the same solution for the same
problem without loss of generality. Our interest here is that if at least one of them is able to
certify the solution as optimal, then the solution is optimal, even if the rest of the certifiers
cannot certify it as such. Nevertheless, to the best of our knowledge, it is not possible to know
a priori which relaxation performs better in terms of certification, i.e. we do not know which
relaxation is the tightest.

Fortunately, with our sufficient condition it is possible to detect a priori the best relaxation
for a given problem instance. For any other relaxation, a similar sufficient condition can be
derived with a minimal effort following the procedure given here. The form of the condition for
all the relaxations is (39) and the specific set employed only affects the matrix AP(x). Hence,
we only need to change the form of AP(x) = A(x)P to range over all the relaxations. The
matrix Ai

P(x) = Ai(x)P i associated with the i-th relaxation (with i = 1, . . . , 5) is obtained
by discarding the i-th column of Ag(x) and the i-th row and column of Pg, whose explicit
expressions are given in the Supplementary material (D).

Hence, we are left to provide the criteria for this selection. For that, we need to observe the
expression in (39). For a given problem instance Q9 and solution x, the terms Q̂12x and ϵ2

are constant. Further, the objective value ϵ2 tends to be close to zero and hence ϵ2 ≪ ϵ0. Two
terms are left that depends on the chosen relaxation via the matrix AP(x) : (1) the minimum
singular value σnull(x0) and (2) the closed-form expression for ∥AP(x− x0)∥F. For the latter,
we observe that, for the same vector x − x0, its value for the different relaxations is similar
and the difference between them goes to 1e− 04. The selection of the relaxation can be fully
based on the minimum singular value σnull(x0). Empirically, we observe that the difference
between these terms for the same problem instance is not negligible and the “best“ relaxation
should be detected and employed; the index of this relaxation is not constant, though. Thus,
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in practice, we will check all the relaxations and choose the one that provides with the largest
value σnull(x0); see that we only need to compute it once per problem instance. This criteria
can be also derived by re-writting the inequality in (39) as∥∥∥Q̂12x

∥∥∥
2
≤ (ϵ0 − ϵ2)(σnull(x0)− ∥AP(x− x0)∥F)

. Since
∥∥∥Q̂12x

∥∥∥
2

and (ϵ0 − ϵ2) are constant for the same problem and solution, the “best“
relaxation is the one with largest σnull(x0)−∥AP(x− x0)∥F. Since the solution x tends to be
close to the eigenvector x0, the term ∥AP(x− x0)∥F is small and therefore the σnull(x0) is
the dominant term. This concludes the proof of Theorem (3.1).

V. EXPERIMENTAL VALIDATION

We evaluate the performance of our final proposal in Theorem (3.1) on both synthetic and
real data under a wide variety of configurations. We estimate the potential optimal solution for
a given problem instance by refining iteratively on the manifold of essential matrices [19] the
initial guess output by the 8-PT algorithm, as it was done in [1].

A. Evaluation on Synthetic Data

We create a set of synthetic scenes with different configurations of parameters and measure
the performance of our condition w.r.t. the certifier.

Data generation: We generate the synthetic problem instances as follows: We place the first
camera to the origin (identity rotation and zero translation) and place a set of N world points
in the square frustum formed by the Field of View (FOV) of the camera and with depth ranging
from one to eight meters. Then, we generate the second camera pose such that (1) all the world
points lie in front of the second camera and (2) are within its FOV. To obtain the observations,
we project the world points by assuming a pin-hole camera model with fixed focal length. We
consider all the points since they all lie within the FOV of the cameras. The optical center is
defined in the middle of the image for both cameras. We introduce the specified level of noise
σ (in pix ) in both observations by sampling the (isotropic) gaussian distribution centered at
the projections with standard deviation σ. The unit-norm vectors fi,f

′
i are finally obtained by

applying the inverse of the camera matrix K and normalizing the results.
The second pose of the camera is generated with a bounded rotation of 0.5 degrees and

setting the following parameters for both cameras as default: FOV = 100 degrees, noise
level σ = 0.5 pix, translation magnitude (parallax) of 2 meters (ratio 2 : 1 w.r.t. the min-
imum depth of the points) and focal length f = 800 pix. For each set of experiments, we
create a configuration of cameras and point clouds with number of correspondences N ∈
{8, 15, 20, 40, 70, 100, 150, 200}. We vary one parameter each time, and for each combina-
tion parameter-number of correspondences, we generate 1000 random problem instances. The
threshold ϵ0 is fixed to 2e− 04 in all the experiments.

Performance measurement: We take the result returned by the certifier as ground-truth 4,
and consider as True Positive (TP ) a solution that is certified as optimal by both the certifier and
our condition. A False Positive (FP) is a solution that is certified as optimal by our condition but
not by the certifier. Last, a False Non-Positive (FNP) is a solution that is considered optimal
according to the certifier, but not by the condition. Then, we measure the tightness of our

4We employ the relaxation for the certifier that provides us with the best (wider) sufficient condition.
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sufficient condition (39) by the Recall metric as in [1]. Precision 5 is not employed here since,
by construction, our condition can not incur in FP outcomes. Thus, the precision metric will
be always one. The Recall metric reads:

RECALL =
TP

TP + FNP
. (40)

A deviation of the Recall from one means that there are some optimal solutions that are not
detected by the condition; the recall, though, is shown to tend to one for common problem
instances.

Noise level: We vary the noise level with values in σ ∈ {0.1, 0.5, 1.0, 1.5, 2.0} pix. Fig-
ure (3a) depicts the recall metrics. The precision is always 1, as expected, while we observe that
the recall increases with the number of correspondences. With low-medium noise 0.1−0.5 pix
, our condition is tight (100% of detected optimal solutions), while with high noise, we obtain
an acceptable ratio with N large. Since in practice the number of correspondences is larger than
70, we perform another set of experiments with N ∈ {70, 100, 15, 200, 300} and noise level
from 1.0 pix to 2.5 pix, with step size of 0.1 pix. For each configuration, 1000 problem
instances are created. The precision was always one and Figure (3b) shows the recall for these
experiments. Observe how with N = 200 our condition detect more than 95% of optimal
solutions, while with N = 300 the recall is close to 1 even for high noise 2.0 − 2.5 pix.
Last, for this same set of experiments, we show in Figure (3c) the mean value of the absolute
minimum eigenvalue of the Hessian of the certifier H (dashed line) and the approximation
obtained by our condition as η(Q9,x)/σ

i
null(x0) (solid line). The mean value of our condition

is always under the threshold ϵ0 = 2e− 04 even for high noise and N = 70 correspondences.
Additionally, for this same set of experiments we show in the Supplementary material (F) the
recall metric for those cases in which we could assure strong duality by Corollary (3.1.2).

Translation magnitude: With a noise level of 0.5 pix, we vary the translation magnitude of
the second camera with values ∥t∥2 ∈ {0.3, 0.8, 3, 4.5, 8, 10, 25}. We relate these magnitudes
with the depth of the point cloud of the scene in order to reflect the amount of parallax
for each translation. Notice that for small ∥t∥2 (and hence small ratio translation-depth), the
configuration of cameras approaches one of the degenerate situations (zero translation). On the
other hand, a large ratio creates more parallax (a better constrained problem instance); however,
if this is too large, the scene approaches the coplanar (degenerate) configuration. We define
this ratio as t/c in the graphics, where c is the centroid of the frustum where the world points
lay and t is the translation magnitude. Figure (4a) shows the recall metrics for this set of
experiments. We observe that for more than N = 40 correspondences, we are able to detect
all the optimal solutions for all the different magnitudes t/c; below this number, the worst
case is attained with the smaller translation magnitude (the configuration of cameras is almost
degenerate [35]), although even in this case our condition detects 80% of optimal solutions with
8 correspondences, and it goes beyond 95% for N = 15. We notice that the largest magnitude
(25 m) has a lower percentage of detected optimal solutions.

Focal length: In this set of experiments, we let the image size fixed to 1900 pix and
vary the focal length, hence varying the FOV in practice. We let the focal length in f ∈
{300, 450, 600, 1000} pix. Figure (4b) depicts the recall metrics for this configuration of pa-
rameters. The smaller focal length f = 300 has the worst performance, although our condition is
able to detect more than 80% of optimal solutions with N = 8 and 96% for N = 40. This result

5We define precision as PRECISION = TP
TP+FP .
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Fig. 3: (3a) and (3b) Recall metrics for the set of experiments with varying level of noise
and number of correspondences. Figure (3a) shows the recall for problem instances with low
number of correspondences N (X-axis) and noise up to 2.0 pix (see legend). Figure (3b)
depicts the recall for N large (see legend) and level of noise from 0.1 to 2.5 pix (X-axis).
(3c) Mean absolute value of the minimum eigenvalue of the Hessian (dashed lines) and
approximation computed by our condition as η(Q9,x)/σ

i
null(x0) (solid lines) for the noise

and number of correspondences considered in (3b). The mean is always below the threshold
ϵ0 = 2e− 04.
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Fig. 4: Recall metrics for the set of experiments with varying (4a) translation magnitude; (4b)
focal length; and (4c) FOV. Noise level is 0.5 pix. In (4b), the focal length changes the FOV,
but not the image size (1900 pix); while in (4c) the image size changes the FOV, but not the
focal length (800 pix).

agrees on how we are introducing the noise; the angles between the noiseless observation and
its noisy version for these parameters are 0.0955, 0.0637, 0.0477, 0.0286 degrees, respectively.
For a focal length of 800 pix, these values correspond to noise levels of 1.3, 0.9, 0.67, 0.4,
respectively (c.f . Figure (3)). Hence, in practice we are only changing the signal-to-noise ratio.

Field of View: Last, we vary the FOV of both cameras. We let the focal length to 800 pix
and vary the FOV in FOV ∈ {60, 80, 120, 150} degrees, hence changing the image size.
Figure (4c) depicts the precision (one for all the cases) and recall metrics for each combination
of parameters. The narrower FOV attains the worst result, although we are still able to detect
92% of optimal solutions even with 8 correspondences; and with 40 correspondences, all the
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optimal solutions are detected for all the tested FOV.
Computational cost: One of the greatest advantage of our proposal is the low computational

cost incurred by the optimality certification: for each solution to a given problem, we only
need to evaluate the polynomial η(Q9,x) in Theorem (3.1). The computation of σnull(x0)
is performed only once per problem instance and does not depend on the solution x. We
compare the computational cost of our proposal against that of the current faster certification
algorithm [1]. Both approaches are implemented in MATLAB and run in a standard computer:
CPU i7-4702MQ, 2.2GHz and 8 GB RAM. We only measure the cost of the certification
stage for both approaches and report the average times for all the synthetic experiments
described above. Our proposal has two steps: (1) computation of σi

null(x0) (once, but up to
six matrices) which takes 0.07996 ms per relaxation, that is, 0.47978 ms if the six relaxations
are considered; and (2) evaluation of η(Q9,x) for a given solution x (once per solution and
problem, independent of relaxation) with 0.040015 ms. In total, 0.1199 ms when only one
relaxation is employed and 0.52395 ms if the six relaxations are considered. The certification
algorithm in [1] has also two steps: (1) estimation of the dual candidates (once per solution and
relaxation) which requires 0.24532 ms; and (2) estimation of the minimum eigenvalue of the
Hessian (once per solution and relaxation) with 0.14325 ms. In total 0.3886 ms per relaxation
and solution. If the relaxation is not tight, one may need to compute another certifier for the
same problem and solution. We observe that this is usually the case, and at least two certifiers
must be computed. However, we do not know a priori which certifier will be capable to certify
the solution, then, in the worst case, the six relaxations must be considered, which rises the
time up to 2.4 ms, per solution. Notice also that if for the same problem we want to certify
another solution, the certifiers need to be computed from scratch again, while the condition only
requires to evaluate the polynomial, that is, with the condition the certification takes 0.040015
ms, while the certifier requires in the worst case 2.4 ms.

B. Evaluation on Real Data

To conclude this Section, we evaluate our proposal on real data. We sample images from
the ETH3D dataset [36], the TUM dataset [37] and [38] (denoted by CVPR08). We list the
sequences’ names in the Supplementary material (G). For each pair of images, we extract and
match SURF features [39]. The observations are normalized by the provided camera matrix with
a pin-hole camera model. Since our proposal does not contemplate bad matches, i.e. outliers, we
remove them with the provided ground truth. We discard all the correspondences whose squared
epipolar error is larger than 2e−05 w.r.t. the provided ground-truth relative pose. We employ at
most 200 correspondences for each pair of images. For the ETH3D dataset our condition was
able to detect 97.13% of the optimal solutions (w.r.t. the detected by the certifier), for TUM the
percentage goes to 97.76% and for CVPR08, to 98.89%. Due to space limits, we provide the
minimum eigenvalue of the Hessian (certifier) and our approximation as η(Q9,x)/σ

i
null(x0)

for each dataset and the recall metric for each sequence in the Supplementary material (H).

VI. CONCLUSION

In this work we have proposed a sufficient condition of optimality for the RPp between
two central, calibrated cameras. The problem was posed as an optimization problem that
minimizes the squared normalized epipolar error over the set of normalized essential matrices.
The condition relied on the recently proposed certifiable algorithm in [1] and it was derived
through spectral analysis. The form of the condition allows to detect and employ the best
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relaxation in terms of certification. Further, we decouple the variables associated with the
relaxation, the problem and the solution, which reduces the complexity of certifying different
solutions for the same problem. We have shown with extensive experiments that the condition
is tight in practice, and can certify optimal solutions in most problem instances even with high
noise and low number of correspondences. The computational cost associated with the condition
is also lower than the faster certification algorithm under a MATLAB implementation, being
the condition between 3 and 4.5 times faster to evaluate. The main advantage, though, relies
on its decoupling from the problem and its ability to detect the best relaxation, which makes it
faster to certify solutions from the same problem, without requiring to re-compute everything
from scratch.

Nonetheless, under some configurations the condition is not able to detect the optimal
solutions. Given the tight relation between the parameterization of the set of essential matrices
and the derived sufficient condition, we contemplate similar conditions derived from different
certifiers associated with distinct minimal representations of said space. These conditions could
potentially detect optimality when others do not. A more efficient implementation is also being
considered, as well as the joint use of the certifier and the condition for a faster certification.
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