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Image-based localization using Gaussian processes
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Abstract—Visual localization is the process of finding the
location of a camera from the appearance of the images it
captures. In this work, we propose an observation model that
allows the use of images for particle filter localization. To achieve
this, we exploit the capabilities of Gaussian Processes to calculate
the likelihood of the observation for any given pose, in contrast to
methods which restrict the camera to a graph or a set of discrete
poses. We evaluate this framework using different visual features
as input and test its performance against laser-based localization
in an indoor dataset, showing that our method requires smaller
particle filter sizes while having better initialization performance.

I. INTRODUCTION

Visual localization is the task of recovering the pose (po-
sition and orientation) of a camera from the appearance of
the images that it observes, given a database of previously
captured images and their poses. The topic is of great in-
terest in robotics and hand-held applications in GPS-denied
scenarios, as cameras are ubiquitous, cheap and no additional
infrastructure is required. This problem is also known as visual
place recognition, although this term is usually employed in
the field of computer vision and refers to approaches that are
limited to finding the most similar image from a collection of
images, akin to content-based image retrieval. To illustrate the
problem, let us consider the following example. Imagine the
situation in Fig. 1, where images taken from positions a and b
capture the ball and the monkey, respectively. If a new image is
taken which captures the ball and the monkey, we can assume
that the new image was taken at a nearby pose from a and b,
(for example, at location c). Realizing this idea in software is
not trivial, since images represented as a collection of pixels
are not straightforward to compare: the visual appearance of
a location can vary to a large extent depending on the exact
viewpoint from which the image is taken, as well as other
conditions such as illumination or changes in the environment.

Image descriptors transform an image (a grid of pixel
values) into higher level representations or concepts. Tradi-
tional descriptors like SIFT [1] or SURF [2] describe local
image patches using gradients and are deployed extensively
in computer vision. State-of-the-art solutions in image de-
scription use Convolutional Neural Networks (CNN) to extract
descriptors with a high level of abstraction (and robustness to
visual appearance changes) to perform tasks such as image
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Fig. 1: Scenario in which cameras at locations a, b and c
are capturing images. In this work we formalize the idea
that images taken from nearby locations and orientations are
expected to contain similar visual information.

classification [3], [4]. These state-of-the-art descriptors can
be used in tasks such as loop closure, but their use in
localization is limited to nearest-neighbor approaches, unless
traditional geometric features are calculated as well to perform
registration.

In this work we attempt to overcome this limitation, per-
forming localization using only whole-image descriptors. At
the core of the method we propose the idea that images taken
from similar poses should have similar visual content: when
we look at a scene, the contents of the scene do not change
drastically if we slightly rotate or move our heads: visual
information enters or leaves the scene in a smooth, continuous
manner.

For this reason, we model the appearance of images as
continuous probabilistic distributions over all possible poses
of the camera around the images in the database. In the
previous toy example, this means that moving from location
a to location b should yield a smooth change in the visual
information (the ball slowly pans away from the frame as the
monkey pans in).

Through the use of Gaussian processes, our method is
able to deliver a probabilistic estimate of what the visual
information is at any unknown camera pose, provided that it
is close enough to previously captured images. This results in
a continuous localization system based on a sparse collection
of keyframes of the environment. Unlike most visual place
recognition systems which are restricted to a collection of
previously recorded locations, our model provides continu-
ous localization in all the pose space (see fig. 2), allowing
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Fig. 2: Most methods restrict the camera location. Our method
allows the observation model to be evaluated at any position
(orange) and orientation near the data (green).

for seamless combination with other continuous localization
modalities such as laser or WiFi signal strength.

In this work, we introduce Gaussian processes for modelling
visual information in a continuous manner over the space of
2D poses (fig. 2). This is then exploited for the task of image-
based localization by using our framework as an observation
model for a particle filter. In our experiments, we explore the
viability of the method and we compare it against traditional
laser-based particle filters, demonstrating faster convergence
and greater robustness to the size of the particle filter.

II. RELATED WORK

If a large collection of images and their poses are registered
into a consistent map using techniques like Structure from
Motion [5], localization can be performed by simply querying
the map for local feature matches and optionally checking for
geometric consistency, such as in [6]. However, the limited
descriptive power of local features means that as the map
expands, individual features are not descriptive enough to
find coherent matches, reducing their effectiveness in large
databases, such as those extracted from large outdoor or multi-
building scenarios.

For this reason, methods developed for CBIR (Content-
based image retrieval) are usually preferred. These methods
perform a global description of the image by generating ‘holis-
tic’ or whole-image descriptors, more compact and uniquely
descriptive than a collection of local descriptors. The disadvan-
tage of using whole-image descriptors is the loss of detailed
geometric information when local features are not stored, thus
making geometric verification impossible. In these systems,
the pose of the most similar image in the database (measured
by descriptor similarity) is assigned as the current position of
the camera.

Most of these global description models use visual bags-
of-words to describe images by collecting histograms of local
features such as SURF [2]. A direct approach is to find the
most similar histogram in a database of previously collected

locations, usually by first performing tf-idf weighting [7] so
that features are weighted according to their relative frequency.

Visual localization is strongly related with the problem of
Simultaneous Localization and Mapping (SLAM) in robotics.
SLAM deals with the construction of a map of an environment
while it is being explored, which consequently requires main-
taining a correct localization of the robot. Many developments
in visual localization come from this field. One of the most
successful implementations of visual localization is used in
the ORB-SLAM [8] system, which uses histograms of ORB
[9] descriptors and then performs geometric verification only
with the relevant features, instead of searching for individual
descriptor matches in the whole database. A disadvantage of
this localization model is that it is limited to the discrete
locations from which the keyframes are taken.

A full 3D observation model is introduced in [10], by
marginalizing out all of the observation likelihoods of in-
dividual landmarks (local visual features in 3D space) and
then performing geometric verification. However, it relies
on local features, suffering also from the aforementioned
disadvantages.

A probabilistic approach is presented as part of FAB-
MAP [11]. which builds upon the bag-of-words representation
by defining a generative model. The method calculates the
probability of being in each of the discrete locations of the
map. It is a widely employed solution for the ‘loop closure’
problem (detecting if a robot is traversing a previously visited
path).

All of the previously described methods treat locations
and images interchangeably. This simplifies the treatment of
the problem but limits localization to a discrete number of
places/images. CAT-SLAM [12], [13] builds upon [11] by
interpolating the probabilities along the edges connecting the
positions of the database images in a graph. Through this
approach, they allow the camera to be located in positions
that are not part of the discrete set of images, although the
positions are still restricted to the graph which connects the
images’ locations. (see Fig. 2)

To overcome this restriction, we employ Gaussian Processes
to estimate the probability at any pose, not being limited to a
graph or a discrete set of poses. Gaussian processes have been
used for localization using WiFi signal strength as the sensing
modality [14], [15]. In this work, we explore their use as a
model for visual information.

III. GAUSSIAN PROCESSES FOR MODELLING VISUAL
OBSERVATIONS

We employ Gaussian processes to estimate the visual ob-
servation likelihood p(z|p) (i.e. ”how likely is the visual
observation z, given location p”), where z ∈ Rk is the
observed visual descriptor and p ∈ SE(2) is the camera pose
in 2D space.

In the following sections, we will first describe Gaussian
Processes (GP) for a single variable, then discuss their ex-
tension to multivariate outputs and the use of locations and
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orientations as inputs, all of which are necessary to correctly
model visual observations.

A. Gaussian Processes

GPs1 are non-parametric models which estimate the distri-
bution of a function p = f(z) from a collection of training
points

{
(pi, zi)|i = 1, ...,M

}
, and a certain measure of

similarity given by the so-called kernel function.
A key element in GPs is that underlying knowledge about

the model is not required. Instead, the correlation between
points is specified through a kernel function k(pi,pj), which
only depends on the inputs p and a set of free hyperparameters.
One of the most common kernels is the squared exponential
or Gaussian kernel: k(pi,pj) = β2 exp (−α||pi − pj ||22).
This is plotted in Fig. 3 for the unidimensional case, for
different values of α and β = 1. This kernel specifies the
correlation of any two points as being strong if they are near
each other, exponentially decreasing as the norm increases.
During training, the GP can estimate the values of these
hyperparameters by finding the ones that best explain the data
in the training set. When performing regression, the function
f is estimated as a sum of all of the points in the training set,
weighted by the kernel function.

Two important features of GPs are:

• Non-parametric model: no assumptions about the under-
lying model are made (as opposed to, for example, fitting
the data to a linear model). Instead, a kernel function
between pairs of points provides a measure of similarity.

• Treatment of uncertainty: the values of f obtained from
the GP are accompanied by a measure of the uncertainty
of the estimation, according to the data density around
the query points and the kernel k (see Fig. 4).

We follow the notation from [16], where the training set
of size M is defined as D =

{
(pi, zi)|i = 1, ...,M

}
. In our

application, the input vector to the GP is the pose of the camera
in 2D: pi = (xi, yi, θi), and zi is the visual descriptor vector
of length k summarizing the image.

During the test phase, the GP performs regression on a
test point pi. Since the uncertainty of the regression only
depends on the kernel and the input data, it is the same
for all the elements of the output [16]. Thus, the estimated
value is represented by a k-dimensional isotropic Gaussian
distribution, N (µi, σ

2Ik), where µi is the vector of mean
values and σ2 is the variance.

B. Using poses as the input variables in a GP

In our application, the input variable p is not a single scalar,
but a position and orientation on the map represented by a
vector. As previously exposed, a GP can have any number
of variables as input, as long as an adequate kernel function
is provided. The kernel function must produce a measure of
similarity between any two poses.

1Please, refer to [16] for a formal definition of Gaussian processes.
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Fig. 3: Unidimensional Gaussian kernel, plotted for different
values of α
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Fig. 4: A 1D Gaussian Process is trained on data (marked as
’×’) and then used to perform dense regression on a range of
x. The shaded region corresponds to a distance of 2σ from
the mean. Note how the variance is smaller near the data.
After training, we calculate the likelihood p(zt|x) given an
observation zt and a location.

Let’s denote the pose pi = (xi, θi). We select the following
kernel to compare two poses pi and pj and produce a
similarity measure:

k(pi,pj) = kt(xi,xj) · kr(θi, θj) (1)

where kt is the Gaussian kernel (fig. 3), using the squared
Euclidean distance between the two points (d2) as the input:

kt(xi,xj) = β2
t exp (−αt‖xi − xj‖22) (2)

For the rotational kernel kr, we also choose the Gaussian
kernel, representing rotations as points in the circle S1 through
the mapping:

ri =

[
cos(θi)
sin(θi)

]
(3)
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kr(θi, θj) = β2
r exp (−αr‖ri − rj‖22) (4)

Notice that this representation avoids problems caused by
the ambiguity in angle representation. The product of kernels
kr and kt leaves three hyperparameters to be estimated: αr,
αt and the combined parameter β = βr · βt.

IV. OBSERVATION MODEL FOR PARTICLE FILTER
LOCALIZATION

Particle filters (also known as Sequential Monte Carlo)
are well-known in robotics for localization. At the core of
particle filters, a collection of particles (likely states) represents
a distributed hypothesis of where the robot is at any given
time. These particles are randomly initialized and iteratively
converge to the correct position through successive steps of
weighting, resampling and motion.

1) Weighting: The robot senses the environment, and each
particle is weighted according to the likelihood of that
observation given the particle’s pose.

2) Resampling: The particle set is resampled such that most
likely particles are duplicated and least likely particles
disappear.

3) Motion: When the robot moves, all of the hypothe-
ses/particles move using the same motion. A noise term
is added to each particle’s motion to account for the
uncertainty in its execution. This noise allows the newly
duplicated particles to naturally separate from each other
and create diversity.

When the location of the robot is unknown due to the system
starting up or loss of tracking, the particle filter must perform
a global initialization. On initialization, if no prior is available,
all of the particles are drawn from uniform distributions, span-
ning all of the map area with random orientations. This process
is usually the point of failure in particle filter localization
systems, since enough particles must be used to cover all of
the possible locations. A poor observation model can cause the
filter to degenerate (to converge to a wrong location), causing
catastrophic failure of the localization system. Instead, a well
performing observation model will allow the particle filter to
converge to the correct location in fewer iterations.

A. Observation model with GPs

One of the most common sensing modalities for particle
filters is laser scans. During the weighting phase, the score
of each particle is calculated according to the feasibility
(likelihood) of the current laser scan, given the location of the
particle in a 2D map of the environment. Instead, we propose
using images (specifically, descriptor vectors extracted from
images) to perform the weighting step.

As already shown in Section III, GPs estimate the likelihood
of an observation given a trained model. Because of that, GPs
fit seamlessly into the particle filter pipeline to perform the
particle weighting. After acquiring an observation, the GP
performs regression at each particle’s location, obtaining as
many predictions (and uncertainty estimates) as the number
of particles in the filter. Particles are weighted according

Fig. 5: Map of the dataset used for the experiments and a
sample frame from the frontal camera

to the similarity between the estimated and the observed
descriptors, considering the uncertainty of the estimation. In
other words, particles will score maximally when the currently
sensed descriptor is similar to the estimated distribution, if the
estimate has high certainty.

We train a GP using the kernel described in section III-B on
descriptors extracted from a collection of images labeled with
their positions, thus obtaining the parameters αr, αt and β.
With these parameters the GP models the distribution p(z|p)
of the visual descriptors in the pose space: For an arbitrary
camera pose pt the GP models the expected z as an isotropic
Gaussian distribution p(z|pt) ∼ N (µ, σ2Ik).

We illustrate this for the unidimensional case in Fig. 4. To
weight the particles of the filter, we calculate the likelihood of
the observation belonging to the distribution. The likelihood
L is proportional to the probability of the occurrence of the
observation zt given the distribution N (µ, σ2Ik) (i.e., zi are
assumed to be independent and identically distributed):

L ∝ 1√
(2π)k|σ2Ik|

e(−
1
2 (zt−µ)T(σ2Ik)

−1
(zt−µ)) (5)

We calculate the log likelihood and drop the constant element
(2π)k for convenience:

ln(L) = −k
2

ln(σ2)− 1

2σ2
(zt − µ)T(zt − µ) (6)

This expression can also be interpreted as a scaled, squared
euclidean distance plus the k

2 ln(σ2) term:

ln(L) = −
(
k

2
ln(σ2) +

1

2σ2
||zt − µ||22

)
(7)

V. EXPERIMENTS

To evaluate the feasibility of our visual observation model
as a weighting method in a particle filter, we perform a set
of robot localization simulations using the TUMindoor [17]
dataset. This dataset includes a 2D map of the environment
(produced with a laser scanner) and images taken from a
Ladybug omnidirectional camera rig, from which we only use
the images captured from the front-facing camera. The images’
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Fig. 6: Performance when comparing different descriptors as input to our method with respect to N , the size of the particle
filter. The mean position error is taken after 100 iterations of simulation. The statistics for each box are calculated from 40
independent simulations. Each box represents the Q1-Q3 range and is marked by the median.

poses are also provided in the dataset. In particular, we train
and test on different parts of the 2011-11-28 sequence, whose
map and a sample frame are shown in Fig. 5.

We select a subset of the locations ptrain and extract
features ztrain from the images at those locations. The GP’s
hyperparameters are found by fitting the model to this subset.
The rest of the images and their descriptors ztest are then
used to evaluate our approach for robot localization. The
corresponding locations ptest are taken as ground truth. Within
this real scenario, we perform simulations as follows. The
camera starts at a random location from the test set ptest.
In each iteration, the next pose and descriptor are fed to the
particle filter, skipping over the locations where the images
for training were taken. Since the movement of the particles
is performed exactly as in the ground truth, we add noise to
the motion to allow the particles to diverge. This is performed
by adding random noise to the rotation and translation of each
particle.

Specifically, each particle’s rotation angle is drawn from
N (∆θi, σr), where ∆θi = θi − θi−1 is the ground truth
rotation increment of the sequence at time step i. Likewise,
the particle’s translation in x is drawn from N (∆xi, σtI2).
We set σr to 0.1 radians and σt to 0.5 meters in all of the
experiments.

After each motion step, the particles are weighted according
to the observation model being tested. The descriptor zt from
the observation at the current location pt is compared with the
GP regression zi at each particle’s location pi as described in
section IV-A. After weighting, normalization is performed by
subtracting the minimum value and then performing division
on the sum of the weights. Particles are then randomly
resampled with a probability proportional to their normalized
weight.

A. Descriptor selection

Until now we have not discussed the visual features used as
input to our method since, in theory, it is agnostic to the type of
holistic image descriptor being used. In practice, the features
must reflect a characteristic explained in the introduction to
this work: visual information does not change abruptly with
smooth changes in the camera’s location or orientation.

This is easy to interpret for humans, however, images
represented as a collection of pixels don’t follow this principle:
a small change in position or orientation of the camera will
make the value of each pixel change in an abrupt and nonlinear
fashion, making our approach infeasible.

Several holistic descriptors have been used to perform CBIR
(content-based image retrieval) and place recognition. The
most successful ones at the moment are extracted from the
intermediate representations of convolutional neural networks
[18], [19].

A simpler and faster approach which has been proven to
work in place recognition applications [20] is the use of
a local-contrast-normalized and downscaled version of the
image as a descriptor.

In our experiments, we test with several approaches based
on convolutional neural networks, as well as the descriptor
from [20] as a simple baseline. Specifically, we use:

• DSC: Downscaled and contrast normalized images as in
[20].

• AlexNet: Generic CNN features extracted from the
second-last fully connected layer (4096 elements) in the
reference AlexNet network [4].

• AlexNet-PCA: A reduced descriptor of the AlexNet fea-
tures (128 and 256 elements).

• DCNN: A short (128 elements) descriptor extracted from
a convolutional neural network specifically trained for
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Fig. 7: Initialization performance when comparing with laser-based localization with respect to N , the size of the particle
filter. The mean position error is taken after 100 iterations of simulation. The statistics for each box are calculated from 40
independent simulations. Each box represents the Q1-Q3 range and is marked by the median.

place recognition [19].
To select the most suitable image descriptor, we test them

as input to our GP-based observation model in a localization
simulation. In particular, we examine the performance when
initializing the filter.

In all of the experiments, a random set of 30% of the frames
is selected for training the GP. The rest of the images form
the testing set, which is used to perform the particle filter
simulation. In the case of this dataset, this means that the GP
is trained with images which are, on average, separated 2.3
meters from each other. This is very sparse in comparison
with traditional SLAM keyframes.

We test over 12 different settings for the particle filter size
N , performing 40 simulations for each setting, for a total of
480 simulations per input descriptor. Each simulation begins
at a random location from the dataset and continues for 100
iterations (100 consecutive locations in the test set).

From the tested descriptors, the best performing one was
DCNN, which was specifically designed to compactly rep-
resent locations. The downscaled images (DSC) and the full
AlexNet descriptor of 4096 elements achieved mixed results.
Finally, the PCA-reduced versions of the AlexNet descriptor
did not reach any significant results. We show the performance
of DCNN, DSC and the full AlexNet descriptor in Figure 6.

B. Comparison with a laser-based observation model

After selecting DCNN as the most suitable descriptor for
our method, we compare it against laser-based localization,
which is widely used in indoor robotics. Since the TUMindoor
dataset includes a 2D map of the environment, we can simulate
laser scans at the test locations and perform weighting using
the well-known likelihood field model [21].

Laser-based particle filters are usually stable once localized,
but initialization can be troublesome, since laser scans aren’t

very descriptive (for example, laser scans from two different
hallways might look quite similar).

We explore both methods and compare them attending to:

• Initialization / Relocalization
• Precision when correctly localized

1) Initialization performance: Increasing the number of
particles N allows the filter to perform better, particularly
during startup, when particle starvation can be problematic.
However, the computational load increases linearly with the
number of particles. The standard approach is to perform
KLD sampling [22], which adaptively manages the size of
the particle filter, reducing the number of particles when the
filter is well localized.

In any case, with or without KLD sampling, when the filter
is being initialized, a relatively large number of particles are
required to successfully converge to the right location and
to avoid particle deprivation, making relocalization costly in
computational time.

A desired quality of an observation model is the reduction
of this initial particle filter size. For this reason, we compare
our observation model (using DCNN features) and the laser-
based likelihood field model in simulation to ascertain their
performance with respect to the size of the filter. Figure 7
shows how our observation model allows the particle filter to
correctly initialize with a much smaller number of particles.

2) Localization precision: Both laser-based localization
and our proposal have advantages and disadvantages: The
results indicated in Figure 7 indicate how our method is
better suited than the laser-based method for initializing a
particle filter. However, when correctly localized, the laser-
based method achieves greater precision. This can be seen
in detail in Figure 8, where we only include simulations
which are correctly localized (mean error under 10m after
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Fig. 8: Plot of the mean error of the simulations in which the
particle filter converges (those that have achieved a mean error
smaller than 10m after 100 iterations), both for our method
and the laser based particle filter. We can see how laser based
solutions are more precise (if correctly localized).

100 iterations). This opens up the possibility of combining
both methods in future work.

VI. CONCLUSIONS AND FUTURE WORK

Our work can be summarized as follows:
• We propose a probabilistic observation model for visual

localization based on Gaussian Processes using appropri-
ate kernels to model visual similarity in pose space.

• The model is not limited to the discrete locations where
the images are taken, but is valid in all the possible
positions and orientations around the data.

• We test different holistic descriptors as input. State of
the art compact descriptors based on convolutional neural
networks trained for place recognition tasks perform best
with our method.

• Finally, we compare our proposal to a laser-based ob-
servation model, finding that our method can reliably
localize the robot with fewer particles.

To our knowledge, this is the first proposal of an observation
likelihood for images on the unconstrained continuous space
of 2D poses.

This work could be expanded in several ways:
• Multi-camera systems or omnidirectional cameras could

be used to increase the performance.
• Since the proposed observation model is probabilistic and

continuous in the pose space, it is suitable for combina-
tion with laser or Wi-Fi signal strength modalities.

• The formulation could be extended to 3D movement, as
long as suitable kernels are designed.
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