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Fast Visual Odometry for 3-D Range Sensors
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Abstract—This paper presents a new dense method to compute
the odometry of a free-flying range sensor in real time. The method
applies the range flow constraint equation to sensed points in the
temporal flow to derive the linear and angular velocity of the sensor
in a rigid environment. Although this approach is applicable to any
range sensor, we particularize its formulation to estimate the 3-D
motion of a range camera. The proposed algorithm is tested with
different image resolutions and compared with two state-of-the-art
methods: generalized iterative closest point (GICP) [1] and robust
dense visual odometry (RDVO) [2]. Experiments show that our ap-
proach clearly overperforms GICP which uses the same geometric
input data, whereas it achieves results similar to RDVO, which re-
quires both geometric and photometric data to work. Furthermore,
experiments are carried out to demonstrate that our approach is
able to estimate fast motions at 60 Hz running on a single CPU
core, a performance that has never been reported in the literature.
The algorithm is available online under an open source license so
that the robotic community can benefit from it.

Index Terms—Range sensors, real time, visual odometry.

I. INTRODUCTION

FAST and accurate 6 degrees of freedom (DOF) visual
odometry (VO) is gaining importance in current robotics

where increasingly demanding applications are pursued. Two
clear examples are terrestrial vehicles that must operate on un-
even terrains and UAVs, which often need their 3-D pose to be
tracked in order to fly autonomously. The alternative to VO in
these cases is applying inertial navigation based on IMUs, but
they accumulate too much error over time due to their inability
to cancel gravity with enough exactitude [3]. On the other hand,
traditional solutions like wheel odometry or GPS navigation
simply cannot replace VO as they are not able to provide 3-D
pose estimates. Another important advantage of VO is that the
required sensorial data (provided by cameras or laser scanners)
is also exploited by other robotic modules, both for navigation
(SLAM, obstacle avoidance, etc.) and for scene understanding.

The emergence of RGB-D cameras has given rise to new
and promising prospects in VO but has also posed some chal-
lenges. These sensors are able to provide RGB and depth images
simultaneously at 30–60 Hz, which is a huge amount of data to
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process. For this reason, novel VO approaches struggle to main-
tain a good computational performance while trying to make the
most of all these incoming data and frequently tend to focus on
either RGB or depth images. In any case, not many VO meth-
ods can actually run at 30 Hz, and very few of them reach the
maximum frame rate of 60 Hz that some RGB-D cameras offer.

In this paper, we introduce a novel VO method called DI-
FODO (DIFferential ODOmetry), which takes 3-D range images
(or scans) to estimate the linear and angular velocity of the
sensor. Its formulation is founded on the spatial and tempo-
ral linearization of a range function (the so-called range flow
constraint equation [4], [5]), which is imposed pixel-wise in a
coarse-to-fine scheme in order to cope with the estimation of
large motions. A distinct feature of DIFODO is that the same
input data (range measurements) are exploited both to obtain
the camera motion at each level of the coarse-to-fine pyramid
and to perform the warping after the level transitions. Thus,
although here we particularize its formulation for depth cam-
eras, DIFODO could be easily adapted to work with any range
sensor. Another key characteristic of DIFODO is that, in con-
trast to other VO methods, it relies on a closed-form solution
and runs in real time on a single CPU core. As a consequence,
DIFODO is able to estimate fast motions and finer trajectories
as it can work at the highest camera frame rate (60 Hz). As
a downside, it shares the same weakness than other geometry-
based VO approaches, namely: the estimation problem becomes
underdetermined when the observations of the scene lack of
enough geometric information, which similarly occurs for VO
approaches relying on photometric data when observing low-
textured areas. The idea of our proposal arose from [5] and [6]
which, inspired by the concept of optical flow, presented an
algorithm to estimate 2-D motion from laser scans

In order to validate our method, extensive experimentation has
been carried out. First, DIFODO is tested with different resolu-
tions to analyze how its performance changes with the number
of points and levels considered. Secondly, it is compared with
two prominent methods: Generalized-ICP [1] and the robust
dense VO algorithm proposed by Kerl et al. [2] (RDVO from
here onwards). The former is one of the most widespread VO
strategies based on geometry, and hence, it is the best candidate
to compare with given that it uses the same input data. The latter
is one of the highest performance methods published recently
and, conversely to our approach, exploits both geometric and
photometric data to estimate the camera motion. Results show
that DIFODO is about 30 times faster than generalized iterative
closest point (GICP) and 2–3 times more accurate, whereas it
achieves a performance similar to robust dense visual odometry
(RDVO) [2] with less input data (only depth). Finally, quanti-
tative and qualitative results are presented to demonstrate that
DIFODO is able to estimate fast and real motions, which makes
it suitable for real-time applications.
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The implemented code has been added to MRPT [7] and is
available under an open-source license. An illustrative video
of our approach, together with the code, can be found here:
http://mapir.isa.uma.es/mjaimez.

II. RELATED WORK

Although the term “visual odometry” was first introduced by
Nı́ster in 2004 [8], the problem of estimating motion from visual
inputs has been addressed from different perspectives during the
last 30 years. Traditionally, VO systems have been developed for
grayscale images coming from one camera or a stereo pair [9].
This general approach usually relies on detecting and match-
ing visual features, having to deal with the problem of data
association and outliers [8], [10], [11]. Most solutions resort to
RANSAC [12] to solve this limitation and, although the presence
of outlier matches is an inherent limitation for these strategies,
great results have been achieved (e.g., in planetary exploration
[10]). Most recently, the semidense approach of Engel et al.
[13] obtains very accurate motion estimates by imposing photo-
consistency at image regions with non-negligible gradients and
estimating depth within a probabilistic framework. However, an
important drawback of these methods based only on grayscale
images is that their performance deteriorates considerably if the
illumination conditions are poor.

Alternatively, range data in the form of 2-D scans have proven
to be suitable to estimate planar motion. General point registra-
tion methods, most of which are variants of ICP [14], have been
extensively utilized to find the homogeneous transformation be-
tween consecutive scans and have been applied not only in VO
but also in Localization, Mapping, or SLAM [15], [16]. On the
other hand, some methods were specifically conceived to work
with 2-D range scans. In [17], a probabilistic framework is pro-
posed to find the rigid-body transformation that maximizes the
probability of having observed a scan given the previous one.
Rather than trusting a local search to find the global maximum,
a multiresolution CPU implementation is proposed to perform
a search over the entire space of plausible rigid-body transfor-
mations, obtaining good results in simulation. Because of its
relation with the proposal here, we have to mention the work
of Gonzalez [5], who introduced the concept of “range image
flow” and particularized the range flow constraint equation to
2-D scans to estimate the scanner motion in a very straightfor-
ward manner. Yet, its applicability was only tested in simulated
and simple environments.

Recently, the advent of the new and affordable RGB-D cam-
eras has revolutionized research in robotics. The huge amount
of geometric data contained in the depth images, along with
the fact that it can be easily combined with traditional RGB
ones, have given rise to a fair number of new VO approaches.
Some of them are similar to those relying on visual features
but they incorporate depth either to directly calculate the geo-
metric transformation between matched features or to improve
the outlier rejection stage [18], [19]. Likewise, in [20], visual
features are detected and fused to a global model of features
against which every new set is registered using ICP. A com-
pletely different alternative consists in minimizing an energy

function that is usually related to the photometric or geometric
error, i.e., the differences between consecutive RGB or depth
images when one of them is reprojected or “warped” against
the other. This idea was first presented in [21], although in
this case the authors used grayscale images generated by stereo
pairs. In [22], this concept is first applied to RGB-D images
and both photometric and geometric errors are minimized in a
variational framework, yet lacking implementation details and
quantitative results. Similarly, in [23], the focus is on the pho-
tometric error and the authors employ the depth images only
to construct the warping function between consecutive inten-
sity images. This work was extended in [2] by introducing a
new probabilistic formulation that produced impressive results.
However, despite their high accuracy and robustness, most of
these proposals require registered geometric and photometric
data to work, which in practice restricts their applicability to
systems or robots equipped with RGB-D cameras.

There is another group of methods which, as we do, exclu-
sively make use of the 3-D geometric data provided by range
sensors. Either ICP or some of its variants have been employed
in this regard but it is probably Generalized-ICP [1] which has
demonstrated the best performance, being commonly taken as
a reference for comparison [23]–[25]. On the other hand, other
strategies were specifically designed to work with the range im-
ages generated by Kinect-like cameras. A remarkable case is
KinectFusion [26], which introduces a signed distance function
(SDF) to represent the observed scene and applies ICP to align
the depth frames against this scene model. In a similar way, the
work presented in [27] defines a truncated SDF (TSDF) and
registers data directly to the TSDF model, rather than using
it to obtain denoised depth images from a virtual sensor (as
KinectFusion does). Apart from the great qualitative and quan-
titative results that these methods have achieved, all of them
share two weaknesses. First, they are computationally very ex-
pensive, an issue that is typically overcome by developing com-
plex parallelized CPU or GPU implementations. Second, their
performance degrades if the scene does not present sufficient
geometric-distinctive features.

Up to date, very few methods truly exploit both depth and
RGB images jointly to estimate motion. A recent example is
Kintinuous [28], the extension of KinectFusion, which added
FOVIS [18] to complement ICP in areas with lack of geometric
features. Additionally, in the work of Whelan et al. [29] differ-
ent combinations of [1], [2], and [18] were implemented and
tested, reporting good qualitative and quantitative results, and
low runtimes by virtue of an exhaustive GPU implementation.
The aforementioned work of Tykkala et al. [22] could also be
considered to belong to this category.

III. VELOCITY CONSTRAINT DERIVED FROM THE

RANGE FLOW EQUATION

This section describes how the 3-D motion of a range camera
can be estimated from two consecutive frames by applying the
range flow constraint and the restriction it imposes to the ve-
locities of the observed points. Under the common assumption
of a rigid scene, we formulate the point velocities in terms of
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Fig. 1. Global reference frame {XY Z}w and camera reference frame
{XY Z}C . The Pin-Hole model defines the relationship between the motion of
a point P and its optical flow (u̇, v̇) in the image plane.

the camera motion and, hence, the latter can be calculated if a
sufficient number of points are considered.

Let Z : (Ω ∈ N2) → R be a depth image provided by a 3-D
range camera where Ω is the image domain. According to the
work of Spies et al. [4], the range flow constraint equation for
range cameras reads

Ż =
∂Z

∂t
+

∂Z

∂u
u̇ +

∂Z

∂v
v̇ + O(Δt, u̇, v̇) ⇒ (1)

Ż � Zt + Zuu̇ + Zv v̇ (2)

where w = (u, v) are the pixel coordinates. Equation (2) reflects
that the total derivative of the depth can be calculated from
the optical flow ẇ = (u̇, v̇) and the partial derivatives of Z
with respect to time t, u, and v (Zt , Zu , and Zv , respectively).
Since (2) is derived from a first-order Taylor series expansion
(1), it is exact only when the higher order terms O(Δt, u̇, v̇)
are negligible. In practice, this condition is fulfilled if either
the displacement between consecutive images is small or the
observed points belong to planar patches where the linearization
holds.

The three partial derivatives of Z can be directly calcu-
lated from the depth images, but Ż, u̇, and v̇ are unknowns
and should be expressed in terms of the camera velocity.
Let ξ = (vx, vy , vz , ωx, ωy , ωz )T be the camera velocity and
P c = (x, y, z) the spatial coordinates of an arbitrary point P
of the scene, both described in the reference frame of the cam-
era. The relationships between Ż, ẇ, and P c can be deduced
from the “pin-hole model” assuming that the pixel and spatial
coordinates of P are time-varying (see Fig. 1):

v = fy
y

z
+ vm ⇒ v̇ = fy

(
ẏ z − ż y

z2

)
(3)

u = fx
x

z
+ um ⇒ u̇ = fx

(
ẋ z − ż x

z2

)
(4)

where (um , vm ) is the image center (principal point), and fx, fy

are the focal length values, all expressed in pixels.
With respect to the camera reference frame, and under the

assumption of a rigid and static scene, all observed points move
with a velocity that is equal to the camera velocity but opposite
in sign. Thus, the velocity of any 3-D point with respect to the
camera can be expressed as

Ṗ c =

⎛
⎜⎜⎝

ẋ

ẏ

ż

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−vx − zωy + yωz

−vy + zωx − xωz

−vz − yωx + xωy

⎞
⎟⎟⎠ . (5)

As an intermediate step, we express the optical flow in (2) in
terms of the 3-D velocity of P , according to (3) and (4), as

− Zt = −ż + Zufx

(
ẋ z − ż x

z2

)
+ Zvfy

(
ẏ z − ż y

z2

)
.

(6)
Notice that Z has been replaced by z because they are equiv-

alent: the capital letter has been used to denote the depth image,
while the lower case letter directly refers to the spatial coordi-
nate of depth. Finally, rigidity (5) is imposed in (6) as

− Zt =
(

1 +
xfx

z2 Zu +
yfy

z2 Zv

)
(+vz + yωx − xωy )

+
fx

z
Zu (−vx + yωz − zωy )

+
fy

z
Zv (−vy − xωz + zωx) . (7)

Equation (7) is a linear restriction that the velocity of a point
of the scene (with respect to the camera) has to fulfill and, conse-
quently, imposes a restriction to the camera velocity. Therefore,
we can build a solvable algebraic system if at least six linearly in-
dependent restrictions are available. Notice that not every point
will add new information to the system and, as will be described
in Section V, the problem could be ill-posed depending on the
spatial distribution of the scene points.

The linearization applied to derive the depth flow equation
assumes differentiability of the depth images, and either small
displacement of the scene or constant depth gradients. As a con-
sequence, in the first place, points on edges must be ruled out
since the depth field is not differentiable at the object borders.
Second, the depth image gradients may not be constant (hav-
ing higher order derivatives) which implies that, in the most
general case, (7) only holds for small displacements. Within
our formulation, “small displacements” means that the motion
of the scene points projected onto the image plane is smaller
than the neighborhood where the image gradients are computed,
typically

|u̇Δt| < 1

|v̇Δt| < 1 (8)
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where Δt is the time interval between consecutive frames.
Hence, the hypothesis of small displacements involves both the
image resolution and the actual 3-D motion of the points.

The solution to the “small displacements” restriction was pro-
posed by Brox et al. [30] and consists in utilizing a coarse-to-fine
scheme. Within this strategy, a Gaussian pyramid is built for the
input images and the optical flow is solved from coarser to finer
levels, capturing large displacements at the coarsest levels that
are subsequently refined throughout the pyramid. At each level,
the previously obtained solutions are employed to warp one of
the images against the other, leading to image pairs that present
less differences than the original pair and for which the hy-
pothesis of small displacements is fulfilled. This strategy can
be applied as well to estimate the camera motion, as explained
in [2] and [23]. In this case, the warping is not performed in
the image plane but in the 3D space, and the geometric data
captured by range sensors is exploited to warp a given image
or measurement according to a spatial transformation. This is
the reason why the methods presented in [2] and [23] require
both geometric and photometric data to work: they impose pho-
toconsistency to estimate motion but they need the geometry of
the scene to perform the warping. In our study, we adopt the
same warping strategy as [2] or [23], but since DIFODO relies
only on geometric constraints to estimate the camera motion, it
can be considered as a purely geometry-based method and can
be generalized to work with any range sensor.

Warping has been extensively applied in computer vision, and
it is not a contribution of this paper. Therefore, its mathematical
formulation is not presented here; more information and details
can be found in [2], [23], or [30].

IV. SOLVING THE CAMERA MOTION

A. Least-Square Solution

As previously mentioned, at least six points bearing linearly
independent restrictions are required to compute the camera ve-
locity at each level of the pyramid. In practice, however, a much
higher number of points (N ) are considered to make the solu-
tion robust to noise and errors, which leads to an overdetermined
linear system that can be solved by weighted least squares:

WAξ = WB → ξ =
(
AT WA

)−1
AT WB = MB (9)

where A ∈ RN ×6 contains the coefficients that multiply ξ in (7),
B ∈ RN ×1 contains the temporal derivative of depth for each
pixel (inverted in sign), and W ∈ RN ×N is a diagonal matrix
containing the weights associated with the uncertainty of each
equation. The M ∈ R6×6 matrix in (9) is symmetric and positive
definite /semidefinite and, therefore, a Cholesky LDLT factor-
ization (as implemented in Eigen [31]) can be used to compute
the solution. Since such factorization applies to a fixed-size ma-
trix (6 × 6), it does not condition the computational cost of our
method. Although not all the steps of the algorithm have been
detailed yet (see Section VI), the only operations whose com-
plexity is quadratic with the number of points are the products
AT WA and AT WB (using dense algebra). Nonetheless, the al-
gebraic system (9) can be rewritten in a way that these products
do not need to be computed: by multiplying both sides of (7)

by the square root of the corresponding weight and solving the
resulting equation system with the pseudoinverse matrix

Aw ξ = Bw → ξ =
(
(Aw )T Aw

)−1
(Aw )T Bw

= MB (10)

Aw =

⎛
⎜⎜⎜⎝

√
w1a11 . . .

√
w1a16

...
. . .

...
√

wN aN 1 · · · √
wN aN 6

⎞
⎟⎟⎟⎠ ,

Bw =

⎛
⎜⎜⎜⎝

√
w1b1

...
√

wN bN

⎞
⎟⎟⎟⎠ . (11)

Thus, the new formulation allows us to recover the motion
parameters with a computational time that grows only linearly
with the number of points.

B. Weighting Function

Weights are necessary to adjust the contribution of every
point to the overall motion estimate according to the uncertainty
or error associated with its range flow equation. Without loss
of generality, this error can be expressed as the addition of
two terms: the measurement error, which measures how the
sensor noise affects the range equation, and the linearization
error from the first-order approximation in (2). The former term
is typically modeled by a zero-mean Gaussian distribution and
can be calculated propagating the measurement error to the
whole equation. The latter does not follow a Gaussian model
and, in general, it is more complex to estimate because it involves
studying the second-order derivatives of depth to evaluate how
significant the neglected terms in (1) actually are. In this study,
we address the analysis of both sources of error and present
a weighting function that encompasses information about the
camera and the geometry of the scene from which to weight the
image pixels accordingly.

In order to estimate the measurement error, we need to take
into consideration every stochastic variable or parameter that
appears in (7). Assuming that the parameters of the camera
are exactly known, (7) can be rearranged and expressed as a
function of all noise-prone variables, that is, those dependent on
the depth:

R (x, y, z, Zt , Zu , Zv ) = 0 (12)

being x, y, z linearly related for a given pixel (see (3) and (4)).
To propagate the error of these depth-dependent variables to

the range flow equation, their covariance matrix Σd ∈ R6×6 has
to be built as a preliminary step:

Σd =

⎛
⎝Σxyz Σ(xyz )(Z t ,u , v )

ΣT
(xyz )(Z t ,u , v ) ΣZ t ,u , v

⎞
⎠ (13)

where Σxyz ,Σ(xyz )(Zt , u , v ) ,ΣZt , u , v
∈ R3×3 . The mathematical

derivation of the submatrices in Σd is based on the characteristics
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of Kinect-like cameras and is presented in the Appendix I.
Knowing Σd , the variance of (7) associated with the measure-
ment errors can be computed as

σ2
m = ∇R · Σd · ∇RT (14)

where ∇R is the gradient of R with respect to x, y, z, Zt , Zu

and Zv . Given that R also depends on ξ, an approximation of
∇R is computed using the ξ estimated at the previous time step.

On the other hand, to analyze the error derived from the
linearization in (1), we must rewrite that equation including the
second-order terms

Ż = Zt + Zuu̇ + Zv v̇ + Z2(Δt, ẇ) + O
(
Δt2 , ẇ

)
,

Z2(Δt, ẇ) =
Δt

2
(
Ztt + Ztu u̇ + Ztv v̇ + Zuu u̇2

+ Zvv v̇2 + 2Zuv u̇v̇
)
. (15)

It can be observed that, neglecting third or higher order terms,
the error is a function of all the second-order derivatives and the
optical flow. To estimate how (15) deviates from linearity, we
can approximate the depth second-order derivatives from the
depth images, but the optical flow is not known in advance. One
possible solution to this problem would consist in computing the
optical flow from the previous ξ. However, this strategy loses
its sense when it has to be applied at finer levels of the Gaussian
pyramid where the previous solution gives us no information
about the optical flow with respect to warped images. For that
reason, we choose a quadratic expression that penalizes the
second derivatives homogeneously for all pixels as

δ2
l = kl

[
Δt2

(
Z2

tu + Z2
tv

)
+ Z2

uu + Z2
vv + Z2

uv

]
. (16)

The constant kl weights the linearization error against the
measurement error, and the time increment multiplies the tem-
poral derivatives so that all terms are of the same order of mag-
nitude (depth differences). In practice, it can be noticed that a
high penalization of the second-order derivatives might discard
some points or areas of the scene that, despite its inaccuracy, are
useful to constrain the motion estimate. A deeper study of the
scene geometry could be performed to detect beforehand how
the range equation of every point would constrain the veloc-
ity estimate and adapt kl accordingly. However, this procedure
would significantly increase the computational cost of the al-
gorithm, and hence, it is not adopted in this study. Besides, the
second temporal derivative of Z is not considered in (16) be-
cause it cannot be estimated at the different pyramid levels. With
the exception of the coarsest level, the others involve warped
images which are timeless and for which the concept of second
temporal derivative makes no sense.

If N points are considered to build (9), for each point i with
i ∈ 1, 2 . . . N , its corresponding weight is inversely related to
the uncertainty associated with the range flow equation

Wii =
1

σ2
m,i + δ2

l,i

. (17)

V. SCENE GEOMETRY, COVARIANCE ANALYSIS, AND

VELOCITY FILTERING

Depending on the spatial distribution of the points used to
build the algebraic system (10), the problem can be well or ill-
posed. If the points contain sufficient information about how
the scene has changed in the three directions of space, then the
M matrix will be positive definite and (10) will stand for a
well-posed configuration; otherwise, the M matrix will be rank
deficient (or close to). Excluding the degenerated singular cases
of some surfaces of revolution (i.e., the camera in the center of
a sphere), sufficient information is guaranteed if the normals of
the observed surfaces can make up a 3-D vector basis, that is

rank ([n1 ,n2 , . . . ,nN ]) = 3 (18)

where ni ∈ R3×1 is the surface normal vector at a given point
i. The unfulfillment of this condition leads to the well-known
sliding problem of ICP [32] and frequently occurs when the
whole point cloud comes from one or two planes (a wall, the
floor, etc.).

If the M matrix is positive definite, the points of the scene
provide enough geometric constraints to estimate the 6 DOF of
the motion. On the contrary, if M has not full rank, some linear
or angular velocity terms cannot be estimated, and the solution
that the solver provides for these variables is meaningless. This
casuistry can be detected analyzing the covariance matrix Σξ ∈
R6×6 associated to the least-squares solution

Σξ =
1

N − 6

N∑
i=1

r2
i

(
(Aw )T Aw

)−1
(19)

where ri are the residuals of the least squares solution. The diag-
onal elements of the covariance matrix reflect the variance of the
components of the estimated ξ in the reference frame of the cam-
era. In general, it is more meaningful to express the matrix Σξ

in a diagonal form where the eigenvalues indicate which com-
binations of motions (eigenvectors) are constrained and which
are undetermined. This way, any uncertainty in the velocity es-
timate that may appear due to poor geometric information will
be revealed: its corresponding eigenvalue will reflect how high
or low this uncertainty is while its eigenvector will contain the
velocity terms affected by it. This information can be employed
to neglect those velocity terms whose variance (eigenvalue) is
too high. Thus, if data from other sources like IMUs or wheel
odometry were available they could be fused with the VO esti-
mation to generate a more robust solution. When this is not the
case, a suitable option consists of applying a smooth filter based
on the current and previous estimates, as explained next.

Let E = {ev1 , . . . ,ev6} be an orthogonal basis comprising
the eigenvectors (ev1...6 ∈ R6) of Σξ , and D ∈ R6×6 the co-
variance diagonal matrix containing the associated eigenvalues.
At a given interval of time [t, t + 1], the solution provided by
the solver ξt,s and the previous velocity estimate ξt−1 have to
be expressed in the basis Et , which is always computed from
the last covariance matrix Σt

ξ . Then, the filtered velocity ξt
E

in the basis Et is obtained as a weighted sum of the current
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Algorithm 1. DIFODO

Inputs: New depth frame −Zt

Previous Gaussian pyramid −GP (Zt−1)
Previous velocity estimate −ξt−1

1. Build the new Gaussian pyramid → GP (Zt)
for i = 1 to number of pyramid levels do:

2. if (i > 1) then Perform warping → Zt
w,i

else then Zt
w,1 = Zt

1

3. if (Zt
i == 0) ||

(
Zt

w,i == 0
)

Discard pixels (null measurements)
4. Compute depth derivatives → ∂Z

∂ t

t
, ∂Z

∂u

t
, ∂Z

∂v

t

5. Compute the weighting function → Wt

6. Solve weighted least squares → ξt,s
i ,Σt

ξ ,i

7. Filter level solution → ξt
i

end for
8. Compute overall solution and update pose → ξt

estimate and the previous velocity

[
(1 + k1) I + k2D

t
]
ξt

E = ξt,s
E +

(
k1I + k2D

t
)
ξt−1

E . (20)

Equation (20) represents a low-pass filter with dynamic
smoothing, where k1 helps to soften the estimated trajectory
and k2 controls how the eigenvalues in D affect the final esti-
mate. A high value of k2 implies that those velocity terms with
uncertainty will be approximated to their previous value (inter-
val [t − 1, t]), whereas the current estimate (interval [t, t + 1])
will have a higher importance if k2 is low.

VI. DIFODO FRAMEWORK AND IMPLEMENTATION

Overall, the algorithm carries out a sequence of steps that
are depicted in Algorithm 1. It receives as inputs the new depth
image, the previous pyramid of depth images and the last mo-
tion estimate, and yields the average linear and angular camera
velocities during the last interval of time, from which the cam-
era pose will be updated. Important aspects and implementation
details of this algorithm are explained below.

A. Gaussian Pyramid

The Gaussian pyramid is built by downsampling the depth
images with a standard 5 × 5 Gaussian kernel. However, a pure
Gaussian smoothing would create artifacts in the depth images
because it would mix very dissimilar depth values at the object
borders. For that reason, a bilateral filter is applied instead to
preserve the geometry of the scene. In our study, the Gaussian
pyramid starts to be built at a QVGA resolution (240 × 320).
As will be discussed in Section VII, in order to estimate fast
motions it might be advantageous to run DIFODO with a lower
resolution of 120 × 160 (QQVGA), in which case the image
pyramid should be built from this resolution onwards, saving
computational time.

B. Warping

At every new level of the Gaussian pyramid, one of the two
depth images must be warped against the other. To perform the
warping, all the motion estimates from the previous levels must
be integrated to obtain the overall transformation accumulated
up to the present level. A special case is, of course, the first
level where no warping is needed. In our formulation, the new
frame is always warped against the old frame, and the motion
estimates of every level are expressed in the same reference
frame: the last known pose of the camera.

C. Depth Image Gradients and Weights

The implementation of DIFODO requires a discrete formu-
lation that estimates the average camera velocity between two
consecutive depth frames. Conversely to the color of a scene,
whose gradient remains almost constant for all perspectives
from which the scene is observed, the depth gradients change as
the camera moves. For this reason, the depth gradients should
not be computed from either the initial or the final depth images
at a given interval of time. As an alternative, we demonstrate
that a better choice to approximate the depth gradients consists
in applying a trapezoidal solution that averages values from both
images.

If Δw = (u̇ Δt, v̇Δt) is the motion of a given point projected
onto the image domain, its depth motion is given by

Ż(w)Δt = Zt (w + Δw) − Zt−1 (w) . (21)

Equation (21) is the general and nonlinear expression of geo-
metric consistency from which (2) is derived. Instead of substi-
tuting the term Zt(w + Δw) by the standard Taylor lineariza-
tion, we employ a more accurate approximation that weights the
initial and final depth gradients at a given time instant as

Zt (w + Δw) = Zt (w)

+ ∇
(

Zt (w) + Zt (w + Δw)
2

)
· Δw.

(22)

At the right-hand side of (22), the term Zt(w + Δw) is still
present and needs to be expressed as a function of the previous
depth image and the depth motion, according to (21), as

Zt (w + Δw)

= Zt (w) + ∇
(

Zt (w)+Zt−1 (w) + Żt (w) Δt

2

)
· Δw.

(23)

As commonly done in variational methods, we can impose
regularization over the depth motion and assume that the depth
motion field is locally constant as

∇Żt(w) ∼ 0. (24)

Finally, this smoothness constraint is imposed in (23) which,
in turn, is substituted into (21) to obtain a more accurate
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expression of the range flow constraint equation

Żt(w) � Zt (w) − Zt−1 (w)
Δt

+ ∇
(

Zt (w) + Zt−1 (w)
2

)
· ẇ. (25)

On the other hand, the image gradients must be approximated
by some finite difference formula, given that Ω is not a contin-
uous domain but a discrete one. Most of the times, this aspect
does not receive much attention in the literature and a certain
constant kernel is applied over the whole image. However, this
is not the best strategy to compute the depth gradients because
it leads to very high values at the object borders which does not
reflect the real gradients of the surfaces of these objects. As an
alternative, we make use of an adaptive formula of finite differ-
ences which, at a point P observed at a pixel w, computes the
depth gradients taking into account those surrounding pixels that
observe points close to P . Mathematically, it implies that two
nearness functions ru , rv : (Ω ∈ N2) → R must be computed
as

ru (u, v) =

1
‖X (u + 1, v) − X (u, v) , Z (u + 1, v) − Z (u, v)‖ (26)

rv (u, v) =

1
‖Y (u, v + 1) − Y (u, v) , Z (u, v + 1) − Z (u, v)‖ (27)

where ‖•‖ is the Euclidean norm and X,Y : (Ω ∈ N2) → R
represent the x, y coordinates of the points of the scene. The
depth gradients are calculated then from the depth images and
the nearness functions:

Zu (u, v) =
ru (u, v) Z+

u (u, v) + ru (u − 1, v) Z−
u (u, v)

ru (u, v) + ru (u − 1, v)

Z+
u (u, v) = Z(u + 1, v) − Z(u, v)

Z−
u (u, v) = Z(u, v) − Z(u − 1, v) (28)

Zv (u, v) =
rv (u, v) Z+

v (u, v) + rv (u, v − 1) Z−
v (u, v)

rv (u, v) + rv (u, v − 1)

Z+
v (u, v) = Z(u, v + 1) − Z(u, v)

Z−
v (u, v) = Z(u, v) − Z(u, v − 1). (29)

For simplicity’s sake, the temporal superscripts have been
omitted. These expressions always upweight the closest points
in space to approximate the depth gradients, hence avoiding
the assignment of huge values at the object borders. If they
are evaluated at pixels which do not lie on borders of objects,
then the right and left derivatives (Z+and Z−) will be similarly
weighted, which results in a standard centered approximations
of the image gradients.

Regarding the weighting function, the constant kl that weights
the linearization error against the measurement error is set to
5 × 10−6 . The second-order derivatives are approximated by
constant centered formulas (using the stencil [−1 0 1]) applied
over the first-order derivatives.

D. Filter Velocity and Update Pose

The velocity estimate must be filtered at each level of the
pyramid because each level can suffer from the lack of geometric
distinctive features. However, the last velocity estimate cannot
be used directly to filter the solution of every level because all
the previous levels have already estimated some motion which
should be subtracted from it. The sequential steps that the filter
performs at each level of the pyramid are as follows.

1) Compute the overall velocity estimate ξt,acu
i accumulated

up to the present level i.
2) Subtract ξt,acu

i from the last velocity estimate ξt−1 to
obtain ξt,sub

i .
3) Compute the covariance matrix Σt

ξ ,i .
4) Calculate the eigenvalues Dt

i and the eigenvectors Et
i .

5) Express the least-squares solution ξt,s
i and ξt,sub

i in the
base Et

i .
6) Apply (20) with ξt,s

i,E and ξt,sub
i,E as inputs, and obtain ξt

i,E .
7) Transform ξt

i,E to the reference frame of the camera.
When the process is finished in all the pyramid levels, the

final motion estimate ξt is computed and integrated over the
last time interval to update the camera pose.

Although the same filtering process is followed in every level,
there is an important aspect that should be taken into account:
the coarsest levels capture the trend of the motion, while the last
levels refine it to get an accurate estimate. As a consequence,
the coarsest levels are likely to get solutions which are similar
to the previous velocity of the camera, whereas the estimates
of the finer levels are probably quite independent of it. There-
fore, our filter should give a weight to the last motion estimate
that decreases from coarser to finer levels. To this end, and to
smooth the trajectory estimates, we have empirically chosen the
following weighting functions:

k1 = 0.5e−(l−1) , k2 = 0.05e−(l−1) (30)

where l is the pyramid level that ranges from 1 (coarsest) to the
number of levels considered. These functions have heuristically
proved to be a good tradeoff between smoothness of the esti-
mated trajectory and capability to accommodate motion changes
in a huge variety of scenes (as shown in the experiments and
results of the next section).

VII. EXPERIMENTS AND RESULTS

This section is divided into four parts corresponding to four
distinct series of experiments. First, DIFODO is tested with dif-
ferent resolutions to analyze how its performance changes with
the number of pyramid levels considered. Second, several ex-
periments are conducted to compare DIFODO, GICP [1], and
RDVO [2] focusing on their speed and accuracy. Third, we
demonstrate the suitability of our approach to estimate fast mo-
tions, comparing results of increasing camera velocities and an-
alyzing its performance using QVGA at 30 Hz against QQVGA
at 60 Hz. Fourth, qualitative results will be shown in the form
of 3-D maps built purely from odometry pose estimations.

For the first three groups of experiments, we have utilized
some data series from the TUM datasets [24], given that they
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TABLE I
DATASET CHARACTERISTICS

Datasets Duration (s) Avg. trans. vel
(m/s)

Avg. rot. vel
(deg/s)

Est. traj.
length (m)

f1-desk 23.4 0.413 23.33 9.66
f1-desk2 24.86 0.426 29.31 10.59
f1-teddy 50.82 0.315 21.32 16.01
f1-plant 41.53 0.365 27.89 15.16
f1-room 48.9 0.334 29.88 16.33
f2-desk 99.36 0.193 6.34 19.18
f2-deskwp 142.08 0.121 5.34 17.19

provide the ground truth to calculate the estimate error. The
selected datasets reproduce varied camera motions at different
speeds and include scenes that contain sufficient geometric and
photometric information (the latter is necessary for RDVO). The
datasets chosen, according to the authors of [24], belong to three
different categories:

1) Handheld SLAM: It includes general camera mo-
tions in office-like or house-like environments. Within
this category, we use “Freiburg1/desk” (f1-desk),
“Freiburg1/desk2” (f1-desk2), “Freiburg1/room” (f1-
room) and “Freiburg2/desk” (f2-desk).

2) Three-Dimensional Object Reconstruction: It includes
trajectories around certain objects. Within this cat-
egory, we use “Freiburg1/teddy” (f1-teddy) and
“Freiburg1/plant” (f1-plant).

3) Dynamic Objects: In these scenes, there are one or more
moving objects and, hence, the rigid scene hypothesis is
not fulfilled. Within this category, we use “Freiburg2/desk
with person” (f2-deskwp).

Relative and absolute pose errors will be considered, as de-
scribed in [24], to study the accuracy of our approach. For the
relative pose error, both translational and rotational deviations
per second will be evaluated with the root-mean-squared error
(RMSE). Besides, we will evaluate the RMSE and the maximum
values of the absolute trajectory errors (translational) to analyze
the robustness of these approaches to reproduce 3-D trajectories
faithfully. A brief summary of the datasets considered is pre-
sented in Table I. Because of the lack of ground truth at some
trajectory stretches, the trajectory length is estimated using the
datasets duration and their average translational speed. For all
the experiments, the test platform used is a standard desktop
PC running Ubuntu 12.04 with an Intel Core i7-3820 CPU at
3.6 GHz.

A. DIFODO with Different Resolutions

Several tests have been carried out to analyze how the ac-
curacy and speed of DIFODO are affected by the maximum
resolution of the depth images employed in the coarse-to-fine
scheme. A total amount of 28 experiments have been performed,
four for each dataset, with maximum resolutions of 30 × 40,
60 × 80, 120 × 160, and 240 × 320. In every case, the coars-
est level of the pyramid had a resolution of 15 × 20, implying
that the number of levels in the aforementioned experiments
were 2, 3, 4, and 5, respectively. No results are presented with a

Fig. 2. Comparison of translational (left) and rotational (right) drifts per sec-
ond with DIFODO at different resolutions.

Fig. 3. Comparison of the RMSE (left) and MAX (right) absolute translational
errors with DIFODO for different resolutions.

resolution of 15 × 20 because it is a too low resolution to pro-
duce decent estimates. Initially, relative translational and rota-
tional errors are compared (see Fig. 2). As expected, accuracy
increases with higher resolutions. It can be noticed that the
RMSE of each dataset varies as accuracy does not only depend
on the VO method but also on the camera speed and the geom-
etry of the observed scenes. Likewise, in Fig. 3, the RMSE and
maximum absolute translational errors are plotted. It can be ob-
served that, on average, the longest datasets present the highest
absolute error since the errors of every iteration are propagated
over a longer period of time. It is worth mentioning that the high-
est resolution (QVGA) does not provide significantly improved
estimates respect to those of the previous level (QQVGA). Al-
though it is logical that the solution refinement becomes less
and less noticeable with higher resolutions, the main factor that
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TABLE II
DIFODO RUNTIME (ms)

Dataset Resolution

30 × 40 60 × 80 120 × 160 240 × 320

f1-desk 3.79 5.12 10.09 28.51
f1-desk2 3.78 5.13 10.03 28.3
f1-teddy 3.94 5.30 10.18 28.99
f1-plant 3.91 5.27 10.17 28.57
f1-room 3.87 5.12 9.92 28.58
f2-desk 3.85 5.23 10.14 29.19
f2-deskwp 3.78 5.09 9.73 28.14

Average 3.85 5.18 10.04 28.61

Fig. 4. Percentage computational load of the main steps that DIFODO per-
forms to estimate motion with QVGA resolution.

explains this result is the fact that images at QVGA resolution
are not filtered because they represent the finest level of the pyra-
mid. As a consequence, the noise of the measurements affects
the derivatives calculation more drastically than at any other
level. At the finest level, points are closer to each other, and
the differences between their depth values are caused not only
by the geometry of the scene but also by the noise of the mea-
surements. Hence, the depth gradient approximation becomes
imprecise and does not perfectly reflect the real gradients of the
observed surfaces. If necessary, this effect could be partially al-
leviated by applying a previous bilateral filter to the finest level,
but at the expense of a higher computational cost. Overall, Figs.
2 and 3 show that it is beneficial to set QVGA as the maxi-
mum resolution although there might be some exceptions like
the dataset f2-desk.

DIFODO computational time is reported in Table II. As
DIFODO provides a closed-form solution, its runtime is es-
sentially the same for all the datasets and the exact values might
slightly differ depending on how many pixels present null mea-
surements. In Fig. 4, we show how the runtime of DIFODO at
QVGA is distributed among the main steps that comprise it (see
Algorithm 1). The velocity filter is significantly faster than any
other step because it is the only one which does not perform
pixel-wise operations. Besides, one aspect should be remarked.
In all cases, the Gaussian pyramid was built starting from a reso-
lution of 240 × 320, which on average takes 3.5 ms. However, if
DIFODO is configured to work with any inferior resolution, the

TABLE III
RUNTIME COMPARATIVE

Dataset Average runtime (ms)

DIFODOL R DIFODOH R RDVO GICP

f1-desk 10.09 28.51 28.96 838.24
f1-desk2 10.03 28.3 27.00 877.53
f1-teddy 10.18 28.99 27.66 862.37
f1-plant 10.17 28.57 41.82 824.11
f1-room 9.92 28.58 27.39 856.73
f2-desk 10.14 29.19 42.85 769.81
f2-deskwp 9.73 28.14 32.43 677.74

Average 10.04 28.61 32.43 815.22

Gaussian pyramid can be built from 120 × 160 upwards, which
takes less than 1 ms. As a consequence, DIFODO runtime can
be actually smaller than it is shown in Table II for any resolu-
tion inferior to QVGA. This aspect makes QQVGA resolution
particularly appropriate for fast robotic applications because it
can provide quite accurate results (see Figs. 2 and 3) with a very
low runtime.

B. Comparison Between DIFODO, GICP, and RDVO

In this section, we compare our approach with two state-of-
the-art methods: GICP and RDVO. For every method, we will
consider QVGA resolution, although results of DIFODO with
QQVGA will be also included to analyze how its performance
deteriorates if a faster version of it is needed. To refer to them,
we will use the names DIFODOHR and DIFODOLR which stand
for high and low resolution, respectively. The results for RDVO
have been generated with the code that the authors published
online for ROS [33]. Regarding GICP, we make use of the
implementation included in PCL [34]. For a fair comparison, a
bilateral filter with a 5 × 5 mask is applied to the depth images
before running GICP, which smoothes the raw data and leads
to better results. The GICP parameters have been chosen as
follows.

1) The maximum correspondence distance is set to 0.5 m
to cover all the translations and rotations of the datasets
where the scenes are sampled at 30 Hz and the maximum
observed distance is about 5 m.

2) The maximum number of iterations is set to 10, although
we observed in the experiments that the method almost
always converges at the third–fourth iteration.

3) Transformation epsilon is set to 10−5 which marks the
minimum difference between consecutive transformations
to assume that the algorithm has converged. It is actually
applied separately to translations and rotations (with this
same value).

First, Table V presents the execution time statistics for each
algorithm and dataset. From the results in Table V, we can con-
clude that our proposal is almost 30 times faster than GICP and
as fast as RDVO, although our runtime is more deterministic
since DIFODO is not iterative. On the other hand, we also com-
pare how precise these methods are in estimating the camera
motion. Relative pose errors in the form of translational and
rotational deviations per second are analyzed and shown in
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TABLE IV
RELATIVE ERRORS: TRANSLATIONAL AND ROTATIONAL DEVIATIONS PER SECOND

Datasets RMSE Translational deviations (m/s) RMSE Rotational deviations (deg/s)

DIFODOL R DIFODOH R RDVO GICP DIFODOL R DIFODOH R RDVO GICP

f1-desk 0.0398 0.0366 0.0408 0.1017 2.731 2.562 2.176 6.88
f1-desk2 0.0596 0.0528 0.0645 0.1166 3.393 3.311 3.547 6.66
f1-teddy 0.0547 0.0518 0.0967 0.1273 2.85 2.766 2.455 4.706
f1-plant 0.0356 0.0298 0.0341 0.1117 2.306 2.179 1.245 4.783
f1-room 0.0531 0.0489 0.0622 0.0993 2.846 2.688 2.617 4.366
f2-desk 0.0317 0.0313 0.0239 0.0768 1.182 1.259 1.019 2.975
f2-deskwp 0.0585 0.0542 0.0312 0.0719 1.85 1.741 0.897 2.885

Average 0.0476 0.0436 0.0505 0.1008 2.451 2.358 1.994 4.751

TABLE V
ABSOLUTE TRANSLATIONAL ERRORS

Datasets RMSE (m) Maximum (m)

DIFODOL R DIFODOH R RDVO GICP DIFODOL R DIFODOH R RDVO GICP

f1-desk 0.0466 0.0476 0.0636 0.1829 0.0877 0.094 0.119 0.3638
f1-desk2 0.0937 0.0793 0.0846 0.2275 0.1873 0.1554 0.427 0.5808
f1-teddy 0.2412 0.2041 0.271 0.2849 0.5983 0.5147 0.4823 0.5598
f1-plant 0.0917 0.0645 0.0456 0.2444 0.2203 0.1667 0.0962 0.5392
f1-room 0.1094 0.1088 0.3319 0.3386 0.1918 0.2037 0.567 0.6238
f2-desk 0.3424 0.5602 0.3451 1.343 0.676 1.1663 0.614 2.848
f2-deskwp 0.2774 0.2289 0.259 0.6788 0.4105 0.4223 0.5001 1.5156

Average 0.1718 0.1848 0.2001 0.4714 0.3388 0.3890 0.4008 1.0044

Table III. It can be noticed that DIFODO, with both QVGA
and QQVGA resolutions, is the most accurate method to es-
timate translations, whereas RDVO provides the best results
for rotations. GIPC, on the other hand, is always considerably
less accurate than the other two approaches. Moreover, abso-
lute trajectory errors are presented in Table IV, where it can be
seen that DIFODO is the method that estimates the whole tra-
jectories more faithfully. Curiously, DIFODOLR provides, on
average, the best estimated trajectories although DIFODOHR
performs better locally. This apparent contradiction is caused
by one single dataset: “f2-desk,” where DIFODOHR produces a
particularly bad overall result.

A special case is the dataset “f2-deskwp” because it is the
only one that purposely incorporates moving objects, breaking
the rigid scene assumption on which DIFODO relies. RDVO
includes in its formulation a weighting function to mitigate (but
not eliminate) errors derived from moving objects and, hence,
presents a considerable smaller relative RMSE than DIFODO
for this dataset. Nevertheless, but for the stretches where the
moving person appears, DIFODO performs better than RDVO
and, surprisingly, is able to produce the best overall trajectory
estimate even for this dataset where RDVO was expected to
significantly outperform any other method.

C. DIFODO and Fast Motions

In this section, we study how the performance of our approach
varies when the camera velocity increases. To this end, we sim-
ulate faster motions by time-decimating the input data from the

TABLE VI
RELATIVE POSE ERRORS WITH THE ORIGINAL AND THE

TIME-DECIMATED SEQUENCES

Datasets RMSE Translational deviations
(m/s)

RMSE Rotational deviations
(deg/s)

Original × 2 × 3 Original × 2 × 3

f1-desk 0.037 0.050 0.089 2.562 4.275 6.259
f1-desk2 0.053 0.089 0.177 3.311 3.587 3.999
f1-teddy 0.052 0.077 0.109 2.766 4.410 7.145
f1-plant 0.030 0.030 0.035 2.179 2.127 2.413
f1-room 0.049 0.049 0.090 2.688 2.69 3.766
f2-desk 0.031 0.025 0.024 1.259 0.963 0.883
f2-deskwp 0.054 0.051 0.049 1.741 1.567 1.472

Average 0.044 0.053 0.082 2.358 2.803 3.705

TUM datasets. In this set of experiments, which have been car-
ried out with QVGA resolution, the input image sequences are
decimated by a factor of 2 and 3, representing velocities that are
two and three times faster than the original ones. Relative and ab-
solute pose errors are shown in Tables VI and VII, respectively.
It can be noticed that the accuracy of our method decreases
when a faster motion is simulated on the “f1 datasets,” whereas
the opposite occurs for the “f2 datasets.” To understand these
disparate results, we have to take into account that the average
camera velocities at each dataset are quite different. In particu-
lar, the average camera velocities at the “f2 datasets” are about
three times slower than those at the “f1 datasets,” which explains
why the decimated sequences of the “f2 datasets” provide good
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TABLE VII
ABSOLUTE TRAJECTORY ERRORS WITH THE ORIGINAL AND THE

TIME-DECIMATED SEQUENCES

Datasets RMSE Translational deviations
(m/s)

Maximum Translational deviations
(deg/s)

Original × 2 × 3 Original × 2 × 3

f1-desk 0.048 0.171 0.236 0.094 0.418 0.464
f1-desk2 0.079 0.131 0.271 0.155 0.305 0.647
f1-teddy 0.204 0.256 0.350 0.515 0.564 0.613
f1-plant 0.065 0.065 0.090 0.167 0.151 0.216
f1-room 0.109 0.182 0.388 0.204 0.358 0.762
f2-desk 0.560 0.352 0.262 1.166 0.704 0.468
f2-deskwp 0.229 0.189 0.178 0.422 0.346 0.328

Average 0.185 0.192 0.254 0.389 0.406 0.500

results. On the contrary, the worst estimates are found for the
accelerated sequences of “f1-desk” and “f1-desk2,” which
present the fastest camera motions. It is worth noting that ac-
curacy improves for the “f2 datasets” when the sequences are
decimated or accelerated, effect that can be explained by analyz-
ing the measurement noise of Kinect-like cameras. The depth
images provided by this kind of cameras present a flickering or
trembling over time that grows quadratically with depth [35].
This implies that no scene looks perfectly static to the camera
even if the camera is still. For this reason, every new execution of
the algorithm introduces some error in the trajectory estimation
which, in the case of small motions, can be partially prevented
with a lower sampling rate. This is essentially what causes the
improved performance of the decimated “f2-sequences”.

In view of these results, we can conclude that DIFODO with
QVGA provides very accurate estimates for camera velocities
up to 0.7 m/s. If a faster motion needs to be estimated, QQVGA
should be chosen to work at 60 Hz which would double the
velocity estimation range without compromising the accuracy
significantly (see comparative in Section VII-A). For very slow
motions, it would be advantageous to reduce the frequency of
the estimates, according to the results of the “f2 datasets”.

D. DIFODO in Real Time and Map Building

Finally, we have performed real experiments with a handheld
camera to demonstrate the accuracy of our approach to estimate
geometrically consistent trajectories. To this purpose, DIFODO
has been utilized to build 3-D maps of two different scenarios (a
living room and our lab). These maps are built as a concatena-
tion of point clouds along the trajectory that DIFODO estimates,
without resorting to global consistency or any other mapping
strategy. The images are taken with a PrimeSense Carmine 1.08
at 30 Hz with QVGA resolution. A brief summary of the es-
timated trajectories is presented in Table VIII. The maximum
velocity values have been obtained after applying a median filter
to the sequence of velocities to reject possible outliers. Figs. 5
and 6 depict the generated maps from different views. In both
cases, the real geometry of the mapped environments is pre-
served quite accurately: flat surfaces remain flat in the map (see
the floor in Fig. 5), walls remain perpendicular to each other,
etc. However, the scene colors are not consistent because the

TABLE VIII
REAL TRAJECTORIES ESTIMATED WITH DIFODO

Lab Living room

Duration (s) 33.66 20.31
Length (m) 18.65 8.611
Aver. trans. velocity (m/s) 0.554 0.424
Aver. rot. velocity (deg/s) 16.91 20.55
Max. trans. velocity (m/s) 0.841 0.770
Max. rot. velocity (deg/s) 47.95 49.32

Fig. 5. Three-dimensional map of a living room generated with an RGB-
D camera from DIFODO motion estimates. The map is shown in top (1),
perspective (2) and front (3) views. The camera trajectory is depicted with a
green line.

shutter speed of the camera was automatic, and therefore, the
object colors vary depending on the average brightness of the
scene. In any case, we do not aim to address the map building
problem but to show that DIFODO is able to provide very ac-
curate estimates not only locally but for full trajectories. Color
has simply been added to the maps to enhance their appearance
but, as has been repeatedly said throughout the paper, it is not
employed to estimate motion.
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Fig. 6. Three-dimensional map of our lab generated with an RGB-D camera from DIFODO motion estimates. An overall top view is shown (left) together with
some local views: a detailed top view (1) and two perspective views (2 and 3). The camera trajectory is depicted with a green continuous line.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel visual odometry
algorithm based on geometric data, and have detailed its for-
mulation to work with range cameras. Within a coarse-to-fine
scheme, the camera motion is estimated by assuming rigid mo-
tion of the scene with respect to the camera and finding the
rigid body velocity that best describes the velocity of all the
points of the scene. A velocity filter is proposed to detect and
mitigate wrong estimates under cases of geometric uncertainty,
and a detailed study on how to approximate the depth gradients
accurately is presented.

In terms of speed and precision, our approach has been com-
pared with GICP [1] and RDVO [2]. With respect to GICP,
which also estimates motion from geometry, our method is about
30 times faster and more than 2 times more accurate. Regarding
RDVO, which needs geometric and photometric data to work,
similar results (or even slightly better) are obtained from purely
geometric inputs. Maps of two different scenarios have been
built from real-time odometry estimates to demonstrate quali-
tatively that DIFODO is able to reproduce full trajectories con-
sistently. Furthermore, DIFODO has proved to provide accurate
motion estimates with low image resolutions (120 × 160) which
makes it suitable for real-time robotic applications that might
involve fast motions and demand a higher frame rate (60 Hz).

On the other hand, there are some factors that limit the per-
formance of our approach. First, the currently available range
cameras are not very precise and generate depth images that
considerably deform the real geometry of the scenes they ob-
serve. This defect will surely be alleviated at the upcoming new
generations of range sensors given the attention that big com-
panies like Microsoft, Apple or Samsung are paying to 3-D
sensing. Second, its accuracy worsens when the rigid scene hy-
pothesis is not fulfilled. We believe that the real solution to this
problem will be given by scene flow algorithms that estimate

the dense 3-D motion field of the scene points. Particular solu-
tions (like that of [2]) can help to deal with moving objects if a
very high percentage of the scene is still rigid, but would fail to
estimate motion when the number of moving objects increases
or the moving object itself represents a substantial part of the
whole scene. Therefore, a more general solution that could be
generalized to any arbitrary scene composed of any arbitrary
number of moving objects should be found. Last, similarly to
GICP or other geometry-based VO methods, DIFODO is unable
to estimate some linear or angular velocity components when
the scene does not present sufficient geometric-distinctive fea-
tures. Although the proposed velocity filter helps to mitigate this
limitation, a more robust solution should incorporate RGB or
inertial information to effectively tackle the problem of ill-posed
configurations.

APPENDIX I

This appendix derives the expression of the matrix Σd which,
according to (13), is composed of the following blocks:

Σxyz =

⎛
⎜⎜⎝

σ2
x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

⎞
⎟⎟⎠ ,

ΣZt , u , v
=

⎛
⎜⎜⎝

σ2
Zt

σZt Zu
σZt Zv

σZt Zu
σ2

Zu
σZu Zv

σZt Zv
σZu Zv

σ2
Zv

⎞
⎟⎟⎠ ,

Σ(xyz )(Zt , u , v ) =

⎛
⎜⎜⎝

σxZt
σxZu

σxZv

σyZt
σyZu

σyZv

σzZt
σzZu

σzZv

⎞
⎟⎟⎠ . (31)



JAIMEZ AND GONZALEZ-JIMENEZ: FAST VISUAL ODOMETRY FOR 3-D RANGE SENSORS 821

Assuming that the only source of error is the inaccuracy of the
depth measurements, we first characterize this error according
to the work of Khoshelham and Elberink [35]:

σzm =
σd

fb
z2 ∼ 1.4 · 10−5z2 (32)

where σzm is the standard deviation of the depth measured at
a given pixel, f is the focal distance of the IR camera, b is the
baseline between the IR camera and projector, and σd is the
disparity measurement error. Since the depth images are filtered
with a Gaussian mask of 5 × 5, the actual standard deviation of
z should take it into account:

σz =
σd

5fb
z2 = kz z

2 ∼ 2.8 · 10−6z2 . (33)

Regarding the Pin-Hole model (see (3) and (4)), it can be
deduced that

σx =
(u − um )

fx
σz = kzxz (34)

σy =
(v − vm )

fy
σz = kzyz. (35)

On the other hand, the standard deviation of the depth deriva-
tives should be computed as the difference of Gaussians but, for
simplicity’s sake, it is calculated as if both the subtrahend and
minuend of the finite difference expressions were equal to the
value of z at the corresponding pixel, i.e.,

zt+1(u, v) ∼ zt(u ± 1, v) ∼ zt(u, v ± 1) ∼ zt(u, v) ⇒

σZt
=

kz z
2

√
2Δt

, σZu
=

kz z
2

2
√

2
, σZv

=
kz z

2

2
√

2
. (36)

The covariance terms in (31) can be obtained analytically,
but only those which are not null will be explicitly derived. The
null terms correspond to independent variables (Zt , Zu , and Zv

respect to each other and x, y, and z) and, hence, do not need
further consideration.

σxy = E [(x − E[x]) (y − E[y])]

=
(u − um )

fx

(v − vm )
fy

E
[
(z − E[z])2

]

= k2
z xyz2 (37)

σxz = E [(z − E[z]) (x − E[x])]

=
(u − um )

fx
E

[
(z − E[z])2

]
= k2

z xz3 (38)

σyz = E [(z − E[z]) (y − E[y])]

=
(v − vm )

fy
E

[
(z − E[z])2

]
= k2

z yz3 (39)

σzZt
= σzZu

= σzZv
= σxZt

= σxZu
= σxZv

= 0

σyZt
= σyZu

= σyZv
= σZt Zu

= σZt Zv

= σZu Zv
= 0. (40)

This is all the information required to build the matrix Σd .
A similar study is presented in [20] but based on different as-
sumptions and applied to a different set of variables. It focuses

on the 3-D uncertainty of a point (variables x, y, and z above)
and, although they also model the pixel coordinates u and v
as normal distributions, their results are similar to ours if the
variance of u and v are set to zero.
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