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Abstract

One of the most evident characteristics of robotic applications is heterogeneity: large robotic projects involve many different

researchers with very different programming needs and areas of research, using a variety of hardware and software that must be

integrated efficiently (i.e.: with a low development cost) to construct applications that satisfy not only classic robotic requirements (fault-

tolerance, real-time specifications, intensive access to hardware, etc.) but also software engineering aspects (reusability, maintainability,

etc.). Most existing solutions to this problem either do not deal with such heterogeneity or do not cover specific robotic needs. In this

paper we propose a framework for the integration of heterogeneous robotic software through a software engineering approach: the

BABEL development system, which is aimed to cover the main phases of the application lifecycle (design, implementation, testing, and

maintainance) when unavoidable heterogeneity conditions are present. The capabilities of our system are shown by its support for

designing and implementing diverse real robotic applications that use several programming languages (C, C++, JAVA), execution

platforms (RT-operating systems, MS-Windows, no operating system at all), communication middleware (CORBA, TCP/IP, USB), and

also a variety of hardware components (Personal Computers, microcontrollers, and a wide diversity of sensor and actuator devices in

mobile robots and manipulator arms).

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A pervasive characteristic of robotic systems that has a
great influence in developing high-quality applications is
their heterogeneity. That is, robotic projects involve very
different areas with very different needs: artificial intelli-
gence, control systems, data acquisition, networking, etc.,
which requires the collaboration of very different people
and the integration of a variety of software and hardware
components. In spite of the difficulty of integrating this
diversity with the lowest cost of development, it is also
necessary to produce working, robust, and dependable

applications. Solving all these requirements at once is an
unavoidable problem as robotic projects increase in size
and complexity, so much so that a bad (or inexistent)
solution can lead to low-quality implementations, and/or
to increase the duration of development up to an
unacceptable point. When referring to the software aspects
of this issue we will refer to it as the robotic software

integration problem (RSIP).
Although the RSIP has been approached in some works

in the last years, it has not been the subject of in-depth
research in the robotics literature (maybe in the belief that it
is a problem for the software engineering area); thus it has
been dealt with only through partial solutions (some of them
will be reviewed in Section 2) that in addition tend to
consider it as a minor problem. On the other hand, software
engineering reasearchers rarely have identified the particular
heterogeneity aspects that make robotic software different.
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We have been dealing with the RSIP since several years
ago, implementing and enhancing different solutions for a
number of robots and applications (mainly mobile robots
like the ones described in Section 3) [1,2,4,7]. This has led
us to the proposal of a global framework for the problem,
since we have found that it is very difficult for any partial
approach to succeed. In addition, we have decided not to
build up such framework from scratch, but to design it in a
way that existing approaches (both commercial and non
commercial) can fit. This has optimized our proposal by
taking advantage of the best solution for each part, and
also has allowed us to capture heterogeneity from the very
beginning. The result, presented in this paper, is the
BABEL development system: a bundle of specifications
and tools for facilitating the design and implementation of
robotic software applications in a clean and orderly
fashion. BABEL is able to capture a high level of
heterogeneity from the design of the application to its
implementation, along with classical robotic requirements
(fault-tolerance, real-time behavior, etc.).

BABEL takes from the Waterfall and the Iterative
lifecycles [8] (see Fig. 1), that are two of the best known
models for the software lifecycle, the main stages in which
heterogeneity must be taken into account for a robotic
application, namely: design, implementation, testing, and
maintainance. Other stages are also of great importance,
such as the analysis or validation phases. We are currently
working on them for extending the BABEL capabilities.
For the stages mentioned before, we have developed
different tools: (i) the Aracne specification, based on active

objets, which provides the basis for dealing with the RSIP
in the design phase; (ii) the BABEL module designer (MD),
a CASE tool which automatizes the production of
heterogeneous implementations from Aracne designs; (iii)
the BABEL execution manager (EM), which controls and
sequences the execution of the different parts of the
application even in distributed (and diverse) networked
systems, and also retrieves information from testing; (iv)
the BABEL Debugger (D), which allows the researchers to
examine the results of execution in detail and test the
satisfaction of real-time and scheduling requirements; and

(v) the BABEL Development Site (DS), a web site
(babel.isa.uma.es/babel) used as a repository of software
components for the intensive reusing of code, which also
includes some simple validation tools. The BABEL system
as a whole has been used during the last years with
important benefits for our research in other robotic areas
[3,5]: it has reduced greatly the cost (time, effort) of
developing new applications and has allowed our research-
ers to focus on the robotic problems they work on rather
than on the integration of the components needed for those
problems. We illustrate in this paper its capabilities with
some real robots where it has been employed.
The structure of the paper is as follows. Section 2

presents some previous and related work. Section 3
describes a variety of heterogeneous robotic applications
that will illustrate the use of our framework. Sections 4, 5,
6, 7, and 8 deal, respectively, with the tools and
specifications of BABEL for the design, implementation,
execution, debugging, and maintainance of robotic appli-
cations. The paper ends with a section in which some
results on the benefits of BABEL are provided, as well as
some conclusions and future work.

2. Previous and related work

During the last decades, a variety of tools and techniques
aimed to address the RSIP have been proposed in the
literature (although not under that denomination). Most of
them provide meaningful insights into very specific
domains or particular levels of abstraction of a robot
application, but none of them deals with the whole
problem, which is the main motivation of BABEL.
At a high level of abstraction, where the issue is to

provide software frameworks for implementing intelligent
decision procedures, tools like the MAESTRO language [9]
or the temporal planning system called IxTeT [10] are
relevant examples. On the other hand, at a low level of
abstraction, the emphasis is on providing the programmer
with a direct interface to the hardware of the robot, and
several robotic real-time operating systems (Harmony OS
[16], Chimera [17], etc.) have been proposed for that.
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Fig. 1. Two well-known models for the lifecycle of a software application. On the left, the classical Waterfall lifecycle. On the right, the Iterative lifecycle.

Both cover the development and use of the system in different ways, but exhibit similar phases.
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At an intermediate level, which is the most relevant for
our purposes, many approaches that enable the integration
of functional components have been proposed: TCA [11],
NASREM [12], some commercial packages such as CODE
by Cimetrix [13], Constellation by RTI [14], etc. At this
intermediate level, it is of special interest the Gen

o M
framework [15]. It provides programmers with a common
framework for communicating and integrating distributed
robot applications, while maintaining robustness, real-time
response, and efficiency. However, it does not address
comprehensively the RSIP through the whole software
lifecycle. Among the free frameworks (non-commercial)
there are also some works aimed to facilitate the
implementation of robotic software efficiently, however
none of them has been widely used in the industry
(although OSACA, mentioned further on, has been
developed with the participation of industrial companies).
Rather, they are research approaches. An example is [18],
where an agent and object-oriented based approach [19] is
presented, but they do not focus on heterogeneity of
robotic software, setting their approach specifically to some
aspects of the functionality of modern hybrid robot
architectures. Player/Stage [43] is a good example of an
open source bunch of software tools that enable the control
of robot and sensor devices (although it is not a complete
framework since client-side software must be developed
entirely by the user). Also, OROCOS [20] provides a free-
cost, suitable set of pre-built libraries for machine tools and
robotic arm control (mobile robotics is still under

development). In the industrial robot arena, some open
approaches are OSACA in Europe, OSEC in Japan, and
OMAC in the US [21], although neither one has been
widely adopted by industry. A more general perspective is
present in CORBA [22], a middleware that establishes a
standard view of underlying communication technologies
among programming objects that can be coded in different
languages and has some free implementations available,
but it is not focused on the special characteristics of robotic
applications.
Our work on the RSIP began with a partial solution,

similar to Gen
o M, called NEXUS [1,4], that allowed

programmers to easily integrate different modules of
an application while maintaining specific robotic require-
ments. However, NEXUS did not deal comprehensively
with different phases of the development lifecycle and
only worked on a particular real-time operating system
(LynxOS [36]) and programming language (C). NEXUS
was the first step towards our BABEL Development
System, which uses a software engineering philosophy
that covers most of the phases of the lifecycle of the
application. The basic idea underlying BABEL is not to
provide a single, new approach for software integra
tion (or alternatively, using one already existing), but
to take advantage of most of the existing ones into a
general framework, as described from Section 4 and on.
Table 1 shows a comparison between BABEL and three
other important frameworks, which illustrates relevant
differences.
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Table 1

Comparison between the BABEL framework and other relevant ones

Framework Lifecycle phases

covered

Automatic

generation of

code

OS limitations Programming

language

limitations

Communication

platform

limitations

Real-time

limitations

OROCOS Implementation,

testing.

No Linux 2.6 currently.

Complete implementation

of the framework for other

OSs.

C++ CAN, CORBA in

progress

RTAI

OSACA Implementation,

testing.

No Win32, VxWorks currently.

Complete implementation

of the framework for other

OSs.

C++ TCP/IP None

Player/stage Implementation,

testing only in

simulation.

No Linux/Solaris/BSD in the

server side; any in the client

side

Any in the client

side

TCP/IP The ones of the

client side.

BABEL Design,

implementation,

testing,

maintainance.

Semiautomatic Win32, LynxOS, JAVA

VM, and no-OS currently.

Only few modifications for

further OSs.

C, C++, JAVA

currently. Only few

modifications for

further languages.

ACE+TAO

CORBA, TCP/IP,

USB and

Monolithic

currently. Only few

modifications for

further platforms.

LynxOS RT and

RTX support

currently. Only few

modifications for

further platforms.

Notice that all the frameworks have limitations with respect to their support for different OSs, programming languages, communication platforms, and

real-time facilities; however, extending BABEL with further support capabilities is easy since it is based on a well-defined design framework that enables

heterogeneity. Also, the coverage of the software lifecycle is wider in our approach.
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3. Heterogeneous robotic platforms for babel evaluation

One of the main benefits of using BABEL is that it
enables the reduction of development cost when a diversity
of robotic platforms is present. In this section we describe
briefly some of our platforms, for which we have developed
software applications using BABEL in the last years. In the
next Sections (4 and on) we will describe the BABEL
framework illustrating it with these platforms. Fig. 2 shows
a general view of our mobile robotics laboratory with three
of our robotic platforms. Fig. 3 shows details of an
industrial manipulator arm that has also been programmed
with our system. In the next section we describe with more
detail these settings.

SENA (Fig. 2-middle) is a robotic wheelchair based on a
commercial powered wheelchair Sunrise Powertec F40 [23]
that has been equipped with an onboard computer and
several sensors: a 1801 SICK PLS radial laser scanner for
mobile obstacle detection, environment map construction
[24], and robot localization [25]; two ultrasonic Polaroid
rotating sensors also located in front of the wheelchair and
mounted on servos which enable them to scan a range of
1801; a ring of twelve infrared Sharp GP2D12 sensors placed
around the robot to detect close obstacles; a CCD JAI CV-
M300 B&W camera situated on a pan-tilt unit at a position
similar to that of a standing-up person. It is also used to
localize SENA [26]. The wheelchair is intended to reliably
perform assistant tasks for mobility-impaired people in
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Fig. 2. A view of three mobile robots in our research laboratory. From left to right: our mobile manipulator RAM-2, our assistant robotic wheelchair

SENA, and our service robot SANCHO.

Fig. 3. Different views of the performer MK2 industrial manipulator arm. It is mounted on the RAM-2 mobile robot (as well as its controller-B), although

it can also be used independently on the platform. In the figure you can see the main features and components of the robot, including the camera and

collision sensors in the gripper.
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indoor environments. Notice that the original wheelchair
has undergone minimal modifications: we maintain the
original controller and motors, although two encoders have
been connected to the motors’ axis for odometry. Sensor-
imotor hard real-time management is performed by a
microcontroller ATMEGA 128 at 16MHz connected to a
laptop computer via USB. This microcontroller is in charge
of managing the vehicle motors as well as some analog input
signals like encoder information and infrared readings. The
original joystick line has also been bypassed to be managed
by the controller. However, we do not prevent the user to
take the manual control of the vehicle, enabling her/him to
disable the autonomous navigation of SENA at any time.
SENA also accounts for an onboard laptop computer
mounted on a retractable arm rest, which displays informa-
tion to the driver, commands the microcontroller, and also
has wireless communications capabilities to connect to
remote servers or to the internet. Two small speakers and
a bluetooth headset allow non-conventional interfacing with
the user through a speech generation [27] and a voice
recognition software [28].

SANCHO (Fig. 2-right) is a mobile robot intended to
work within human environments as, for example, a
conference or fair host. It is constructed upon a pioneer
3DX mobile base [29], on which different elements are
placed. A structure has been devised to contain the
sensorial system (which is analogous to the one of SENA),
that is composed of a radial laser scanner, a set of 10
infrared sensors and a colour motorized camera (SONY
EVI-D100P). The user-communication system entails a
pair of speakers, a microphone, and a TFT color screen for
displaying information. All elements of SANCHO are
managed by an onboard laptop which is communicated to
a remote station via wireless ethernet.

RAM-2 (Fig. 2-left) was constructed entirely from
scratch. It is octagonal shaped, and its structure is aimed
to bear a high load (including a manipulator arm). The
locomotive system of RAM-2 is composed of two motor
and two steering wheels managed by a DCX PC100
controller [30], while its sensorial system used for naviga-
tion entails a PLS 1801 frontal radial laser scanner, a non-
commercial Explorer 3601 radial scanner placed on top of
the vehicle, and a set of 14 infrared sensors placed around
the vehicle at different heights. Sensors and actuators of
RAM-2 are managed by an onboard industrial PC
computer which can connect through ethernet to a remote
station. RAM-2 was intended to autonomously manipulate
objects, and thus it carries an industrial onboard robotic
arm (described below), including its controller [31]. The
arm controller is connected to the onboard computer
through RS-232. Also, the latter receives information from
a CCD camera attached to the wrist in order to assist in
object manipulation.

The industrial manipulator arm PERFORMER MK2
(Fig. 3) is a commercial five-DOFs manipulator arm [44]
with servo-controlled joints. The manipulator is managed
by the Controller-B that executes programs written in the

ACL language with real-time, inverse kinematics, input/
output, and concurrency capabilities, and it is connected to
an external PC through a conventional RS-232 link. We
have attached to the robotic arm six infrared sensors placed
at the arm gripper to detect objects and collisions, and a
colour camera JAI 2060 [46]. Images from the camera are
captured by a Meteor board card [47]. Our setting has been
used for a variety of demonstrations, for example, to
recognize and pick up small plastic pieces discriminating
them by their colour.

4. Design of robotic applications in BABEL: the aracne

specification

In this section we focus on the core of the BABEL
development system: the Aracne specification that sets the
guidelines for other tools. This specification covers the
design phase of any robotic software application with
heterogeneity needs.
The key point in Aracne is flexibility: it must be able to

integrate under the same design both very dependable and
barely (or not at all) dependable software, to support very
different implementation and execution platforms, to
provide facilities for the use of networking or not, to
exhibit capabilities of designing both large and small
systems, etc. For that purpose, the first mechanism that
Aracne provides is a clear separation between the portable

and non-portable parts of the design. We call portable to the
part of the design that is independent on any particular
implementation (for instance: an algorithm to manage a
symbolic model of the robot’s world should be implemen-
table on different operating systems, hardware, etc.,
without substantial changes). On the other hand, the non-

portable design captures the design aspects that are tied to a
particular implementation (for instance, a piece of code for
reading a particular sensor is tied to that hardware and
surely to the operating system). A clear divide between
portable and non-portable improves reusability and facil-
itates the integration of the diversity of components often
present in a robotic system.
The Aracne specification consists of entities connected by

relations (see the pseudo-UML diagram in Fig. 4). Such
structure is general enough for supporting any type of
robotic architecture (deliberative, reactive, hybrid, beha-
vior-based) or application. The rest of the section describes
Aracne entities and their relations within the specification.

4.1. The portable part of the design

Portable entities have been designed under an object-
oriented (more precisely, active objects) perspective [19].
They are classified into two categories. On the one hand,
structural portable entities are used for specifying the static
structure of the application. In this category, the applica-
tion is composed of modules, which provide services to
other modules, maybe through a network. The second
category is composed of codification portable entities, that

ARTICLE IN PRESS
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are still portable but closer to implementation. This
category is used for specifying in some programming
language or formalism the execution logic of structural
portable entities.1

Structural portable entities: The structural portable
entities are the application, the module, and the service.

The application consists of a set of modules. The module

is the minimal, indivisible entity that can be executed on a
certain machine (computer, microcontroller, robot con-
troller, etc.). Notice that the codification design corre-
sponding to a module can be portable or not (for example,
a module can provide the functionality of the PERFOR-
MER MK2 controller to the rest of the application, hiding
its hardware details). The non-portable aspects can be
conveniently isolated from the portable design by using
some features of codification entities, described further on.

In our robotic applications, we have dealt with modules
with both portable and non-portable codifications. Some
of them are listed in Table 2. The modules marked with
‘‘low portability’’ have codifications that are tightly related
to some specific software or hardware. However, their
structural design is completely portable (that is, they
provide to other modules public services with definitions
that are not dependent on any platform). For example, the
position estimator module for our mobile robots can reset
odometry errors in two different ways: using a laser point
matching algorithm [25], or by matching visual landmarks
extracted by a camera mounted onto the robot [26], but the
services it provides to the rest of modules are the same
independently on the method used.
A module provides services to other modules (maybe to

itself). The services of a module express its functionality.
For reusability purposes, the part of the module that
implements the logic associated to each service is kept
private to the module.
As an active object of the application, a module also

maintains an internal status that is not accessible from
other modules, except through services. This status consists
of data managed by appropriate initialization and termina-
tion logics and by the logics of services.

ARTICLE IN PRESS

NON-PORTABLE ENTITIESPORTABLE ENTITIES

General Platform

Particular Platform

1

1..∗

Structural Portable
Entities

Module

Service

Conceptual Unit

Services Group

1

1..∗

1 1..∗

1
1..∗

PURE PORTABLE RELATIONS

Communication Codification Composition

PURE NON-PORTABLE
RELATIONS

Support

INTERMMEDIATE
RELATIONS

Configuration

Codification PortableEntities

Nested Code

Code Atom

1
1..∗

Interface Bridge

Interfaced Code

11 1 2

Module Code

1

2

1 1..∗

Nested Code

1
0..∗

Application

11..∗

Fig. 4. The structure of any application designed with Aracne (for simplicity, it does not fit UML strictly). Structural portable entities serve to design the

static and portable structure of the application. Codification portable entities serve to design the code (improving the reusing of code). Non-portable

entities serve to design the part of the application tied to a particular hardware/software.

1Programmers may be surprised by the inclusion of codification

(programming) into the design of the application. However, the

especification of the logic of execution can be portable (assuming that a

compiler/interpreter that produces executable implementations for that

logic exists for any available CPU platform) as long as the non-portable

parts of that code are carefully isolated. Our decision is intended to enable

both the use of validation techniques on codification, and the reusability

of a given logic for different implementations.
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A service is the minimal sequential execution entity
within a module. A service provides certain functionality,
and can access the internal status of its module. In
addition, it can request other services and thus generate
communications. Services are of three types: regular, event

handlers, and notification handlers. A regular service is
requested by others or started by its own module when the
module initiates (for example, a service that makes a
‘‘homing’’ in the industrial manipulator arm controller
module). An event handler service is executed only when an
asynchronous event is sent by other service (for example
for detecting battery-low condition in one of the mobile
robots). Finally, a notification handler service is executed
only when an asynchronous notification is generated within
the same module. All the services of a module can run
concurrently within their module, but some of them can be
set for blocking any other’s execution. Table 3 shows a list
of services provided by the SENA Robot Motion module.
More details on the type, characteristics, and utility of
services can be found in [7].

Regular services can have input data (parameters for the
execution of the service) and output data (results of its
execution). In addition to the output data of a service, the
requester receives a package of information that includes
communication errors, module faults, or any other
anomalous situation. Also, each service can specify a
priority of execution relative to the priorities of other
services of its own module, which is part of the hierarchical
relative priority system illustrated in Fig. 5. At run-time, as
explained in Section 6, a given priority is assigned to each
module (relative to the other modules’ priorities). At
design-time, the services within a module are divided into
three priority categories: high, dynamic, and low. High
priority services can pre-empt the execution of dynamic
and low priority services of the same module. This is useful,
for example, for assuring that a hardware monitoring
algorithm never loses its time requirements. Low priority
services can be pre-empted by any other service of the
module. For example, consider a service for sending
information to a web page periodically, or to update the
content of a graphical application: it may be useful to
assure that the service does not interrupt more critical
algorithms such as hardware interaction, control loops, etc.
Finally, dynamic priority services run at a priority that is a
function of the priority of the caller.

Relations between structural portable entities: Two
relations can be defined for connecting structural portable
entities to each other: communication, which permits
modules to transfer information between them, and
composition, which makes up the application.
Two main types of communications can be distin-

guished: signals, for asynchronous notifications, that are
implemented as requests for event handler or notification
handler services, or transmissions, for transferring data
between services synchronously, that are implemented as
requests for regular services.
The composition relation is used to specify the set of

modules of the application. This is fully exploited by
maintenance tools, such as module repositories like the one
described in Section 8.

Codification portable entities: Codification portable
entities allow the programmer to design (not to implement)
the code of services and modules. The programmer can
propose codification entities in any programming language,
or formalisms such as StateCharts [33]. Aracne is also
intended to admit source code that can be transformed into
those entities, which can help in the validation phase.
The most basic codification entity is the code atom,

which represents a finite piece of sequential code that can
be defined without using other codification portable
entities. There are two types of code atoms: portable code

atoms and non-portable code atoms. The former represents
portable code written in some programming language. The
latter represents operations that are dependent on some
software or hardware. The most evident example of the
latter concern communications: service requests, service
responses, signalling, etc. An instance is the following
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Table 2

Examples of some modules developed with BABEL for our robotic

applications. Notice the variety (that is, the heterogeneity) present in these

setups

Module Description Portability

PERFORMER

MK2 controller

Interface module that controls the

industrial manipulator arm. It also

is able to read the status of the

sensors attached to the end-

effector. It runs on the external PC

and communicates to the robot

controller through RS-232

internally.

Low

SENA

microcontroller

module

Interface with motors, odometry,

and I/O acquisition circuitry. Runs

on the microcontroller of the

SENA platform.

Low

RAM-2 Arm

Motion

Interface with the RAM-2’s arm

motors. Runs on the onboard

computer of the RAM-2 platform

and manages the manipulator

through a RS-232 connection to its

controller.

Low

PLS laser manager Interface with the frontal laser

range sensor included in the three

robots. Valid for any of the robots

(all use the same laser hardware

and drivers).

High for

our robots,

low in

general

Position estimator It estimates the position of any of

the robots within its environment,

just using the public services of

laser and motion modules (the

latter for odometry).

High

Reactive navigator It moves any of the robots to a

geometric target location by using

the motion and laser modules,

through a reactive algorithm [32].

High

J.-A. Fernández-Madrigal et al. / Robotics and Computer-Integrated Manufacturing 24 (2008) 150–166156
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operation taken from the module PERFORMER MK2

controller of our industrial manipulator arm application,
which requests a service for returning the current config-
uration of the arm:

NONPORTABLE_ATOM(request-synchronous&blocking,
‘‘ReadJoints’’, ‘‘PERFORMER MK2 controller’’, ‘‘Read-
Joints’’, ‘‘REMOTE_PERFORMER_MK2_controller’’,
‘‘read_joints’’,’’err_var’’,’’0’’,’’INF’’).

If available, code atoms can also include time informa-
tion: a time interval with the minimum and maximum
expected duration of the execution of the atom (‘‘0’’ and
‘‘INF’’ in the previous example). That information can be
used for validation of real-time requirements.

Relations between structural and codification portable

entities: The researcher must link codification to structure
in order to complete the portable design of the application.
This is done through the codification relation.
A codification relation is defined between modules

(structural entities) and codification entities. It permits us
to check the validity of some important aspects of the
design, for example, if time requirements in the structural
part are achievable by the design of the execution logics.
This relation also permits the designer to assign more

than one codification entity to a given module. In that way,
Aracne captures the extendibility issue and improves
reusability. In addition, fault tolerance mechanisms like
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Table 3

Some of the services of the SENA robot motion module

Service Description Type Input/output data

ReadADC Read the values of the ADCs of

the SENA microcontroller. At

present, these ADCs are connected

to the joystick, to the infrared

sensors, and to the acceleration

sensor.

Regular INPUT: /no dataS OUTPUT:

vectorADC measurements

SetHeading Indicate a heading for the robot.

Non-blocking call.

Regular INPUT: float direction_degrees

OUTPUT: /no dataS
StopChair Stops the robot. Regular INPUT: /no dataS OUTPUT:

/no dataS
Emergency stop Stops the robot if a critical error

occurs (i.e. a failure due to

obstacle proximity).

Event Handler INPUT: /no dataS OUTPUT:

/no dataS

ReadVelocity Obtains the current linear velocity. Regular INPUT: /no dataS OUTPUT:

float veloc

ReadAngularVelocity Obtains the current angular

velocity.

Regular INPUT: /no dataSOUTPUT:

float speed

ReadPosition Obtains the current odometric

position of the robot.

Regular INPUT: /no dataS OUTPUT:

float x, float y, float phi

ChangeVelocity Changes the current linear velocity

of the robot.

Regular INPUT: float speed OUTPUT:

/no dataS
DisableJoystick Disables the joystick control of the

robot.

Regular INPUT: /no dataS OUTPUT:

long error

Turn It allows turning the robot a

certain number of degrees to the

left (positive) or to the right

(negative).

Regular INPUT: float degrees, float

turn_speed OUTPUT: /no dataS

BlockingTurn The same as Turn, but blocking

until the robot turns.

Regular INPUT: float degrees, float

turn_speed OUTPUT: /no dataS
EnableJoystick Enables the joystick control of the

robot.

Regular INPUT: /no dataSOUTPUT:

long error

+-

Range of absolute execution priorities

- Modules' Relative Priorities

Services' Relative
Priorities H D LH D LH   LD

+

Fig. 5. The hierarchical priorities in Aracne. Each module is assigned a priority relative to other modules. Also, each service within a module is assigned a

priority relative to services of the same module (H-high prioritized, D-dynamically prioritized, L-low prioritized). Final execution priorities are calculated

from this hierarchical, portable scheme when the implementation of a module is produced for a given execution/real-time platform.
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running several replicas of a module (active replication [34])
are enabled.

The codification relation formed in this way is a
mathematical forest (a set of mathematical trees with a
depth of two: their roots are modules and their leaves are
codifications), called in Aracne an Application Codification

Forest (ACF).

4.2. The non-portable part of the design

While portable entities specify the structural design of
the application, non-portable entities tie the application to
its particular software and hardware dependencies. Non-
portable entities in Aracne are General Platforms and
Particular Platforms. General Platforms serve to classify
the non-portable support necessities of the application:
hardware, execution, communications, etc., and allow us to
classify both commercial or non-commercial solutions
already existing for robot development. Particular plat-
forms are instances of general platforms (for example, a
given operating system or a middleware solution for
distributing objects). In this way, Aracne covers the wide
range of possible components existing both in the literature
and commercially, as was commented in the introduction.
Currently, Aracne deals with five different general plat-
forms.

A hardware platform (HP) represents a set of hardware
devices needed for the physical execution of the applica-
tion, which includes at least one processor unit and shares a
motherboard.2 This platform groups together: CPU(s),
motherboard devices (hard disk, sound card, graphic card,
real-time clocks, etc.), plugged-in devices (acquisition
boards, automation interfaces, network interfaces, etc.),
and peripherals (monitor, printer, external storage devices,
etc.). For example, an application for our SENA wheel-
chair [6] includes two particular hardware platforms: the
onboard laptop PC and the microcontroller, while an
application for the SANCHO robot [32] consists of the
onboard laptop and a remote computer for user interfacing
and monitoring tasks, and for managing a symbolic model
of the world and task planning (in SANCHO, the basic
PIONEER controller platform on which the robot is
mounted is considered as a monolithic, non-programmable
device–that is, it is not a support for executing modules-,
similarly to the arm controller of the RAM-2 robot). The
industrial manipulator arm is considered to include one
hardware platform: the external PC. The PERFORMER
MK2 controller is considered as a hardware device that
does not execute modules.

An execution platform (EP) represents the basic software
execution environment of the application. This includes:
operating systems, virtual machines, software libraries and
execution libraries (e.g., interfaces with hardware devices).

The particular execution platforms used in our robots
include, among others, Microsoft Windows NT and XP
[35] for SENA, SANCHO, and the manipulator arm;
LynxOS [36], and a JAVA Virtual Machine [37] for RAM-
2. The microcontroller of SENA runs no operating system
or other software for supporting execution of applications.
A communication platform (CP) comprehends the soft-

ware needed for communicating the modules of a
distributed application. Its particular platforms can pro-
vide from simple protocol support (peer-to-peer, TCP/IP)
to more abstract object distribution (like CORBA [22]),
even a monolithic scheme (that is, no network). For
example, typical SENA applications use two particular
communication platforms: the ACE+TAO [38] implemen-
tation of the CORBA specification for communicating the
modules that run on the onboard computer, and a USB-
based communication software for connecting to the
microcontroller. The PERFORMER MK2 arm uses no
communication framework since the RS-232 is managed
internally to the module running in the external PC (that is,
it does not communicate modules).
A real-time platform (RTP) provides real-time facilities

in software form: real-time scheduling, time measurement,
sinchronization, etc. Only the facilities included in the
LynxOS real-time operating system (with a POSIX 1003.1b
compliant interface [39]) are needed in the RAM-2, while in
SENA and SANCHO, the MS Windows OS is enhanced
with the commercial RTX real-time extension by Ardence
[40]. The industrial manipulator arm has no hard real-time
needs in our application (low-level real time requirements
are covered by its controller).
A fault-tolerance platform (FTP) provides software fault-

tolerance facilities (in the current Aracne specification,
active replication). We have currently no particular support
for this general platform.

Relations between non-portable entities: A basic relation
between non-portable entities, called support, can be
defined. For instance, a hardware platform provides
support for a given execution platform, which in turn
provides support for a communication and a real-time
platform. In that way, a set of particular platforms for a
given architecture along with their support relations can be
represented by an acyclic directed graph. This graph is
called a platform configuration graph (PCG) in Aracne.
Notice that problems like using a hardware platform that
does not include a real-time clock (which would prevent
any real-time platform to provide most of its supporting
functionality), can be detected and corrected in the design
phase, when the PCG is defined, by using simple
verification tools. Fig. 6 illustrates three PCGs for
applications on RAM-2, SENA, and the PERFORMER
MK2 arm. Notice that the manipulator application has a
simple PCG since modules only execute in the external PC.
More complicated settings can be considered that are
connected through (may be real-time) links to the PC and
run different control algorithms, without much modifica-
tion of the design of the application. Also, the generation
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2In a microcontroller, as is the case with the SENA wheelchair, the

‘‘motherboard’’ typically includes just the CPU, main memory, and I/O

facilities.
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of modules that run directly on the PEFORMER MK2
controller is an option (that would be analogous to the case
of the module that runs in the microcontroller of the SENA
robot and communicates to the laptop through an USB
connection).

Any number of PCGs can be proposed for the same
Aracne-based design. Each PCG allows the application to
be implemented on a given set of non-portable components
(robots, computers, network, software, etc.). The key point
of this scheme is that portable entities are kept unchanged
from one PCG to another, that is, the portable design of
the architecture—modules, services, codification—is reused
in the maximum number of physical robots that is possible
(as has been the actual case in our mobile robots). If a PCG
does not provide enough support for all the requirements,
the researchers will know at design time that the
corresponding implementation will exhibit reduced cap-
abilities, or that it will be unsuitable at all.

4.3. Integrating the portable and the non-portable

Previous sections have presented most of the design
aspects of an Aracne-based application. However, the
design phase is not complete until portable entities are
integrated with non-portable entities. Establishing those
relations completes the specification and also allows the
programmers to produce executable implementations.

Relating portable to non-portable entities consists
basically of defining relationships between modules and
the execution/hardware platforms where they are going to
be executed. This is called an application configuration
relation (ACR). Fig. 7 depicts the ACR of an automatic
delivery service application for SANCHO. The application
is an automatic indoor object delivery service, with multi-
user support (notice that this is similar to an AGV,
therefore with few changes we could made use of the same

design for an industrial application). SANCHO must move
within our building (a typical office scenario) carrying
diverse objects from place to place (through reactive
navigation and route planning), and returning to a
recharging station whenever its batteries fall below a
certain threshold. Users can request SANCHO to take an
object from their places and deliver it to a given destination
in two different ways: through a web interface (an applet
[37]) that connects to the ‘‘Task Manager’’ module of the
robot via TCP/IP, or through verbal commands when
the robot is nearby. The delivery tasks are planned by the
‘‘Task Planner’’, that runs in an external computer for
optimizing computational efficiency (the ‘‘MAH-Graph’’
module, which holds a symbolic model of the environ-
ment—topological map—for planning tasks, is also exe-
cuted in that server). The planned tasks are carried out by
the ‘‘Task Executor’’. The robot is able to speak to humans
for confirming the delivery of objects or to ask for help
when an unrecoverable situation occurs (for example: its
location in the environment is undefined or the batteries
level is critically low).
The ACR diagram enables validation tools to detect

several problems before execution: no way of satisfying
requirements (real-time, fault-tolerance, communications),
possibility of creating reduced-performance implementa-
tions, etc. In addition, restrictions on the portability of the
portable design can be stated, typically the need of some
particular platform for a given codification.
Two types of relations can exist in an ACR: portable

configuration and non-portable configuration. When a
module is associated to a machine by portable configura-

tion, we are indicating that we wish to generate an
implementation for that platform, although another
implementation could be possible. When a non-portable

configuration relation is used instead, we are indicating that
the module codification is tied to that platform, and thus
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EP 4
MS Windows XP

RTP 3
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ACE-TAO
CORBA

CP 1
USB

HP 1
MicroController
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RT-Lynk

POSIZ 1003.4
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JAVA Virtual

Machine
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ACE-TAO
CORBA
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Performer MK2
Controller
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MS Windows XP

Fig. 6. PCGs for three robotic applications: the mobile robot SENA (on the left), the mobile manipulator RAM-2 (on the middle), and the

PERFORMER MK2 manipulator arm (on the right). Nodes of the graphs represent particular platforms; edges represent the support relation.
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we cannot generate implementations if that platform is not
present.

5. Implementation of applications: the BABEL MD

This section presents a tool that spans through the
design and implementation phases of the software lifecycle:
the BABEL MD. The MD allows the programmer to
design modules and services using the Aracne specification
explained in Section 4 and to implement them for some
particular platforms. It has been previously presented
elsewhere [2] in the more restricted context of our older
NEXUS specification. Currently, it is enhanced for coping
with Aracne, and has become the central tool of the
BABEL development system.

The MD is a CASE tool that facilitates the designing of
portable entities (modules and services), being also able to
transform automatically a design into an implementation.
The main features of the MD are:

� Visual design. It provides a user-friendly integrated
development environment for designing modules, speci-
fying their public interfaces, services, and codification
(see Fig. 8). The tool satisfies the Aracne specification as
presented in this paper.
� Semiautomatic generation of implementations. The

programmer only needs to design a module as well as
the codification of the service routines. The MD
automatically generates the software for converting this
specification into a complete executable program and
for the integration of this program into a (possibly
distributed) robotic application composed of other
modules.
� Inclusion of particular platforms. The MD includes the

possibility of generating implementations for a given set
of particular platforms. It also allows the designer to

specify which platforms must be included in the
implementation due to some non-portable configura-
tion. The MD is currently able to generate executable
code for different programming languages (C, C++,
and JAVA). The portable entities designed with the MD
can access the facilities of two particular real-time
platforms, the LynxOS real-time operating system (that
is, POSIX 1003.1b compatible), and RTX for MS
Windows [40]. It also supports ACE+TAO CORBA
as well as a communication platform for USB. Finally,
it generates executables supported by four different
execution platforms: MS Windows, the JAVA Virtual
Machine [37], LynxOS, and the SENA microcontroller.
Notice that some of them provide hard requirements
while others have relaxed dependability.

Fig. 8a illustrates the design of the structural part of a
module. Fig. 8b shows an example of codification of a
service. The MD starts from the source code introduced by
the programmer, along with some macros that represent
the most common non-portable code atoms (as depicted in
Section 4.1). These macros can be entered through the use
of assistants and wizards.

6. Execution of applications: the BABEL EM

This section presents a tool aimed to provide support for
the execution phase of the lifecycle: the EM. In BABEL, an
application is a set of modules, hence the EM serves to
execute distributively and coordinately these modules
(some videos of the execution of applications developed
with BABEL can be found at http://www.babel.isa.uma.es/
babel).
The EM is managed by a human operator from a given

computer, although the tool must be running previously in
every node of the network that is going to execute modules,
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Fig. 7. ACR for the implementation of an automatic delivery application on the robot SANCHO, mixed with some communication relations between

modules that clarify the diagram.
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in order to coordinate the execution of the modules in all
those computers. Each time a new EM is launched on a
computer, it searches for the rest of the EMs in the network
through multicasting [41] and connects to them through
TCP permanent connections [42], hence all the EMs
maintain an updated and operative image of the applica-
tion network; analogously, when an EM is stopped, the rest
of the network is automatically notified about that event
and the images updated again.

From one of the EMs, the user can examine the modules
ready for execution on any computer3 (see Fig. 9). From
these lists, he/she can select the ones included in the
application and set their relative priorities and the order in
which they must execute, making up a so-called ‘‘execution
sequence’’ (see right part of Fig. 9). That sequence
represents the application in the execution phase of the
lifecycle, and may be saved for later use. Each module is
assigned a priority with respect to other modules (for
enabling real-time scheduling if some real-time platform is
available).

In the execution sequence the user can also set the timing
for the starting-up of the different modules: some can be set
to run after certain time from the previous one (or maybe
simultaneously), or can be set to execute after user prompt
in the EM. Once these timings are set, the application can

be launched. The EMs located in the other computers of
the network receive the events registered in the sequence
through their permanent connections and launch the
respective modules.
Finally, the application can be stopped at any time from

the same location in which it was launched. At that
moment, the EM can retrieve testing information recorded
by every module during execution for providing it to the
BABEL Debugger (described in Section 7).

7. Debugging applications: the BABEL Debugger (D)

The BABEL Debugger is a tool that recovers informa-
tion recorded during the execution phase of the lifecycle (as
mentioned in Section 6) and allows the user to navigate
through that information in a graphical setting. See Fig. 10
for a real example of debug information shown to the user.
It works coordinately with the EM tool, which retrieves the
information produced by all the modules of the applica-
tion, and with the Aracne especification, which allows the
programmers to set which debug information is desired to
be produced. The Debugger can serve for visualizing the
following information:

� Timings of the communications in the executed applica-
tion.
� Sequences of execution of the different services of the

modules.
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Fig. 8. Some snapshots taken during the design of a module using the BABEL MD: (a) in the background, design of the structure portable entities: (b) in

the foreground, design of the codification portable entities (code of a service).

3The EM tool also includes a basic messaging service for user

coordination.
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� Programmers’ messsages along with their timings. The
programmers can include special non-portable atoms
(see Section 4.1) in the code for tracing the execution of
the code.

� Scheduling of the service taks in a given computer. It
can be observed whether the modules executed on a
computer can satisfy their timing requirements under
the hierarchical priorities assigned by the EM.

ARTICLE IN PRESS

Fig. 10. The BABEL Debugger. The time logging produced by a real execution of one of our applications is shown (the logged events are drawn as lines of

different colors at appropriate points in the timeline). The popup dialog offers information of some of these events.

Fig. 9. Snapshot of the BABEL EM. On the left, the list of current active computers (their IPs) in the network. On the middle, it is shown the names of the

modules ready for execution in a given computer (the local one in this example). On the right, a sequence of execution of modules from different machines

has been entered by the user.
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8. Maintenance of applications: the BABEL DS

Through this section we present the most recent addition
to our framework: the BABEL DS (http://www.babel.
isa.uma.es/babel), a web site intended to work as a
repository of code—that is, modules designed by following
the Aracne specification—that also provides maintenance
and some simple validation tools to keep a well-classified
software and to check its correctness, respectively.

The access to the DS is restricted in order to manage our
research projects coordinately, allowing the manipulation
of the information related to the modules only to certain
registered users. However, some sections like the listing of
developed modules and the documentation are open to all
visitors for evaluating the framework. In particular, the
documentation section contains several videos of the
applications developed up to now with the framework.
Also, a version of the BABEL system that works with a set
of particular platforms (those most intensively tested) is
available for public download. The admittance control in
the restricted areas is implemented by the utilization of two
security components: groups of users, and IP address
checking. The joint use of both elements warranties the
safeness of the BABEL Development Site in a multi-user
environment opened to the internet.

The core of the DS is a database which contains all the
information about the modules. This information is
available by means of a simple multi-user interface
(Fig. 11). As different versions of the same module can
coexist, those versions must be organized in such a way
that they can be unequivocally identified, and the relation-
ships between them are completely known. For this reason,

a version control system, destined to the maintenance
phase of the robotic software lifecycle, has been built.
Furthermore, two validation tools are also available in

the DS. The former makes possible the detection of
dependencies between modules, that is, which events and
services of other modules are used by a specific module.
With these data, the DS builds the so-called dependency
tree, a graphical representation of the relationships of a
module with the rest of the existing modules in the code
repository (Fig. 12), that helps to detect anomalies by
visual inspection (and also to retrieve the correct set of
modules for generating a given implementation). The
second validation tool is based on the first one, since it
uses dependencies trees in order to reveal some other errors
which cannot be detected in the design phase of the
module. To be precise, this second validation tool fixes
three types of errors: a module requests services or events
which do not exist in the code repository, so its proper
execution would be impossible; a service does not fulfill its
time restrictions, and hence the desired real-time behavior
of the module is not obtained; and finally, a loop is
detected in the dependencies tree of a module.4 Through
both validation tools, the programmers can easily under-
stand the relationships among the modules stored in the
database, and ensure that their execution is really possible.
The BABEL DS also provides to its users with a

notification and news system, as well as a DS documents
and files collection available for downloading. Moreover,
the DS supplies to its administrators with all the
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Fig. 11. The BABEL Development Site. This is a snapshot of the section dedicated to list all the maintained modules and their characteristics. Close to the

modules’ names are their respective version graphs (each module may have several versions).

4Though this situation is not strictly an error, it is considered

anomalous.
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mechanisms required for handling the DS itself, including
statistical data about visits and utilization of the web site.

9. Conclusions and future work

In this paper we have presented a new approach to the
Robotic Software Integration Problem (RSIP), called
BABEL, which aims to cover all the phases of the software
lifecycle under a software engineering perspective that deals
appropriately with a high degree of heterogeneity. We have
described the Aracne specification as the core of our
approach, which establishes the design guidelines of any
robotic application, covering the wide diversity of neces-
sities that a robotic project usually involves (real-time
requirements, hardware integration, software reuse, etc.),
mainly through the concept of supporting platforms and
the separation between the portable and non-portable parts
of the application. The main idea that underlies the paper is
that RSIP and its main cause, heterogeneity, are unavoid-
able issues in large-scale software robotic projects, and that

they must coexist with stringent issues (i.e., dependability).
BABEL is flexible enough for achieving the aforemen-
tioned objectives in a clear and orderly fashion, as it has
been demonstrated in our research during the last years
and illustrated in this paper. In fact, it has become a
necessary framework for organizing the work of large-scale
projects in our Department and for speeding up the
development of new applications.
It is difficult to evaluate a software development frame-

work since no standardized methodology or benchmark
that captures all the relevant aspects in the software
development lifecycle exists. In fact, most of the literature
on software metrics is based on case studies where metrics
programs are introduced in particular organizations, but
rarely such analyses are compared to each other in order to
come up with general conclusions [45]. Nevertheless, in this
section we describe a few general and particular results that
show the benefits of BABEL.
Firstly, some differences between using a modular,

heterogeneity-enabling framework and those that do not
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Fig. 12. A dependency tree generated by the BABEL Development Site for a module. The zoomed windows show some information that can be consulted

from dependency arcs (service requests) and nodes (modules) of the tree.
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cover some of these aspects are evident. Fig. 13 depicts two
graphs that illustrate these differences. As it can be seen,
the development cost can be drastically reduced by using
both approaches simultaneously (modular design and
heterogeneity enabling).

More concretely, the main objectives of BABEL are: (i)
to produce solutions that satisfy typical robotic require-
ments, and (ii) to reduce as much as possible the cost of
development and maintainance (mostly time). For exam-
ple, the modules developed for the delivery application of
SANCHO (described in Section 4.3) are shown in Table 4,
along with estimates of the programming time involved in
each one. The table shows good development times (with
some remarkable cases of a few days), particularly if we
consider that they have been developed by different people
(undergraduate students, doctoral students, researchers,

etc.) and that these times include the design, the program-
ming, and the testing. Also, notice that once the modules
are finished, they can be reused in other robots and/or
applications often at no cost (on the average, each module
is reused in two of our mobile robots). For all the modules
that have more than one robot in the third column we
would have needed to multiply their development time if
they would have been implemented from scratch for each
robot. Thus, on the average, the development from scratch
would have been more than twice the duration shown in
the table.
Currently, we are extending the BABEL framework with

the inclusion of more particular platforms (as they become
available for our robotic projects), in particular, new
communication and execution platforms. We are also
working to include formal validation tools.
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N°of Heterogeneous
Hardware Platforms

Development Cost (time, etc.)
Without Modules ->supporting each Hw platform needs a
completely new implementation of the entire application

>= 45°
With Modules -> only Hw modules need a new implementation,
and only partially

< 45°

Nºof Heterogeneous
Execution / Communication / Real-Time / Fault-Tolerance Platforms

Development Cost (time,etc.)
Without Aracne -> each platform needs a completely new implementation

>= 45° With Aracne -> different platforms use exactly the same design

Fig. 13. Advantages of a modular and heterogeneity-enabling framework with respect to others. (Up) Effects of modularity. (Bottom) Effects of enabling

heterogeneity.

Table 4

Estimates of the time of programming spent in some modules designed and implemented with BABEL for our SANCHO delivery service

Module name Development time (Estimate) Reused iny

(ALL ¼ SENA+SANCHO+RAM-2)

‘Batteries manager’ 1 day SANCHO, SENA

‘Exploration’ 3 days ALL

‘GUI for reactive navigator’ 3 days ALL

‘ICP SLAM’ 3 days ALL

‘MAHGraph’ 2 weeks ALL

‘PLS laser manager’ 1 week SANCHO, SENA

‘Reactive navigator’ 1 week ALL

‘SANCHO robot motion’ 2 weeks SANCHO

‘Speaker’ 3 days SANCHO, SENA

‘Speech Server’ 1 week SANCHO, SENA

‘Task executor’ 2 weeks ALL

‘Task planner’ 3 weeks ALL

Each module has been programmed by one researcher.
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