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Abstract

This paper presents a new method for accurately estimating the pose (position and orientation) of a mobile robot by
registering a segment-based local map observed from the current robot pose and a global map. The method works in a
two-stage procedure. First, the orientation is determined by aligning the local and global map through a voting process based
on a generalized Hough transform. Second, it uses a coarse-to-fine approach for selecting candidate positions and a weighted
voting scheme to determine the degree of overlap of the two maps at each of these poses. Unlike other methods previously
proposed, this approach allows us to uncouple the problem of estimating the robot orientation and the robot position which
may be useful for some applications. In addition it can manage environments described by many (possibly short) segments.
This paper presents some experimental results based on our mobile robot RAM-2 that show the accuracy and the robustness
of the proposed method even for poor quality maps and large dead-reckoning errors. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction to address it (for a survey see [21] or [1]). Since meth-
ods using trajectory integration (dead-reckoning or
In a two-dimensional space (2D), mobile robot inertial navigation systems) suffer from error accumu-
self-localization consists of estimating the translation lation, registration with the environment is required.
(t., t,) and orientationd of the mobile coordinate =~ Consequently, the key issue in robot localization is that
systém (robot frame) with respect to an absolute of properly matching sensor data to a world model.
coordinate system (world frame) (see Fig. 1). In this paper we assume that the robot is provided
This problem has received great attention in the lit- with a 2D segment-baseglobal map(referred to a
erature and a variety of techniques have been proposedworld frame) and a robot-centeréatal mapthat ap-
proximates the shape of the surrounding objects. Both
S local and global maps are constructed from the data
*This work has been supported by Spanish Government under supplied by a radial laser rangefinder.

project CICYT-TAP96-0763. : .
“Corresponding author. Fax:34-5-2131413, Our radial laser rangefinder, called the Explorer,

E-mail addressesteina@ctima.uma.es (A. Reina), is a time-of-flight range scanner, manufactured by
jgonzalez@ctima.uma.es (J. Gonzalez) Schwartz Electro-optics Inc. The components of the
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Fig. 1. World frame and robot frame. The global map is referred to the world frame while the local map is expressed in the robot frame.

Explorer are an emitter/receiver pulsed gallium in- a given surface material, the range measurements are
frared laser, a rotating prism, a driving motor, and affected by a gaussian noise with a standard deviation
an encoder mounted on a steel housing (Fig. 2). of 1.2cm. However, other parameters such as sensor
By rotating the prism, the Explorer scans 360 resolution, incidence angle and reflectance properties
field-of-view in a plane parallel to the ground, provid- of the surface give rise to much larger errors, which
ing a two-dimensional description of the environment cannot be considered within a statistical framework.
in polar coordinates. The angular resolution can be In particular, some surface materials (i.e. glazed tiles,
programmed to measure 128, 256, 1024 and 2048 polish metal, etc.) can produce errors of more than
data per revolution, and the rotation speed is pro- 15cm. [17]. On this basis, we see that it is more ap-
grammable between 0.5 and 4 revolutions per secondpropriate to approach the matching problem through
[17]. a geometrical viewpoint.

Our approach for pose (position and orientation) es- The proposed localization system works in a
timation is basically geometrical, in contrast to other two-stage procedure:
approaches to the problem that are stated from a sta-1. Map alignment Robot orientation is determined
tistical viewpoint. Because of the characteristics of the  through the best alignment of the global and the lo-
laser range measurements (accuracy, repeatability, in- cal maps. This process is accomplished by means
fluence of surface material, etc.) we think that sensor  of a weighted generalized Hough transform [6].
errors are better modeled by a bounded region than The key idea consists of rotating the local map
by a probabilistic model. For example, based on the  through a tentative angle and then checking for the
calibration of the Explorer, we have checked that, for number of equally oriented segments from both the
global and local maps, regardless of their relative
positions. This algorithm determines the robot ori-
entation without explicitly solving the correspon-
dence between segments. In our tests, the accuracy
achieved in the estimated robot orientation is less

. ; than 2.5.

o ' 2. Map overlap The position of the robot is esti-
mated by an iterative search process based on a
coarse-to-fine scheme. At each iteration, this pro-
cess generates a set of candidate robot positions
that is used to refer the local map to the world
frame. For all of these positions the degree of over-
Fig. 2. The Explorer laser radial scanner. lap between the local and global maps is computed
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by solving the correspondence between segmentsbetween consecutive scans along a path based on the

of both maps. The robot position that produces the spatial and temporal linearization of the range func-

maximum overlap is selected as the initial robot tion of each point. Both methods, in particular the
position for the next iteration. Obviously, at each latter, are restricted to relative small displacements
iteration of the coarse-to-fine process, the condi- between the maps.

tions for establishing the correspondence between Of special significance is also the work presented

segments become more restrictivén order to im- in [23], where the concept afngle histogramnis used

prove the final pose estimate a refinement of the to represent a statistic of the distribution of angles of
orientation provided by the first stage is also per- vector differences (vector that is joined to consecutive
mitted. points in the scan) with respect to a symmetry axis of
The rest of the paper is organized as follows. We the robot system. The orientation is estimated as the
first review some related work. Then the map align- phase shift between two histograms computed by a
ment process is presented. In Section 4 we describe thecross-correlation function. Position is determined in a
map overlapping algorithm. In Section 5, the overall similar way usingx-y histograms. Good estimates of
method is extensively tested using both synthetic and the position and orientation of the robot moving along
real maps obtained from our mobile robot RAM-2. a previously traversed path are reported. However, the
Finally, some conclusions and future work are method seems to be quite dependent on a good ini-
outlined. tial estimation as well as on the proximity to the clos-
est available reference histograms. Another disadvan-
tage of this approach is the difficulty in maintaining

2. Related work the maps due to the large amount of data required
[22].

As stated above, mobile robot pose estimation turns ~ Recently, Crowley et al. [5] have presented a mathe-
out to be the problem of matching different observa- matically innovative technique that transforms a range
tions of the same pieces of the world. We can dis- scan into a single point in the multidimensional com-
tinguish two different approaches to match 2D range Ponent space. Then, based on principal component
data: iconic and feature-based methods. analysis, an eigenspace is constructed where the struc-

In iconic methods registration is accomplished ture of the environment is represented as a family of
without explicitly using the underlying features ex- surfaces. Since the mapping between the eigenspace
isting in the range scan. One possibility is that of and the pose space is not unique, a list of candidate
matching the range points against features of a model Pose points (the nearest) is given for a particular range
(probably obtained from previous scans). The position scan. These candidates are tested using different meth-

estimators proposed in [4,11,16] are some examples0ds in order to select the best one. Unfortunately, this
of this scheme. work does not show sufficient experimental results to

A second possibility is to match the range scan to assess the accuracy and the robustness of the method
previously acquired raw data. In [15], Lu presents in more sophisticated clutter environments. In addi-
an iterative algorithm that establishes correspon- tion, it is an exhaustive method that requires a large
dences for data points by combining two rules: a amount of memory.
closest-point rulethat chooses the closest pointinthe  Finally, although more suitable for sonar readirfgs,
next scan as the correspondence for the data point,we must mention in this category the well-known
and amatching-range-point ruléhat assumes there is  occupancy grid techniques [9,18].
no translation between the two scans and chooses for In comparison with feature-based methods, the
correspondence the closest point with the same range.iconic scheme presents the advantage of not requiring
Our previous work [12] estimates the transformation the extraction of distinctive features (usually seg-

L Since the data used to build both the global and local maps 2 Due to the accuracy of the range measurements, any acceptable
are not error-free [17], they will not overlap perfectly even for an approximation of range scan would require a extremely high dense
exact robot pose estimation. grid, which would result impractical.
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ments) from the range scan. Thus, it leads to a less
restrictive method, appropriate for matching smooth
free-form shapes. In general, its major drawbacks are
that it is limited to relatively small displacements be-

tween the two scans [19] and it is more sensitive to 2.

noise in the range data.

In feature-based methodsegistration is accom-
plished by first extracting a set of features from the
scan (usually segments and corners) and then making
correspondences between pairs of features of the ac-
quired scan and a global map. Then, the robot location
is estimated as the rigid transformation that minimizes
a certain function that combines the distance errors
between the corresponding pairs established. Some
examples of this approach are the works reported in
[3,8,10,16,18,20]. An interesting approach that, as we
do, uses the Hough transform is presented in [10].
Although their algorithm provides excellent results
when navigating in indoor cluttered environments, it
is restricted to operating in rectangular-shaped scenar-

ios where no more than two predominant walls are 3.

present in each direction. Also, some researchers have
used the Hough transform to find line segments ei-
ther in occupancy grids [18] or directly in the range
scan [7,10]. The work presented by Dubrawsky and
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come up from a reasonable number of points [13].
In addition, as it will be explained later, the contri-
bution of each segment to the estimated pose must
be proportional to its length.

As the methods proposed by \Weand Wetzler
[23] and Dubrawski and Siemikowska [7], our ap-
proach uncouples the problem of estimating robot
orientation and robot position. We believe that pre-
cise knowledge of the robot heading by itself has
great importance for two main reasons. First, the
estimation of the robot position now becomes a
much easier problem. Second, in some situations
only the orientation is relevant for the navigation
task. For instance, when a robot is moving through
a corridor the position of the robot is irrelevant
while the heading has to be kept within a narrow
interval. Another kind of situation occurs when the
navigation task is commanded in terms of steering
information, for example: “moves straight on until
the first junction appears”.

No initial robot orientation is required and only a
rough initial position (depending on the particular
environment) is necessary. Similar capabilities are
achieved by the algorithms of [2,5].

In the following sections we discuss in detail the

Siemitkowska [7] is based on a modification of the two stages of our method.

angle histogrammethod [23] aimed at making the al-
gorithm more robust to measure noise by extracting
segments from the scan.

Although the approximation of the range map to

3. Map alignment

features (segments, corners, clusters, etc.) is a time The idea of this stage consists of aligning the lo-
consuming process and leads to an inevitable loss of cal map (LM) and the global map (GM) through a
information, in the context of mobile robotics this weighted generalized Hough transform. The Hough
turns out to be not so problematic since building and transform is a technique frequently used to detect
maintaining the map of the environment is highly curves of a given shape in an image. This classical
desirable. Hough transform requires that the curve be speci-
The method proposed in this paper is a feature-basedfied in some parametric form and, hence, is most
approach and, besides its simplicity and the accuracy commonly used in the detection of regular curves
it provides, contributes to three major issues: as lines, circles and ellipses, etc. On the other hand,
1. Usually, in the feature-based approach, the discrep-the generalized Hough transform is capable of de-
ancy to minimize refers to the supporting lines tecting arbitrary curved shapes by first constructing a
of the segments (i.e. perpendicular distance, an- reference table using a prototype shape [6].

gle, etc.) [10,16,20]. Contrary to this, we explic-

The algorithm proposed here works according to

ity deal with the line segments. This makes the the following three steps:

method more accurate while allowing us to cope 1.
with more complicated environment suitable to be
approximated by short line segments. To guaran-
tee robustness to noisy points, the segments must

Building the reference tablgR-tablg. The R-table

is a look-up table that stores the lengiks of each
segment of the global map indexed by its absolute
orientation8gs. The orientatiorBgs represents the
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slope of the line supporting the segment and is
guantified at integer values betweehdnd 180.
The lengthigs is expressed within a resolution of
millimeters. In order to account for more than one
segment of the global map having the same orien-
tation, the R-table has to record as many lengths
AGs as segments exist for each particular orienta-
tion Bgs, i.€.

R-tableBgs) = [*as(1), Aes(2), .. .].

If the GM is fixed this table will be computed just
once. However, each time the GM is updated, for
example by updating it with a new LM, the R-table

needs to be reconstructed. In any case, this process

does not require too much computation time.

. Defining the accumulation arrayThe accumula-
tion array is a vectoAC indexed by all the possible
discrete robot orientations (in degrees) with re-
spect to the world frame. Each elemé(«) rep-
resents the number of votes that the orientation

receives according to the voting process described

below. The orientation that receives the greatest
number of votes will correspond to the best align-
ment between LM and GM. The range of possible
robot orientations depends on the prior informa-
tion that the system may have. If no information is
available, the accumulation arr&Z will consider
the full orientation range, i.e. from°Go 360. In
the case of an initial estimatiarg and a bounded
uncertainty intervab being available, for instance
provided by dead-reckoning, the arraZ would
account only for the candidates in this interval, i.e.
a€lap—38, ap+38]. The arrayAC is initialized to
zero.

3. The voting procesdsThe idea of the voting process
consists of rotating the LM through a tentative an-
gle a and then checking for the number of equally
oriented segments from both the global and the
local maps, regardless of their relative positions
(see Fig. 3).

More precisely, for a particular robot orientatian
the new anglgs_s of a segment of an LM is computed

by
PLs =oLs +a,

whereo s is the slope of the segment in the robot
frame. Now, we look for the entries of the R-table
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= Global map
——— Local map rotated g+15°
- - Local map rotated a—15°

Fig. 3. Two tentative alignments between a local and global maps.

indexed byB| s and incremenAC («) according to the
following voting scheme:

AC(a) = AC() + ALs Ags, 1)

where As is the length of the local segment being
considered anélgs the most similar length among the
entries indexed by s.2 Obviously, in the event that
there is no entry for a particulg_s, the accumulator

AC is not modified. Notice how this weighting pro-
cess takes into consideration the intuitive fact that the
longer the paired segments are the more certain is the
robot orientation.

Once all the angleg have been processed, the max-
imum of the accumulatoAC provides the estimated
robot orientation. In Figd a pseudo-code summarizes
the complete algorithm.

We have also tested other voting strategies, includ-

ing:

AC(x) =AC(x) + 1, 3
AC(x) = AC(x) + AsL, 3
AC(x) = AC() + (AsL + Aso), 4)

3When no additional information is considered (for example re-
garding the position of the robot), the global segment whose length
Ags IS more similar tor s is considered as the best candidate to
be voted. Experimentally, we have also checked that other possi-
ble voting strategies with more than one global segment involved
yield worse results.



218 A. Reina, J. Gonzalez/Robotics and Autonomous Systems 31 (2000) 213-225

1.- Build the R-table using the segments in the GM
R-table (Bog) = [As(1), Aof2), ...]

2.- Quantize the accumulator array: identify the maximum
and minimum values of possible robot orientations:
Cmaxipum = Ola + §
Ominimum = Ca= &

3.- Generate and initialize the accumulator array (AC),
AC (@) =0; @ = Qinimum - O maximum

4.- For all the possible robot orientations o do
For each local segment LS do
compute slope o and length A; of LS
rotate LS, B.=o.+a
obtain the entries in R-Table(B.y
if only one entry appears then
AC (a) = AC(a) + Ay Aus
if several entries appear
select the Aes that minimizes | -A |
AC (@) = AC(a) + A~ Aoy

3.~ Search for the maximum value in AC; the corresponding
a gives the estimated robot orientation.

Fig. 4. Pseudo-code.

but they all perform worse than the one proposed
above. Note that the simplest voting process with no
weighting given by Eq. (2) provides the number of
equally oriented segment pairs found in the two maps.

A comparison between them is presented in Section 4.

4. Map overlap

Provided that the two maps have been precisely
aligned, this stage first uses a coarse-to-fine approachg,
for selecting candidate positions and then determines
the degree of overlap of the maps at each of these po-
sitions by means of a weighted voting scheme.

4.1. Coarse-to-fine generation of tentative robot
positions

Each iteration of the coarse-to-fine process includes
the following four steps:

Fig. 5. Grid of candidate robot poses considered at each iteration
of the coarse-to-fine process.

candidate robot position. The horizontal and verti-
cal distance between the points of this grid is given
by a variablen, whose initial value depends on the

certainty of the odometric robot position.

. At every point of the grid three different robot

orientations are also considered as candidates
(see Fig. 5). These orientations are- A«, @ and

o — Aa, whereq is the current estimated robot
orientation (initially the orientation supplied by
the maps alignment process) and is an angu-

lar increment whose initial value depends on the
certainty about the initial robot orientation.

At every candidate robot pose considered in steps
1 and 2 a measure of the overlap between the lo-
cal and the global map is calculated. Broadly, the
degree of overlap of the two maps is computed as
the sum of the length of the segments that are in
correspondence. This process will be described in
detall in Section 4.2.

A new estimated pose is obtained by the weighted
average of those grid poses whose degree of over-
lap exceeds a given threshold. The threshold is a
specific ratio of the maximum overlap computed
(for example 90%). If it is the last iteration the
algorithm ends, otherwise a new iteration starts
using:

NIl

n, Aa= QAoz.

=

1. Centered at the current estimated robot position 4 Although the robot orientation has been previously computed,

(initially the odometric one) a grid of nine points  the consideration of small variations in the robot orientation enables
is considered. Each point in this grid represents a improving the final estimated orientation.
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Fragmented local map be fragmented to isolate tiseib-segmentimside (see

Viewing / segments Fig. 6)
sector 9 J Once a set of LMS is selected for a particular GMS
/ Gy, it is first necessary to determine which of these

G 7 segments really correspond & and then compute

their degree of overlap. For establishing such a corre-
spondence for a particular LMS; the following steps

ravs

Laser scanner

Fig. 6. Viewing sector of the segmef®;. Fragmentation of the
LMS partially included ingy.

The number of iterationk in the coarse-to-fine pro-
cess is set in advance and depends on the uncertainty
of the initial estimation and on the final accuracy de-
sired. Although the accuracy of the algorithm can be
adjusted by modifying the value &, in practice, it
is limited by the quality of the maps that depends on
the performance of both the laser scanner and the map
builder. Obviously the computational cost of the algo-
rithm grows linearly withK. 4

4.2. Measuring the overlap between the local and
global maps

In order to compute the degree of overlap between
the local and global maps it is necessary to check
the relationship between segments of both maps. This
process is accomplished by analyzing the global map
segments (GMSs) one by one by means ofigsving
sector®

Given a line segmen®; of the global map, the
viewing sectorgy is defined as the region subtended
by the scanning ray of its endpoints (Fig. 6).

Only those local map segments (LMSSs) insiple
are considered in correspondence Wgh and, more
precisely, only the piece of segment witlfp. There-
fore, these LMSs partially included ip; need to

5 This concept has been first introduced by Gonzalez et al. [13],
for merging maps.

2.

apply (see Fig. 7):

Scanning 1.

The supporting lines af ; and G, are computed
(lineg, lineg).

The two points on ling, p1 andpy, that are at Eu-
clidean distancesand—§ from lineg, respectively,
are computed. The value éfis set to be the max-
imum distance error associated with the selected
grid, i.e.

n
§=+2-2,
V23

wheren is the grid size for this iteration.

3. The part ol ; betweerp; andp; (denoted byCis),

if it exists, is selected as the sub-segment corre-
sponding toG;. Otherwise, if no part ot ; falls
between these two points, no correspondence be-
tweenL; andG; is established, and the process
ends forl ;.

. Provided thaCjs exists, its corresponding part of

Gy (denoted byCys) is obtained by intersecting its
supporting line ling with the scanning rays of the
endpoints ofCis. The sub-segment€is and Cgs

lineg //' Laser scanner

6 A scanning ray is a line that passes through the center of the Fig. 7. Solving the correspondence between a global map segment

scanner unit.

Gy and a local map segment;.
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~15m.

A

> GM-1 GM-2

~40 m.

(a) (b) (c)

Fig. 8. (a) An architectural plan of the scenario where the tests have been carried out. (b, ¢) Two global maps of the hall produced by
the map builder reported in [14] using two different sets of parameters. GM-1 has 54 segments while GM-2 has 133 segments.

represent the partial correspondence betw&gn  sensor readings to be affected by gaussian noise as

and LMS. well as truncated by a certain resolution [17]. We have
5. The degree of overlap for the correspondence be-used different synthetic environments and in all the

tweenG; andL; is set to be the sum of the lengths  cases the errors have remained under 1 cm for robot
of Cis and Cgs. position and below 02for robot orientation.

Once this process has been accomplished for all the The real experiments were conducted using the two
segments of the global map, the overall overlap value global maps shown in Fig. 8. These maps were ob-
between the local and global maps is computed as  tained in the hall near our Mobile Robot Laboratory

(Fig. 8(a)), by using the map builder presented in

OverlagGM, LM) [14] with two different sets of parameters. The main
“ ) ) differences between the two maps are the number
=Y (lengthCgs(i) + lengthCis(i))) , and size of the segments they contain. The first map,
i—1

denoted as GM-1, is mostly composed of long seg-
wheren is the number of corresponding pairs estab- ments while the second, denoted as GM-2, exhibits

lished. denser clusters of short segments. Note that the ori-
entation of a segment is more reliable the longer the
segment.

5. Experimental results In this scenario, our RAM-2 mobile robot (see

Fig. 9) equipped with the Explorer laser rangefinder

The proposed algorithm has been tested using bothwas initially positioned at pose 1, and instructed to
synthetic and real data. In the first case, the range move to the following locations along the path shown
measurements used to build the maps are simulatedin Fig. 8. At each of these poses the actual robot
from a probabilistic sensor model that considers the position and orientation were carefully surveyed by
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Orientation Error Orientation Error
(in degrees) (in degrees)
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Robot location along the path

—o—  |Initial orientation error
—O— |Error in the estimated orientation

Fig. 11. Orientation errors for the 10 locations along the path
when using the GM-1 (left) and GM-2 (right).

Fig. 9. The Explorer laser range scanner mounted on the RAM-2 o . ) ) )
mobile robot. ent initial positions and orientations, uniform random

values were added to the odometric readings.
In particular, for testing the map alignment stage, at
' each location along the path the initial robot heading
’ ‘ ap was taken as the real orientatien plus a uniform

{— ® random error bounded b¥20°. Thus, the arra)AC
. was setup to check for all the orientatians[ag — 20,
’ [ oo+ 20].
l ® | Fig. 11 plots the errors, calculated as surveyed

' minus computed, for the 10 locations and for the

two global maps. As expected, the errors are slightly
! - - ‘ greater when using the GM-2 due to the lower qual-
- W ity of their segments. The mean squared errors were
- —_J 0.3412 and 0.9154, respectively.

It should be pointed out that the local maps used
in each of the two experiments were obtained with
the same set of parameters that were used to build the
two global maps (shown in Fig. 12). Notice the large
discrepancies between the local and the global maps.
triangulation using a tape measure and the proposed To illustrate the performance of the voting process,
two-stage algorithm was run. Fig. 10 shows the local Fig. 13 shows the number of votes in the arrxg
maps computed from the second and fifth robot poses at location 5 of the path when using the two global
in the path (for the sake of clarity these local maps maps. Observe that simple counting of the number of

Fig. 10. Local maps obtained from poses 2 and 5 of the mobile
robot path.

appear aligned to the global frame). pairs found (given by a voting process with no weight-
ing, Eg. (2)) does not produce a clear maximum in
5.1. Testing the map alignment the accumulatoAC. In contrast, the proposed voting

scheme, given by Eq. (1), ends up with a clear peak

Since the robot displacements along the path were at 1° away from the orientation corresponding to the
small, the errors in the robot poses provided by the real heading of the robot.

odometric system were also small. Thus, in order to  Finally, we also show the orientation errors provided

check the performance of the algorithm for differ- by the three alternative voting schemes mentioned in
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| ,\A_’lt/

@

LM-1 LM-2

Fig. 12. Local maps obtained at location 5 of the path for two
different sets of parameters. LM-1 contains 16 segments while
LM-2 has 43 segments.
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are significantly reduced after the map overlap proce-
dure. The initial values selected fdand« in the map
overlap process were 1.5m and despectively.

It is important to note that these results have been
obtained in a very difficult real scenario where stairs,
glass doors, small circular columns, people walking
around, etc. were present.

The convergence of the algorithm has been exten-
sively tested for different initial positions and orienta-
tions at each of the poses of the robot along the path.
We have obtained results similar to the one shown in
Table 1, except for some infrequent special situations
where the algorithm converges to a wrong (although
plausible) solution. These situations arise because of
the existence of symmetries in the environment along
with a very poor initial position. As an example, Figs.
14 and 15 illustrate the track of six points from the

Section 3. All of these performed worse than the one initial position up to the final estimated position for
proposed, although the one corresponding to Eq. (4) five different initial guesses at the seventh pose of
gives very similar results which reveals the importance the path. The size of the cells of the initial grid was

of taking into account the lengths of both matched
segments.

5.2. Testing the map overlap

Table 1 shows the errors in the position and ori-

3.2x 3.2, while the cell size of the final grid was
0.1x 0.1 n? (which gives us six iterations of the map
overlap algorithm with grid sizes: 3.2, 1.6, 0.8, 0.4,
0.2, 0.1). For clarity purpose, the sequence of points
has been connected by a spline.

The computational cost of the algorithm is

entation (calculated as surveyed minus computed) for O(M x N) for the map alignment stage and NDk
the 10 poses along the path. The errors in the robot N x K) for the map overlap stagewhereM andN are

orientation estimated by the map alignment algorithm

the number of segments in the global and local maps,

also appear in the central column of Table 1, denoted respectively, andK is the number of iterations in the

as AE. Notice that these errors, although very small,

coarse-to-fine approach. For the above experiments,

AC using GM-1 AC using GM-2
XS 45 OV T
e 70
Simple n I\
vores - H Simple > ] \
Weighted - \ votes 50 l l
vores e - \ Weighted 40|
20 votes o * , \
le %
: d NI o =X
h A 10 \A‘\/-’l ’ \'\v
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Fig. 13. The final votes in arraC at location 5 of the path for both experiments using GM-1 and GM-2. The weighted votes refer to
the result of the proposed voting scheme. The simple votes indicate the number of votes with no weighting.
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Table 1
Initial and final errors in the robot position estimatfon
S. No. Initial errors AEwx (°) Estimation errors

X (cm) Y (cm) 0 (°) X (cm) Y (cm) TH ()
1 182.2 36.0 —-9.75 -15 2.2 -1.0 —0.07
2 —63.7 49.5 —15.6 0.5 3.7 -2.1 -0.25
3 -91.2 168.5 7.82 21 1.2 -1.4 0.18
4 33.2 —131.8 -17.3 -0.3 -3.2 15 0.22
5 -10.9 —14.7 -19.9 0.8 0.9 -0.2 -0.24
6 47.2 —168.2 14.1 0.6 2.7 5.1 0.09
7 16.2 38.7 —-6.71 -1.3 3.7 -1.2 0.11
8 74.4 -75.1 16.4 -2.3 5.5 —-4.8 0.22
9 —56.3 18.1 37 0.9 13 31 —0.09
10 —46.5 —133.6 0.5 11 -1.4 -2.3 -0.19

aThe alignment error (AE) column shows the error in the robot orientation provided by the map alignment procedure.

Error using EQ2, EQ3 and EQ4 (in degrees)

5
4
3 i / J \
2 X ’ >
] = 0 \
-

0 1 2 3 4 5 6 T 8 9 10 1 12
Robot location along the path

Fig. 14. Orientation errors obtained for the GM-1 using other voting schemes.

with a global map of 52 segments, a nhumber of local The first stage, which we have called “map
map segments ranging from 19 to 31 segmentskand alignment”, aligns the two segment maps, regardless
equal to 6, the runtimes were always below 1s on a of their relative positions, by means of a general-
Pentium 120 MHz under the Lynx Real Time OS. ized Hough transform that accounts for the number
of equally oriented segments from both the global
and local maps. This process does not require any
6. Conclusions and future work estimation about initial robot orientation and can be
useful for a variety of robotic applications where the
In this paper, a new method for estimating the po- position estimation is not relevant.
sition of a mobile robot based on registering 2D seg- Assuming that an estimated orientation has been
ment maps has been presented. The method consistsomputed by this procedure, the second stage uses a
of a two-step procedure that first determines the robot grid-based coarse-to-fine approach to derive the selec-
orientation and then computes the robot position in tion of candidate poses. At each of these poses the de-
addition to refining the orientation. gree of overlap between the observed local map and
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a known global map is measured by means of a cor- [10] J. Forsberg, U. Larsson, A. Wernersson, On mobile robot
respondence process, and a new estimated pose is ob-  navigation in cluttered rooms using the range weighted Hough
tained by the weighted average of those grid poses transform, IEEE Robotics and Automation Society Magazine
X (March 1995) 18-26.
Whos_e degre_e of overlap exceeds a given threShOI_d' [11] J. Gonzalez, A. Stentz, A. Ollero, A mobile robot iconic
This algorithm has been extensively tested using position estimator using a radial laser scanner, Journal of
synthetic and real data provided by the Explorer laser Intelligent and Robotic Systems 13 (1995) 161-179.
range scanner. In particu|ar’ we have presented experi_[12] J. Gonzalez, R. Gutierrez, Direct motion estimation from a
mental results on our mobile robot RAM-2 that shows range scan sequence., Journal of Robotic Systems 16 (2)
. (1999) 73-80.
the accur_acy and robustness of th|§ me”_w_d_ even for[13] J. Gonzalez, A. Ollero, P. Hurtado, Local map building for
poor quality maps and large errors in the initial robot mobile robot autonomous navigation using a 2D laser range
position and orientation. sensor, Proceedings of the IFAC World Congress, Sydney,
Future work is concerned with the use of a new 1993.
weighting method that takes into account the degree [14] J- Gonzalez, A. Ollero, A. Reina, Map building for a mobile
. . robot equipped with a laser range scanner, in: Proceedings
of confidence in the segments observed. Currently we
are developing a map building algorithm that uses the

of the IEEE International Conference on Robotics and
! Automation, San Diego, CA, May 1994.
correspondences found in order to merge local and [15] F. Lu, Shape registration using optimization for mobile robot

gIobaI maps. navigation, Ph.D. Thesis, University of Toronto, Toronto,
1995.
[16] P. MacKenzie, G. Dudek, Precise positioning using
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