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Abstract

This paper presents a new method for accurately estimating the pose (position and orientation) of a mobile robot by
registering a segment-based local map observed from the current robot pose and a global map. The method works in a
two-stage procedure. First, the orientation is determined by aligning the local and global map through a voting process based
on a generalized Hough transform. Second, it uses a coarse-to-fine approach for selecting candidate positions and a weighted
voting scheme to determine the degree of overlap of the two maps at each of these poses. Unlike other methods previously
proposed, this approach allows us to uncouple the problem of estimating the robot orientation and the robot position which
may be useful for some applications. In addition it can manage environments described by many (possibly short) segments.
This paper presents some experimental results based on our mobile robot RAM-2 that show the accuracy and the robustness
of the proposed method even for poor quality maps and large dead-reckoning errors. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In a two-dimensional space (2D), mobile robot
self-localization consists of estimating the translation
(tx , ty) and orientationθ of the mobile coordinate
system (robot frame) with respect to an absolute
coordinate system (world frame) (see Fig. 1).

This problem has received great attention in the lit-
erature and a variety of techniques have been proposed
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to address it (for a survey see [21] or [1]). Since meth-
ods using trajectory integration (dead-reckoning or
inertial navigation systems) suffer from error accumu-
lation, registration with the environment is required.
Consequently, the key issue in robot localization is that
of properly matching sensor data to a world model.

In this paper we assume that the robot is provided
with a 2D segment-basedglobal map(referred to a
world frame) and a robot-centeredlocal mapthat ap-
proximates the shape of the surrounding objects. Both
local and global maps are constructed from the data
supplied by a radial laser rangefinder.

Our radial laser rangefinder, called the Explorer,
is a time-of-flight range scanner, manufactured by
Schwartz Electro-optics Inc. The components of the
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Fig. 1. World frame and robot frame. The global map is referred to the world frame while the local map is expressed in the robot frame.

Explorer are an emitter/receiver pulsed gallium in-
frared laser, a rotating prism, a driving motor, and
an encoder mounted on a steel housing (Fig. 2).
By rotating the prism, the Explorer scans 360◦
field-of-view in a plane parallel to the ground, provid-
ing a two-dimensional description of the environment
in polar coordinates. The angular resolution can be
programmed to measure 128, 256, 1024 and 2048
data per revolution, and the rotation speed is pro-
grammable between 0.5 and 4 revolutions per second
[17].

Our approach for pose (position and orientation) es-
timation is basically geometrical, in contrast to other
approaches to the problem that are stated from a sta-
tistical viewpoint. Because of the characteristics of the
laser range measurements (accuracy, repeatability, in-
fluence of surface material, etc.) we think that sensor
errors are better modeled by a bounded region than
by a probabilistic model. For example, based on the
calibration of the Explorer, we have checked that, for

Fig. 2. The Explorer laser radial scanner.

a given surface material, the range measurements are
affected by a gaussian noise with a standard deviation
of 1.2 cm. However, other parameters such as sensor
resolution, incidence angle and reflectance properties
of the surface give rise to much larger errors, which
cannot be considered within a statistical framework.
In particular, some surface materials (i.e. glazed tiles,
polish metal, etc.) can produce errors of more than
15 cm. [17]. On this basis, we see that it is more ap-
propriate to approach the matching problem through
a geometrical viewpoint.

The proposed localization system works in a
two-stage procedure:
1. Map alignment. Robot orientation is determined

through the best alignment of the global and the lo-
cal maps. This process is accomplished by means
of a weighted generalized Hough transform [6].
The key idea consists of rotating the local map
through a tentative angle and then checking for the
number of equally oriented segments from both the
global and local maps, regardless of their relative
positions. This algorithm determines the robot ori-
entation without explicitly solving the correspon-
dence between segments. In our tests, the accuracy
achieved in the estimated robot orientation is less
than 2.5◦.

2. Map overlap. The position of the robot is esti-
mated by an iterative search process based on a
coarse-to-fine scheme. At each iteration, this pro-
cess generates a set of candidate robot positions
that is used to refer the local map to the world
frame. For all of these positions the degree of over-
lap between the local and global maps is computed
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by solving the correspondence between segments
of both maps. The robot position that produces the
maximum overlap is selected as the initial robot
position for the next iteration. Obviously, at each
iteration of the coarse-to-fine process, the condi-
tions for establishing the correspondence between
segments become more restrictive.1 In order to im-
prove the final pose estimate a refinement of the
orientation provided by the first stage is also per-
mitted.
The rest of the paper is organized as follows. We

first review some related work. Then the map align-
ment process is presented. In Section 4 we describe the
map overlapping algorithm. In Section 5, the overall
method is extensively tested using both synthetic and
real maps obtained from our mobile robot RAM-2.
Finally, some conclusions and future work are
outlined.

2. Related work

As stated above, mobile robot pose estimation turns
out to be the problem of matching different observa-
tions of the same pieces of the world. We can dis-
tinguish two different approaches to match 2D range
data: iconic and feature-based methods.

In iconic methods, registration is accomplished
without explicitly using the underlying features ex-
isting in the range scan. One possibility is that of
matching the range points against features of a model
(probably obtained from previous scans). The position
estimators proposed in [4,11,16] are some examples
of this scheme.

A second possibility is to match the range scan to
previously acquired raw data. In [15], Lu presents
an iterative algorithm that establishes correspon-
dences for data points by combining two rules: a
closest-point rule, that chooses the closest point in the
next scan as the correspondence for the data point,
and amatching-range-point rulethat assumes there is
no translation between the two scans and chooses for
correspondence the closest point with the same range.
Our previous work [12] estimates the transformation

1 Since the data used to build both the global and local maps
are not error-free [17], they will not overlap perfectly even for an
exact robot pose estimation.

between consecutive scans along a path based on the
spatial and temporal linearization of the range func-
tion of each point. Both methods, in particular the
latter, are restricted to relative small displacements
between the maps.

Of special significance is also the work presented
in [23], where the concept ofangle histogramis used
to represent a statistic of the distribution of angles of
vector differences (vector that is joined to consecutive
points in the scan) with respect to a symmetry axis of
the robot system. The orientation is estimated as the
phase shift between two histograms computed by a
cross-correlation function. Position is determined in a
similar way usingx–y histograms. Good estimates of
the position and orientation of the robot moving along
a previously traversed path are reported. However, the
method seems to be quite dependent on a good ini-
tial estimation as well as on the proximity to the clos-
est available reference histograms. Another disadvan-
tage of this approach is the difficulty in maintaining
the maps due to the large amount of data required
[22].

Recently, Crowley et al. [5] have presented a mathe-
matically innovative technique that transforms a range
scan into a single point in the multidimensional com-
ponent space. Then, based on principal component
analysis, an eigenspace is constructed where the struc-
ture of the environment is represented as a family of
surfaces. Since the mapping between the eigenspace
and the pose space is not unique, a list of candidate
pose points (the nearest) is given for a particular range
scan. These candidates are tested using different meth-
ods in order to select the best one. Unfortunately, this
work does not show sufficient experimental results to
assess the accuracy and the robustness of the method
in more sophisticated clutter environments. In addi-
tion, it is an exhaustive method that requires a large
amount of memory.

Finally, although more suitable for sonar readings,2

we must mention in this category the well-known
occupancy grid techniques [9,18].

In comparison with feature-based methods, the
iconic scheme presents the advantage of not requiring
the extraction of distinctive features (usually seg-

2 Due to the accuracy of the range measurements, any acceptable
approximation of range scan would require a extremely high dense
grid, which would result impractical.
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ments) from the range scan. Thus, it leads to a less
restrictive method, appropriate for matching smooth
free-form shapes. In general, its major drawbacks are
that it is limited to relatively small displacements be-
tween the two scans [19] and it is more sensitive to
noise in the range data.

In feature-based methods, registration is accom-
plished by first extracting a set of features from the
scan (usually segments and corners) and then making
correspondences between pairs of features of the ac-
quired scan and a global map. Then, the robot location
is estimated as the rigid transformation that minimizes
a certain function that combines the distance errors
between the corresponding pairs established. Some
examples of this approach are the works reported in
[3,8,10,16,18,20]. An interesting approach that, as we
do, uses the Hough transform is presented in [10].
Although their algorithm provides excellent results
when navigating in indoor cluttered environments, it
is restricted to operating in rectangular-shaped scenar-
ios where no more than two predominant walls are
present in each direction. Also, some researchers have
used the Hough transform to find line segments ei-
ther in occupancy grids [18] or directly in the range
scan [7,10]. The work presented by Dubrawsky and
Siemiątkowska [7] is based on a modification of the
angle histogrammethod [23] aimed at making the al-
gorithm more robust to measure noise by extracting
segments from the scan.

Although the approximation of the range map to
features (segments, corners, clusters, etc.) is a time
consuming process and leads to an inevitable loss of
information, in the context of mobile robotics this
turns out to be not so problematic since building and
maintaining the map of the environment is highly
desirable.

The method proposed in this paper is a feature-based
approach and, besides its simplicity and the accuracy
it provides, contributes to three major issues:
1. Usually, in the feature-based approach, the discrep-

ancy to minimize refers to the supporting lines
of the segments (i.e. perpendicular distance, an-
gle, etc.) [10,16,20]. Contrary to this, we explic-
itly deal with the line segments. This makes the
method more accurate while allowing us to cope
with more complicated environment suitable to be
approximated by short line segments. To guaran-
tee robustness to noisy points, the segments must

come up from a reasonable number of points [13].
In addition, as it will be explained later, the contri-
bution of each segment to the estimated pose must
be proportional to its length.

2. As the methods proposed by Weib and Wetzler
[23] and Dubrawski and Siemi˛atkowska [7], our ap-
proach uncouples the problem of estimating robot
orientation and robot position. We believe that pre-
cise knowledge of the robot heading by itself has
great importance for two main reasons. First, the
estimation of the robot position now becomes a
much easier problem. Second, in some situations
only the orientation is relevant for the navigation
task. For instance, when a robot is moving through
a corridor the position of the robot is irrelevant
while the heading has to be kept within a narrow
interval. Another kind of situation occurs when the
navigation task is commanded in terms of steering
information, for example: “moves straight on until
the first junction appears”.

3. No initial robot orientation is required and only a
rough initial position (depending on the particular
environment) is necessary. Similar capabilities are
achieved by the algorithms of [2,5].
In the following sections we discuss in detail the

two stages of our method.

3. Map alignment

The idea of this stage consists of aligning the lo-
cal map (LM) and the global map (GM) through a
weighted generalized Hough transform. The Hough
transform is a technique frequently used to detect
curves of a given shape in an image. This classical
Hough transform requires that the curve be speci-
fied in some parametric form and, hence, is most
commonly used in the detection of regular curves
as lines, circles and ellipses, etc. On the other hand,
the generalized Hough transform is capable of de-
tecting arbitrary curved shapes by first constructing a
reference table using a prototype shape [6].

The algorithm proposed here works according to
the following three steps:
1. Building the reference table(R-table). The R-table

is a look-up table that stores the lengthλGS of each
segment of the global map indexed by its absolute
orientationβGS. The orientationβGS represents the
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slope of the line supporting the segment and is
quantified at integer values between 0◦ and 180◦.
The lengthλGS is expressed within a resolution of
millimeters. In order to account for more than one
segment of the global map having the same orien-
tation, the R-table has to record as many lengths
λGS as segments exist for each particular orienta-
tion βGS, i.e.

R-table(βGS) = [λGS(1), λGS(2), . . . ].

If the GM is fixed this table will be computed just
once. However, each time the GM is updated, for
example by updating it with a new LM, the R-table
needs to be reconstructed. In any case, this process
does not require too much computation time.

2. Defining the accumulation array. The accumula-
tion array is a vectorAC indexed by all the possible
discrete robot orientationsα (in degrees) with re-
spect to the world frame. Each elementAC(α) rep-
resents the number of votes that the orientationα

receives according to the voting process described
below. The orientation that receives the greatest
number of votes will correspond to the best align-
ment between LM and GM. The range of possible
robot orientations depends on the prior informa-
tion that the system may have. If no information is
available, the accumulation arrayAC will consider
the full orientation range, i.e. from 0◦ to 360◦. In
the case of an initial estimationα0 and a bounded
uncertainty intervalδ being available, for instance
provided by dead-reckoning, the arrayAC would
account only for the candidates in this interval, i.e.
α∈[α0 − δ, α0 + δ]. The arrayAC is initialized to
zero.

3. The voting process. The idea of the voting process
consists of rotating the LM through a tentative an-
gle α and then checking for the number of equally
oriented segments from both the global and the
local maps, regardless of their relative positions
(see Fig. 3).
More precisely, for a particular robot orientationα,

the new angleβLS of a segment of an LM is computed
by

βLS = σLS + α,

whereσ LS is the slope of the segment in the robot
frame. Now, we look for the entries of the R-table

Fig. 3. Two tentative alignments between a local and global maps.

indexed byβLS and incrementAC(α) according to the
following voting scheme:

ACACAC(α) = ACACAC(α) + λLS λGS, (1)

whereλLS is the length of the local segment being
considered andλGS the most similar length among the
entries indexed byβLS. 3 Obviously, in the event that
there is no entry for a particularβLS, the accumulator
AC is not modified. Notice how this weighting pro-
cess takes into consideration the intuitive fact that the
longer the paired segments are the more certain is the
robot orientation.

Once all the anglesα have been processed, the max-
imum of the accumulatorAC provides the estimated
robot orientation. In Fig. 4 a pseudo-code summarizes
the complete algorithm.

We have also tested other voting strategies, includ-
ing:

ACACAC(α) = ACACAC(α) + 1, (2)

ACACAC(α) = ACACAC(α) + λSL, (3)

ACACAC(α) = ACACAC(α) + (λSL + λSG), (4)

3 When no additional information is considered (for example re-
garding the position of the robot), the global segment whose length
λGS is more similar toλLS is considered as the best candidate to
be voted. Experimentally, we have also checked that other possi-
ble voting strategies with more than one global segment involved
yield worse results.
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Fig. 4. Pseudo-code.

but they all perform worse than the one proposed
above. Note that the simplest voting process with no
weighting given by Eq. (2) provides the number of
equally oriented segment pairs found in the two maps.
A comparison between them is presented in Section 4.

4. Map overlap

Provided that the two maps have been precisely
aligned, this stage first uses a coarse-to-fine approach
for selecting candidate positions and then determines
the degree of overlap of the maps at each of these po-
sitions by means of a weighted voting scheme.

4.1. Coarse-to-fine generation of tentative robot
positions

Each iteration of the coarse-to-fine process includes
the following four steps:
1. Centered at the current estimated robot position

(initially the odometric one) a grid of nine points
is considered. Each point in this grid represents a

Fig. 5. Grid of candidate robot poses considered at each iteration
of the coarse-to-fine process.

candidate robot position. The horizontal and verti-
cal distance between the points of this grid is given
by a variableη, whose initial value depends on the
certainty of the odometric robot position.

2. At every point of the grid three different robot
orientations are also considered as candidates4

(see Fig. 5). These orientations areα + 1α, α and
α − 1a, where α is the current estimated robot
orientation (initially the orientation supplied by
the maps alignment process) and1α is an angu-
lar increment whose initial value depends on the
certainty about the initial robot orientation.

3. At every candidate robot pose considered in steps
1 and 2 a measure of the overlap between the lo-
cal and the global map is calculated. Broadly, the
degree of overlap of the two maps is computed as
the sum of the length of the segments that are in
correspondence. This process will be described in
detail in Section 4.2.

4. A new estimated pose is obtained by the weighted
average of those grid poses whose degree of over-
lap exceeds a given threshold. The threshold is a
specific ratio of the maximum overlap computed
(for example 90%). If it is the last iteration the
algorithm ends, otherwise a new iteration starts
using:

η = 1
2η, 1α = 1

21α.

4 Although the robot orientation has been previously computed,
the consideration of small variations in the robot orientation enables
improving the final estimated orientation.
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Fig. 6. Viewing sector of the segmentGk . Fragmentation of the
LMS partially included inφk .

The number of iterationsK in the coarse-to-fine pro-
cess is set in advance and depends on the uncertainty
of the initial estimation and on the final accuracy de-
sired. Although the accuracy of the algorithm can be
adjusted by modifying the value ofK, in practice, it
is limited by the quality of the maps that depends on
the performance of both the laser scanner and the map
builder. Obviously the computational cost of the algo-
rithm grows linearly withK.

4.2. Measuring the overlap between the local and
global maps

In order to compute the degree of overlap between
the local and global maps it is necessary to check
the relationship between segments of both maps. This
process is accomplished by analyzing the global map
segments (GMSs) one by one by means of itsviewing
sector. 5

Given a line segmentGk of the global map, the
viewing sectorφk is defined as the region subtended
by the scanning rays6 of its endpoints (Fig. 6).

Only those local map segments (LMSs) insideφk

are considered in correspondence withGk and, more
precisely, only the piece of segment withinφk. There-
fore, these LMSs partially included inφk need to

5 This concept has been first introduced by Gonzalez et al. [13],
for merging maps.

6 A scanning ray is a line that passes through the center of the
scanner unit.

be fragmented to isolate thesub-segmentsinside (see
Fig. 6).

Once a set of LMS is selected for a particular GMS
Gk, it is first necessary to determine which of these
segments really correspond toGk and then compute
their degree of overlap. For establishing such a corre-
spondence for a particular LMSLj the following steps
apply (see Fig. 7):
1. The supporting lines ofLj and Gk are computed

(lineL, lineG).
2. The two points on lineL, p1 andp2, that are at Eu-

clidean distancesδ and−δ from lineG, respectively,
are computed. The value ofδ is set to be the max-
imum distance error associated with the selected
grid, i.e.

δ =
√

2 · η

2
,

whereη is the grid size for this iteration.
3. The part ofLj betweenp1 andp2 (denoted byCls),

if it exists, is selected as the sub-segment corre-
sponding toGk. Otherwise, if no part ofLj falls
between these two points, no correspondence be-
tweenLj and Gk is established, and the process
ends forLj .

4. Provided thatCls exists, its corresponding part of
Gk (denoted byCgs) is obtained by intersecting its
supporting line lineG with the scanning rays of the
endpoints ofCls. The sub-segmentsCls and Cgs

Fig. 7. Solving the correspondence between a global map segment
Gk and a local map segmentLj .
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Fig. 8. (a) An architectural plan of the scenario where the tests have been carried out. (b, c) Two global maps of the hall produced by
the map builder reported in [14] using two different sets of parameters. GM-1 has 54 segments while GM-2 has 133 segments.

represent the partial correspondence betweenGk

and LMS.
5. The degree of overlap for the correspondence be-

tweenGk andLj is set to be the sum of the lengths
of Cls andCgs.
Once this process has been accomplished for all the

segments of the global map, the overall overlap value
between the local and global maps is computed as

Overlap(GM, LM )

=
n∑

i=1

(
length(Cgs(i)) + length(Cls(i))

)
,

wheren is the number of corresponding pairs estab-
lished.

5. Experimental results

The proposed algorithm has been tested using both
synthetic and real data. In the first case, the range
measurements used to build the maps are simulated
from a probabilistic sensor model that considers the

sensor readings to be affected by gaussian noise as
well as truncated by a certain resolution [17]. We have
used different synthetic environments and in all the
cases the errors have remained under 1 cm for robot
position and below 0.2◦ for robot orientation.

The real experiments were conducted using the two
global maps shown in Fig. 8. These maps were ob-
tained in the hall near our Mobile Robot Laboratory
(Fig. 8(a)), by using the map builder presented in
[14] with two different sets of parameters. The main
differences between the two maps are the number
and size of the segments they contain. The first map,
denoted as GM-1, is mostly composed of long seg-
ments while the second, denoted as GM-2, exhibits
denser clusters of short segments. Note that the ori-
entation of a segment is more reliable the longer the
segment.

In this scenario, our RAM-2 mobile robot (see
Fig. 9) equipped with the Explorer laser rangefinder
was initially positioned at pose 1, and instructed to
move to the following locations along the path shown
in Fig. 8. At each of these poses the actual robot
position and orientation were carefully surveyed by
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Fig. 9. The Explorer laser range scanner mounted on the RAM-2
mobile robot.

Fig. 10. Local maps obtained from poses 2 and 5 of the mobile
robot path.

triangulation using a tape measure and the proposed
two-stage algorithm was run. Fig. 10 shows the local
maps computed from the second and fifth robot poses
in the path (for the sake of clarity these local maps
appear aligned to the global frame).

5.1. Testing the map alignment

Since the robot displacements along the path were
small, the errors in the robot poses provided by the
odometric system were also small. Thus, in order to
check the performance of the algorithm for differ-

Fig. 11. Orientation errors for the 10 locations along the path
when using the GM-1 (left) and GM-2 (right).

ent initial positions and orientations, uniform random
values were added to the odometric readings.

In particular, for testing the map alignment stage, at
each location along the path the initial robot heading
α0 was taken as the real orientationαR plus a uniform
random error bounded by±20◦. Thus, the arrayAC
was setup to check for all the orientationsα∈[a0 − 20,
α0 + 20].

Fig. 11 plots the errors, calculated as surveyed
minus computed, for the 10 locations and for the
two global maps. As expected, the errors are slightly
greater when using the GM-2 due to the lower qual-
ity of their segments. The mean squared errors were
0.3412◦ and 0.9154◦, respectively.

It should be pointed out that the local maps used
in each of the two experiments were obtained with
the same set of parameters that were used to build the
two global maps (shown in Fig. 12). Notice the large
discrepancies between the local and the global maps.

To illustrate the performance of the voting process,
Fig. 13 shows the number of votes in the arrayAC
at location 5 of the path when using the two global
maps. Observe that simple counting of the number of
pairs found (given by a voting process with no weight-
ing, Eq. (2)) does not produce a clear maximum in
the accumulatorAC. In contrast, the proposed voting
scheme, given by Eq. (1), ends up with a clear peak
at 1◦ away from the orientation corresponding to the
real heading of the robot.

Finally, we also show the orientation errors provided
by the three alternative voting schemes mentioned in
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Fig. 12. Local maps obtained at location 5 of the path for two
different sets of parameters. LM-1 contains 16 segments while
LM-2 has 43 segments.

Section 3. All of these performed worse than the one
proposed, although the one corresponding to Eq. (4)
gives very similar results which reveals the importance
of taking into account the lengths of both matched
segments.

5.2. Testing the map overlap

Table 1 shows the errors in the position and ori-
entation (calculated as surveyed minus computed) for
the 10 poses along the path. The errors in the robot
orientation estimated by the map alignment algorithm
also appear in the central column of Table 1, denoted
as AE. Notice that these errors, although very small,

Fig. 13. The final votes in arrayAC at location 5 of the path for both experiments using GM-1 and GM-2. The weighted votes refer to
the result of the proposed voting scheme. The simple votes indicate the number of votes with no weighting.

are significantly reduced after the map overlap proce-
dure. The initial values selected forδ andα in the map
overlap process were 1.5 m and 4◦, respectively.

It is important to note that these results have been
obtained in a very difficult real scenario where stairs,
glass doors, small circular columns, people walking
around, etc. were present.

The convergence of the algorithm has been exten-
sively tested for different initial positions and orienta-
tions at each of the poses of the robot along the path.
We have obtained results similar to the one shown in
Table 1, except for some infrequent special situations
where the algorithm converges to a wrong (although
plausible) solution. These situations arise because of
the existence of symmetries in the environment along
with a very poor initial position. As an example, Figs.
14 and 15 illustrate the track of six points from the
initial position up to the final estimated position for
five different initial guesses at the seventh pose of
the path. The size of the cells of the initial grid was
3.2× 3.2 m2, while the cell size of the final grid was
0.1× 0.1 m2 (which gives us six iterations of the map
overlap algorithm with grid sizes: 3.2, 1.6, 0.8, 0.4,
0.2, 0.1). For clarity purpose, the sequence of points
has been connected by a spline.

The computational cost of the algorithm is
O(M × N) for the map alignment stage and O(M ×
N× K) for the map overlap stage, whereM andN are
the number of segments in the global and local maps,
respectively, andK is the number of iterations in the
coarse-to-fine approach. For the above experiments,
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Table 1
Initial and final errors in the robot position estimationa

S. No. Initial errors AE,α (◦) Estimation errors

X (cm) Y (cm) θ (◦) X (cm) Y (cm) TH (◦)

1 182.2 36.0 −9.75 −1.5 2.2 −1.0 −0.07
2 −63.7 49.5 −15.6 0.5 3.7 −2.1 −0.25
3 −91.2 168.5 7.82 2.1 1.2 −1.4 0.18
4 33.2 −131.8 −17.3 −0.3 −3.2 1.5 0.22
5 −10.9 −14.7 −19.9 0.8 0.9 −0.2 −0.24
6 47.2 −168.2 14.1 0.6 2.7 5.1 0.09
7 16.2 38.7 −6.71 −1.3 3.7 −1.2 0.11
8 74.4 −75.1 16.4 −2.3 5.5 −4.8 0.22
9 −56.3 18.1 3.7 0.9 1.3 3.1 −0.09
10 −46.5 −133.6 0.5 1.1 −1.4 −2.3 −0.19

a The alignment error (AE) column shows the error in the robot orientation provided by the map alignment procedure.

Fig. 14. Orientation errors obtained for the GM-1 using other voting schemes.

with a global map of 52 segments, a number of local
map segments ranging from 19 to 31 segments andK
equal to 6, the runtimes were always below 1 s on a
Pentium 120 MHz under the Lynx Real Time OS.

6. Conclusions and future work

In this paper, a new method for estimating the po-
sition of a mobile robot based on registering 2D seg-
ment maps has been presented. The method consists
of a two-step procedure that first determines the robot
orientation and then computes the robot position in
addition to refining the orientation.

The first stage, which we have called “map
alignment”, aligns the two segment maps, regardless
of their relative positions, by means of a general-
ized Hough transform that accounts for the number
of equally oriented segments from both the global
and local maps. This process does not require any
estimation about initial robot orientation and can be
useful for a variety of robotic applications where the
position estimation is not relevant.

Assuming that an estimated orientation has been
computed by this procedure, the second stage uses a
grid-based coarse-to-fine approach to derive the selec-
tion of candidate poses. At each of these poses the de-
gree of overlap between the observed local map and
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a known global map is measured by means of a cor-
respondence process, and a new estimated pose is ob-
tained by the weighted average of those grid poses
whose degree of overlap exceeds a given threshold.

This algorithm has been extensively tested using
synthetic and real data provided by the Explorer laser
range scanner. In particular, we have presented experi-
mental results on our mobile robot RAM-2 that shows
the accuracy and robustness of this method even for
poor quality maps and large errors in the initial robot
position and orientation.

Future work is concerned with the use of a new
weighting method that takes into account the degree
of confidence in the segments observed. Currently we
are developing a map building algorithm that uses the
correspondences found in order to merge local and
global maps.
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