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AbstractÐThe use of hierarchical graph search for finding paths in graphs is well known in the literature, providing better results than

plain graph search regarding computational costs in many cases. This paper offers a step forward by including multiple hierarchies in a

graph-based model. Such a multihierarchical model has the following advantages: First, a multiple hierarchy permits us to choose the

best hierarchy to solve each search problem; second, when several search problems have to be solved, a multiple hierarchy provides

the possibility of solving part of them simultaneously; and third, solutions to the search problems can be expressed in any of the

hierarchies of the multiple hierarchy, which allows us to represent the information in the most suitable way for each specific purpose. In

general, multiple hierarchies have proven to be a more adaptable model than single-hierarchy or nonhierarchical models. This paper

formalizes the multihierarchical model, describes the techniques that have been designed for taking advantage of multiple hierarchies

in a hierarchical path search, and presents some experiments and results on the performance of these techniques.

Index TermsÐGraph theory, search, hierarchical graphs, path planning.
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1 INTRODUCTION

S earch is an important problem-solving paradigm.
Searching for chains of elements that connect places,

concepts, reasonings, etc., appears in different areas of
research: In AI, finding sequences of elements can be
applied to solve complex tasks or find chains of reasonings
([25], [14], [11], [5]); in robotics, geometric paths are
calculated to move mechanical elements in space under
kinematic and dynamic constraints (manipulators, mobile
platforms, cooperating robots, etc.) ([27], [23], [1], [18], [8]);
one of the main issues in networks and geographical
information systems (GIS) is to find optimal routes ([17],
[12], [3]); etc. These and many other examples highlight the
importance of path searching in any computational repre-
sentation of knowledge.

Hierarchical path search consists of finding paths con-
necting pairs of elements that are represented in a
hierarchical fashion using hierarchical information for
reducing the computational cost of conventional plain
search ([10], [15], [19], [20], [26], [3]). The pair of elements
defines the search problem and any path that connects them
is a solution for the search problem. It has been demon-
strated that hierarchical information can reduce the
computational cost of path searching from exponential to
linear in the best case ([20]). This is an essential issue when
there is a large number of elements on which the search has
to be carried out. Hierarchical path search has direct
applications in GIS, computer networks, large databases, etc.

For performing hierarchical graph search, a well-
formalized hierarchical graph model must be provided.
Plain graphs can be arranged in hierarchies as follows:
Consider a plain graph that models some knowledge
(conceptual knowledge, large-scale space, or any other)

that can be ªabstractedº by reducing the amount of detail
it represents. There are several ways of doing this ([2]).
We are interested in abstraction by representing a number
of nodes of the original graph as a super-node of the
abstracted graph.1

This model of abstraction produces stacks of plain
graphs that are called hierarchies. Fig. 1 shows a very simple
example of a hierarchy representing the spatial elements of
a room. A hierarchy is composed of a sequence of graphs
called hierarchical levels. The higher the level, the smaller the
amount of information it represents. Other hierarchical
models can be found in ([6], [4], [33]), but usually either
they use more constrained hierarchical structures in the
hierarchies (trees instead of graphs) or only a fixed number
of hierarchical levels (it is common to use only two). The
model we propose is general enough to deal with an
unconstrained number of hierarchical levels and any
hierarchical structure.

When more than one hierarchy is interwoven in the same
model, the representation becomes a multihierarchical
representation. Multihierarchical representations are more
efficient and adaptable for solving different problems than
single-hierarchy or nonhierarchical models since a number
of hierarchies are available, each one adapted for solving a
given class of problems ([7]). More concretely, a graph-
based model of knowledge with more than one hierarchy
built from certain ground information presents the follow-
ing advantages in path searching with respect to single-
hierarchy representations:

. The most suitable way of solving a search problem
can be chosen from the set of different hierarchies.
The suitability of a hierarchy for solving search
problems highly depends on each specific problem
([7]). Choosing the best hierarchy for each problem
tends to optimize the overall performance of the
hierarchical path search algorithm.
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1. The abstraction of arcs follows directly from the abstraction of nodes,
as explained in Section 2.
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. A set of multiple search problems can be solved
more efficiently. Given more than one search
problem to be solved in the model, it may be the
case that they share some abstract concepts (the
super-nodes of some hierarchical levels). In these
cases, shared paths can be found just once for all the
problems, reducing the computational cost of the
search with respect to solving each problem
separately.

. The possibility of presenting the results of hierarchical
path search on different notations, that is, using
different systems of concepts and relations (nodes
and arcs). For example, a hierarchy can be more
appropriate for optimizing the computational cost of a
given problem, whereas another one can be used to
explain the results more intuitively to humans.

Therefore, a multiple hierarchy can provide more
flexibility, can perform better than conventional hierarchical
path search, and gives a wider range of possibilities to
represent a set of interconnected elements.

This paper is structured as follows: Section 2 formalizes a
particular multihierarchical graph representation that has
been used elsewhere ([7], [10], [9]): the Multi-AH-graph
model. Section 3 presents some basic concepts related to
hierarchical path search in single hierarchies. Section 4
shows the utility of the Multi-AH-graph model for
performing path searching more efficiently than single-
hierarchy or plain-graph models, along with some experi-
ments of hierarchical path search in Multi-AH-graphs.
Finally, the conclusions of this work are outlined in Section 5.

2 A MULTIHIERARCHICAL GRAPH MODEL

This section presents a graph-based, multihierarchical
model of knowledge, called Multi-AH-graph. It has been
designed as a skeleton that supports mechanisms of
multiple abstraction ([7]).

A Multi-AH-graph is an evolution of simpler relational

models: graphs, hierarchical graphs, and annotated graphs.

The formalization in this section relies on that incremental

enhancement: First, a graph-based, single-hierarchy model

called AH-graph is presented ([9], [24], [10]). Then, this

model is enhanced to cope with multiple hierarchies.

2.1 Formalization of a Single-Hierarchy Graph
Model

An annotated, hierarchical graph (AH-graph) is a linearly

ordered sequence of hierarchical levels. Formally, it is a

quadruple �L; c; k; annot�, where L is the sequence of

hierarchical levels, c the arc-cost function, k the arc-type

function, and annot is an annotation function as described

later on. Fig. 2 shows two examples of AH-graphs.
The sequence of hierarchical levels is L � L0L1 . . .Lrÿ1.

The depth of the AH-graph equals its number of

hierarchical levels and is denoted jLj. Each hierarchical

level Li is in turn a quadruple �Ni;Ai; sin; s
i
a�, where Ni is a

set of nodes, Ai a set of arcs, and sin and sia are the

abstraction functions for nodes and arcs of Li, respectively.

A hierarchical level is therefore a plain directed multigraph.2

Level L0 is the lowest or ground hierarchical level of the

AH-graph. It represents the data with the maximum

amount of detail that is available. Level Lrÿ1 is the highest

or universal hierarchical level of the AH-graph: It

represents the same data with the minimum amount of

detail, usually as a single node. Thus, the higher the

hierarchical level, the less detailed the information it

represents. The way this reduction of data is set up is

defined by the abstraction functions for nodes and arcs. The

only existing connections between hierarchical levels in an

AH-graph are given by these functions: no arc exists

between nodes of different hierarchical levels.
The abstraction function for nodes sin (see Fig. 2) is

formally defined at any hierarchical level Li except at the
highest one, Lrÿ1:

sin : Ni ! Ni�1; i < rÿ 1:

Function sin abstracts a node of a hierarchical level up to

the next higher level, hence, reducing the amount of detail

from Ni to Ni�1. Its inverse refines a given node. The node

that the function sin returns for nj�nj 2 Ni� is called the
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Fig. 1. Example of a hierarchical graph-based model that represents a possible abstraction of the spatial elements perceived in a room.

(a) Room. (b) Hierarchical levels that model the room (each of them is a plain multigraph) represented by different shades. (c) Resulting

hierarchy (each level contains a plain graph).

2. A plain multigraph is a plain graph with possibly more than one arc
between a given pair of nodes ([29]). In the particular multigraph model
used in this paper, a type is assigned to each arc. The types of the arcs
existing between a given pair of nodes must be different.



supernode of nj (correspondingly, the nodes that are

abstracted to nk are called the subnodes of nk and the

graph they form is the subgraph of nk, also called a cluster

of the hierarchy). The only restriction defined on function sin
is that no node can be mapped into more than one

supernode.
Analogously, the abstraction function for arcs sia (see

Fig. 2) is defined at any hierarchical level Li except at the

highest one, Lrÿ1:

sin : Ai ! Ai�1:

It is defined for an arc3 a �ns; ng; t� iff the abstraction

function for nodes is defined for both ns and ng and

sin�ns� 6� sin�ng�.
The function sia abstracts an arc of a hierarchical level up

to the following higher level, reducing the amount of detail
from the set Ai of arcs of level Li to the set Ai�1 of arcs of
level Li�1. Its inverse refines a given arc. The arc that is
abstracted by sia is called the superarc of the original one.
The arcs that result from refining the superarc are called its
subarcs.

The properties of sia are derived from the properties of sin
since the abstraction function for arcs is completely defined

by the abstraction function for nodes: The existence of the

former is for mere convenience. The way sia is determined

by sin is

sin�a�ns; ng; t�� � a�sin�ns�; sin�ng�; t�:
The weights of the arcs of an AH-graph are defined as cost

intervals ([30]). The set of cost intervals is a partial-ordered

set which elements are numeric intervals defined as

ii � �iÿ; i��;where i� � iÿ � 0; i� 6� 1:
The addition operation in cost intervals is defined as

ii� jj � �iÿ � jÿ; i� � j��.
Given a superarc a�ns; ng; t� 2 Li�1, its cost is deduced

from the following expression:

w�a�ns; ng; t�� � ^�
�
w�a�nr; nt; t��

: a�nr; nt; t� 2 �sia�a�ns; ng; t���ÿ1

�
:

The symbol ^� represents the propagation operator. It
yields the minimum-width cost interval that contains a
given set of cost intervals. Thus, the weight of a superarc is
the propagation of the weights of its subarcs. This provides
an easy and efficient method of implementing the abstrac-
tion of weights of the arcs through the hierarchy. Notice
that this procedure generates weights for superarcs that are
indistinguishable (incomparable) from the weights of the
subarcs.

Nonstructural information is represented by annotations
both in nodes and arcs of the AH-graph. The number of
annotations a node or arc can store is not restricted. The
annotation function yields a selected annotation of a given
node or arc. The use of annotations in mobile robotics can
be found in [9], [10], [24], and [28].

2.2 Formalization of a Multihierarchical Graph
Model

Broadly speaking, a Multi-AH-graph is a set of AH-graphs
possibly sharing some hierarchical levels. A Multi-AH-
graph can also be seen as a DAG4 of hierarchical levels, that is,
a graph whose nodes represent hierarchical levels and arcs
represent the abstraction functions.

Formally, a Multi-AH-graph is a quadruple
�AHG; c; k; annot�, where AHG is the set of hierarchies
(AH-graphs) of the Multi-AH-graph, c the arc-cost func-
tion, k the arc-type function, and annot the annotation
function. Functions c, k, and annot are the same for all the
AH-graphs of the Multi-AH-graph. Their definitions have
been given previously in the formalization of the AH-graph
model.

AHG is a set AHG � fL�0�; L�1�; . . . ; L�nÿ 1�g. The ith
hierarchy L�i� is essentially an AH-graph defined as a set of
hierarchical levels: L�i� � fL�i�0; L�i�1; . . . ; L�i�jL�i�jÿ1g.
From now on, the term hierarchy will refer to an AH-
graph belonging to a Multi-AH-graph.

Extending the notation given in the previous section, the
jth hierarchical level of the ith hierarchy of a Multi-AH-graph
is formally defined as a quadruple �N�i�j; A�i�j; s�i�jn; s�i�ja�,
where N�i�j is the set of nodes of the hierarchical level, A�i�j
the set of arcs, and s�i�jn and s�i�ja the abstraction functions for
nodes and arcs of that level, respectively.

In a Multi-AH-graph, any hierarchical level can be

shared by a number of hierarchies. For example, if

L�2�0 � L�4�0, that is, if hierarchies #2 and #4 share their

lowest hierarchical levels, the nodes and arcs of this level can

be abstracted in two ways: using hierarchy #2 (s�2�0n and s�2�0a)
or using hierarchy #4 (s�4�0n and s�4�0a). If, again,

L�2�1 � L�4�1, then nodes and arcs of the next higher level

can also be abstracted in two ways; otherwise, each

hierarchy will abstract the same elements separately.

2.2.1 Multihierarchies

In general, the hierarchical levels of a Multi-AH-graph and
the abstraction links between them define a DAG. Other
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Fig. 2. Two examples of AH-graphs of four and three hierarchical levels,
respectively. The AH-graph on the left side illustrates the behavior of the
abstraction function for nodes from the lower to the higher hierarchical
levels. The AH-graph on the right illustrates the behavior of the
abstraction function for arcs (see the text).

3. The notation used for arcs in AH-graphs is a�ns; ng; t�, where ns and ng
are the start and goal nodes of the arc, respectively, and t is its type
(typically, a natural number). 4. Directed Acyclic multiGraph.



structures may appear, such as sets of sequences, trees, or
forests, but all of them can be considered special cases of
DAGs. The DAG induced by a given Multi-AH-graph M is
denoted '�M�. From now on, this DAG will be called a
multiple hierarchy. An example of multiple hierarchy is
shown in Fig. 3.

A multiple hierarchy '�M� is a plain directed, acyclic
multigraph �N;A; k�, where N is the set of all hierarchical
levels of the AH-graphs contained into M, A a set of
abstraction links, and k the abstraction-link-type function.

The nodes of '�M� correspond to the hierarchical levels
of the AH-graphs of M. A hierarchical level which is the
lowest level in some hierarchy is called a ground
hierarchical level of the multiple hierarchy. A hierarchical
level which is the highest one in some hierarchy is called a
universal hierarchical level.

The arcs of '�M� are abstraction links. An abstraction
link between two hierarchical levels L�i�u and L�i�u�1 is
denoted as a�L�i�u; L�i�u�1; i�. It represents all the values of
s�i�un and s�i�ua . There is a different abstraction link for each
hierarchy (AH-graph) of M to which both hierarchical levels
belong (this is what leads to the multigraph shape of '�M�).
Each abstraction link has an associated type that equals the
hierarchy to which both levels belong. For example, the
type of a�L�i�u; L�i�u�1; i� is i; the type of a�L�j�v; L�j�v�1; j�
is j. These values are returned by the abstraction-link-type
function k.

3 HIERARCHICAL PATH SEARCH IN AH-GRAPHS

Hierarchical path search in hierarchical graphs consists of
finding a path connecting a pair of nodes, using hierarchical
information for reducing the computational cost of conven-
tional plain search. The pair of nodes defines the search
problem and any path that connects them, a solution for the
search problem. A search problem is denoted �ns; ng�,
where ns is the start node and ng the goal node. From the
definition of a hierarchical graph, both of them must belong
to the same hierarchical level.5 The total cost of a path
P �ns; ng� is defined as the sum of the costs of all its arcs and
denoted jP �ns; ng�j. If there is no path between the pair of

nodes �ns; ng� with a total cost smaller than jP �ns; ng�j, then
P �ns; ng� is said to be optimal.

The set of hierarchical levels involved in a search
problem is called the pyramid of search for the problem.
In order to obtain the pyramid of search, both start and
goal nodes must be abstracted until they coincide in a
common supernode.6 The pair of sequences of abstracted
nodes are the contour of the pyramid of search. An example
of pyramid of search and its contour is shown in Fig. 4.

3.1 Hierarchical Path Search Algorithm

The approach used in our work for hierarchical path search
in AH-graphs (which is used in Multi-AH-graphs too, as
shown later on) is an instance of the classic refinement
method ([15]). This method can yield the best results in
computational cost and under certain restrictions, also good
optimality ratios of the paths that are found. The general
scheme of a classic refinement algorithm is shown in
pseudocode in Fig. 5.

This scheme does not guarantee obtaining optimal paths
when the cost of traversing nodes at a nonground level
Li�i > 0� is discarded. There are three possible ways of
addressing this suboptimality problem:

. First, by materializing the costs of Li refining the
nodes of Li ([19]), that is, by storing in the nodes of
Li the costs of traversing their subgraphs at Liÿ1.

. Second, by identifying and using only those hier-
archies which guarantee that the optimal path(s) will
not be discarded ([7]).

. Third, by using a searching scheme different from
the classic refinement method described above, e.g.,
heuristic or mixed ([15], [31], [16]).

Since obtaining optimal paths is beyond the scope of
this paper, these approaches are not addressed here. For
an in-depth analysis of the cases where the classic
refinement method guarantees obtaining optimal paths,
see [7].
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Fig. 3. A typical example of multiple hierarchy. In this directed acyclic
graph (DAG), hierarchical levels are represented by rectangular boxes.
The thick arrows represent bundles of abstraction links. Level A is the
only ground hierarchical level of this multiple hierarchy and level G the
only universal level.

Fig. 4. A search problem �ns; ng� is solved hierarchically by solving its
abstraction at higher hierarchical levels. In the figure, a pyramid of
search is shown for the problem. When a problem is abstracted three
times, both nodes become the same and, therefore, this is the end of the
pyramid. The pyramid consists of all the hierarchical levels involved in
the abstraction chains of the nodes of the problem. The contour of the
pyramid is shown enclosed within ellipses. The nodes of the contour are
gray shaded.

5. Otherwise, no path exists that connects them.

6. It is assumed that there is a common supernode (ancesstor) for any
pair of nodes. By default, a universal level which contains a supernode that
is an ancesstor for any other node of the AH-graph is assumed to exist.



The hierarchical path search algorithm we have imple-
mented stores incomplete abstract paths at each of the
hierarchical levels of the hierarchy. When any of these
portions becomes a complete abstract path, an abstract
solution can be provided. If such a complete path is
obtained at the ground level (the one where the search
problem is defined), the final solution is found. The
utility of the abstract solutions in real-time implementa-
tions is clear: It is not necessary to wait for the complete,
final path for using the result. Similar approaches can be
found in [6], [31].

When backtracking appears (no path is found at a given
stage of the search), the hierarchical path search algorithm
looks for another possible solution. For implementing that,
a modified plain-graph path search algorithm is included in
the hierarchical searching method. That algorithm does not
return a single path (typically, the optimal path) connecting
two nodes within a cluster, but it is able to deliver several
paths ordered with respect to their total costs.7

3.2 Goodness of Hierarchical Path Search

When hierarchical path search is to be compared to other
techniques, an appropriate measurement of its goodness
must be defined. Two factors are essential for this purpose:
the computational cost of the search and the optimality
ratios of the paths obtained by the search. The optimality
ratio of a path is defined as follows: Let �ns; ng� be the
search problem; let P �ns; ng� be the path which optimality
is to be calculated; let P ��ns; ng� be an optimal path
connecting both nodes. The optimality ratio of the path is
defined as

opt�P �ns; ng�� � jP
��ns; ng�j
jP �ns; ng�j 2 �0; 1�:

In [7], [13], mathematical and graphical estimates for the
computational cost and optimality of paths of hierarchical
path search can be found. The main conclusion is that,
although they are symbolically unsolvable expressions, the
computational cost and optimality of paths are highly
influenced by the size of the clusters8 of the hierarchy. If

those clusters are large, the plain-graph path search
performed within the clusters by the hierarchical path
search algorithm has a high computational cost. However,
in that case, the plain-graph path search finds paths that are
close to the optimal ones (the optimal ones are found if the
cluster comprises all the nodes of the hierarchical level).

Therefore, the computational cost of hierarchical path

search tends to be lower (better) as the size of the clusters in
the hierarchy decreases. The optimality of the paths found

by hierarchical path search, on the contrary, tends to

increase (better) as the size of the clusters increases. The
goodness of a hierarchy for hierarchical path search can be

defined as a combination of both factors.

4 HIERARCHICAL PATH SEARCH IN

MULTI-AH-GRAPHS

Solving a single search problem in a multiple hierarchy can
be carried out by choosing the most appropriate hierarchy

for solving the problem and then using the algorithm

described in Section 3.1. This approach is studied in
Section 4.1. However, this is not the only advantage of

using multiple hierarchies for hierarchical path search.
In Section 4.2, it is described how a given set of search

problems can be solved by using a multiple hierarchy. This
can reduce the computational cost of solving the search
problems with respect to both single-hierarchy models and
nonhierarchical models.

In addition, Section 4.3 presents an example of the utility
of a multiple hierarchy for representing the results of
hierarchical path search in a variety of ways.

4.1 Solving a Single Search Problem in a
Multihierarchy

The main concern in this case is which hierarchy to select
for running the hierarchical search algorithm described
previously. The method for selecting the best hierarchy
must evaluate the goodness of the hierarchy for solving the
search problem. This evaluation should not assume a high
computational cost, although it should yield a precise
enough estimate of goodness. In addition, since different
factors are involved in the goodness of a hierarchy (it can be
good with respect to computational cost, or to the
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Fig. 5. Recursive algorithm for hierarchical path search in AH-graphs based on classic refinement.

7. This is an implementation of Yen's algorithm ([32]) for obtaining
the k-shortest paths between a pair of nodes in a plain graph.

8. Remember from Section 2.1 that a cluster in a hierarchy is a set of
nodes corresponding to the subgraph of a given abstract node.



optimality of paths that are obtained, or to perhaps other

factors, or a combination of them), it is interesting to

consider the possibility of varying the importance of each of

these factors.
We present an algorithm that follows these guidelines. It

is based on the results mentioned in Section 3.2 about the

goodness of hierarchical path search. As it is demonstrated

there and in other well-known works ([20], [13]), the

computational cost and optimality of hierarchical path

search are directly influenced by the size of the clusters of

the hierarchy.
Our algorithm defines the goodness of a hierarchy in

terms of both the computational cost of the search in that

hierarchy and the optimality of paths obtained by that

search. Estimates of these factors are obtained by functions

of the average size of the clusters involved in the pyramid

of search of the search problem. The computational cost

estimate � bcc�h; p�� is taken as proportional to the square of

the average size of those clusters (since the plain-graph path

search performed within a cluster with x nodes is O�x2�),
while the optimality of paths estimate � bop�h; p�� is taken as

proportional to the size of the cluster (x). A weighted linear

expression combines them in order to obtain a single value

for goodness9

goodness�h; p� � w: bcc�h; p� � �1ÿ w�: bop�h; p�; w 2 �0; 1�:
The hierarchy h with the greatest value of goodness for a

given search problem p is the one selected for solving it.

This method allows us not only to select the hierarchy that

leads to the lowest computational cost or the highest

optimality of paths, but also to select a hierarchy that

optimizes a combination of both. It has also yielded
goodness estimates close to the real goodness values.

4.1.1 Experiments

The method for selecting the best hierarchy for solving a
search problem has been tested with a multiple hierarchy
of 10 hierarchies constructed randomly (by the automatic
multiple hierarchy constructor presented in [7]) on a
ground graph with 1,000 nodes.

In order to simulate a real structured environment, for
example, a building containing several rooms or the map of
a country divided into regions or provinces, a particular
structure has been imposed on the ground graph. Its nodes
are conceptually grouped into 100 sets of 10 nodes each, the
density of arcs within a set (internal arcs) being of 50 percent
(there is a probability of 50 percent that an arc connects two
nodes within a set), and of �1::3� for arcs connecting
different sets (external arcs) (a minimum of one arc
connecting two given sets, a maximum of three). Similar
types of graphs can be found in robotics and GIS
applications.

Fig. 6 presents a comparison of different techniques for
solving 1,000 search problems with this multiple hierarchy.
These techniques include an A* algorithm that only runs at
the ground hierarchical level of the multiple hierarchy (it
does not use the multiple hierarchy), the hierarchical path
search algorithm described in Section 3.1 that has been
tested on some hierarchies of the multiple hierarchy, and
the selection of the best hierarchy algorithm added to the
hierarchical path algorithm in order to choose the best
hierarchy for solving the problems. All the computational
costs10 are measured by the number of arcs that are
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Fig. 6. Computational costs of solving 1,000 search problems in the multiple hierarchy mentioned in the text. (a) A* algorithm. This yields the worst
results since it uses no hierarchical information. (b) Randomly choosing a hierarchy for solving each problem. This serves for comparison with other
techniques. If a method for selecting a hierarchy for each search problem gives a better (lower) computational cost than this, it is worthwhile. (c)
Choosing by visual inspection a hierarchy that seems to yield the best computational costs (it has small clusters). (d) Choosing by visual inspection a
hierarchy that seems to yield the worst computational costs (it has large clusters). (e), (f), and (g) Choosing hierarchies by the method explained in
Section 4.1 for a weight of computational cost with respect to optimality of paths of 100 percent, 95 percent, and 90 percent, respectively. The large
variation in the results by the small variation in the weight (5 percent in each test) is due to the discrete nature of the multiple hierarchy.

9. Since the average size of the clusters of the hierarchy can be calculated
for each hierarchical level when the hierarchy is constructed, calculating the
goodness of a hierarchy is O�d�, where d is the hierarchy's depth.

10. The computational cost of selecting the hierarchy for each search
problem is not shown in the figure since it is quite small with respect to the
computational cost of the search. This hierarchy selection cost is about 50
units (measured in the number of hierarchical levels explored).



explored during the search. Fig. 7 shows the total costs of
the resulting paths under the same comparison.

As shown in the figures, the selection of the best

hierarchy by our algorithm can obtain up to 67.5 percent

(on average) of computational cost reduction with respect to

choosing hierarchies randomly, up to 88.5 percent with

respect to choosing the worst hierarchy, and up to

88.8 percent with respect to the A* algorithm. In addition,

it allows us to weight the computational cost factor by less

than 100 percent with respect to the optimality of paths,

selecting hierarchies that, although they are not the best

ones for the computational cost, obtain shorter paths. The

reduction in the total costs of the paths when the weight for

the computational cost is 0 percent and the weight for path

optimality is 100 percent is up to 33.75 percent (on average)

with respect to choosing hierarchies randomly, and almost

reaches the total costs obtained by the A* algorithm

(6.89 average total cost versus 6.86 obtained by A*).

4.2 Solving Multiple Search Problems in a
Multihierarchy

A multiple search problem is defined in a Multi-AH-graph

model as a set f�n1
s; n

1
g�; �n2

s; n
2
g�; . . . ; �nps; npg�g of p different

search problems, where �nis; nig� is the ith search problem,

consisting of start node nis and goal node nig, both of them

belonging to the same hierarchical level.
A multiple search problem in a Multi-AH-graph can be

solved in three different ways:

. Solving each problem separately and sequentially,
possibly using the approach described in Section 4.1.

. Solving all the problems in parallel, without taking
into account the possible dependencies between them.

. By considering those abstract portions of the
pyramids of search of the problems that are shared,
solving part of the problems separately and another
part just once for subsets of the problems. This
method has been called SAC (Shared Abstract
Concepts method).

The first method requires no special analysis. The second
one is not addressed in this paper, although an implemen-
tation in a parallel machine should not be difficult. The
third one consists of taking advantage of the cases where
the pyramids of search of several problems are partially
shared. In those cases, the shared portions of the pyramids
only need to be solved once, reducing the computational
cost of solving the multiple search problem with respect to
solving it sequentially.

The SAC procedure may reduce the computational cost
of solving the multiple problem from order p to order 1 in
the best (ideal) case, obtaining results in a conventional
single-processor computer that are close to a parallel
implementation. The method needs to carry out a previous
analysis of the multiple search problem for finding the
shared portions of the pyramids of search, as described in
the following paragraphs.

A search problem is associated to a pyramid of search,
which is derived from a given hierarchy. When more than a
hierarchy is available in the model, the search problem can
be solved using different pyramids of search, with different
depths (number of hierarchical levels), and a different
number of nodes at each level. These parameters influence
the computational cost and optimality of searching since
both the number of hierarchical levels and the number of
nodes of each level are influenced in turn by the size of the
clusters of the hierarchy. We assume that a given hierarchy
is previously assigned to each search problem by some
specified method (i.e., the best for a given purpose:
computational cost reduction or increased path optimality).

A given assignment of hierarchies to search problems
may lead to the appeareance of shared portions of the
pyramids of search or not. In the positive case, the abstract
representations of the start and goal nodes of more than one
search problem coincide at a certain hierarchical level. This
level is called a common hierarchical level of the assignment
(see Fig. 8). The existence of that kind of level is required in
order to use the SAC method for solving multiple search
problems.

Thus, the solution of the multiple search problem can be
obtained following these stages:
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Fig. 7. Total costs of the paths obtained by the same experiments as in Fig. 6. In this case, the A* algorithm yields the best results since it uses all the
nodes of the ground graph (without refining higher hierarchical levels). As it is shown, when the weight for the optimality of paths is set to 100 percent
with respect to the computational cost, the algorithm for selection of hierarchies finds hierarchies that are even better than those found by visual
inspection. When the weight is only 5 or 10 percent, the total costs of the paths are close to the worst.



1. Defining the shared portions of the pyramids of
search.

2. Solving each shared portion only once for all the
involved search problems and solving each non-
shared portion once for each search problem.

Notice that the first stage is needed in order to decide
whether the SAC method can be applied. The computa-
tional cost of this precalculation can be quite small if the
hierarchical levels that are common for several hierarchies
are detected when the multiple hierarchy is constructed. In
that case, only an exploration of those hierarchical levels for
determining whether the search problems are abstracted to
the same pair of nodes is required and this isO�r�, where r is
the number of hierarchical levels of the multiple hierarchy.

4.2.1 Experiments

The multihierarchy being used is the same as in the

experiments in Section 4.1. However, the procedure for

assigning a hierarchy to each search problem has been

designed specifically for the SAC method. In order to

describe this special assignment, the concept of ground

cluster must be introduced (see Fig. 9).
If the first hierarchical level of a hierarchy is the one

abstracted directly from the ground hierarchical level, then
a ground cluster is any cluster of nodes (subgraph) that the
first hierarchical level of a hierarchy defines on the ground
hierarchical level. The importance of the ground clusters
comes from the fact that, at the ground level, the search
problems are all different and, therefore, to refine the
abstract paths from the first hierarchical levels to the
ground level of the hierarchy, the hierarchical path search
must be performed separately for each problem. In other
words, the SAC method cannot reduce the computational
cost of refining the problems between the first and the
ground hierarchical levels of the hierarchies.

This has an important consequence: If there are ground
clusters that are large, the computational cost of refining the
problems between the first and the ground hierarchical
levels of the hierarchies can be very high in comparison to
the reduction obtained by the SAC method at higher levels
of the pyramids of search (notice that this effect is even
worse if we consider that the ground hierarchical level is

the one with more nodes). Experimentally, we have found
that this effect can make the reduction of computational
cost at higher hierarchical levels insignificant, making the
SAC method useless. However, if the size of the ground
clusters is kept below a certain small size, the SAC
method obtains quite good results.

Therefore, the hierarchy that is assigned to a given search
problem is the one with its ground clusters smaller than a
predetermined (small) size. In our experiments, we have
obtained bad results as long as the maximum size of the
ground clusters is above 100 nodes.

The number of cases where the SAC method can be used
is difficult to determine since they depend closely on the
structure of the multiple hierarchy (the number of common
hierarchical levels, the maximum size of the ground
clusters). Nevertheless, since the algorithm which decides
whether the SAC is applicable is not computationally
expensive, then this algorithm can be executed whenever
a number of search problems have to be solved and, if
possible, the SAC method used. In the experiments we have
carried out, we have found that, with a maximum size for the
ground clusters of four nodes, reductions of up to 25 percent
of the computational cost have been achieved with respect to
solving the problems sequentially. The computational cost of
detecting whether the SAC method is applicable is only about
1 percent of the cost of solving the problems sequentially.

4.3 Multiple Representations in Multihierarchy

Yet another advantage of using a multihierarchy is that the
information can be represented by using different systems
of concepts (one for each hierarchy). In the following, a
robotic example illustrates this use of multiple hierarchies.

The example consists of an environment comprising a
small building with five rooms: a laboratory, two offices, a
corridor, and a library. An office-delivery robot is in charge
of taking small objects from one place to another inside the
building. By exploration of the environment, it has been able
to identify distinctive places and generate the basic topology
([21], [24]), that is, the plain graph corresponding to the
ground hierarchical level of the Multi-AH-graph (see Fig. 10).

Some places are service points, that is, locations where the
robot can take objects. Other places are docking stations:
locations where it can connect to the computer network of
the building to receive new commands or to connect to a
recharging system to recharge its batteries. The robot
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Fig. 9. Ground clusters defined on level L0 by the nodes of level L1 (they

are shown as dark gray shaded). The clusters of nodes defined by L2

and L1 are not ground clusters.

Fig. 8. This figure shows an assignment of pyramids of search to a
multiple search problem consisting of two search problems: �n1

s ; n
1
g� and

�n2
s; n

2
g�. The pyramid of the first problem consists of nodes either

marked with ª1º or are gray or black shaded. The pyramid of the second
problem consists of nodes either marked with ª2º or are gray or black
shaded. Gray and black shaded nodes are common to both pyramids.
Black shaded nodes belong to a common hierarchical level of this
particular assignment.



maintains a statistic database holding information about the
use of each service area and each service point.

A Multi-AH-graph is constructed using the ground
topology (automatic construction of multiple hierarchies is
addressed in [7]). The following hierarchies are built: a
descriptive hierarchy, a docking hierarchy, and a service
hierarchy. The descriptive hierarchy is useful for describing
routes in a user-friendly fashion to human operators, who
understand the building as a set of rooms. The docking
hierarchy is useful when forming docking areas. The service
hierarchy forms a hierarchy of service areas containing the
different service points of the building, useful for main-
taining the statistical information for the delivery system.
The ground hierarchical level and the universal level are the
only shared levels between the three hierarchies. The three
hierarchies are shown in Figs. 11a, 11b, and 11c.

Suppose that the robot is located close to the desk of
office 1, at distinctive place #9. It receives a command that
requires it to go to the library to take a book, that is, to go to
distinctive place #11. Thus, the search problem is defined by
�n9; n11�. The set of hierarchies available for abstracting both
start and goal nodes is the set of all the hierarchies existing
in the Multi-AH-graph since both nodes belong to a
hierarchical level shared by all the hierarchies. We will
use the service hierarchy to solve the problem since it seems
better than the others for reducing the computational cost
(the average size of its clusters is smaller).

After performing hierarchical search, a solution for the
search problem at the ground level is n9; n15; n4; n3; n17; n11.
Its representation at each hierarchy is:11

. Solution described in the descriptive hierarchy
(useful for communication with human operators):

. Solution described in the docking hierarchy (useful
for energy recharging):

. Solution described in the service hierarchy (useful
for statistic purposes):

5 CONCLUSIONS

In this work, the problem of hierarchical path search has
been explored beyond existing approaches, by using

multiple hierarchies in the graph model where the search
is performed. The paper has presented a formal model of a

multihierarchical graph and has shown the advantages of
using multihierarchical models rather than single-hierarchy

or nonhierarchical ones. These advantages include their
better adaptation to a wider range of search problems, their

efficiency in solving multiple search problems without
using parallelization techniques, and their suitability to

express search results on different systems of concepts
(different hierarchies of abstraction). Some examples of

these features have been presented and the use of multiple
hierarchies for solving multiple search problems has been

addressed in detail. The results have been described under

the Multi-AH-graph model, but their adaptation to different
multihierarchical models should not be difficult.

In any situation where searching for paths that connect
different elements is required, the adaptive capability
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11. The supernode nEnvironment is omitted for simplicity.

Fig. 10. (a) Environment where an office-delivery robot system performs several operations, such as taking small objects from one service point to

another or connecting to a docking station to receive new commands or recharge its battery. (b) Toplogy of distinctive places identified by exploring

the enviroment. This is the lowest hierarchical level of the Multi-AH-graph.
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Fig. 11. Multi-AH-graph for the environment of Fig. 10. (a) L(0). Descriptive hierarchy for communications from/to human operators. (b) L(1).

Hierarchy of docking points. (c) L(2). Hierarchy of service points. Notice that any subgraph in the figures is connected.



exhibited by multihierarchical models is important. The

multihierarchical model presented here and the hierarch-

ical path search algorithm have been completely

implemented ([7]).
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