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Abstract. We are interested in the problem of how an agent organizes
its sensorimotor experiences in order to create a spatial representation.
Our approach to solve this problem is the Spatial Semantic Hierarchy
(SSH), an ontological hierarchy of representations for knowledge of large-
scale space. At the SSH topological level, space is represented by places
and connectivity relationships among them. Places are arranged into
paths so that the topological representation looks like the street net-
work of a city. Grouping places into regions allows an agent to reason
e�ciently about its spatial knowledge. Regions can be organized in a
hierarchical structure suitable for hierarchical planning and human-level
interface. In this paper we show how a hierarchy of regions can be auto-
matically created by an agent. We extend the SSH axiomatic theory to
include regions as �rst order objects at the SSH topological level. Based
on this formalization, an implementation using Annotated Hierarchical
graphs (AH-graphs) is proposed. The AH-graph model is chosen for its
e�ciency to perform basic operations like path planning, its facility to
integrate information needed by di�erent agent's tasks, and because it
provides a large indexed database of knowledge about the world with a
friendly ow of information from and to human operators.
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1 Introduction

The basic problem we are interested in solving is how an agent creates its spa-
tial representation from its sensorimotor experiences. Our approach to solve this
problem is the Spatial Semantic Hierarchy (SSH) [24, 25, 23]. The SSH is a
computational theory of the cognitive map [35, 22]. It is an ontological hierarchy,
where each level of the hierarchy has its own ontology abstracting the ontology
of the levels below it. It comprises four levels: control, causal, topological and
metrical. Two fundamental ontological distinctions are embedded in the SSH.
First, the continuous world of the control level is abstracted to a discrete sym-
bolic representation at the causal and topological levels, to which the metrical
level adds continuous properties. Second, the egocentric world of the control and
causal levels is abstracted to the world-centered ontologies of the topological and
metrical levels.

In this paper we are primarily concerned with the SSH topological level. At
this level, space is represented by places and connectivity relationships among
them. Places are arranged into paths so that the topological map1 looks like the
street network of a city. Places can be grouped into regions, which in turn can
be organized into a hierarchy. This hierarchy of regions is useful for planning,
navigation and human-level interface of autonomous robots. Hierarchical plan-
ning methods as described in [22, 32, 4, 11] are supported by this representation.

Research on hierarchical representations of space has become an important
topic for di�erent disciplines: GIS [19], graph theory [17], planning [37], robotics
[25, 9, 11], etc.. Several hierarchical representations of the topology of the en-
vironment have been proposed. A complete model designed for the study of
the computational e�ciency and suitability of di�erent robotics operations is
the Annotated Hierarchical Graph (AH-graph) model [10, 11]. The AH-graph
model represents di�erent types of relationships between elements of the world,
including containment relationships which lead to a hierarchical representation.
It can also support the inclusion of other types of information: geometrical, phys-
ical, procedural, etc., as annotations on the topology. When it is used to model
large-scale space, the result is a representation of the environment with several
levels of detail that reduces the computational cost of basic operations like path
search [11], and provides a friendly ow of information from and to human op-
erators [10].

In this paper we extend the SSH axiomatic theory to include regions as �rst
order objects at the SSH topological level. The resulting representation resem-
bles the one described in the SSH's predecesor, the TOUR model [22], and maps
well into the AH-graph model. Accordingly, we present an implementation of
the SSH topological model based on AH-graphs. Finally, we explore di�erent

1 We use the term topological map to refer to the SSH topological level.



automatic methods to de�ne regions.

The paper is organized as follows. Sections 2 and 3 describe the SSH and
formally de�ne the hierarchy of regions. Section 4 de�nes the AH-graph model.
Section 5 shows how the AH-graph model is used to implement the SSH topo-
logical and metrical levels. Section 6 analyzes the problem of automatically con-
structing hierarchies from a plain representation of space. Finally, we present
the conclusions of this work.

2 The Spatial Semantic Hierarchy

The Spatial Semantic Hierarchy (SSH) [24, 25, 23] is an ontological hierarchy
of representations for knowledge of large-scale space.2 An ontological hierarchy
shows how multiple representations for the same kind of knowledge can coexist.
Each level of the hierarchy has its own ontology (the set of objects and relations
it uses for describing the world) and its own set of inference and problem-solving
methods. The objects, relations, and assumptions required by each level are
provided by those below it. The SSH abstracts the structure of an agent's spatial
knowledge in a way that is relatively independent of its sensorimotor apparatus
and the environment within which it moves. Next we present the SSH's levels:

{ At the control level of the hierarchy, the ontology is an egocentric senso-
rimotor one, without knowledge of �xed objects or places in an external
environment. A distinctive state is de�ned as the local maximum found by
a hill-climbing control strategy, climbing the gradient of a selected feature,
or distinctiveness measure. Trajectory-following control laws [26] take the
robot from one distinctive state to the neighborhood of the next.

{ The ontology at the SSH causal level consists of views, distinctive states, ac-
tions and schemas. A view is a description of the sensory input obtained at a
locally distinctive state. An action denotes a sequence of one or more control
laws. A schema is a tuple h(V; dp); A; (V 0; dq)i representing the (temporally
extended) event in which the robot takes a particular action A, starting
with view V at the distinctive state dp, and terminating with view V 0 at
distinctive state dq.

{ At the topological level of the hierarchy, the ontology consists of places, paths,
and regions, with connectivity and containment relations. At the topological
level, the spatial representation posits the minimal set of paths and places
consistent with the set of schemas.3 A place corresponds to a set of distinc-
tive states linked by turn actions. A path is a structure that includes an
ordered sequence of places connected by travel actions without turns. Paths

2 In large-scale space the structure of the environment is revealed by integrating local
observations over time, rather than being perceived from a single vantage point.

3 In order to formally state these minimality conditions, the causal and topological
levels are formalized as circumscriptive theories [36, 29].



are used in the cognitive map to describe linear geographical structures such
as streets. Places and paths de�ne a topological network which can be used
to guide exploration of new environments and to solve new route-�nding
problems.4 Using the network representation, navigation among distinctive
states is not dependent on the accuracy, or even the existence, of metrical
knowledge of the environment.

{ At the metrical level of the hierarchy, the ontology for places, paths, and
sensory features is extended to include metrical properties such as distance,
direction, shape, etc.. Geometrical features are extracted from sensory input,
and represented as annotations on the places and paths of the topological
network.

In this paper we formally state the basic properties of regions. We will then
propose an implementation using AH-graphs. Next we de�ne some of the predi-
cates we use to represent the relationships among objects in the SSH.

Places on a path are arranged into a linear order. Distance between places is
explicitly de�ned only for places on a same path. Relative orientation between
places is derived from the angle between paths at a common place. We use the
following predicates to represent this information:

1. at(ds; p) : distinctive state ds is at the topological place p.5

2. path order(pa; p; q) : place p is before place q in path pa. The order of places
on a path is a total linear order.

3. path distance(pa; p; q; d) : d is the distance between place p and place q

according to path pa.6

4. path angle(p; pa; pa0; a) : a is the angle from path pa to path pa0 at place p.

Regions are sets of places. The containment relations permit a particular
place to have a partially ordered set of containing regions, rather than simply
a nested sequence. A downward mapping, going from more abstract to more
speci�c descriptions of places is necessary in order to allow information to be
stated at one level of abstraction and used at another.

3 Formalizing Regions at the SSH topological level

Regions are sets of places. Regions themselves can be grouped to form new
regions. We extend the SSH topological level relations by adding the following
predicates (and abbreviations):

4 Notice that although the topological map has a graph like structure, a path in the
graph theory sense is not necessarily a SSH topological path.

5 See the SSH's control and causal levels.
6 Currently, we represent the uncertainty associated with distance between places by
closed intervals of real numbers. Other representations for uncertainty are possible,
for example, probability distributions.



1. in region(p; r) : place p is in place (region) r.
2. is region(r) stands for the formula 9p in region(p; r).

By default a place is not a region. Two regions are equal whenever they
represent the same set of places. Two places are equal if they represent the same
set of distinctive states.Accordingly, equality between regions must satisfy the
following axioms: 7

:is region(p) ^ :is region(q)! p = q � fds : at(ds; p)g = fds : at(ds; q)g (1)

is region(p) _ is region(q)! (2)

p = q � fs : :is region(s); in region
�(s; p)g = fs : :is region(s); in region

�(s; q)g

De�ning paths among regions. Once places have been arranged into regions,
we must de�ne paths among regions. We do so by lifting the order relation
among places in a path to their corresponding regions. We introduce the following
relation between paths:

1. lifted to(pa; pa1): path pa1 is created by lifting path pa.

The next axiom de�nes the relationship between lifted paths.

lifted to(pa; pa1) ^ path order(pa; p; q) ^ in region(p; rp) ^ (3)

in region(q; rq) ^ rp 6= rq ! path order(pa1; rp; rq)

We require regions to be \path-convex" sets of places, that is,

path order(pa; p; q) ^ in region(p; r) ^ in region(q; r) ^ (4)

path order(pa; p; s) ^ path order(pa; s; q)! in region(s; r)

The next example illustrates how Axiom 3 works and why we require regions
to be path-convex.

Example 1.

Consider the path pa depicted in Figure 1a. Suppose we have the regions A =
fa; bg, C = fcg and D = fd; e; fg. Let's consider how to lift path pa to path pa1.
Since place a is before place c in path pa (i.e. path order(pa; a; c) is true) then,
region A is before region C in path pa1 (i.e. path order(pa1; A; C) is true).

Notice that since a and b belong to the same region A, it is not the case that
path order(pa1; A;A), although it is the case that path order(pa; a; b).

Consider a similar scenario as above. Suppose we have two regions, A =
fa; b; d; e; fg and C = fcg (see Figure 1b). Suppose we lift path pa to path pa1.

7 in region� denotes the transitive closure of in region.
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Fig. 1. (a) Lifting paths. Path pa is lifted to path pa1. The order of places in path pa

de�ned the order of their corresponding regions in path pa1. (b) Regions have to be

\path-convex" in order for our path lifting method to work (see text).

Since place a is before place c in path pa, region A is before region C in path
pa1. Similarly, since place c is before place d in path pa, region C is before place
A in path pa1. Since the order among places in a path is not symmetrical, we
will have a contradiction. f end of example g

By requiring that regions be connected sets of places, the de�nitions above
guaranty that any topological path among regions can be translated to actual
behaviors at the SSH control level. This in turn implies that we can use hierar-
chical planning techniques for robot navigation.

De�ning distance between regions. At the SSH metrical level we must
de�ne the distance and orientation between regions. These could be de�ned in
di�erent ways. For example, for each region a place is chosen as its representative,
and orientation among regions is then de�ned as orientation among representa-
tives. In the same vein, it is possible to de�ne \the center of mass" of a region,
and then de�ne the orientation among regions as the orientation among their
centers of mass.

In the current implementation of the SSH we represent distances by closed
intervals of real positive numbers. The distance between two regions is the min-
imum interval containing all distances between any two places in the regions.
Formally,8

path order(pa1; r1; r2) ^

a = minfa0 : 9pa; p; q [lifted to(pa; pa1); in region(p; r1); in region(q; r2);

path distance(pa; p; q; [a0; b0])
�
g ^

b = minfb0 : 9pa; p; q [lifted to(pa; pa1); in region(p; r1); in region(q; r2); (5)

path distance(pa; p; q; [a0; b0])
�
g

! path distance(pa1; r1; r2; [a; b])

8 Notation: We assume all our formulas universally quanti�ed. Whenever a formula �

is a conjunction, � = C1 ^ : : : ^ Cn we will replace ^ by ; and write C1; : : : ; Cn.



De�ning orientation between regions. In order to de�ne the angle between
paths at a region, at the SSH metrical level we associate a frame of reference
with a region. Each place in the region gets a location with respect to this frame
of reference.9 In addition, for each path pa and place p in pa we associate a
heading (i.e. angle) indicating the direction of pa at p.10 We use the following
predicates at the SSH metrical level:

1. frame of reference(r; f) : f is a frame of reference for region r.
2. path heading(pa; p; f; v) : v is the heading of path pa at place p w.r.t. the

frame of reference f .

At the SSH topological level, we de�ne the places at which the path enters

or leaves a region. These places de�ne the \boundary" of the region and are
important when creating a hierarchical plan. We use the following relations:

1. place enter(pa; r; p) : p is a place at which the path pa enters region r.
2. path leaves(pa; r; p) : p is a place at which the path pa leaves region r.

We explicitly de�ne the predicates above as follows:

place enter(pa; r; p)
def
� (6)

in region(p; r) ^ 8q fpath order(pa; q; p)! :in region(q; r)g

place leaves(pa; r; p)
def
� (7)

in region(p; r) ^ 8q fpath order(pa; p; q)! :in region(q; r)g

Finally, the angle between paths at a region is de�ned as the directed angle
between the corresponding headings associated with the paths at the places
where they leave the region. Formally,

frame of reference(r; f) ^ on path(r; pa) ^ on path(r; pa0) ^ (8)

A = fa : 9pa1; pa10; p; q; hp; hq�
lifted to(pa1; pa); lifted to(pa10; pa0);

place leaves(pa1; r; p); place leaves(pa10; r; q);

path heading(pa1; p; f; hp); path heading(pa10; q; f; hq);

directed angle(f; hp; hq ; a)]

g ^

ang = min int cover(A)

! path angle(r; pa; pa0; ang)

9 Given a global frame of reference associated with a region, locations for places are
assigned such that they preserve the estimated distance and relative orientation
between consecutive places in a path. Information from multiple paths is combined
to further constrain the assignment of locations (a constraint propagation algorithm
is used for this purpose).

10 As with distances, a heading is represented by an interval. However, in this paper
we assume that headings are represented by real values.



where min int cover(A) denotes the minimum angle interval covering all the
angles in the set A. Example 2 shows how all the above concepts work in a T -
like environment.

The rest of the paper describes how to implement the previous axiomatiza-
tion using AH-graphs.

4 The AH-Graph Model

The AH-graph model has been designed as a hierarchical database for storing the
information that a mobile robot gathers from the real world. Since it is general
enough to represent large amounts of knowledge in a highly indexed way, this
model can also be useful in other applications (GIS, networks, large databases,
etc.). The information stored in an AH-graph can be processed by a human
operator in a friendly manner, discarding unnecessary details when elements
are accessed (dealing with di�erent levels of abstraction). Its hierarchical nature
also leads to important reductions in the computational cost of searching paths
between its elements [11].

Basic De�nitions. An Annotated Hierarchical graph (AH-graph) represents a
portion of the world as an ordered list of plain graphs, called hierarchical levels:
fL0; L1; : : : Lk�1g. A hierarchical level Li is a quadruple hN i; Ai; sin; s

i
ai. Figure

2 illustrates the basic idea behind an AH-graph.

Fig. 2. Representation of two portions of the world with di�erent levels of detail, by

two AH-graphs of four and three hierarchical levels, respectively. The AH-graph on the

left illustrates the summarization of nodes from the lower to the higher hierarchical

levels. The AH-graph on the right illustrates the summarization of arcs.



The nodes of the AH-graph are the sets fN0; N1; : : : ; Nk�1g. They represent
elements of the world: objects, regions of space, groups of elements, parts of
elements, etc.. The arcs of the AH-graph are the sets fA0; A1; : : : ; Ak�1g. An
arc a(ni; nj) 2 Ar , going from ni 2 Nr to nj 2 Nr, represents the fact that the
node ni is related to the node nj .

11

Level L0 is the lowest hierarchical level of the AH-graph. It represents the
world with the maximum amount of detail that is available. Lk�1 is the highest
hierarchical level. It represents the world with the minimum amount of detail,
usually as a single node. A set of nodes in N i (i < k � 1) is represented by a
node in N i+1, called its supernode. Similarly, a set of arcs in Ai (i < k � 1)
is represented by an arc in Ai+1, called its superarc. These connections among
multiple views of the world (hierarchical levels) are formally established using
the summarization function for nodes sin and the summarization function for
arcs sia.

sin is a function from N i into N i+1 (if i = k � 1, the image set contains a
virtual node that represents all the nodes of Lk�1). sin yields the supernode of
N i+1 which represents a given node of N i. Similarly, the function sia yields the
superarc of Ai+1 representing a given arc in Ai. The domain of sia is the set of
arcs a(ns; nt) 2 Ai that satisfy sin(ns) 6= sin(nt). Its image is a set of arcs in
Ai+1. The function is not de�ned in Lk�1.

The inverses of the functions above, [sin]
�1 and [sia]

�1, are interesting as well
(for example, in order to re�ne a path), since they provide more detailed infor-
mation about a given node or arc.

Costs The costs (weights) assigned to the arcs of each hierarchical level are
de�ned as numeric intervals, called cost intervals :12

i = [i�; i+]; where i+ � i� � 0; i+ 6=1

The sum and propagation operators on cost intervals are de�ned as follows:

i+ j = [i� + j�; i+ + j+]

�^
fi1; i2; : : : ; irg = i1 ^ i2 ^ : : : ^ ir

where i ^ j = [min(i�; j�);max(i+; j+)]

The cost of an arc a(ni; nj) is given by the function arc cost(a(ni; nj)). This
value is calculated by propagating the cost of subarcs of a(ni; nj) (if a(ni; nj) 2

11 Notice that arcs only exist between nodes in the same level of the hierarchy.
12 Cost intervals are denoted in bold.



A0 then its cost is assumed to be given). Given an arc a(ni; nj) 2 Ar with a
non-empty set of subarcs [sr�1a ]�1(a(ni; nj)),

arc cost(a(ni; nj)) =

�^
farc cost(a(n0i; n

0
j)) : a(n

0
i; n

0
j) 2 [sr�1

a ]�1(a(ni; nj))g (9)

Hierarchical path search. In [11] the issue of hierarchical path search is stud-
ied in-depth based on the AH-graph model. In order to �nd a path from node
a to node b, the method is to construct the sequences of containing supern-
odes above the two nodes, and �nd the smallest common containing supernode.
Then, proceeding downward in the two sequences, look for the solutions to the
problem indexed under pairs of disjoint containing supernodes. It is proved that
there exists a Su�cient Condition for Optimality (SCO) in the structure of an
AH-graph under which the former algorithm always �nds optimal paths.

Annotations. In addition to the hierarchical and topological structure of the
AH-graph, both arcs and nodes can hold an undetermined number of anno-
tations : blocks of data that contain any type of information. This provides a
simple way of attaching procedural, physical or geometrical information to the
basic topological skeleton. An annotation is a pair (identi�er, data). Every an-
notation has a unique identi�er (the key). The data indexed by an identi�er id
under a node nj 2 N i is denoted by data node(nj ; id). Similarly, data annotated
in arcs is denoted by data arc(a(ni; nj); id).

5 Using AH-Graphs to implement the SSH topological

level

The SSH hierarchy of regions can be easily implemented using the AH-graph
model. SSH's regions are represented by nodes in an AH-graph. The containment
relation among regions is represented by the summarizing function sin. Similarly,
the lifting of a path is represented by the summarizing function sia. Finally,
SSH's metrical information is represented by annotations. Using AH-graphs to
implement the SSH's regions provides the following advantages:

{ There are several e�cient algorithms to perform basic operations on an AH-
graph: hierarchical path searching, automatic hierarchy construction, im-
porting data from other graph especi�cation format, etc..

{ We have implemented a friendly graphical interface that allows the user to
maintain an AH-graph, providing complete editing, storing, and import/export
operations.

{ The AH-graph model has been implemented as a module of a robot ar-
chitecture that uses a new software called NEXUS [12, 13]. This software
allows programmers to integrate a number of modules that perform di�erent
operations: navigation, object manipulation, perception, etc..



Next we describe the main issues of the SSH's regions implementation.

1. The cost associated with an arc represents the distance between regions.
The cost of arcs between nodes in L0 is derived from the actual travelling of
the agent in the environment. The cost of any superarc is calculated using
equation (9), which turns out to be equivalent to our speci�cation in axiom
(5). The AH-graph implementation ensures that any change in an arc's cost
is propagated to its superarcs.

2. Every node n 2 N i holds an annotation

("frame"; frame data)

where frame data contains information about the frame of reference asso-
ciated with node n, and the location of the di�erent subnodes of n w.r.t.
this frame. These locations are assigned as describe in Footnote 9. The AH-
graph provides an automatic procedure that updates frame data whenever
metrical information about subnodes of n change.13

3. Every node ni holds an annotation

("relative angles"; f(arc0; arc1; angle01); (arc1; arc2; angle12); : : : ; g)

where the initial node of arci is ni. A triple (arcs; arct; anglest) de�nes the
angle from arcs to arct measured from the point of view of the node ni.

4. Every node ni holds an annotation

("absolute angles"; f(arc0; absangle0); : : :g)

where the pair (arcj ; absanglej) indicates the absolute angle of the arc arcj
with respect to the frame of reference of ni.

The implementation of the SSH hierarchy of regions is completed by creat-
ing in the AH-graph nodes and arcs equivalent to the SSH 's places (regions)
and paths. The predicates de�ned in Section 3 have an AH-graph counterpart
satisfying the SSH's axiomatic speci�cation.

6 Building Spatial Hierarchies

There is not a unique criterion for grouping places into regions. Regions are
often de�ned in terms of legislative boundaries, visual texture, typical activities,
ethnic composition, and other characteristics that are not strictly aspects of
spatial cognition. Having said that, next we present some algorithms used in our
robot experiments to build spatial hierarchies.

13 Notice that, if the angles between arcs and the costs of the arcs are not contradictory
inside a given supernode, they lead to the de�nition of a local position for every
subnode of that supernode. In the real world, however, an agent has to deal with
errors in these measurements that lead to contradictions and therefore, errors in
the speci�cation of such frames of reference. In this paper we assume that these
contradicitons are eliminated inside any supernode.



1. Optimality Edge Elimination Test. This algorithm provides a tool for con-
structing incrementally a hierarchy that satis�es the Su�cient Condition for
Optimality (SCO). A hierarchical search algorithm that takes advantage of
this condition can obtain reductions in the computational cost of about 89%
w.r.t. a plain graph search algorithm using the lowest hierarchical level.

2. Optimal Search Hierarchy Approach. This algorithm constructs a hierarchy
that is an estimate of a hierarchy which satis�es the SCO. It works by se-
lecting the arcs of the plain graph with the greatest costs. These arcs are
considered to be "external" arcs which connect di�erent regions. The nodes
of such arcs de�ne new regions at the next higher hierarchical level.

3. Neighborhoods Creation. This method creates regions by growing up initial
seeds, until a given size of the regions is reached. A regions r is a set of
connected places such that if a place p is in r and the distance from p to
place q is less than a given threshold, then place q is in r. Formally,

in region(p; r) ^ on path(p; pa) ^ (10)

fpath order(pa; p; q) _ path order(pa; q; p)g ^

path distance(pa; p; q; d) ^ d � �! in region(q; r)

4. Hybrid User-Machine Hierarchy Creation. Whenever the agent enters a re-
gion of the environment that a person recognizes as a di�erent region from
the one that the agent has recently visited, that information is provided to
a regions-database. This database is checked out for inconsistencies. If there
are no contradictions in the data, that information can be used to create
regions.

5. Topological Examination. This algorithm �nds in the plain graph certain
structures that can be represented as supernodes. Typical structures can be:
nodes connected by a path of width 1, cycles, sets of nodes that are connected
to the rest of the graph just by one arc, etc..

In order to overcome the limitations of each of the methods mentioned above,
a hierarchical extraction procedure should be the result of integrating these
individual procedures.

Example 2.

Consider the T -environment depicted in Figure 3a. At a the agent starts fol-
lowing the corridor until it reaches b, where the right wall disappears. Suppose
that the agent decides to follow the left wall up to c, where the agent notices
that the right wall reappears. e is a place at which the agent losses track of
the right corner close to b. Suppose that at b the agent turns w.r.t. the right
corner until it reaches g. f is a place at which the agent losses track of the left
wall. The set fa; b; c; d; e; f; g; hg will be the set of distinctive states associated
with this environment. Each distinctive state has associated a topological place,
which we will denote by the corresponding capital letter.14 Two paths exist in

14 In the example it is the case that only one distinctive state is associated with a
topological place. In general this is not the case. Should the robot rotate at b, there
will be another distinctive state b0 in which the robot faces in the direction of a.



this environment, hA;B;E;C;Di and hB;F;G;Hi.

Notice that the places B;C;E; F and G are very close to each other. We can
automatically set a threshold such that these places become a region, RB. By
virtue of axiom 10 (and the choice of our threshold) place A gets associated to
a region RA whose only place is A. Similarly, places D and H get associated
with regions RD = fDg and RH = fHg, respectively. Once these regions have
been created, the path hA;B;E;C;Di can be lifted to the path hRA;RB;RDi,
and the path hB;F;G;Hi can be lifted to the path hRB;RHi. The resulting
topological map has two paths and four places, as illustrated in Figure 3b.
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Fig. 3. Places fb; c; e; f; gg are grouped into the region RB. Distance among places is

annotated in the corresponding edges. The angle between paths is the one suggested

by the �gure. (b) shows the resulting AH-graph associated with (a).

Notice that the path hRA;RB;RDi enters region RB at place B and leaves
it at place C. As for path hRB;RHi it enters RB at place B and leaves it at
place G. Let's suppose that the heading of path hA;B;E;C;Di at place C is 0
degrees. A frame of coordinates for region B will indicate that the heading of
path hB;F;G;Hi at place G is about -90 degrees. Consequently, we can deduce
that the angle between paths hRA;RB;RDi and hRB;RHi at place B is about
-90 degrees. The resulting map is indicated in Figure 3b. f end of example g

Our methods to create hierarchical maps have proven to be adequate for most
o�ce-like environments. The important fact when working with a region hierar-
chy is to establish what properties are preserved when moving up and down the
hierarchy. These properties will allow us to establish the soundness of reasoning
mechanisms based on regions as well as characterize the typical errors people
might make when using regions to infer properties of the places in them.



7 Related work

The SSH is a computational theory of the cognitive map There are many other
proposals in the same spirit of the SSH [4, 31, 33, 6, 28, 16, 34, 8, 38]. Most of
these proposals agree on the key characteristics of the cognitive map: the use of
multiple frames of reference, qualitative sense of metrical information, and con-
nectivity relations among landmarks. Ideas stemming from these theories have
been used in robotics for map building and robot navigation (see [18, 5]).

The idea of using hierarchies of abstraction for reducing the computational
cost of certain operations is old and common to many disciplines: GIS [19], graph
theory [17], planning [37, 21, 1, 15, 1], robotics [25, 9, 11], etc.. It is inspired by
the way humans solve problems. The AH-graph is an implementation of a hier-
archy of abstraction di�ering from those in that it includes a representation of
uncertainty in some values (the costs assigned to the relations between elements)
and it models directly the environment of an agent, not a state space. It is a sim-
pli�cation of a more complex scheme, the Multi-AH-graph model, which allows
to model more than one hierarchy of abstraction on the same set of ground data.

One of the unsolved problems on abstraction is how to build automatically
the abstraction levels. There exist a few approaches to this problem in the plan-
ning literature [1, 15, 21, 17] that allow one to build "good" hierarchies auto-
matically. The "good" concept refers to the reduction in computational cost of
some operation, usually path �nding. In the particular case that the information
is modeled using a graph-like representation, building automatically hierarchies
from a plain graph is directly related to clustering the plain graph. This often
leads to NP-complete problems [14] unless the desired objectives or the structure
of the plain graph are constrained [21, 3, 2, 7] or some knowledge on the domain
of the problem is used [27, 20, 30].

8 Conclusions

This paper extends a computer model of the human cognitive map, the Spatial
Semantic Hierarchy (SSH). The SSH is enhanced with the formalization of a
hierarchical representation of space. This formalization is compatible with the
topological level of the cognitive map represented by the SSH. We presented an
implementation of this axiomatic theory using the AH-graphs model.

A hierarchy of space allows an agent to perform operations more e�ciently
than using a plain map. In particular, spatial reasoning is improved by reducing
the number of elements involved in a plan. The implementation of the SSH's
regions using AH-graphs provides mechanisms for e�ciently �nding chains of
relations between elements of the map, as well as friendly access to the SSH's
topological map.



We also described some methods that allow us to design several algorithms to
automatically build a hierarchy of space. This is a complex problem that seems
not to be solvable by a simple procedure. We are exploring hybrid approaches
to combine the di�erent methods proposed in this paper.
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