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Abstract

This paper addresses the problem of self-location for a
mobile robot equipped with a single camera moving in an

indoor environment. The robot is provided with a two-

dimensional map where the position and some attributes

of landmark points are stored. The proposed algorithm
first determines the observation rays of vertical edges

extractedfiom one image and then finds an interpretation
for these rqs in terms of the landmark points. This inter-

pretation is driven by a set-based approach that compels

the actual pose to lie in a solution region and not to vio-

late the landmark attributes. Based on the ray-landmark
matches provided by the selected interpretation, an opti-

mization procedure is used to come up with the pose for
which the mean square angular error is minimum, Finally,

we present experimental results that demonstrate the per-

formance of the system.

1. Introduction

The problem of self-location for a mobile robot has been

studied by many researchers and a variety of techniques
have been proposed for solving it. These techniques vary

significantly depending on the type of environment in
which the mobile robot has to navigate, on the prior knowl-

edge of the environment, on the task to realize and, of
course, on the type of sensor used by the robot [1].

At the University of Malaga we are investigating the
problem of estimating the pose (position and orientation)

for a mobile robot equipped with a single camera moving

in an indoor environment. We assume that the robot has a
two-dimensional map where the positions and some at-

tributes of vertical landmarks (vertically oriented parts of
fixed objects such as doors, wall junctions, windows, etc.)

are stored. The problem can be divided into three steps: 1)

1. This work has been supported by the Spanish Government
under the CICYT project TAP96-0763.
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detect features in the image that correspond to vertical
landmarks of the environment, 2) find the best interpreta-

tion of the directions (rays) to these features that is consis-
tent with the landmark attributes, and 3) compute a pose

from those matches. In this paper we deal with the two lat-
ter tmoblems..
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Figure 1.- The landmark-based pose estimation problem.

We believe that vertical landmarks are attractive be-
cause they appear very frequently in a typical indoor envi-

ronment and they can be easily and reliably extracted from
the image. Provided that the camera is mounted parallel to

the floor, vertical landmarks of the environment will
project as vertical features onto the image plane and, there-
fore, the correspondence problem can be formulated in the
two-dimensional plane (as shown in figure 1).

Similar approaches have been proposed by Sugihara [2]
and Krotkov [3]. However, they do not deal with the effects

of observing false positive (detecting features that do not

correspond to a known landmark). Another related work is
the one reported by Sutherland and Thompson [4] for un-

structured environments, where the landmarks are moun-
tain peaks of a topographic map. They analyze how
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measurement errors affect errors in the localization and
propose a simple algorithm to exploit the geometric prop-
erties of landmark in the environment in order to decrease
errors in the localization. The results presented by all of
them are limited to simulated data.

Unlike the above referred works, the algorithm we
present here includes some attributes for the landmarks in

order to eftlciently search the tree and improve the robust-
ness of the algorithm, ruling out the possibility of errone-
ous matching. Also, a rough estimate of the robot location
provided by the dead-reckoning system is considered to

simpli~ the search by predicting which landmarks could
match with each ray.

false positive

I image
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Figure 2.- Extracting rays from vertical edges of an image by
using the pin-hole camera model.

2.Problem Statement

Let (x, y, et) be the triplet that defines the local robot coor-

dinate system {u, v} with respect to the world coordinate
system W (see figure 1a).

Let M={ml, .... mk} be the set of landmark points stored

in the map and expressed in the world coordinate system W.
Let R={rl, .... rn} be the set of rays extracted from an image
taken at the robot pose (x, y, a).

Intuitively, a ray ri should correspond to a landmark mj,

denoted by the pair (ri, mj), if ri is the ray obtained for the
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vertical edge which is the projection of mj onto the image.

Since the rays are not distinguishable from each other, we
can not establish such a one-to-one correspondence be-

tween rays and landmarks. Instead the problem has to be
formulated globally by looking for an admissible interpre-

tation of the whole set of rays R.

In the ideal case when rays and landmark points from
the map are error-flee, an interpretation is said to be admis-
sible if there exist a pose from where each ray of R pierces
the landmark point specified by the interpretation. Notice

that in this case both problems correspondence and pose es-
timation are solved simultaneously as an elementary geo-

metric problem (see [2] for more detail). In practice, since
errors are inevitably present in the rays 1 (we assume that

the landmarks are error-fi-ee), the above criterion is no
longer valid and therefore it is necessary to introduce some
uncertainty model. In addition, an interpretation should ac-
count for rays that have no-correspondence to any known
landmark (false positive) as well as for the opposite, that is,
landmarks of the map that have not been detected in the im-
age. Obviously, in these cases, the correspondence problem
result in a more difficult task that suffers from the ambigui-

ty problem and requires a reliable modeling of the errors
involved. In particular, our approach considers that the er-
rors in the observation are within a tolerance. This leads to

a set-based algorithm that combines information via inter-
section of different uncertainty regions. Of this kind is also
the work reported by Atiya and Hager for localizing a mo-
bile robot [5].

According to the set-based approach if two regions A
and B are known to contain the actual pose of the robot,

then AnB must also contain that pose. Consequently, each

new region that we incorporate to the problem actuates as
an additional constraint that provides a tighter bound of the
unknown pose.

The first constraint region comes from the uncertainty in
the dead-reckoning pose Po=(xo, yo, so). We model this un-
certainty as a circle Co of radio a, centered at (x. ye). Sim-
ilarly, a maximum angular error of +acrror is considered for
the orientation ao. This uncertainty region is considered to

be proportional to the distance traversed by the robot.

Additional constraint regions come from the fact that
the viewpoint from where two landmarks are observed with

a given angle must lie on a circumference [2, 3]. Since the
error in the rays is within a tolerance, the viewpoint is re-
stricted to lie on a thickened ring as shown in figure 3a.
Next, we describe this in more detail.

1. Mostly, these errors are caused by the imperfect localization of
the vertical edges in the image as well as errors introduced by the
camera model being used.
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Figure 3.-(a)Theerrorbetweentwo rayscon~raintstheviewpokt
to a thickened ring. (b) A typical uncertainty region when three
pairs ray-landmark are established.

Let 812 =$1 -$2 be the angle between the rays r] and r2,

where r)1 and $2 are the orientation measured for the ray r]

and r2, respectively (see figure 2). Assuming bounded er-
rors for ~ 1 and 1$2,the real value of e 12 is within the uncer-

tainty interval [f312-,e 12+1,where

e12-=e12-$Ienor- 412e=or

ande12+=e12+$1~rror+ $2error

Now, let us suppose that the ray rl matches the land-

mark mi, making the correspondence pair (rl, mj). men, a
landmark mj becomes a candidate to match r2 only if the

uncertainty ring 12Sij delimited by two circles Cij+ and CU-

and defined by the parameters (e 12+,e 12-,rni, rnj), iflter-

sects the uncertainty region Co, that is, if

Con 12Sij= R2 # 0 (see figure 3a).

Similarly, given a generic ray rb the landmark mq is

considered to be a consistent candidate to match rk only if

‘k-1 n ‘kspq# 0

where ~-1 is the constraint region obtained once the first
37
‘kSPq is the uncertaintyk-1 rays have been matched, and
ring defined by (ehk+, ehk-, nZP mq), witi (r#P) being

whatever correspondence pair previously established. Fig-

ure 3b illustrates this case for k=3 and h=2.

3.Constructing the Interpretation Tree

Taking into account the above mentioned region-based ap-
proach, the proposed algorithm constructs a tree with all
the possible admissible interpretations, named the interpre-

tation tree. Following the terminology used by Grimson

[6], the interpretation tree is a graph where a level “i” rep-
resents all possible landmarks that could be matched with

the ray ri according to the constraint region derived from
the previous hypothesized matches. Thus, a complete
branch, from the root to a leaf, represents an admissible in-
terpretation for all the rays extracted from the image. In or-
der to account for rays that do not correspond to any known
landmark the algorithm includes a null landmark (“@”).

To efficiently construct the interpretation tree, the algo-
rithm makes use of three additionally constraints: landmark

ordering, prediction of visible landmarks, and attribute

compatibility.

Landmark ordering. The map is assumed to be a single

connected polygon where the landmarks are the vertices.
Thus, we cart create a circular list sorted on the basis of the
relative connection between them. This landmark ordering

permits to prune significantly the interpretation tree, since
they always have to appear in the image in a given order.
For example, if a ray ri is paired to a Ianchark m} then ri+l
(the following ray on the right of ri) must find its corre-

spondence pair among the landmarks on the right of mj

Obviously, this assumption limits the landmarks stored in
the map to those connected by opaque surfaces (i.e. walls).

Prediction of visible landmarks. Since only a small por-
tion of the map (in general) is visible from a particular po-
sition and orientation of the robot, landmark prediction
greatly decreases the size of the interpretation tree by re-

ducing the number of landmarks that can possibly match
the extracted rays. As the absolute orientation q i of a given

ray ri is affected by both errors in robot pose and errors in
the orientation angle $i, the candidate landmarks to match

tori are within the region of the map delimited by the lines
q+ and q-, which are defined by the worst-case angles given

by (figure 4):

?li+= a. + Uerror+ ‘$i+ $ierror

?li- n a. - aemor+ Oi- $ierror
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Figure 4.-Regionwhere anycandidatelandmarktomatchthe rayq
has to lie.

Attribute compatibility, The motivation of using at-
tributes is not that of permitting the individual matching of
each ray, but discarding landmarks that are incompatible
with the attributes extracted for a given ray. In particular,
we consider the following two attributes:

- Vertical position of the landmarks. The endpoints of

vertical edge associated to a ray should be within the
projection of the landmark onto the image plane.

- Shading in both sides of the landmarks (lefi and right).
Three different situations may occur: “dark-to-bright”,

“bright-to-dark” and “undefined”. The latter indicates
that the landmark may appear in the image indistinctly
either as a positive discontinuity (dark-to-bright) or as
negative (bright-to-dark), depending on the environ-
mental lighting conditions and on the observation

angle. Of this type are, for example, the comers of the
walls. This attribute is compared with the sign of the

second derivative of the vertical edge associated to the
ray,

Besides increasing the efficiency in the construction of

the tree, the attribute compatibility provides robustness to
the algorithm by weeding out inconsistent pairings.

4. Computing the Robot Pose

Once the interpretationtree has been constructed, all its

branches are traversed in order to select the best interpreta-
tion. We suppose it is the one which contains the largest set
of pairs, let say “n”. From this interpretation, the robot pose

p = (x, y, a) is estimated by minimizing the error function:

IIIiII(I,~,JeTe)=miqx,y,~) (1$e;
k=]

(1)

where ek = sin(bk) is the angular error involved in the pair
3712
@k = (rj, mi) which is given by (see figure 5):

(xi -x)cos(a +$j) + (yi -y)sin(a + $j)
siniZik=

~

(2)
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F@re 5.- Angular error ~k involved in the pair (rj, n$).

Since this optimization problem is non-linear we use the
Gauss-Newton iterative algorithm to solve it [7]. In this
method, solving (1) is equivalent to find a solution of

e+ JA=O (3)

where e is the error vector, A is the difference vector be-

tween the transformation parameters on successive itera-

tions (p t= pt-l + At.]), and J is the Jacobian:

J=

K%]
obtained through the partial derivatives of equation (2). In

order to the algorithm to converge, the initial pose p. must
lie in the uncertainty region, for example a vertex of the so-
lution region G.

Since equation (3) is overdetermined for n>3 we use the

pseudoinverse of the Jacobian to find a least square fit of A:

A D –(JTJ)-l JT~ (4)

Equation (4) is solved iteratively for the displacement
vector A until the absolute value of its elements is less than
some tolerance or the number of iterations exceeds a preset
value.



In the event that two or more interpretations reach the
same number of pairs, all of them are considered as candi-
date and the one that provides the minimum of the cost
function is selected.
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Figure 6.-Mapofthehallway usedintheexperimentswherethesix
poses of the tripod are marked. The lower part of the figure
illustratesthecircles correspondingtothe bestinterpretationofthe
rays obtained at pose 5 (see figure 2).

5. Experimental Results and Discussions

The algorithms developed in this research have been tested
in the scenario shown in figure 7, whose map containing 64

landmark appears in figure 6. The vision system consists of
a CCD-camera with a 8 mm. objective connected to a
frame-grabber with 768 x 576 pixels of resolution. For pre-
cision purposes and to facilitate the survey, the camera has
been mounted on a calibrated tripod, instead of our mobile
robot. So that the tripod poses were easily surveyed using a
tape measure and a standard protractor.

The odometric poses were chosen as the surveyed poses

plus an arbitrary offset greater than 0.5m. in position and
7deg in orientation. The radius of the dead-reckoning un-
3713
certainty circle was considered to be 1m., while the orien-
tation error was + 10deg. To account for errors in the
landmarks, the errors of the extracted rays was inflated UII
to +0.34 deg. (equivalent to +6 pixels of error).

(a)

(b)

Figure 7.- (a) Image taken at location 1 showing the vertical
edges extracted. The reflective vertical lines on the floor have
not been detected since a significantly high threshold has been
used for the line extractor algorithm. (b) The resulting
uncertainty region and estimated pose.

In order to demonstrate the performance of the algorithm
we have tested it in two different cases: following a path
along the hallway (with many matches and long distances)
and rotating about a fixed position (with few matches and
short distances).

Table 1: Errors in the 6 estimated poses along the hallway.

In the first experiment, the tripod was manually placed
at the six poses marked in the map of figure 6. The errors
in the estimated poses, shown in table 1, are extremely
small for the first four locations since a significant number

of matches, almost symmetrically distributed along the

hallway, are established. Also, this symmetry gives rise to
uncertainty regions appreciably aligned with the corridor



as shown in figure 7a.

Ermrsfa WW MOm @Y km .160Q.lW’.9(Y
X@m.} -2.4 -5.6 2.9 6.4 1,2 1.2 -1.9 0.6

-5.7 3.3. -4.5. 1,1 -3.4 3.5 7.5 -1.1

-0.5 -1,2 .0,7 -1,1 -0,5 -0.7 -1.0 -0,2

Table 2: Errors in the 8 est~~tedpo~ atthe locations of the
pat see text .

In the second experiment the tripod was situated at the
location number 5 of the path, where eight images were
taken for different orientations. As shown in the table 2, the
estimated errors were worse than in the first experiment. It

makes sense because these locations as well as the poses 5
and 6 of the experiment 1 are characterized by landmarks
at relative short distances ffom the camera. Since the angu-
lar errors in determining the rays ($emor) decrease with the

distance from the landmark to the camera3, these poses be-

come rather vulnerable to these errors, Another fact that in-
fluences the quality of the resulting estimates is the number
of matches established, that in these cases have been appre-
ciably smaller. This leads to larger solution regions as the
one shown in figure 8.

Table 3: Runtimes of the gorit m o a pentium 166 for the 6
poses ~ongtkeh~way.

The computational cost grows exponentially with the
number of rays, however the algorithm runs very quickly

(see table 3). It is important to note that despite a significant
number of both non-detected landmarks and false positives

were present in the images, the algorithm came up with the
correct interpretation in all the cases. In addition, as expect-

ed, the surveyed poses were inside the uncertainty region.

2.- Be aware that most of these errors are within the range of the
suwey procedure.

3.- This fact has also been observed by Krotkov [3].
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Figure 8.- (a) Image taken at location 5 with -110 deg. of
orientation, showingthevertical edgesextracted. (%)The resulting
uncertain y region and estimated pose,
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