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This article presents an innovative method to estimate the motion parameters of a
mobile robot equipped with a radial laser range-finder. Our approach is based on the
spatial and temporal linearization of the range function, which leads to a velocity
constraint equation for the scanned points. Assuming that the mobile robot moves in a
rigid environment, a least-squares formulation is employed to come up with the
motion estimation as well as the motion vectors of the scanned points as they move
from scan to scan in the sequence. This motion field can be very useful for a number
of applications including detection and tracking of moving objects. Although this is a
preliminary work, experimental results show that good results are achieved with both
real and synthetic data. Q 1999 John Wiley & Sons, Inc.

1. INTRODUCTION

We consider the problem of estimating the instanta-
neous motion parameters of a mobile robot from a
scan sequence provided by a radial laser range-
finder. Basically, such a sensor consists of a pulsed

infrared laser transmitterrreceiver pair and a mirror
that rotates about the vertical axis to deflect the
laser beam so that it emerges parallel to the ground
Ž .Figure 1 . By recording the amount of time it takes
for a transmitter pulse to bounce off a target and be
detected by the receiver, the scanner provides a
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Ž . Ž .Figure 1. a A schematic representation of a typical radial laser range-finder. b
Velocity field due to a translation and rotation of the radial laser scanner. For the sake of

wclarity, the motion field has been magnified and the scanner remains static at the
Ž .xposition 0, 0 while the environment moves.

Ž .two-dimensional polar representation of the envi-
ronment. The field of view used varies from 180 to
3608. Other characteristics, including accuracy,
points per revolution, resolution, maximum and
minimum range, scanning speed, etc., depend on
the kind of sensor.

The formulation we present here is based on
computing the motion field that arises in a range
scan when the sensor moves relative to the environ-
ment. A vector in this field indicates the motion of

each range point between consecutive scans. In our
study, we assume that the environment is rigid, that
is, it remains static while the sensor moves. Figure 2
shows the environment at two instants of time and
the motion field for some of the scanned points.

The problem of recovering the motion parame-
ters can be formulated as that of matching two
consecutive scans of the sequence provided by the
scanner. This problem has a great importance in the
mobile robot context, including pose estimation and

Ž . Ž .Figure 2. a Motion of a point in polar coordinates. b A visual interpretation of the
velocity constraint equation.
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map building. Three different approaches were pre-
viously proposed to do this:

1. Feature to feature correspondence. Registration
of the two scans is accomplished by first

Žextracting a set of features usually segments
.and corners and then making correspon-

dences between pairs of features of the two
scans. Some examples of this approach are
the works presented by Shaffer1 for mobile
robot pose estimation and Gonzalez et al.2

for map building.
2. Point to feature correspondence. The range

points of the scan are matched against fea-
tures of a model or of a map obtained from
previous scans. The position estimation algo-
rithms proposed by Cox3 and Gonzalez et
al.4 are some examples of this approach.

3. Point to point correspondence. This scheme in-
tends to match one range scan to another to
derive the relative robot pose. The registra-
tion is accomplished without explicitly using
the underlying features that exist in the scans.
A notable example is the iterative dual corre-
spondence algorithm developed by Lu.5 The
algorithm we propose falls into this category.

Lu’s algorithm establishes correspondences for
data points by combining two rules: a closest-point
rule, which chooses the closest point in the next scan
as the correspondence for the data point, and a
matching-range-point rule, which assumes there is no
translation between the two scans and chooses, for
correspondence, the closest point with the same
range. Our approach avoids solving for the corre-
spondences of the range points. It is inspired by the
‘‘optical flow constraint equation’’ developed by
Horn and Schunck6 for brightness images and states
that the velocity of a range point is restricted by the
local structure of the environment as well as its
temporal rate of change. We believe that Lu’s ap-
proach may be more effective than ours for pose
estimation problems; however, our method is more
appropriate to detect and track moving objects.

In the following sections we first derive the
equations of the relative motion of a radial range-
finder in a rigid environment. In section 3, the
equation that constrains the motion of each scanned
point is presented. Next, the formulation for esti-
mating the motion field along with the motion pa-
rameters of the sensor is proposed. In section 5, the
implementation details are presented. In section 6,

some experimental results with both real and syn-
thetic data are shown. We end with some conclu-
sions and future work.

2. MOTION OF A TWO-DIMENSIONAL RANGE
SCANNER IN A RIGID ENVIRONMENT

Let V and W be the translational and rotational
Ž .velocity vectors of a two-dimensional 2-D range

scanner moving on a flat surface. A point P from the
environment seems to move relative to the sensor
with instantaneous velocity V given byP

r cos u u0
V syW=PyVsy = yr sin u v0P

w 0 0

w xTwhere r, u are the polar coordinates of the point
P. Since the third component of this equation is
meaningless, it can be eliminated:

ysin u u Ž .V sywr y 1P vcos u

On the other hand, since the velocity of the
point P is the derivative of P with respect to time,
we have

dP d ˙r cosuyru sin ur cos u ˙V s s sP r sin udt dt ˙r sin uqru cos u˙

r r˙ ˙cos u yr sin u Ž .s sJ 2
sin u r cos u ˙ ˙u u

where J is the Jacobian of the transformation from
w xTpolar to Cartesian coordinates and r, u is the

Ž .polar velocity vector of the point P see Figure 2 .
Ž . Ž .From Eqs. 1 and 2 , we get

ṙcos u yr sin u sin u u Ž .qwr q s0 3vsin u r cos u cos uu̇

This expression holds for any point P from the
scene and consists of two linear equations with five
unknowns: the mobile robot motion parameters

˙ TŽ . w xu, v, w and the velocity vector r, u . By consider-˙
ing the n points of a scan taken in a rigid environ-
ment, we would obtain an underconstrained system
with 2n equations and 2nq3 unknowns. Conse-
quently, some additional constraints are required to
solve for the motion parameters.
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3. THE VELOCITY CONSTRAINT EQUATION

˙Although neither r nor u can be estimated from the˙
range scan, it is possible to establish a relationship
between them by taking into account the informa-

Ž .tion provided by a range scan sequence. Let r u , t
be the range measured for a generic point P at scan
angle u and time t. Assuming the derivability of
Ž .r u , t , at some later time tqdt, the point P will be

scanned at an angle uqdu with the range

 r  r
Ž . Ž . Ž .r uqdu , tqdt sr u , t q duq dtqO e

u  t
Ž .4

Ž .where O e denotes the higher order terms in du
Ž .and dt. Subtracting r u , t from both sides of Eq.

Ž .4 , dividing through by dt, and taking the limit
dtª0, we obtain

d  r du  r ˙Ž . Ž .rs r u , t s q sr uqr 5˙ u tdt u dt  t

where r and r are the partial derivatives of theu t
range function with respect to the angle u and time
t, respectively, which can be estimated from the

Ž .range scan sequence. Notice that Eq. 5 is no longer
valid at those range points where the angular and

Ž .temporal smoothness of the function r u , t is vio-
lated; that is, near the corners. This turns out to be a
minor limitation as long as the displacements be-
tween scans are kept small or there are very few
corners in the environment.

Ž .The important point here is that Eq. 5 states a
constraint over the possible velocities that a point
w xTr, u from the scene can reach once the local

Ž .structure of the environment r and its temporalu

Ž .rate of change r have been estimated. We call thist
equation the velocity constraint equation, which in the

Ž .polar velocity space ryu represents a line with˙
Žslope r and ordinate at the origin r as graphicallyu t

.illustrated in Figure 2b . Thus, assuming that r andu

r are known at a given instant of time t and anglet
u , the polar velocity vector of the scanned point at u
cannot be arbitrary: its component in the direction
w xT Ž .1, yr perpendicular to the surface isu

yrt
1r22Ž .1qru

However, the component of the velocity vector in
the direction tangent to the object cannot be deter-

mined. Notice the analogy with the aperture problem
reported by Horn and Schunck6 for the optical flow
in brightness images.

4. ESTIMATING THE MOTION PARAMETERS
AND SOLVING FOR THE MOTION FIELD

The formulation we derive here is somehow similar
to that reported by Horn and Negahdaripour7 for
direct passive navigation. In our case, however, it is
not necessary to incorporate physical constraints
like planar or quadratic surfaces into the formula-
tion.

Ž .According to Eq. 5 , the polar velocity vector
˙has only 1 degree of freedom, for example, u and

can be expressed as

˙r uqr r rṙ u t u t˙ ˙ Ž .s s uq sR uqR 6u t˙ 1 0u u̇

Ž . Ž .From Eqs. 3 and 6 , we obtain two linear equa-
˙tions for the unknowns u , w, u, v:

ysin u u˙ Ž .JR uqJR qwr q s0 7u t vcos u

This equation has still 2 degrees of freedom. Since
each scanned point provides two additional con-

Žstraints and only one additional unknown its angu-
˙.lar velocity u , a minimum of three scanned points

will suffice to solve for the six unknowns
˙ ˙ ˙Ž .u , u , u , w, u, v .1 2 3

In practice, the solution obtained by using the
Ž .minimum number of points i.e., equations is noisy

because of noise in the range scans, quantization
errors, and errors in estimate derivatives using fi-
nite difference methods. By considering n scanned
points, the total number of equations becomes 2n,
while the number of unknowns is nq3. This leads
to a least-squares formulation that allows us to
recover more robustly and accurately the robot mo-
tion parameters. This formulation will be derived in
detail in the next section.

5. IMPLEMENTATION

To apply the proposed formulation to a range scan
Ž .sequence, we need to formulate Eq. 7 in a discrete

fashion as well as to combine in a matrix form all
the equations provided by the points being consid-
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ered. Let r be the range at the discrete angle u .k k
Also, using the subscript k to denote the fact that
the functions are evaluated at the discrete angle u ,k

Ž .Eq. 7 can be rewritten

ysin uk u˙Ž . Ž . Ž .J R u qJ R qwr q s0 8k u k k t kk k vcos uk

Ž . Ž . Ž .where the partial derivatives r and r in Ru k t k u k
Ž .and R , respectively, can be estimated from thet k

range scan sequence using numerical differentia-
tions8

Ž . Ž .r t yr tkq1 ky1Ž .r su k 2 Du

Ž . Ž .r t yr tyD tk kŽ .r st k D t

with D t being the time between consecutive scans.
Whereas a 2D laser range sensor scans radially at a
fixed angular increment, we have Dusu yu sk ky1
constant for any value of k.

Ž .Equation 8 can be rewritten more conveniently
in the form

u̇k

uw Ž . x Ž . Ž .J R I Q syJ R 9k u k k tk k
v
w

where I is the 2=2 identity matrix and Q sk
w xTyr sin u r cos u .k k k k

� 4Let r , ks1, . . . , n be a range image taken atk
time t. Since each range r gives rise to a pair ofk

Ž .equations 9 , we obtain the following system of 2n
linear equations and nq3 unknowns:

Ž .J R 0 ??? 0 I Q1 u 11

Ž .0 J R ??? 0 I Q2 u 22
. . . . . .. . . . . .. . . . . .

Ž .0 0 ??? J R I Qn u nn

u̇1

˙ Ž .J Ru 1 t 12
. Ž .. J R2 t 2. Ž .= sy 10..u̇ .n

Ž .J Ru n t n

v
w

Ž .Since the system is overconstrained, Eq. 10 is
solved through a least-squares solution

y1T TŽ .Xs A A A B

where A is the 2n=nq3 matrix on the left side of
Ž .Eq. 10 , X is the unknown vector, and B is the

vector on the right. Notice that the number of points
n in a scan may be up to several hundreds or even
thousands, which makes it computationally pro-
hibitive to invert the matrix ATA, which dimension
is nq3 xnq3. Fortunately, it is a really special
matrix that besides being symmetric is mostly diag-
onal. Thus, to find the inverse of matrix ATA, we
can decompose as9

y1 y1y1 y1 y1 y1 y1 y1 y1Ž . Ž .y1 M qM N PyOM N OM yM N PyOM NM NTŽ .A A s s y1 y1O P y1 y1 y1Ž . Ž .y PyOM N OM PyOM N

< < < y1 <provided M /0 and PyOM N /0, where M is
an n=n diagonal matrix and N, O, and P are
matrices of dimensions n=3, 3=n, and 3=3, re-
spectively. Whereas ATA is a symmetric matrix, P
has to be symmetric and O has to be equal to P.
This significantly reduces the computational bur-
den.

6. SOME EXPERIMENTAL RESULTS

In this section some results are presented to demon-
strate the performance of the proposed method.
Most of the tests have been carried out using syn-
thetic data since the motion of the scanner can be
known exactly. In particular, the results presented
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in this section are obtained from the scenario shown
in Figure 3a. Another kind of scenario has provided
similar results, except in some degenerate cases like
an infinite wall or a long corridor, where one of the
motion components becomes undetermined.

In the simulated experiments, we construct the
sequence by scanning at fixed translational and ro-

Ž .tational intervals D x, D y, and Df, respectively .
At each position, the translational and rotational
components of the displacement are computed by
the proposed algorithm and the corresponding error
Ž .real minus computed is recorded. Some plots
showing the percentage errors obtained when using
different number of range points are shown in Fig-
ure 3b and different displacements between scans
are displayed in Figure 4.As expected, the larger the
number of scanned points and the smaller the dis-
placement, the better the results, that is, the error in
the motion estimate depends on how close the dis-
crete formulation is to the continuous case. In par-
ticular, Figure 4b reveals the strong influence of
rotation in the performance of the algorithm. This is
because, at long distances, even a small rotation
produces many points near the corners to violate
the velocity constraint equation. This fact has been
verified through other experiments in which smooth
contours yielded much better results because of the
absence of corners.

The proposed algorithm also has been tested
using real data provided by a laser range-finder.

The sensor has a range resolution of 5 cm, an accu-
racy of "20 cm, and provides up to 360 measures in
a 1808 field of view. The experiment consists of
taking 10 stationary scans at known equally sepa-
rated positions with no rotation. Figure 5a shows
the scans taken at the first and last position from the
sequence. Figure 5b plots the errors for the nine
displacements. In this case, the error plotted is not
percentage, but real displacement minus computed
displacement. As expected, the results become worse
because the noise and truncation errors significantly
affect the estimated derivatives. We do believe that
these results can be significantly improved by inte-
grating different scans as well as by discarding
those range points where the spatial and temporal
derivatives present discontinuities.

7. CONCLUSIONS AND FUTURE WORK

In this article, we have presented a new approach to
recover the instantaneous motion of a radial laser
range-finder along with the motion field of the
range points in the scans. Experimental results
showing that good results are achieved with both
real and synthetic data have been presented. Al-
though we have concentrated on estimating the
motion parameters of the mobile robot, we think
that the motion field can be very useful for a num-
ber of applications, including range image segmen-
tation and object motion detection and tracking.

Ž . Ž .Figure 3. a Synthetic scenario used for the simulated tests. b Motion errors for two
different numbers of range points. The real displacement was D xs5 cm, D ys2 cm, and
Dfs0.01 rad.
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Figure 4. Errors in the displacement for a pure translation with two different transla-
Ž .tional parameters a and for two different rotational parameters and a translation of

Ž .D xs5 cm, D ys2 cm b . In both experiments the number of range points is 1000.

Currently, we are trying to improve the perfor-
mance of the proposed algorithm by overcoming
some limitations that have emerged from this pre-
liminary work. The improvements include robust-
ness to range data noise, integration of different

scans by using, for example, a Kalman Filter, and
automatically detecting and discarding those range
points that violate the velocity constraint equation.
We also plan to extend this formulation to 3D laser
scanners.

Ž . Ž .Figure 5. a Scans taken at the first and last position in a sequence. b Errors obtained
Ž .for the nine displacements D xs5 cm, D ys2 cm, Dfs08 .
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