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Abstract Odor classification by a robot equipped with an electronic nose (e-nose) is6

a challenging task for pattern recognition since volatiles have to be classified quickly7

and reliably even in the case of short measurement sequences, gathered under op-8

eration in the field. Signals obtained in these circumstances are characterized by a9

high dimensionality, which limits the use of classical classification techniques based10

on unsupervised and semi-supervised settings, and where predictive variables can be11

only identified using wrapper or post-processing techniques. In this paper, we con-12

sider generative topographic mapping through time (GTM-TT) as an unsupervised13

model for time series inspection, based on hidden Markov models regularized by14

topographic constraints. We further extend the model such that supervised classifica-15

tion and relevance learning can be integrated, resulting in supervised GTM-TT. Then,16

we evaluate the suitability of this new technique for the odor classification problem17

in robotics applications. The performance is compared with classical techniques as18

nearest neighbor (NN), as an absolute baseline, support vector machine (SVM) and a19

recent time series kernel approach, demonstrating the eligibility of our approach for20

high dimensional data. Additionally, we exploit the learning system introduced in this21

work, providing a measure of the relevance of each sensor and individual time points22

in the classification process, from which important information can be extracted.23

Keywords electronic nose, volatile classification, odor recognition, time series,24

prototype learning, relevance learning25

1 Introduction26

Olfaction plays an important role in the development of many applications, such as27

quality control in food processing chains, detection and diagnosis in medicine, find-28

ing drugs and explosives, and the more common estimation of blood alcohol content29
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(BAC) for drivers. Among them, there are some applications like pollution monitor-30

ing or leak detection that require to measure the environment continuously and at31

different locations. For such scenarios, the use of a mobile robot with the capability32

of identifying and measuring the volatiles’ concentration is of great help as already33

reported in [26,25]. Furthermore, olfaction also plays a key role in the development34

of more intelligent and useful robots at home, for example, by recognizing activities35

and environmental conditions, or improving social interaction [16].36

Three are the main fields within robotics olfaction: gas distribution mapping37

(GDM) [4,22], where the objective is to obtain a truthful representation of how38

volatiles are dispersed in the inspected area and their respective concentrations, gas39

source localization (GSL) where the robot is commanded to localize the emission40

sources [13], and odor recognition which deals with the problem of identifying which41

of a set of categories a new volatile sample belongs to [45].42

The discrimination of gases performed with a robot equipped with an array of gas43

sensors presents a number of additional challenges when compared to standard ana-44

lyte identification applications, mostly due to the differences in the measurement con-45

ditions. While standard classification tasks usually host gas sensors inside a chamber46

with controlled humidity, temperature and airflow conditions, in robotics olfaction47

there is no control over the sensing conditions. This entails that the sensor signals to48

be processed are noisy and dominated by the signal transient behavior.49

Only few modeling methods are available to obtain interpretable, compact and50

precise predictive models for such type of data like [23,7]. This is mainly due to the51

following reasons: (1) the number of time points is often low, while the dimensional-52

ity of the data is rather high, (2) the number of time sequences is often low, leading53

to a sparsely populated data space, (3) the sequences may have missing values, and54

may be of different length.55

In this paper we demonstrate the suitability of a novel approach based on genera-56

tive topographic mapping through time (GTM-TT) to the problem of volatile identi-57

fication in robotics. The model extends classical GTM-TT by integrating supervised58

classification and relevance learning, resulting in supervised GTM-TT (SGTM-TT).59

More precisely, we have tested the SGTM-TT method with an e-nose comprising an60

array of MOX (metal oxide sensors) to classify samples of seven different volatiles61

under uncontrolled conditions. The performance is compared with techniques as near-62

est neighbor (NN), support vector machine (SVM) and a reservoir computing time63

series kernel (RTK) We illustrate one of the main advantages of the proposed method64

when classifying odors based on short data sequences, providing the predictive clas-65

sification accuracy for sequences of reduced lengths (1s, 10s and 20s). Furthermore,66

we highlight the introduced relevance learning system for temporal high dimensional67

data, by studying the relevance of sensors and time points on the classification per-68

formance.69

2 Related works70

Odor discrimination with electronic noses has received growing attention and many71

studies have been done on how to classify odors using an array of gas sensors and72
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Odor recognition in robotics applications by discriminative time series modeling 3

a pattern recognition algorithm. In [8,11,40,18] the principal methods for chemical73

classification with an array of gas sensors are reviewed, including nearest neighbor74

(NN), mahalanobis linear discriminant analysis, neural networks (ANN), cluster anal-75

ysis with self-organizing Maps (SOM) and Support Vector Machines (SVM).76

More recently, approaches based on ensembles of classifiers have been reported77

to improve the classification accuracy [44], improve the earliness on the classifica-78

tion [20], or to deal with the common problems of sensor drift and sensor replace-79

ment. In [47], a SVM based ensemble of classifiers is used to solve the gas dis-80

crimination problem over a period of three years by training different classifiers at81

different points of time. Similarly, in [27], a flexible classification strategy based on82

cooperative classifiers is proposed to increase the robustness of chemo-sensory sys-83

tems against failures in their constituent sensing elements, postponing the necessity84

of replacing a sensor in the array, as well as facilitating the insertion of newly sensing85

elements.86

Nevertheless, little attention has been given to the problem of classification in un-87

controlled conditions, as revealed by the few works found in literature that perform88

classification focusing only on the transient phase of the sensor signals. An evalua-89

tion for the suitability of different feature extraction techniques for such scenarios is90

provided in [45], where Trincavelli et al. propose a preprocessing stage to isolate the91

relevant parts of the sensor signals that can then be passed to the pattern recognition92

algorithm. More recently, in [12] a Support Vector Machine is applied to a set of fea-93

tures obtained from changes of the spectral sensor signal characteristics (frequency94

components, phase shift and energy sums), reporting a substantially increase of the95

classification performance.96

Gas sensor data has been analyzed by many different machine learning techniques97

with typically substantial preprocessing steps, limiting an out of sample extension, as98

discussed in more detail later on. Recent work [5] regarding the classification of gas99

sensor data is based on density estimates or models the time-series using decision100

trees [10] .101

Time series processing constitutes an advanced field of research with many pow-102

erful statistical analysis tools existing (see for example [41]). However, their methods103

usually require a sufficient length of the time series as compared to their dimen-104

sionality or consider only one-dimensional time series. Further the focus is often on105

modeling a timeseries, by means of a longer sequence to explore trends and predict106

future measurement values. In this work we are interested on discriminative models107

between different groups of time series and we would like to predict the class of the108

timeseries.109

A few machine learning techniques exist to investigate high dimensional time110

series: Topographic mappings such as the self-organizing map (SOM) (see [1] for a111

recent review) were extended by a recursive context which accounts for the temporal112

dynamics [43]. A probabilistic counterpart is provided by the Generative Topographic113

Mapping Through Time (GTM-TT) which combines hidden Markov models with a114

constraint mixture model induced by a low dimensional latent space. This approach is115

extended to better take the relevance of the feature components into account in [31],116

but relying on an unsupervised model. The identification of relevant dimensions is117

very important as outlined e.g. in [31,23] to obtain a better understanding of the data,118
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to reduce the processing complexity, and to improve the overall prediction accuracy.119

A supervised relevance weighting scheme which singles out relevant features in a120

wrapper approach based on hidden Markov models has been proposed in [23]. In [7]121

a similar approach introducing class-wise constraints in the hidden Markov model122

is presented. In [23], applications to life science data are presented resulting in 85%123

prediction accuracy on a multiple sclerosis (MS) data set, but the approach makes124

multiple, restrictive assumptions regarding the used Hidden Markov Model (HMM).125

The approach [7] is evaluated in the same scenario with improved performance for126

the sclerosis data set. Ongoing work in the field reflects the high demand for effective127

methods for short but high dimensional time series data [33]. This is not limited to128

the bio-medical domain [23,7] but covers a broader field of applications in industry129

and geo-science [31,43]. In this work, we employ a supervised variant of GTM-TT130

(SGTM-TT) as introduced in [36] and extended in [37].131

3 Method132

3.1 Generative Topographic Mapping133

As outlined before the complexity of the considered data requests for a strong regu-134

larizing and interpretable model. Topographic maps appear to be a good choice and135

especially the Generative Topographic Mapping (GTM) combines multiple neces-136

sary features. GTM was first introduced in [2] and models a given set of data vectors137

x ∈ RD in form of a mapping based on a constrained mixture of Gaussians. The138

mixture is induced by a lattice of points w in a low dimensional, so called, latent139

space which can also be used for visualization. The low dimensional lattice points140

are mapped by a projection w 7→ t = y(w,W) into the high-dimensional data141

space. The corresponding mapping function is parametrized by the parameters W;142

which usually are chosen in form of a generalized linear regression143

y : w 7→ Φ(w) ·W (1)

with basis functions Φ as equally spaced Gaussians. The high-dimensional points144

y(w,W) are called prototypes and are determined in the original data space. The145

prototypes define a quantization of the original data space, representing the data with146

minimum possible error and can be inspected directly. For more recent work on pro-147

totype based learning and topographic maps see [1].148

Every grid point of the GTM induces a Gaussian149

p(x|w,W, β) =

(
β

2π

)D/2
exp

(
−β
2
‖x− y(w,W)‖2

)
(2)

with variance β−1. Assuming a Dirac distribution of the prototypes, the data are150

modeled by a mixture of K modes151

p(x|W, β) =
K∑
k=1

p(wk)p(x|wk,W, β) (3)
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Odor recognition in robotics applications by discriminative time series modeling 5

Fig. 1: GTM-TT consisting of a hidden Markov model, which hidden states are
constrained to be organized on a grid topology (the latent points of the GTM model).
The emission probabilities are governed by the GTM mixture distribution [2]. In the
left figure a data distribution is given in a 3D space with an intrinsic low-dimensional
support. Additionally these data are not i.i.d. but dependent over time leading to some
trajectory. GTM is used to project the data to a low dimensional grid (here 2D, right
plot). The prototypes (circles left) are generated by the latent points (in 2D, right) as
HMM constrained Gaussians (left, dotted circles). Here we consider 9 hidden states
organized on a 3×3 grid. The data distribution may change over time and hence also
the mapping of the GTM is effected over time, assuming smooth transitions within
the HMM.

with p(wk) = 1/K, assuming equal probabilities of the modes. We optimizes the152

data log-likelihood153

ln

(
N∏
n=1

(
K∑
k=1

p(wk)p(xn|wk,W, β)

))
(4)

by means of an expectation maximization (EM) strategy with respect to the model154

parameters W and β with data dimensionality D and number of points N as detailed155

in [2].156

Finally an unsupervised restricted Gaussian mixture model (GMM), induced by157

a low dimensional latent space, is defined.158

3.2 GTM Through-Time159

For temporal data the original GTM formulation is limited because it does not ac-160

count for the dependency between different time points leading to quite complex and161

redundant GTM models (see [31]). An extension was provided by the GTM through162

time (GTM-TT) [2] where the entries over time are no longer independent. It basi-163

cally provides an advanced time-series clustering using a constrained hidden Markov164

model, which is useful under our given constraints. It is assumed that the data are165
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Fig. 2: Illustration of the SGTM-TT. It consists of multiple GTM-TT models. It be-
haves similar to the regular GTM-TT but the training is classwise and the β param-
eter is common over the different models. The different classwise models are used
to represent the data distribution over time (here for three classes). In the bottom the
SGTM-TT with relevance learning is shown. The relevance of the input-dimensions
is weighted over time during training. And only relevant dimensions with large λ-
values are kept. In the figure the Λ1 dimension discriminates the two groups and is
pronounced by metric adaptation.

time series in the D-dimensional metric space, i.e. x = x(1) . . .x(T ) ∈ (RD)∗166

where T ≥ 1 is the length of the time series. A data point of the training data will be167

referred to as xi. We assume that entries, consecutive in time, x(t) and x(t + 1) are168

strongly correlated. In the GTM-TT the observation space (over time) is represented169

by a topographic mapping as described before but its time dependence is modeled in170

form of a hidden Markov model (HMM). In the GTM-TT model the hidden states171

are given by the lattice points wj . The concept of the GTM-TT is depicted in Figure172

1. Lets assume a given sequence x of observations and an underlying sequence of173

hidden states of the same length z = z(1) . . . z(T ) where z(i) is equivalent to a point174

wj . Then, the probability of the observations and a corresponding path of hidden175

states z can be described by p(x, z|Θ) =176

p(z(1))
T∏
t=2

p(z(t)|z(t− 1),W, β)
T∏
t=1

p(x(t)|z(t)) (5)

with the conditional probability p(x(t)|z(t)) := p(x(t)|z(t),W, β)is as before (2)177

[2]. This results in the overall probability of x: p(x|Θ) =
∑

z∈{w1,...,wK}T p(x, z|Θ)178
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For the parametrization of the GTM-TT (Θ = (W, β, π,P)) we rely on the as-179

sumption of the standard Markov property and stationarity of the dynamics. With180

additional parameters for the initial state probabilities π = (πj)
K
j=1 where πj =181

p(z(1) = wj) and transition probabilities P = (pij)
K
i,j=1 where pij = p(z(t) =182

wj |z(t− 1) = wi), the latter one characterizing the temporal correlations of subse-183

quent states. The data log likelihood is optimized by: ln
(∏N

n=1 p(x
n|Θ)

)
. using an184

EM-approach. Like for standard HMMs the hidden parameters (responsibilities) are185

defined by a forward-backward procedure [48]. Based on these parameters W and β186

can be determined as specified before. The probability of being in state wk at time t,187

given the observation sequence xn (responsibilities) is given as:188

rkn(t) = p(z(t) = wk|xn, Θ) =
AktBkt
p(xn|Θ)

(6)

Using the joint probability p(xn(1) . . .xn(t), z(t) = wk|Θ) and the subsequent189

equation:190

Akt =
K∑
i=1

Ait−1pikp(x
n(t)|wk, Θ) (7)

we get the forward variable Akt with the start condition Ak1 = πkp(x
n(1)|wk, Θ).191

The variable Bkt is the joint probability p(xn(t + 1) . . .xn(tn), z(t) = wk|Θ) and192

is calculated using Bkt =
∑K
i=1 pikp(x

n(t + 1)|wi, Θ)Bit+1where BkT = 1, Bkt193

defines the backward variable. The transition parameters are trained using the stan-194

dard Baum-Welch training. As usual the underlying HMM also permits to deal with195

missing values and sequences of arbitrary length [3]). A more detailed description of196

the GTM-TT is given in [42].197

For an input time series xn(1) . . .xn(T ), GTM-TT specifies a time series of re-198

sponsibilities rkn(1) . . . rkn(T ) of neuron k. This can be used to define a winner for199

every time step t: argmaxkr
kn(t).200

3.3 Supervised GTM-TT201

In the considered problem scenario our time series data provide additional label infor-202

mation, such that x is equipped with a label l, element of a finite label set {1, . . . L}.203

We also assume that the given label is constant over time. Now, we would like to204

incorporate the label information in the optimization process of the GTM-TT lead-205

ing to an extended supervised classification scheme. Given a labeled training set, we206

learn a separate GTM-TT for every class, whereby the models are linked by the same207

bandwidth β and the same underlying topological grid. We also use the same basis208

functions Φ and the Dirac distribution on the latent space. However, the prototype209

parameters Wl, the initial state probability πl and the transition probabilities Pl are210

learned individually for every model representing label l. We refer to this model as211

the Supervised GTM-TT (SGTM-TT) as depicted schematically in Figure 2. Accord-212

ingly, we will have a quantitative model for every class l after training.213
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In the recall or test phase we have to analyze a novel time series x and obtain214

L time series of predicted responsibilities according to every model which will be215

denoted by rkl (x(t)) (responsibilities of model l for input x at time point t). We can216

summarized the responsibilities in an aggregated form as:217

rl(x) :=
K∑
k=1

T∑
t=1

rkl (x(t))/(KT ) (8)

and one can select the label l as predicted output for which this value is largest.218

3.4 Relevance learning for SGTM -TT219

Metric adaptation for discriminative prototype based learning has been introduced in220

[19], it is often also referred to as relevance learning. The basic idea is to parametrize221

the distance measure to incorporate auxiliary information. For the squared Euclidean222

metric one can define a parametrized, weighted, variant:223

dλ(x, t) =
D∑
d=1

λ2d(xd − td)2 . (9)

For the GTM such a parametrization was already discussed in [15] for i.i.d. data224

resulting in relevance GTM (R-GTM). However, having temporal data some adapta-225

tions are necessary and also the supervision has to be handled in an alternative way.226

To keep the approach simple and to limit the number of free parameters we will re-227

strict our approach to a global diagonal weighted distance, in which case a weight λi228

directly corresponds to the relevance of dimension i. Here we assume normalized data229

with mean 0 and a standard deviation of 1 for each dimension. For GTM-(TT), the230

distance used to compute local probabilities is replaced by the previously discussed231

weighted Euclidean distance:232

pλ(x|w,W, β) =

(
β

2π

)D/2
exp

(
−β
2
dλ(x, y(w,W))

)
(10)

Accordingly the data log likelihood considers the relevance of the data dimensions233

and, hence we obtain a corresponding topographic mapping.234

A main difference of this approach to a standard integration of a data correlation235

matrix into the Gaussians consists in the fact that we prefer to adapt the relevance236

parameters in a supervised way according to the given label information, resulting in237

a discriminative approach.238

The relevance parameters λ are optimized as suggested in [15] using the class239

information in an additional update step, interleaved with the standard adaptation of240

the SGTM-TT using the parametrized distance.241

The discriminative learning of the metric parameters is controlled by the cost242

function of the generalized learning vector quantization (GRLVQ) which is a large243

margin technique [39]. We assume a classification based on a finite set of prototypes244

Authors' accepted manuscript. 
Pattern Analysis and Applications, 2015 

The final publication is available at: 
http://dx.doi.org/10.1007/s10044-014-0442-2 



Odor recognition in robotics applications by discriminative time series modeling 9

tj which are equipped with class labels and represent the given data. A classifica-245

tion is done by means of a winner takes all scheme: the predicted label corresponds246

to the prototype with smallest distance dλ(x, tj). For standard GTM, our prototypes247

are given by latent points tj = y(wj ,W), and the distances determine the respon-248

sibilities of the data points. The relevance terms λ are adapted such that the costs249

250

E(λ) =
∑
n

sgd

(
dλ(x

n, t+)− dλ(xn, t−)
dλ(xn, t+) + dλ(xn, t−)

)
(11)

are minimized. The closest prototype with the correct labeling is denoted by t+ and251

the one with the incorrect label by t−, for a given input xn. The sigmoid function252

(sgd) is defined as: sgd(x) = 1
1+exp(−σ·x) ∈ [0, 1] This optimization scheme can253

be integrated into the vectorial GTM, simultaneously adapting the GTM parameters,254

optimizing the data log-likelihood, and the metric parameters optimizing the classifi-255

cation margin. The update equations for the parameters λ can be derived from (11),256

taking the derivatives. To keep a quadratic form in the distance measure, the metric257

parameters are normalized after each adaptation step.258

Given an input sequence x we get a prototype representation of this time series259

by evaluating the SGTM-TT in the following way. For every class label we consider260

the time series of prototypes of the corresponding GTM-TT model according to the261

winner prototypes over time:262

tl = (tl(1) . . . tl(T )) (12)

where263

tl(t) = y(wk,Wl) with k = argmaxkr
k
l (x(t)) (13)

Now the time series x and the corresponding time series of prototypes repre-264

senting a correct or a wrong class label can be used in (11) to adapt the underlying265

metric. If we assume an appropriate metric for the comparison of two time series, a266

well defined cost function results.267

Several reasonable distance measures for time series can be considered, whereby268

the only property which we will use is differentiability. For simplicity we will also269

assume, that the time series have equal length, although the model can be generalized270

to time series of different length.271

A very simple distance for such time series would be to average over the Eu-272

clidean distances in each time point. This however is inappropriate, because it will273

completely neglect the functional form of the data. An appropriate measure, designed274

for the comparison of timeseries was proposed in [21] and will be used instead. Fur-275

ther alternatives time series metrics are possible see e.g. [10], but the chosen one has276

been found to be effective in prior work [38] and can be calculated at low costs.277

The considered distance measure integrates the functional form of three subse-278

quent time steps in comparing x(t) and t(t). Let us assume we have a real valued279

time series v = v(1) . . . v(T ), then the functional Lp norm can be defined as [21]:280

Lfp (v) =

(
T∑
t=1

(4At (v) +4Bt (v))p
) 1

p

(14)
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with281

4Ak (v) =

{
τ
2 |(t)| if 0 ≤ v(t)v(t− 1)
τ
2

(t)2

|v(t)|+|v(t−1)| if 0 > v(t)v(t− 1)
(15)

4Bk (v) =

{
τ
2 |v(t)| if 0 ≤ v(t)v(t+ 1)
τ
2

v(t)2

|v(t)|+|v(t+1)| if 0 > v(t)v(t+ 1)
(16)

representing the triangles on the right and the left sides of v(t) and boundary points282

are set to 0. This norm accounts for entries which change the sign in subsequent time283

steps. We obtain a weighted distance, for vectorial data x and t over time with equal284

dimensionality D at each time point:285

dλ(x, t) =
D∑
i=1

λiLfp (xi − ti) (17)

where xi−ti refers to the time series of real numbers given by the distance of the286

entries in dimension i. As a special property of this distance measure the similarity287

of the curvature of the sequences is taken into account. Again, each dimension is288

weighted by the normalized relevance parameters λi.289

This weighted metric (17) is used in the cost function (11). If we take the deriva-290

tives (see [38] for Lp-norm) with respect to the relevance terms an adaptive weight-291

ing for the input dimensions is obtained taking the functional form of the data into292

account. Again the λ are normalized after every adaptation to obtain non-negative293

values, summing up to 1.294

Relevant time points:295

Since SGTM-TT relies on HMMs, every time point depends on its predecessor only.296

Thus, it is not reasonable to adapt the relevance of time points to obtain a better rep-297

resentation of data in the GTM-TT models. However, it is reasonable to judge the298

relevance of time points resulting from the GTM-TT models for the final classifica-299

tion, in particular if time series are of the same or a similar length. This method offers300

insights into the model to identify time points which are particularly discriminative301

for the given task at hand.302

We obtain a relevance profile in the following way: Denote by rl(x(t)) :=303 ∑K
k=1(r

k
l (x(t)))/K the accumulated responsibility of the GTM-TT model l for data304

point xn at time point t. Based on this value, a classification can be based on the305

maximum responsibility rl(x(t)) in time point t. For every time point t, we simply306

count the number of data points which are classified correctly as belonging to class307

l based on the classification for time point t only, averaged over all data. A global308

relevance profile results thereof as a sum over all labels.309
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Fig. 3: Measurement system.

4 Odor Measurement System310

The analyte measurement system employed to gather the data presented in this article311

is shown in Figure 3. It consists of an array of metal oxide semiconductor (MOX)312

gas sensors hosted inside a measurement chamber, a pneumatic circuit to control313

the exposition of the sensors to the volatile molecules dispersed in the environment,314

and the electronics necessary to power up the sensors and respective measurement315

circuits.316

The election of MOX as the gas sensing technology has been made attending at its317

high sensitivity, commercial availability and low price. However, they present some318

shortcomings including: poor selectivity, influence by environmental factors such as319

humidity and temperature [30] and major limitations in their response speed [29].320

Among these drawbacks, their poor selectivity is of the largest concern for odor clas-321

sification. To overcome this, it is a common practice to build the e-nose upon an array322

of MOX sensors with different and partially overlapping sensitivities. The output of323

the array is then processed with a pattern recognition algorithm to find out which324

substance the e-nose is exposed to. Based in this concept, we choose five different325

MOX gas senors to compose the sensor array: TGS-2600, TGS-2602, TGS-2611 and326

TGS-2620 from Figaro Sensors1, and MiCS-5135 from e2V Sensors2.327

In order to enable sensors to interact with the volatile molecules dispersed in the328

environment, the e-nose employs a pump to enforce a constant airflow through the329

sensors array. The aspiration and release of the air samples are accomplished through330

tubes, conveniently separated one to another to avoid cross contamination. Addition-331

1 Figaro engineering inc. http://www.figaro.co.jp
2 e2v. http://www.e2v.com/.
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ally, the aspiration through flexible tubes allows the displacement of the aspiration332

entry without the need to move the complete system. This advantage is particularly333

useful in robotics to easily sample the space, for example, by attaching the e-nose334

aspiration to the hand of an arm robot as shown in the experimental section.335

4.1 Signal conditioning and data preprocessing336

The data, as provided by the e-nose, present a measurement intrinsic baseline, which337

can be seen as a signal offset. Here, we estimate the baseline value as the median338

signal intensity within the first 5 − 20 seconds, and then, remove it from each mea-339

surement truncating values to zero when necessary.340

More sophisticated preprocessing, by means of advanced baseline correction al-341

gorithms, smoothing strategies or normalization techniques [35] are possible but out342

of focus of this paper. We also do not further explore specific feature extraction tech-343

niques for spectral data but focus on the obtained normalized intensities.344

5 Experimental Results345

This section describes the setups and classification results for three different experi-346

ments designed with increasing classification challenge. Furthermore, a comparison347

of results with SVM, NN and a very recent reservoir computing based time series348

classifier (RTK) as proposed in [6] is provided. For RTK the core idea is to transform349

the time series into a higher dimensional dynamical feature space via reservoir com-350

putation models. Subsequently varying aspects of the signal are represented through351

variation in the linear readout models trained in such dynamical feature spaces, for352

details see [6].353

In general we are interested on simple methods or at least methods which pro-354

vide direct interpretation of the model parameters and results. For example it is very355

desirable to have direct links to the input features to find channels which are most356

discriminative for a specific substance, relevant over all classes but also the other357

way, being not very relevant. The later is an important characteristic for systems with358

limited resources, like mobile robotics, where it would be desirable to power on only359

the relevant sensors. Accordingly (local) linear methods are interesting in contrast to360

black box non-linear kernel mappings. We are also interested on approaches which361

permit an easy and quick out of sample extension to, in our case, substantially shorter362

sequences in the test phase. This rules out multiple complicated time series models.363

For SVM we used a linear kernel with optimal C determined over the training364

data on a grid search. Since SVM can not directly be applied to temporal data, nor365

can it be used for sequences of different length in a direct way, for the comparison we366

simply concatenate the measurements of the different channels to remove the time367

dimension. More complex strategies of applying SVM, e.g. by using a dynamic time368

warping (DTW) kernel could be done but are not in the focus of this paper and out of369

sample extensions are often not immediate which is an issue for online robotic sensor370

systems. For more recent work around DTW or kernel related time series analysis371
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see e.g. [32,28,6]. Additionally we would like to avoid more complex preprocessing372

steps to permit an easy out of sample extension in practical settings. Although max-373

imum classification performance is not our main objective, we also provide a com-374

parison with a very recent reservoir computing kernel [6]. This approach is known to375

be very effective for timeseries but on the other hand is less interpretable nor is the376

out of sample extension for very short sequences immediate. For RTK there are three377

parameters optimized on the training data within a grid search3 as detailed in [6].378

5.1 Experiment 1: Simulated data379

The first experiment is based on the simulated data proposed in [23] with the only380

intention of validating the proposed algorithm under known conditions.381

The simulated data (SIM) consist of 100 samples separated into two classes of382

50 samples each. Each point is located in a 100 dimensional feature space with 8383

time points. From the given features, only 10 are expected to differentiate between384

the classes. Details about the data and the generation procedure are given in [23].385

We applied SGTM-TT with relevance learning using 9 hidden states and 4 ba-386

sis functions. We observe an overall prediction accuracy of 94 ± 4%. The relevance387

profile identified all known 10 features and effectively pruned out the remaining ir-388

relevant data dimensions. Our results are slightly better than those reported in [23]389

(90%) and in [7] (92%).390

The dataset is a particular short time series with a rather large number of input391

dimensions. Especially the small number of time points can be quite challenging for392

other time series models but may actually occur in the context of electronic nose ex-393

periments, where short sensing cycles would be very desirable. The prediction results394

of the different methods are summarized in Table 1. With the exception of NN most395

methods perform reliable well but SGTM-TT was significantly better.396

5.2 Experiment 2: Controlled gas exposure397

The second experiment aims to test the proposed method with real odor data un-398

der restrained environmental conditions. To this end, a dataset of real odor samples399

is gathered in a scenario as controlled as possible. The dataset is comprised by 39400

samples generated by exposing the e-nose to gas pulses of four different analytes: a401

commercial spirit (Larios Gin), a polish remover based on Acetone, standard ethanol402

and lighter gas (butane mixed with propane). Acetone was given by 9 samples and403

the other classes by 10 samples each.404

Each sample is collected according to the following three-phases procedure: (1)405

for the initial 30s, baseline value is estimated by measuring the sensor response in406

absence of the target gas, (2) then, for a duration of 60s the e-nose is placed next407

to the gas source (about 10cm) exposing the sensor array to the volatile. Finally (3),408

3 Grids: λ, γ = [0, 10−6 . . . 10−1, 0.5, 1 . . . 5, 10, 30, 50, 100] costs = [0.1, 10, 102, 5 ·
102, 103, 5 · 103, 104, 5 · 104]
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the gas source is removed allowing the sensor array to recover to its initial state409

(baseline).410

Figure 4 shows two different samples of such dataset. Notice that although the411

gas exposure was ”controlled” by time exposure and distance to the source, strong412

fluctuations in the sensor readings occur due to the chaotic nature of the gas disper-413

sion.414

The SGTM-TT is inherently capable of dealing with measurement sequences of415

different length in time, using the HMM mapping functionality. However, to permit416

fair comparison with other approaches like vector embeddings, we consider only the417

first 100 sec. of the data. That is, we built a first dataset (DS1) using the initial 100sec.418

of each sample, which corresponds to 487 sampling points.419

For comparison we also use two public domain data sets of similar type (elec-420

tronic nose data) from the UCI database. The DS-UCI-1 data set is given by the421

two sources gas data [14]. The data are measured using a chemical detection plat-422

form composed of 8 chemo-resistive gas sensors which were exposed to turbulent423

gas mixtures generated naturally in a wind tunnel. It consists of 180 time series of424

Ethylene (Eth) ,Carbon Monoxide (CO) and Methane (Me) mixtures at different con-425

centrations. We use the data as a two class prediction problem to predict the whether426

Eth was mixed with CO or Me. Available features are temperature, humidity and the427

8 sensor channel outputs. Each time series is given with 2970 sampling points.428

The DS-UCI-2 data set is given by the pulmon data [49]. The data are measured429

using a chemical sensing system based on an array of 16 metal-oxide gas sensors and430

an external mechanical ventilator to simulate the biological respiration cycle. The431

tested gas classes are mixtures of acetone and ethanol. Data have been normalized432

to zero-mean and intensity and considered again as a prediction problem to identify433

whether the mixture contains Me or CO.434

The classification accuracy for DS1, DS-UCI-1, DS-UCI-2 is given in Table 1 in435

comparison to some standard approaches. We observe that the SGTM-TT performs436
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Fig. 4: Two different samples of the olfaction dataset gathered in the second experi-
ment. The three phases in which the samples can be decomposed are marked at the
bottom of each figure as (1),(2) and (3).
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CV-Accuracy SGTM-TT SVM NN RTK

SIM 94.00± 4.18% 90.00± 5.00% 55.00± 13.54% 66.30± 8.54%
DS1 88.03± 9.72% 86.36± 9.66% 80.49± 11.90% 96.67± 4.56%
DS-UCI-1 87.78± 5.76% 93.89± 4.97% 86.81± 7.98% 64.44± 4.12%
DS-UCI-2 79.55± 9.15% 83.03± 18.47% 76.33± 18.15% 94.70± 8.05%

Table 1: Average test set accuracy for the first and second experiment in a 5 fold
cross-validation. Significant better results are underlined.
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Fig. 5: Relevance profile of the sensor input for DS-UCI-1 (left) and DS-UCI-2
(right). For both profiles the information is distributed over the various sensors but
some sensors are more important e.g. sensor 1 for DS-UCI-1 and sensor 3 for DS-
UCI-2.

reliable well although the best prediction accuracy for DS1 and DS-UCI-2 is ob-437

tained by the RTK approach. For the DS-UCI-1 dataset RTK is significantly worse438

than the other approaches and the SVM obtained the best performance. Hence there439

is not a clear winner regarding the classification accuracy but SGTM-TT represents440

a good approach with a reliable and consistent performance. Furthermore, as previ-441

ously commented, the classification performance is not the only point that matters but442

also the simplicity of the model and the interpretability of the results. Neither RTK443

nor SVM provide additional insight in the relevance of the sensor channels 4. Here we444

are mainly interested on interpretable models [24] which also simplify a later transfer445

of the approach to an embedded system or the sensor platform. In Figure 5 we show446

the averaged (global) sensor relevance profile of DS-UCI-1 and DS-UCI-2.447

Subsequently we give a detailed analysis for our own dataset - DS1, where we have448

more background information to provide a specific in depth discussion of the results.449

For the analysis of the sensor relevance and time points relevance, the whole measure-450

ment sequence of each sample was down-sampled to 800 time points each (DS2). The451

SGTM-TT was then trained in a 5-fold crossvalidation with 4 hidden states and 4 ba-452

sis functions. In Figure 6 we show the relevance indexes of the five gas sensors of the453

e-nose for the different target volatiles of DS2 as obtained by SGTM-TT. Different454

conclusions can be drawn from the study of such relevance plot:455

4 Approaches for feature ranking by SVM are available but not for this type of data and not directly for
multi-class problems as studied for DS1.
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– In general, the five MOX sensors are relevant for the classification of the differ-456

ent volatiles, being sensor TGS − 2620 the less relevant one, and so the most457

expendable.458

– Sensor TGS − 2602 is the most relevant one when classifying Acetone and459

Ethanol samples, with a notable difference with respect the other sensors in the460

case of Acetone. This characteristic is already reported in the manufacturer’s461

datasheet, indicating the high sensitivity to volatile organic compounds (VOCS)462

of this sensor model.463

– As expected from the low selectivity characteristic of MOX sensors, each sensor464

presents a high relevance index for more than one odor class.465

We also explore the relevance of individual time points of the dataset DS2, depicted466

in Figure 7(a). As expected, the time-interval under volatile exposition, the first 100467

seconds, is the most discriminating. Furthermore, and as already reported in [9], it is468

noticeable the fact that relevant information for classification purposes can be found469

in the recovery phase, after the volatile has been removed.470

Since in real robotics conditions the classifier is expected to work on small data471

sequences, a second configuration for the dataset DS2 was tested. Here, the test data472

consist only of short sensor readings over time. Figure 7(b) depicts the accuracy in the473

classification for three different window lengths (1s, 10s and 20s). We observe that474

given the highly dynamic response of MOX sensors in addition to the inherent sig-475

nal noise, very small windows (1s) do not carry enough information for a reasonable476

classification, but for data sequences of ten seconds the accuracy in the prediction477
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Fig. 6: Sensor relevance indexes for the four odor classes used on dataset DS2.
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achieves very good results (values near 0.8). Furthermore, window lengths over ten478

seconds seems to not improve the accuracy, which indicates that long sequences en-479

code a lot of noise contributions, hampering the model in the prediction. Finally, it480

must be noticed that the classification accuracy is usually higher when using data481

from the transient parts of the signal (rise and decay) than when steady state data is482

employed, as denoted by the accuracy peaks found around seconds 30 and 90.483
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Fig. 7: Time points relevance profile 7(a) averaged over all classes and mean predic-
tion accuracy over time with window length’s of ≈ 1, 10, 20sec 7(b).

aspiration tube
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pump
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Fig. 8: (a) The robotic arm used in the third experiment mounted over a mobile plat-
form, and a detailed view of the attached e-nose aspiration. (b) Picture of the proposed
setup for the third experiment. Each of the black plastic vessels contains a different
substance.
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5.3 Experiment 3: Robotics experiment - uncontrolled gas pulses484

Finally, and with the aim to validate the classification performance in a more chal-485

lenging robotic scenario, a third experiment is presented. In this case, the e-nose486

aspiration (see Figure 8) is attached to the hand of a robotic arm [34] which is com-487

manded to approximate the e-nose aspiration to each of four recipients containing488

different substances (Acetone, Ethanol, Butane 5 and Gin).489

To avoid waiting for the sensors to recover their baseline levels after each expo-490

sure (which would take more than a minute), we have employed a specially designed491

e-nose, called MCE-nose [17], that allows the measurement of fast changing gas con-492

centrations.493

The robotic arm is commanded to approximate to the containers following a pre-494

defined sequence. The exposition to each of the substances takes 20sec, after which495

the arm moves to another container. The volatile sequence and the gathered signals496

during the experiment are depicted in Figure 9. A video of a similar experiment497

is additionally available at http://mapir.isa.uma.es/mapirwebsite/498

index.php/2008-tep-4016-media499

Each of the short sequences was pre-processed such that the baseline is removed.500

Then the sequences have been matched with the SGMT-TT or NN model as obtained501

from DS1 6. This can be considered to be a test of the model on an independently502

measured hold out dataset.503

The ground-truth and predicted labels of the sequences are given in Table 2 with504

only 3 errors out of the 16 test samples. In the experiment the SGTM-TT classifier505

was continuously online and fed by new data every 20sec. according to the measure-506

ment protocol. This experiment is interesting because the input data processed by the507

SGTM-TT method are substantially shorter than the training dataset, with around 30508

sampling points for the core measurement. The SVM model can not be applied here509

due to the varying length of the input data and for the RTK model the sequence are510

also too short to get reliable predictions as the method is not designed for this type511

of test inputs. For NN we applied a local DTW alignment between each training and512

test sample using the best local fit.513

6 Conclusion514

A novel approach for the analysis of high dimensional and rather short temporal se-515

quences was presented. It is based on the idea to introduce available meta information516

into the modeling process of a Generative Topographic Mapping through time, given517

in form of supervised information and relevance learning. We have analyzed the suit-518

ability of such model for the odor classification problem in robotics applications,519

providing comparative results with support vector machine (SVM), nearest neighbor520

(NN) and the reservoir time series kernel (RTK) for three different scenarios (with521

5 Since butane is found at gas state at ambient temperature, the content of a lighter was released when
the e-nose aspiration moved over the container.

6 Here we simply used the model from the first crossvalidation run.
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Fig. 9: MCE-nose gathered signals of the classification experiment with a robotic
arm, and the ”ground-truth” sequence of the employed analytes. The active cham-
ber [0,1,2,3] is switched every 20 sec. Signals are shown for the 4 different sensor
channels as described before.

Time 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
True G A E M A E M G E M G A M G A E
SGTM-TT

Pred. G M E M A M M G E M G A M G A M
Error o o o
NN

Pred. G E G M E G G G G M G A G M E G
Error o o o o o o o o o o

Table 2: Predictions for the external evaluation data using the first respective cross-
validation model. The ’o’ in the line labeled with Error indicates mismatches.

increasing classification challenge), and demonstrating that the proposed method is522

effective for solving such highly dimensional data problem.523

Other remarkable advantages of the method in the context of odor classification524

in robotics are: on the one hand, the possibility for the robot to perform rapid classifi-525

cation of chemical substances by using a short data sequence. On the other hand, the526

SGTM-TT method outputs relevance values for both the sensors being used as well527
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as the time-points of the signal, which provide very valuable information to configure528

the e-nose and to carry out the robot smelling.529

In future work it will be of interest to analyze the SGTM-TT in the context of530

drift problems as recently discussed in [47,46] and how the method can be further531

improved by early decision strategies [20].532
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