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Odor recognition in robotics applications
by discriminative time series modeling

F.-M. Schleif, B.Hammer,
J. G. Monroy, J. Gonzalez-Jimenez, J. L. Blanco,
M. Biehl, N. Petkov

Abstract Odor classification by a robot equipped with an electronic nose (e-nose) is
a challenging task for pattern recognition since volatiles have to be classified quickly
and reliably even in the case of short measurement sequences, gathered under op-
eration in the field. Signals obtained in these circumstances are characterized by a
high dimensionality, which limits the use of classical classification techniques based
on unsupervised and semi-supervised settings, and where predictive variables can be
only identified using wrapper or post-processing techniques. In this paper, we con-
sider generative topographic mapping through time (GTM-TT) as an unsupervised
model for time series inspection, based on hidden Markov models regularized by
topographic constraints. We further extend the model such that supervised classifica-
tion and relevance learning can be integrated, resulting in supervised GTM-TT. Then,
we evaluate the suitability of this new technique for the odor classification problem
in robotics applications. The performance is compared with classical techniques as
nearest neighbor (NN), as an absolute baseline, support vector machine (SVM) and a
recent time series kernel approach, demonstrating the eligibility of our approach for
high dimensional data. Additionally, we exploit the learning system introduced in this
work, providing a measure of the relevance of each sensor and individual time points
in the classification process, from which important information can be extracted.

Keywords electronic nose, volatile classification, odor recognition, time series,
prototype learning, relevance learning

1 Introduction

Olfaction plays an important role in the development of many applications, such as
quality control in food processing chains, detection and diagnosis in medicine, find-
ing drugs and explosives, and the more common estimation of blood alcohol content
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(BAC) for drivers. Among them, there are some applications like pollution monitor-
ing or leak detection that require to measure the environment continuously and at
different locations. For such scenarios, the use of a mobile robot with the capability
of identifying and measuring the volatiles’ concentration is of great help as already
reported in [26125]. Furthermore, olfaction also plays a key role in the development
of more intelligent and useful robots at home, for example, by recognizing activities
and environmental conditions, or improving social interaction [16].

Three are the main fields within robotics olfaction: gas distribution mapping
(GDM) [4.22], where the objective is to obtain a truthful representation of how
volatiles are dispersed in the inspected area and their respective concentrations, gas
source localization (GSL) where the robot is commanded to localize the emission
sources [13]], and odor recognition which deals with the problem of identifying which
of a set of categories a new volatile sample belongs to [45].

The discrimination of gases performed with a robot equipped with an array of gas
sensors presents a number of additional challenges when compared to standard ana-
lyte identification applications, mostly due to the differences in the measurement con-
ditions. While standard classification tasks usually host gas sensors inside a chamber
with controlled humidity, temperature and airflow conditions, in robotics olfaction
there is no control over the sensing conditions. This entails that the sensor signals to
be processed are noisy and dominated by the signal transient behavior.

Only few modeling methods are available to obtain interpretable, compact and
precise predictive models for such type of data like [23.[7]. This is mainly due to the
following reasons: (1) the number of time points is often low, while the dimensional-
ity of the data is rather high, (2) the number of time sequences is often low, leading
to a sparsely populated data space, (3) the sequences may have missing values, and
may be of different length.

In this paper we demonstrate the suitability of a novel approach based on genera-
tive topographic mapping through time (GTM-TT) to the problem of volatile identi-
fication in robotics. The model extends classical GTM-TT by integrating supervised
classification and relevance learning, resulting in supervised GTM-TT (SGTM-TT).
More precisely, we have tested the SGTM-TT method with an e-nose comprising an
array of MOX (metal oxide sensors) to classify samples of seven different volatiles
under uncontrolled conditions. The performance is compared with techniques as near-
est neighbor (NN), support vector machine (SVM) and a reservoir computing time
series kernel (RTK) We illustrate one of the main advantages of the proposed method
when classifying odors based on short data sequences, providing the predictive clas-
sification accuracy for sequences of reduced lengths (1s, 10s and 20s). Furthermore,
we highlight the introduced relevance learning system for temporal high dimensional
data, by studying the relevance of sensors and time points on the classification per-
formance.

2 Related works

Odor discrimination with electronic noses has received growing attention and many
studies have been done on how to classify odors using an array of gas sensors and
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a pattern recognition algorithm. In [8I11,40./18] the principal methods for chemical
classification with an array of gas sensors are reviewed, including nearest neighbor
(NN), mahalanobis linear discriminant analysis, neural networks (ANN), cluster anal-
ysis with self-organizing Maps (SOM) and Support Vector Machines (SVM).

More recently, approaches based on ensembles of classifiers have been reported
to improve the classification accuracy [44], improve the earliness on the classifica-
tion [20], or to deal with the common problems of sensor drift and sensor replace-
ment. In [47], a SVM based ensemble of classifiers is used to solve the gas dis-
crimination problem over a period of three years by training different classifiers at
different points of time. Similarly, in [27], a flexible classification strategy based on
cooperative classifiers is proposed to increase the robustness of chemo-sensory sys-
tems against failures in their constituent sensing elements, postponing the necessity
of replacing a sensor in the array, as well as facilitating the insertion of newly sensing
elements.

Nevertheless, little attention has been given to the problem of classification in un-
controlled conditions, as revealed by the few works found in literature that perform
classification focusing only on the transient phase of the sensor signals. An evalua-
tion for the suitability of different feature extraction techniques for such scenarios is
provided in [45], where Trincavelli et al. propose a preprocessing stage to isolate the
relevant parts of the sensor signals that can then be passed to the pattern recognition
algorithm. More recently, in [12] a Support Vector Machine is applied to a set of fea-
tures obtained from changes of the spectral sensor signal characteristics (frequency
components, phase shift and energy sums), reporting a substantially increase of the
classification performance.

Gas sensor data has been analyzed by many different machine learning techniques
with typically substantial preprocessing steps, limiting an out of sample extension, as
discussed in more detail later on. Recent work [3]] regarding the classification of gas
sensor data is based on density estimates or models the time-series using decision
trees [10] .

Time series processing constitutes an advanced field of research with many pow-
erful statistical analysis tools existing (see for example [41]]). However, their methods
usually require a sufficient length of the time series as compared to their dimen-
sionality or consider only one-dimensional time series. Further the focus is often on
modeling a timeseries, by means of a longer sequence to explore trends and predict
future measurement values. In this work we are interested on discriminative models
between different groups of time series and we would like to predict the class of the
timeseries.

A few machine learning techniques exist to investigate high dimensional time
series: Topographic mappings such as the self-organizing map (SOM) (see [1]] for a
recent review) were extended by a recursive context which accounts for the temporal
dynamics [43]]. A probabilistic counterpart is provided by the Generative Topographic
Mapping Through Time (GTM-TT) which combines hidden Markov models with a
constraint mixture model induced by a low dimensional latent space. This approach is
extended to better take the relevance of the feature components into account in [31]],
but relying on an unsupervised model. The identification of relevant dimensions is
very important as outlined e.g. in [31123] to obtain a better understanding of the data,



119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

Authors' accepted manuscript.
Pattern Analysis and Applications, 2015
The final publication is available at:
http://dx.doi.org/10.1007/s10044-014-0442-2

4 -blind for review-

to reduce the processing complexity, and to improve the overall prediction accuracy.
A supervised relevance weighting scheme which singles out relevant features in a
wrapper approach based on hidden Markov models has been proposed in [23]. In [[7]
a similar approach introducing class-wise constraints in the hidden Markov model
is presented. In [23], applications to life science data are presented resulting in 85%
prediction accuracy on a multiple sclerosis (MS) data set, but the approach makes
multiple, restrictive assumptions regarding the used Hidden Markov Model (HMM).
The approach [7] is evaluated in the same scenario with improved performance for
the sclerosis data set. Ongoing work in the field reflects the high demand for effective
methods for short but high dimensional time series data [33]]. This is not limited to
the bio-medical domain [23l[7] but covers a broader field of applications in industry
and geo-science [31,/43]]. In this work, we employ a supervised variant of GTM-TT
(SGTM-TT) as introduced in [36] and extended in [37]].

3 Method
3.1 Generative Topographic Mapping

As outlined before the complexity of the considered data requests for a strong regu-
larizing and interpretable model. Topographic maps appear to be a good choice and
especially the Generative Topographic Mapping (GTM) combines multiple neces-
sary features. GTM was first introduced in [2] and models a given set of data vectors
x € RP in form of a mapping based on a constrained mixture of Gaussians. The
mixture is induced by a lattice of points w in a low dimensional, so called, latent
space which can also be used for visualization. The low dimensional lattice points
are mapped by a projection w — t = y(w, W) into the high-dimensional data
space. The corresponding mapping function is parametrized by the parameters W;
which usually are chosen in form of a generalized linear regression

y:wi d(w) W (1)

with basis functions @ as equally spaced Gaussians. The high-dimensional points
y(w, W) are called prototypes and are determined in the original data space. The
prototypes define a quantization of the original data space, representing the data with
minimum possible error and can be inspected directly. For more recent work on pro-
totype based learning and topographic maps see [L1].

Every grid point of the GTM induces a Gaussian

B\ 8 2
p(X|W,W,B) =\5= exp —fo—y(w,W)H 2
27 2
with variance 8~!. Assuming a Dirac distribution of the prototypes, the data are
modeled by a mixture of K modes

K

px[W,8) = p(wh)p(x|w", W, 8) 3)

k=1
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multivariate (high-D) low-D ‘states®
time series

/

Fig. 1: GTM-TT consisting of a hidden Markov model, which hidden states are
constrained to be organized on a grid topology (the latent points of the GTM model).
The emission probabilities are governed by the GTM mixture distribution [2]. In the
left figure a data distribution is given in a 3D space with an intrinsic low-dimensional
support. Additionally these data are not i.i.d. but dependent over time leading to some
trajectory. GTM is used to project the data to a low dimensional grid (here 2D, right
plot). The prototypes (circles left) are generated by the latent points (in 2D, right) as
HMM constrained Gaussians (left, dotted circles). Here we consider 9 hidden states
organized on a 3 x 3 grid. The data distribution may change over time and hence also
the mapping of the GTM is effected over time, assuming smooth transitions within
the HMM.

high-D trajectory transition probabilities

with p(w*) = 1/K, assuming equal probabilities of the modes. We optimizes the
data log-likelihood

N /K
In <H (Zp(wk)p(x"|wk,w,6)>> “4)
n=1 \k=1

by means of an expectation maximization (EM) strategy with respect to the model
parameters W and 3 with data dimensionality D and number of points NV as detailed
in [2].

Finally an unsupervised restricted Gaussian mixture model (GMM), induced by
a low dimensional latent space, is defined.

3.2 GTM Through-Time

For temporal data the original GTM formulation is limited because it does not ac-
count for the dependency between different time points leading to quite complex and
redundant GTM models (see [31]). An extension was provided by the GTM through
time (GTM-TT) [2]] where the entries over time are no longer independent. It basi-
cally provides an advanced time-series clustering using a constrained hidden Markov
model, which is useful under our given constraints. It is assumed that the data are
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minimize cost

Al )
function to adapt \ ’ A > > 2

Fig. 2: Illustration of the SGTM-TT. It consists of multiple GTM-TT models. It be-
haves similar to the regular GTM-TT but the training is classwise and the 3 param-
eter is common over the different models. The different classwise models are used
to represent the data distribution over time (here for three classes). In the bottom the
SGTM-TT with relevance learning is shown. The relevance of the input-dimensions
is weighted over time during training. And only relevant dimensions with large \-
values are kept. In the figure the A; dimension discriminates the two groups and is
pronounced by metric adaptation.

time series in the D-dimensional metric space, i.e. x = x(1)...x(T) € (RP)*
where T' > 1 is the length of the time series. A data point of the training data will be
referred to as x*. We assume that entries, consecutive in time, x(¢) and x(¢ + 1) are
strongly correlated. In the GTM-TT the observation space (over time) is represented
by a topographic mapping as described before but its time dependence is modeled in
form of a hidden Markov model (HMM). In the GTM-TT model the hidden states
are given by the lattice points w”. The concept of the GTM-TT is depicted in Figure
[} Lets assume a given sequence x of observations and an underlying sequence of
hidden states of the same length z = z(1) ... z(T") where z(¢) is equivalent to a point
w. Then, the probability of the observations and a corresponding path of hidden
states z can be described by p(x,z|@) =

T

T
p(2() [ plz(0)lz(t — 1), W, 8) ] p(x( 5)

t=2

with the conditional probability p(x(t)|z(t)) := p(x(t)|z(t), W, 5)is as before
[2]. This results in the overall probability of x: p(x[|©) = 3, ¢ (1. wiyr P(X,2|O)
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For the parametrization of the GTM-TT (© = (W, 8,7, P)) we rely on the as-
sumption of the standard Markov property and stationarity of the dynamics. With
additional parameters for the initial state probabilities 7 = (7Tj)JK:1 where m; =
p(z(1) = w’) and transition probabilities P = (p;;);;_, where p;; = p(z(t) =
wl|z(t — 1) = w?), the latter one characterizing the temporal correlations of subse-
quent states. The data log likelihood is optimized by: In (Hflv:l p(x”|8)>. using an

EM-approach. Like for standard HMMs the hidden parameters (responsibilities) are
defined by a forward-backward procedure [48]]. Based on these parameters W and 3
can be determined as specified before. The probability of being in state w* at time ¢,
given the observation sequence x” (responsibilities) is given as:

kn _ o kion _ AktBk‘t
i (t) = p(z(t) = w"|x",0) = pi(x"\@) (6)

Using the joint probability p(x™(1)...x"(t),z(t) = w*|O) and the subsequent
equation:

K
Age = Z Air1pip(x" (t)| W, 0) @
i=1

we get the forward variable Ay, with the start condition Ay; = mp(x"(1)|w*, ©).
The variable By, is the joint probability p(x"(t + 1)...x"(t,),z(t) = w*|O) and
is calculated using By, = Zfil pikp(x"(t + 1)|w*,©)B;;1where Byr = 1, Biy
defines the backward variable. The transition parameters are trained using the stan-
dard Baum-Welch training. As usual the underlying HMM also permits to deal with
missing values and sequences of arbitrary length [3]]). A more detailed description of
the GTM-TT is given in [42].

For an input time series x™(1) ...x"(T"), GTM-TT specifies a time series of re-
sponsibilities 75" (1) ... 7*"(T') of neuron k. This can be used to define a winner for
every time step ¢: argmax, r*"(t).

3.3 Supervised GTM-TT

In the considered problem scenario our time series data provide additional label infor-
mation, such that x is equipped with a label /, element of a finite label set {1, ... L}.
We also assume that the given label is constant over time. Now, we would like to
incorporate the label information in the optimization process of the GTM-TT lead-
ing to an extended supervised classification scheme. Given a labeled training set, we
learn a separate GTM-TT for every class, whereby the models are linked by the same
bandwidth 3 and the same underlying topological grid. We also use the same basis
functions @ and the Dirac distribution on the latent space. However, the prototype
parameters W/, the initial state probability 7; and the transition probabilities P; are
learned individually for every model representing label I. We refer to this model as
the Supervised GTM-TT (SGTM-TT) as depicted schematically in Figure[2] Accord-
ingly, we will have a quantitative model for every class [ after training.
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In the recall or test phase we have to analyze a novel time series x and obtain
L time series of predicted responsibilities according to every model which will be
denoted by rF(x(t)) (responsibilities of model  for input x at time point ¢). We can
summarized the responsibilities in an aggregated form as:

K
r(x) = > > rf(x(t)/(KT) ®)

k=1t=1

and one can select the label [ as predicted output for which this value is largest.

3.4 Relevance learning for SGTM -TT

Metric adaptation for discriminative prototype based learning has been introduced in
[19], it is often also referred to as relevance learning. The basic idea is to parametrize
the distance measure to incorporate auxiliary information. For the squared Euclidean
metric one can define a parametrized, weighted, variant:

D
d)‘(x,t) = Z)\Z(l‘d — td)2 . ©)]
d=1

For the GTM such a parametrization was already discussed in [[15] for i.i.d. data
resulting in relevance GTM (R-GTM). However, having temporal data some adapta-
tions are necessary and also the supervision has to be handled in an alternative way.
To keep the approach simple and to limit the number of free parameters we will re-
strict our approach to a global diagonal weighted distance, in which case a weight \;
directly corresponds to the relevance of dimension ¢. Here we assume normalized data
with mean O and a standard deviation of 1 for each dimension. For GTM-(TT), the
distance used to compute local probabilities is replaced by the previously discussed
weighted Euclidean distance:

B\ 8

pa(x|w, W, 3) = (%) exp (—2d,\(x,y(w,W))> (10)
Accordingly the data log likelihood considers the relevance of the data dimensions
and, hence we obtain a corresponding topographic mapping.

A main difference of this approach to a standard integration of a data correlation
matrix into the Gaussians consists in the fact that we prefer to adapt the relevance
parameters in a supervised way according to the given label information, resulting in
a discriminative approach.

The relevance parameters )\ are optimized as suggested in [15] using the class
information in an additional update step, interleaved with the standard adaptation of
the SGTM-TT using the parametrized distance.

The discriminative learning of the metric parameters is controlled by the cost
function of the generalized learning vector quantization (GRLVQ) which is a large
margin technique [39]. We assume a classification based on a finite set of prototypes
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t7 which are equipped with class labels and represent the given data. A classifica-
tion is done by means of a winner takes all scheme: the predicted label corresponds
to the prototype with smallest distance d (x, t/). For standard GTM, our prototypes
are given by latent points t/ = y(w’, W), and the distances determine the respon-
sibilities of the data points. The relevance terms A are adapted such that the costs

_ d)\(X",t+> —d\(x",t7)
EX) _;Sgd (dA(x",tﬂer)\(x",t)) (b

are minimized. The closest prototype with the correct labeling is denoted by t™ and
the one with the incorrect label by t~, for a given input x". The sigmoid function
(sgd) is defined as: sgd(xz) = m € [0,1] This optimization scheme can
be integrated into the vectorial GTM, simultaneously adapting the GTM parameters,
optimizing the data log-likelihood, and the metric parameters optimizing the classifi-
cation margin. The update equations for the parameters A can be derived from (11)),
taking the derivatives. To keep a quadratic form in the distance measure, the metric
parameters are normalized after each adaptation step.

Given an input sequence x we get a prototype representation of this time series
by evaluating the SGTM-TT in the following way. For every class label we consider
the time series of prototypes of the corresponding GTM-TT model according to the
winner prototypes over time:

t = (tu(1)... (7)) 12)

where
t(t) = y(wk7 W) with k = argmaxkrlk(x(t)) (13)

Now the time series x and the corresponding time series of prototypes repre-
senting a correct or a wrong class label can be used in to adapt the underlying
metric. If we assume an appropriate metric for the comparison of two time series, a
well defined cost function results.

Several reasonable distance measures for time series can be considered, whereby
the only property which we will use is differentiability. For simplicity we will also
assume, that the time series have equal length, although the model can be generalized
to time series of different length.

A very simple distance for such time series would be to average over the Eu-
clidean distances in each time point. This however is inappropriate, because it will
completely neglect the functional form of the data. An appropriate measure, designed
for the comparison of timeseries was proposed in [21]] and will be used instead. Fur-
ther alternatives time series metrics are possible see e.g. [10], but the chosen one has
been found to be effective in prior work [38] and can be calculated at low costs.

The considered distance measure integrates the functional form of three subse-
quent time steps in comparing x(t) and t(¢). Let us assume we have a real valued
time series v = v(1) ... v(T'), then the functional L, norm can be defined as [21]:

Ll (v) = <Z (AA; (V) + AB; (v))p> (14)

t=1
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()] if 0 <w(t)v(t—1)
3 @G (B)v(t = 1)
Z|v(t)] if 0 <w(t)v(t+1)
ABy, (v) = {f o(1)? . (16)
PACIGIEEFICES I (t+1)
representing the triangles on the right and the left sides of v(¢) and boundary points
are set to 0. This norm accounts for entries which change the sign in subsequent time
steps. We obtain a weighted distance, for vectorial data x and t over time with equal
dimensionality D at each time point:

D
da(x,t) = > NL) (xi — t:) (17)
1=1

where x; — t; refers to the time series of real numbers given by the distance of the
entries in dimension 7. As a special property of this distance measure the similarity
of the curvature of the sequences is taken into account. Again, each dimension is
weighted by the normalized relevance parameters \;.

This weighted metric is used in the cost function (TT). If we take the deriva-
tives (see [38]] for £,-norm) with respect to the relevance terms an adaptive weight-
ing for the input dimensions is obtained taking the functional form of the data into
account. Again the )\ are normalized after every adaptation to obtain non-negative
values, summing up to 1.

Relevant time points:

Since SGTM-TT relies on HMMs, every time point depends on its predecessor only.
Thus, it is not reasonable to adapt the relevance of time points to obtain a better rep-
resentation of data in the GTM-TT models. However, it is reasonable to judge the
relevance of time points resulting from the GTM-TT models for the final classifica-
tion, in particular if time series are of the same or a similar length. This method offers
insights into the model to identify time points which are particularly discriminative
for the given task at hand.

We obtain a relevance profile in the following way: Denote by 7;(x(t)) :=
Zszl (r¥(x(t)))/ K the accumulated responsibility of the GTM-TT model [ for data
point x™ at time point ¢. Based on this value, a classification can be based on the
maximum responsibility ;(x(¢)) in time point ¢. For every time point ¢, we simply
count the number of data points which are classified correctly as belonging to class
[ based on the classification for time point ¢ only, averaged over all data. A global
relevance profile results thereof as a sum over all labels.
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4 Odor Measurement System

The analyte measurement system employed to gather the data presented in this article
is shown in Figure @ It consists of an array of metal oxide semiconductor (MOX)
gas sensors hosted inside a measurement chamber, a pneumatic circuit to control
the exposition of the sensors to the volatile molecules dispersed in the environment,
and the electronics necessary to power up the sensors and respective measurement
circuits.

The election of MOX as the gas sensing technology has been made attending at its
high sensitivity, commercial availability and low price. However, they present some
shortcomings including: poor selectivity, influence by environmental factors such as
humidity and temperature and major limitations in their response speed [29].
Among these drawbacks, their poor selectivity is of the largest concern for odor clas-
sification. To overcome this, it is a common practice to build the e-nose upon an array
of MOX sensors with different and partially overlapping sensitivities. The output of
the array is then processed with a pattern recognition algorithm to find out which
substance the e-nose is exposed to. Based in this concept, we choose five different
MOX gas senors to compose the sensor array: TGS-2600, TGS-2602, TGS-2611 and
TGS-2620 from Figaro Sensorsﬂ and MiCS-5135 from e2V Sensorsﬂ

In order to enable sensors to interact with the volatile molecules dispersed in the
environment, the e-nose employs a pump to enforce a constant airflow through the
sensors array. The aspiration and release of the air samples are accomplished through
tubes, conveniently separated one to another to avoid cross contamination. Addition-

! Figaro engineering inc. http://www.figaro.co.jp
2 e2v. http://www.e2v.com/.
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ally, the aspiration through flexible tubes allows the displacement of the aspiration
entry without the need to move the complete system. This advantage is particularly
useful in robotics to easily sample the space, for example, by attaching the e-nose
aspiration to the hand of an arm robot as shown in the experimental section.

4.1 Signal conditioning and data preprocessing

The data, as provided by the e-nose, present a measurement intrinsic baseline, which
can be seen as a signal offset. Here, we estimate the baseline value as the median
signal intensity within the first 5 — 20 seconds, and then, remove it from each mea-
surement truncating values to zero when necessary.

More sophisticated preprocessing, by means of advanced baseline correction al-
gorithms, smoothing strategies or normalization techniques [35]] are possible but out
of focus of this paper. We also do not further explore specific feature extraction tech-
niques for spectral data but focus on the obtained normalized intensities.

5 Experimental Results

This section describes the setups and classification results for three different experi-
ments designed with increasing classification challenge. Furthermore, a comparison
of results with SVM, NN and a very recent reservoir computing based time series
classifier (RTK) as proposed in [6] is provided. For RTK the core idea is to transform
the time series into a higher dimensional dynamical feature space via reservoir com-
putation models. Subsequently varying aspects of the signal are represented through
variation in the linear readout models trained in such dynamical feature spaces, for
details see [6].

In general we are interested on simple methods or at least methods which pro-
vide direct interpretation of the model parameters and results. For example it is very
desirable to have direct links to the input features to find channels which are most
discriminative for a specific substance, relevant over all classes but also the other
way, being not very relevant. The later is an important characteristic for systems with
limited resources, like mobile robotics, where it would be desirable to power on only
the relevant sensors. Accordingly (local) linear methods are interesting in contrast to
black box non-linear kernel mappings. We are also interested on approaches which
permit an easy and quick out of sample extension to, in our case, substantially shorter
sequences in the test phase. This rules out multiple complicated time series models.

For SVM we used a linear kernel with optimal C' determined over the training
data on a grid search. Since SVM can not directly be applied to temporal data, nor
can it be used for sequences of different length in a direct way, for the comparison we
simply concatenate the measurements of the different channels to remove the time
dimension. More complex strategies of applying SVM, e.g. by using a dynamic time
warping (DTW) kernel could be done but are not in the focus of this paper and out of
sample extensions are often not immediate which is an issue for online robotic sensor
systems. For more recent work around DTW or kernel related time series analysis
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see e.g. [321128./6]. Additionally we would like to avoid more complex preprocessing
steps to permit an easy out of sample extension in practical settings. Although max-
imum classification performance is not our main objective, we also provide a com-
parison with a very recent reservoir computing kernel [6]. This approach is known to
be very effective for timeseries but on the other hand is less interpretable nor is the
out of sample extension for very short sequences immediate. For RTK there are three
parameters optimized on the training data within a grid searclﬂ as detailed in [6].

5.1 Experiment 1: Simulated data

The first experiment is based on the simulated data proposed in [23] with the only
intention of validating the proposed algorithm under known conditions.

The simulated data (SIM) consist of 100 samples separated into two classes of
50 samples each. Each point is located in a 100 dimensional feature space with 8
time points. From the given features, only 10 are expected to differentiate between
the classes. Details about the data and the generation procedure are given in [23]].

We applied SGTM-TT with relevance learning using 9 hidden states and 4 ba-
sis functions. We observe an overall prediction accuracy of 94 + 4%. The relevance
profile identified all known 10 features and effectively pruned out the remaining ir-
relevant data dimensions. Our results are slightly better than those reported in [23]]
(90%) and in [7] (92%).

The dataset is a particular short time series with a rather large number of input
dimensions. Especially the small number of time points can be quite challenging for
other time series models but may actually occur in the context of electronic nose ex-
periments, where short sensing cycles would be very desirable. The prediction results
of the different methods are summarized in Table[I] With the exception of NN most
methods perform reliable well but SGTM-TT was significantly better.

5.2 Experiment 2: Controlled gas exposure

The second experiment aims to test the proposed method with real odor data un-
der restrained environmental conditions. To this end, a dataset of real odor samples
is gathered in a scenario as controlled as possible. The dataset is comprised by 39
samples generated by exposing the e-nose to gas pulses of four different analytes: a
commercial spirit (Larios Gin), a polish remover based on Acetone, standard ethanol
and lighter gas (butane mixed with propane). Acetone was given by 9 samples and
the other classes by 10 samples each.

Each sample is collected according to the following three-phases procedure: (1)
for the initial 30s, baseline value is estimated by measuring the sensor response in
absence of the target gas, (2) then, for a duration of 60s the e-nose is placed next
to the gas source (about 10cm) exposing the sensor array to the volatile. Finally (3),

3 Grids: A,y = [0,107%...1071,0.5,1...5,10,30,50,100] costs = [0.1,10,10%,5 -
102,103,5 - 102,10%,5 - 104]
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the gas source is removed allowing the sensor array to recover to its initial state
(baseline).

Figure 4] shows two different samples of such dataset. Notice that although the
gas exposure was ~controlled” by time exposure and distance to the source, strong
fluctuations in the sensor readings occur due to the chaotic nature of the gas disper-
sion.

The SGTM-TT is inherently capable of dealing with measurement sequences of
different length in time, using the HMM mapping functionality. However, to permit
fair comparison with other approaches like vector embeddings, we consider only the
first 100 sec. of the data. That is, we built a first dataset (DS 1) using the initial 100sec.
of each sample, which corresponds to 487 sampling points.

For comparison we also use two public domain data sets of similar type (elec-
tronic nose data) from the UCI database. The DS-UCI-1 data set is given by the
two sources gas data [14]. The data are measured using a chemical detection plat-
form composed of 8 chemo-resistive gas sensors which were exposed to turbulent
gas mixtures generated naturally in a wind tunnel. It consists of 180 time series of
Ethylene (Eth) ,Carbon Monoxide (CO) and Methane (Me) mixtures at different con-
centrations. We use the data as a two class prediction problem to predict the whether
Eth was mixed with CO or Me. Available features are temperature, humidity and the
8 sensor channel outputs. Each time series is given with 2970 sampling points.

The DS-UCI-2 data set is given by the pulmon data [49]. The data are measured
using a chemical sensing system based on an array of 16 metal-oxide gas sensors and
an external mechanical ventilator to simulate the biological respiration cycle. The
tested gas classes are mixtures of acetone and ethanol. Data have been normalized
to zero-mean and intensity and considered again as a prediction problem to identify
whether the mixture contains Me or CO.

The classification accuracy for DS1, DS-UCI-1, DS-UCI-2 is given in Table E] in
comparison to some standard approaches. We observe that the SGTM-TT performs

5 5
i MICS-5135 MICS-5135
: ——TGS-2602 45 —TGS-2602
4 \\ —TGS-2600 4 [l NN —TGS-2600
N\ —TGS-2611 !‘j{ { \ \ —TGS-2611
35 \\ —TGS-2620 a5 ’ J \ 1682620
<M |
(2] (2]
25 A .
g AN e H A —
£ S £
g R NN
3 I\ 5
15 - 15 / \\ —
1 S 1—“
— (| A% T
05 ] 05 -
S 0
T IRE [ B o E
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Time (s) Time (s)

(@ (b)

Fig. 4: Two different samples of the olfaction dataset gathered in the second experi-
ment. The three phases in which the samples can be decomposed are marked at the
bottom of each figure as (1),(2) and (3).
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CV-Accuracy | SGTM-TT | SVM [ NN [ RTK [
SIM 94.00 + 4.18% 90.00 £+ 5.00% 55.00 &+ 13.54% 66.30 + 8.54%
DS1 88.03 £9.72% 86.36 £ 9.66% 80.49 £+ 11.90% 96.67 + 4.56%
DS-UCI-1 87.78 £ 5.76% 93.89 +4.97% 86.81 + 7.98% 64.44 + 4.12%
DS-UCI-2 79.55 +9.15% 83.03 + 18.47% 76.33 £ 18.15% 94.70 + 8.05%

Table 1: Average test set accuracy for the first and second experiment in a 5 fold
cross-validation. Significant better results are underlined.

DS-UCI-1

DS-UCI-2
0.4 T T

o I
w IS

Relevance
o
N

0.1

o
o

1 2 3 4 5 6 7 8 9 10 2 4 6 8 10 12 14 16
Sensor channel id Sensor channel id

Fig. 5: Relevance profile of the sensor input for DS-UCI-1 (left) and DS-UCI-2
(right). For both profiles the information is distributed over the various sensors but
some sensors are more important e.g. sensor 1 for DS-UCI-1 and sensor 3 for DS-
UCI-2.

reliable well although the best prediction accuracy for DS1 and DS-UCI-2 is ob-
tained by the RTK approach. For the DS-UCI-1 dataset RTK is significantly worse
than the other approaches and the SVM obtained the best performance. Hence there
is not a clear winner regarding the classification accuracy but SGTM-TT represents
a good approach with a reliable and consistent performance. Furthermore, as previ-
ously commented, the classification performance is not the only point that matters but
also the simplicity of the model and the interpretability of the results. Neither RTK
nor SVM provide additional insight in the relevance of the sensor channelsﬂ Here we
are mainly interested on interpretable models [24] which also simplify a later transfer
of the approach to an embedded system or the sensor platform. In Figure 5| we show
the averaged (global) sensor relevance profile of DS-UCI-1 and DS-UCI-2.
Subsequently we give a detailed analysis for our own dataset - DS1, where we have
more background information to provide a specific in depth discussion of the results.
For the analysis of the sensor relevance and time points relevance, the whole measure-
ment sequence of each sample was down-sampled to 800 time points each (DS2). The
SGTM-TT was then trained in a 5-fold crossvalidation with 4 hidden states and 4 ba-
sis functions. In Figure[f] we show the relevance indexes of the five gas sensors of the
e-nose for the different target volatiles of DS2 as obtained by SGTM-TT. Different
conclusions can be drawn from the study of such relevance plot:

4 Approaches for feature ranking by SVM are available but not for this type of data and not directly for
multi-class problems as studied for DS1.
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— In general, the five MOX sensors are relevant for the classification of the differ-
ent volatiles, being sensor TGS — 2620 the less relevant one, and so the most
expendable.

— Sensor TGS — 2602 is the most relevant one when classifying Acetone and
Ethanol samples, with a notable difference with respect the other sensors in the
case of Acetone. This characteristic is already reported in the manufacturer’s
datasheet, indicating the high sensitivity to volatile organic compounds (VOCS)
of this sensor model.

— As expected from the low selectivity characteristic of MOX sensors, each sensor
presents a high relevance index for more than one odor class.

We also explore the relevance of individual time points of the dataset DS2, depicted
in Figure[7(a)] As expected, the time-interval under volatile exposition, the first 100
seconds, is the most discriminating. Furthermore, and as already reported in [9], it is
noticeable the fact that relevant information for classification purposes can be found
in the recovery phase, after the volatile has been removed.

Since in real robotics conditions the classifier is expected to work on small data
sequences, a second configuration for the dataset DS2 was tested. Here, the test data
consist only of short sensor readings over time. Figure[7(b)|depicts the accuracy in the
classification for three different window lengths (1s, 10s and 20s). We observe that
given the highly dynamic response of MOX sensors in addition to the inherent sig-
nal noise, very small windows (1s) do not carry enough information for a reasonable
classification, but for data sequences of ten seconds the accuracy in the prediction

GIN RELEVANCE ACETHONE RELEVANCE

Relevance
Relevance

MiCS-5135 TGS-2602 TGS-2600 TGS-2611 TGS-2620 MiCS-5135 TGS-2602 TGS-2600 TGS-2611 TGS-2620
ETHANOL RELEVANCE LIGHTER-GAS RELEVANCE
T T T T T T

Relevance
=
Relevance

MiCS-5135 TGS-2602 TGS-2600 TGS-2611 TGS-2620 MiCS-5135 TGS-2602 TGS-2600 TGS-2611 TGS-2620

Fig. 6: Sensor relevance indexes for the four odor classes used on dataset DS2.
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achieves very good results (values near 0.8). Furthermore, window lengths over ten
seconds seems to not improve the accuracy, which indicates that long sequences en-
code a lot of noise contributions, hampering the model in the prediction. Finally, it
must be noticed that the classification accuracy is usually higher when using data
from the transient parts of the signal (rise and decay) than when steady state data is
employed, as denoted by the accuracy peaks found around seconds 30 and 90.

=—1sec
===10sec
'='='20 sec

o

o
=

Test set accuracy
o o
=~ o

o
w

o
N

0.1

30 80 130 180

Fig. 7: Time points relevance profile averaged over all classes and mean predic-
tion accuracy over time with window length’s of ~ 1, 10, 20sec[7(b)}

aspiration tube

pump

@) (b

Fig. 8:|(a) The robotic arm used in the third experiment mounted over a mobile plat-
form, and a detailed view of the attached e-nose aspiration. [b)| Picture of the proposed
setup for the third experiment. Each of the black plastic vessels contains a different
substance.
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5.3 Experiment 3: Robotics experiment - uncontrolled gas pulses

Finally, and with the aim to validate the classification performance in a more chal-
lenging robotic scenario, a third experiment is presented. In this case, the e-nose
aspiration (see Figure [8) is attached to the hand of a robotic arm [34] which is com-
manded to approximate the e-nose aspiration to each of four recipients containing
different substances (Acetone, Ethanol, ButaneE]and Gin).

To avoid waiting for the sensors to recover their baseline levels after each expo-
sure (which would take more than a minute), we have employed a specially designed
e-nose, called MCE-nose [17]], that allows the measurement of fast changing gas con-
centrations.

The robotic arm is commanded to approximate to the containers following a pre-
defined sequence. The exposition to each of the substances takes 20sec, after which
the arm moves to another container. The volatile sequence and the gathered signals
during the experiment are depicted in Figure 0] A video of a similar experiment
is additionally available at http://mapir.isa.uma.es/mapirwebsite/
index.php/2008-tep-401l6-media

Each of the short sequences was pre-processed such that the baseline is removed.
Then the sequences have been matched with the SGMT-TT or NN model as obtained
from DS1 El This can be considered to be a test of the model on an independently
measured hold out dataset.

The ground-truth and predicted labels of the sequences are given in Table 2] with
only 3 errors out of the 16 test samples. In the experiment the SGTM-TT classifier
was continuously online and fed by new data every 20sec. according to the measure-
ment protocol. This experiment is interesting because the input data processed by the
SGTM-TT method are substantially shorter than the training dataset, with around 30
sampling points for the core measurement. The SVM model can not be applied here
due to the varying length of the input data and for the RTK model the sequence are
also too short to get reliable predictions as the method is not designed for this type
of test inputs. For NN we applied a local DTW alignment between each training and
test sample using the best local fit.

6 Conclusion

A novel approach for the analysis of high dimensional and rather short temporal se-
quences was presented. It is based on the idea to introduce available meta information
into the modeling process of a Generative Topographic Mapping through time, given
in form of supervised information and relevance learning. We have analyzed the suit-
ability of such model for the odor classification problem in robotics applications,
providing comparative results with support vector machine (SVM), nearest neighbor
(NN) and the reservoir time series kernel (RTK) for three different scenarios (with

5 Since butane is found at gas state at ambient temperature, the content of a lighter was released when
the e-nose aspiration moved over the container.

6 Here we simply used the model from the first crossvalidation run.
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Fig. 9: MCE-nose gathered signals of the classification experiment with a robotic
arm, and the ”ground-truth” sequence of the employed analytes. The active cham-
ber [0,1,2,3] is switched every 20 sec. Signals are shown for the 4 different sensor

channels as described before.

Time 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | 260 | 280
True G A E M A E M G E M G A M
SGTM-TT

Pred. G M E M A M M G E M G A M
Error [ o

NN

Pred. G E G M E G G G G M G A G
Error o o o o o o 0

Table 2: Predictions for the external evaluation data using the first respective cross-

validation model. The ’0’ in the line labeled with Error indicates mismatches.

increasing classification challenge), and demonstrating that the proposed method is
effective for solving such highly dimensional data problem.

Other remarkable advantages of the method in the context of odor classification
in robotics are: on the one hand, the possibility for the robot to perform rapid classifi-
cation of chemical substances by using a short data sequence. On the other hand, the
SGTM-TT method outputs relevance values for both the sensors being used as well
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as the time-points of the signal, which provide very valuable information to configure
the e-nose and to carry out the robot smelling.

In future work it will be of interest to analyze the SGTM-TT in the context of
drift problems as recently discussed in [47,/46] and how the method can be further
improved by early decision strategies [20].
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