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Resumen de la Tesis
Doctoral

Introduccién

El olfato es uno de los sentidos mds directos del ser humano. Para que podamos
oler algo, moléculas de ese “algo” tienen que llegar a nuestra nariz. Todo lo que
olemos, por lo tanto, estd emitiendo moléculas — ya sea un pastel hornedndose en
una pasteleria cercana, perfume, una pieza de fruta podrida en la parte de atrés del
refrigerador o una fuga de gas butano bajo la estufa del salén. Esas moléculas son
generalmente ligeras, volatiles (faciles de evaporar), que flotan en el aire hasta llegar
a nuestra nariz.

La capacidad para detectar substancias olorosas en el medio ambiente es tan
bésica y tan importante que todos los organismos desde las amebas unicelulares hasta
los seres humanos estdn dotados de algin tipo de deteccién quimica. Todas las es-
pecies usan esta capacidad para llevar a cabo uno de los comportamientos mas basicos
y fundamentales: acercarse y ser atraido por los aromas agradables y potencialmente
seguros, asi como evitar y ser repelidos por los desagradables o potencialmente dafii-
nos.

Los seres humanos respiramos, en promedio, 20.000 veces al dia [13]]. Con cada
respiracion, inhalamos una mezcla genérica compuesta mayormente de nitrégeno,
oxigeno, argén y monéxido de carbono, pero también de muchos otros gases en con-
centraciones mucho mads bajas, algunos de los cuales pueden ser toxicos [[14]. Se dice
que los seres humanos tenemos la capacidad de distinguir mas de 10.000 compuestos
diferentes (olores), que son detectados por unas neuronas especializadas que recubren
el interior de la nariz [3]]. A pesar de esta impresionante cantidad, existe ain una con-
siderable variedad de gases toxicos, que se encuentran no sélo en el &mbito industrial,
sino también en la naturaleza, que son inodoros y, generalmente, incoloros para los
seres humanos. La presencia de estos gases toxicos y el riesgo potencial que presen-
tan para la salud humana, junto con el fuerte interés econémico de la industria del
perfume y la alimentacién (mayoritariamente referente a los procesos de calidad) son
las principales causas que han impulsado el desarrollo del olfato artificial.
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Dispositivos llamados narices electrénicas o e-noses hicieron su debut en los
ochenta con el objetivo fundamental de distinguir una variedad de olores utilizando
una matriz de sensores de gas, junto a técnicas de reconocimiento de patrones [120]
119]]. Desde entonces, los avances en la electrénica y en la tecnologia de los sensores
han hecho posible la fabricacion de narices electrénicas compactas, permitiendo su
integracion en plataformas tales como robots méviles o dispositivos inteligentes.

Un robot mévil equipado con una o varias narices electrénicas presenta una serie
de cualidades que lo hacen propicio para afrontar una amplia gama de aplicaciones
relacionadas con la deteccion de sustancias olorosas. Entre dichas cualidades, una
plataforma mévil con una nariz electrénica puede muestrear continuamente el aire a
su alrededor, y decidir en funcién de esa informacién olfativa las acciones pertinentes
a realizar. Esto hace que los robots sean herramientas ideales para localizar fugas de
gas, explosivos, drogas u otras sustancias peligrosas, evitando la exposicién de un ser
humano o un perro a tales gases. Ademads, un robot mévil puede beneficiarse de la
informacidén proporcionada por otros sensores a bordo (anemémetros, cdmaras, es-
céneres laser, etc.) para complementar el sentido del olfato. Cuando nos encontramos
una taza con un liquido oscuro en ella podemos afirmar que se trata de café no sélo
por lo que vemos, sino también por lo que olemos. Asimismo, la capacidad de proce-
samiento de un robot junto con la consideracion de técnicas de inteligencia artificial
pueden ser usadas para resolver tareas que implican un cierto grado de razonamiento
por parte del robot. Cuando percibimos aroma a comida en una casa, inmediatamente
asociamos dicho olor a la actividad humana de cocinar e inferimos que alguien debe
estar en la cocina. Cuando detectamos un olor a butano no buscamos el posible es-
cape de gas en la sala de estar, sino que vamos directamente a la cocina donde ademas
no inspeccionamos todos los elementos, mas s6lo aquellos aparatos que utilizan gas
butano (calentador, horno, etc.). Todos estos ejemplos ilustran un comportamiento
inteligente y altamente complejo de percibir y actuar en el entorno, haciendo uso de
la fusién de datos sensoriales y de conocimientos del mundo a un alto nivel, especial-
mente relacionados con informacién semantica.

No obstante, atin nos encontramos en fases muy primitivas del desarrollo de apli-
caciones olfativas con robots méviles, necesitando posiblemente varios afios antes de
poder afrontar escenarios reales y complejos. Esta tesis se centra en esa linea, la in-
vestigacion y el desarrollo de métodos y modelos que sirvan para avanzar un paso
mas en el camino hacia la integracion de las narices electrénicas en el campo de la
robdtica movil.

Ambito de la tesis

Esta tesis aborda dos temas principales: por un lado el proceso de deteccion de gases
en entornos reales mediante el uso de robots méviles y, por otro lado, el estudio de
una aplicacién concreta dentro del campo de la robdtica olfativa, la construccién de
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mapas de olores (Gas Distribution Mapping - GDM). La tesis comienza con una re-
visién del concepto de nariz electrénica (e-nose) para posteriormente introducir las
principales tecnologias de sensores de gas existentes en la actualidad. Luego, las car-
acteristicas mas relevantes de cada tecnologia son descritas, haciendo un énfasis par-
ticular en la tecnologia MOX (metal oxide semiconductor) ampliamente utilizada a
lo largo de esta tesis, describiendo sus ventajas y desventajas en lo referente a su uso
en robots moviles. Precisamente, una de sus principales desventajas, la lenta veloci-
dad de recuperacién, que limita su uso en aplicaciones donde la concentracién de gas
puede cambiar rdpidamente (como es el caso de la robética mévil), es la causa que ha
inspirado las dos primeras cuestiones que se investigan en esta tesis:

 ;Existe alguna configuracién de nariz electrénica que pueda ayudar a superar
los efectos del largo tiempo de recuperacion de los sensores MOX?

* Asi mismo, y dado que la respuesta al escalén de los sensores MOX es cono-
cida, ;hasta qué punto podemos hacer uso de este "modelo" para paliar el largo
periodo de recuperacion necesario después de cada exposicion al gas?

La primera pregunta da lugar al disefio de una novedosa nariz electrénica bautizada
como rmulti-chamber electronic nose (MCE-nose). Esta nariz electrénica esta com-
puesta por varios grupos idénticos de sensores de gas, alojados en cdmaras separadas
que alternan entre los estados de deteccidén (cuando la cimara es expuesta al gas)
y recuperacién (cuando por ella circula aire limpio). El resultado es un dispositivo
capaz de detectar cambios mds rdpidos en la concentracién del gas que las narices
electrénicas convencionales.

De la segunda cuestion surge una propuesta basada en la explotacién de un mo-
delo doble de primer orden del sensor MOX. A partir de dicho modelo, y haciendo uso
solamente de la respuesta transitoria del sensor, se predice la respuesta estacionaria
en tiempo real, lo que equivale a acelerar la velocidad de respuesta del sensor. Ambos
enfoques, son detallados en el Capitulo 3 de esta tesis.

Dado que las especificaciones legales y reglamentos de seguridad relacionados
con los niveles de toxicidad vienen dados en términos de concentraciones absolutas,
es de enorme interés que la medida proporcionada por una nariz electrénica venga
también expresada en esos términos absolutos y en esas mismas unidades. Sin em-
bargo, no todas las tecnologias de sensores de gas son adecuadas para obtener dichos
valores de concentracién cuantificados. La tecnologia MOX no es una excepcion a
este problema. Las reacciones que se producen entre las moléculas de un gas obje-
tivo con la superficie del sensor MOX producen una variacién en la conductancia
del sensor que puede ser medida como una sefial eléctrica correlada con la concen-
tracién del gas. Esta correlacion es, no obstante, no-lineal y ademads esta fuertemente
influenciada por la propia dindmica del sensor y por los pardmetros atmosféricos del
entorno de trabajo, lo cual complica atin mds la traduccién a niveles absolutos de
concentracion. Esta problemadtica en la cuantificacion de la concentracion de gases ha
motivado la siguiente cuestion de esta tesis:
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» ;Cémo pueden obtenerse valores absolutos de concentracion de gas a partir de
la respuesta de sensores basados en tecnologia MOX cuando son utilizados en
entornos reales?

Este tema se abordada en el Capitulo 4, empleando Procesos Gaussianos (Gaus-
sian Processes - GP) para obtener una estimacion de la distribucion a posteriori de la
concentracion del gas dada la respuesta de un conjunto de sensores MOX. Adicional-
mente, se presentan dos propuestas para considerar de forma automatica la dindmica
de los sensores MOX en el proceso de cuantificacion, analizando de forma detal-
lada su relevancia en la mejora de la precision. Este enfoque probabilistico es es-
pecialmente conveniente para aplicaciones de robdtica mévil olfativa, ya que de la
distribucién a posteriori de la concentracion del gas se pueden obtener intervalos de
confianza.

De entre las diferentes tareas olfativas a realizar por un robot mévil, esta tesis se
centra en la construccién de mapas de distribucién de gas, que aborda el problema de
estimar la distribucién espacial de sustancias volatiles haciendo uso de un robot mévil
equipado con una nariz electrénica. Teniendo en cuenta el hecho fisico de que la
informacidn proporcionada por los sensores de gas se desvanece con el tiempo debido
primeramente a la naturaleza volétil de los gases, pero también a los mecanismos
de transporte turbulentos que dominan la dispersién de estos, se plantean las dos
siguientes cuestiones:

» ;Coémo puede tenerse en cuenta el hecho de que los gases se desvanecen con el
tiempo en la estimacién de su distribucién (GDM)?

* Dado que estamos interesados en trabajar en ambientes reales dénde la presen-
cia de obstaculos influye en la distribucion de los gases, ;puede este proceso
de construccién de mapas de olor tenerlos en cuenta?

Estas cuestiones se abordan en el Capitulo 5 donde se propone un nuevo enfoque a
la construccién de mapas de distribucién de gas basado en Gaussian Markov-Random
Fields (GMREF). Este novedoso método no sélo atiende al "envejecimiento” de las
observaciones de gas, sino que también considera la presencia de obstaculos en el
entorno de trabajo. Diversos experimentos, tanto simulados como reales, validan este
enfoque, proporcionando una comparacion cualitativa y cuantitativa con métodos ex-
istentes.

Contribuciones
Las aportaciones mds relevantes de esta tesis son:

* El disefio e implementacién de una novedosa nariz electrénica basada en tec-
nologia MOX para la deteccién de cambios rdpidos en la concentracién de
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sustancias olorosas. Resultado de este trabajo son una patente y diversas publi-
caciones [49, 150, |51].

¢ El desarrollo de un nuevo modelo de sensor MOX [38]], el cual mitiga consi-
derablemente una de sus principales limitaciones cuando se emplea junto a un
robot mévil: el largo tiempo de recuperacion.

* La introduccién de un nuevo método probabilistico para la cuantificacién de
gases con una nariz electrénica basada en sensores MOX. Este método permite
obtener valores de concentracién absolutos junto con una medida de la incer-
tidumbre (intervalos de confianza), algo que representa un avance importante
para las aplicaciones de olfato con robots méviles. Las siguientes publicaciones
han surgido de este trabajo [39,40].

¢ El desarrollo de un novedoso método probabilistico para la creacién de mapas
de distribucién de gases basado en campos aleatorios de Markov Gaussianos
(GMREF). Este método tiene en cuenta por primera vez dos aspectos fundamen-
tales: primero la inclusién de los obsticulos presentes en el entorno de trabajo,
obteniendo mapas que son mas coherentes con los mecanismos de dispersion
del gas; y segundo, la consideracién de la "edad" de las observaciones como
una medida del desvanecimiento de los gases en entornos reales.

* La colaboracién en el disefio y desarrollo de un entorno de simulacién para
aplicaciones olfativas con robots méviles [36].

Todas las publicaciones derivadas de esta tesis estdn disponibles en: http://
mapir.isa.uma.es

Marco de esta tesis

Esta tesis es el resultado de cuatro afos de actividad investigadora de su autor como
miembro del grupo de investigacién MAPIR, el cual forma parte del departamento de
Ingenieria de Sistemas y Automadtica de la Universidad de Mdlaga. La financiacién
de este periodo de investigacion ha sido proporcionada por la Junta de Andalucia y el
Fondo Europeo de Desarrollo Regional (FEDER) en el marco del proyecto TEP-
2008-4016. Dicho proyecto abordaba el problema de dotar a un robot mévil con
la capacidad olfativa para poder reconocer y estimar la concentracion de sustancias
olorosas. Uno de los puntos mds importantes de este proyecto era la combinacién de
la informacién obtenida mediante sensores de gas, con otras modalidades sensoria-
les tales como cdmaras o escdneres ldser para alcanzar dicho objetivo. Las mdltiples
modalidades de sensores incorporados en el robot Rhodon a lo largo de sus diferentes
etapas de desarrollo (véase Apéndice A), son un claro ejemplo de este compromiso.
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El autor complet6 el programa de doctorado titulado Ingenieria Mecatrénica, co-
ordinado por el departamento de Ingenieria de Sistemas y Automatica. Este programa
de doctorado otorgé al autor por un lado una visién general del campo multidisci-
plinario de la mecatrdnica, el cual combina las ingenierias mecanica, electrénica, de
control e informadtica, y por otro lado, un conocimiento mds profundo sobre el campo
de la robética mévil, algo que ha resultado fundamental a lo largo de estos afios de
investigacion.

Ademais, el autor complement6 su formacién académica con la participacién en
un curso intensivo de invierno (2012), titulado "Anadlisis de datos, robdtica y aplica-
ciones moviles de sensores quimicos" organizado por la Sociedad Internacional para
el Olfato y Detecciéon Quimica (ISOCS), y con una estancia de tres meses en el Cen-
tre for Applied Autonomous Sensor Systems (AASS), de la universidad de Orebro
(Suecia), junto al grupo de robética mévil y olfato (MR&O group). Durante dicha
estancia, la temdtica de investigacién se centrd en el estudio de los sensores MOX
y particularmente en cémo obtener valores absolutos de concentracién a partir de su
respuesta transitoria. Resultados obtenidos durante este periodo han sido incluidos en
el Capitulo 4 de esta tesis.

Asimismo, durante el transcurso de esta tesis han surgido colaboraciones con
otros grupos de investigacién internacionales que han enriquecido y ampliado el al-
cance de la misma. Ejemplos son las colaboraciones con el Prof. Michael Biehl de
la Universidad de Groningen (Paises Bajos) y con el Dr. Frank-Michael Scheif del
centro tecnoldgico de excelencia de interaccién cognitiva (CITEC) de la Universidad
de Bielefeld (Alemania), trabajando en el desarrollo de algoritmos de clasificacién de
olores para sistemas de muestreo abierto (open sampling systems — OSS). Aunque los
resultados de dicha colaboracién han sido presentados, no se encuentran publicados
en el momento en que esta tesis ha sido escrita, por lo tanto, s6lo los datos que se
recogieron como parte de esta colaboracion se presentan en el Apéndice C.

Por dltimo, destacar que el marco cientifico en el que se encuadra esta tesis se
caracteriza por la pequefia comunidad cientifica dedicada a esta temadtica. Esto es
corroborado por los escasos congresos y revistas internacionales, asi como por los
pocos grupos de investigacion dedicados al olfato con robots mdviles. Sin embargo, es
opinién del autor que el rapido progreso de la robdtica mévil, junto con los continuos
avances en la tecnologia de deteccidn de gases, permitirdn en un futuro cercano hacer
uso de todo el potencial que un robot mévil equipado con la capacidad de oler posee.

Estructura de la tesis

Con el objetivo de obtener la mencién de Doctorado Internacional por la universidad
de Mdlaga, el desarrollo completo de esta tesis estd escrito en espaiol e inglés. Asi,
el texto estd dividido en dos partes. La primera parte, escrita en espafiol, describe de
forma resumida el contenido del trabajo, mientras que en la segunda parte, redac-
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tada integramente en inglés, se presenta una descripcién completa del mismo. Esta
segunda parte se compone de los siguientes capitulos:

El Capitulo 1 introduce la temdtica de esta tesis y provee una visién general de
las contribuciones, del &mbito y de la estructura de la misma.

El Capitulo 2 introduce de forma general al campo del olfato artificial y la tec-
nologia de narices electrénicas, asi como los principales campos de aplicacién de un
robot mévil con capacidad olfativa. En la primera parte de este capitulo se aborda el
concepto de nariz electrénica y se describen las principales tecnologias de sensores de
gas. En la segunda parte se revisan los mecanismos fisicos que controlan la dispersion
de los gases en ambientes reales, y se detallan los principales campos de aplicacion
de un robot mévil con la capacidad de detectar y medir diferentes sustancias olorosas:
localizacién de fuentes de gas, seguimiento de caminos y construccién de mapas de
distribucién de gas.

El Capitulo 3 presenta dos enfoques para mejorar la deteccion de sustancias
volatiles con sensores de gas basados en tecnologia MOX (metal oxido semicon-
ductor) en el dmbito de la robdtica mévil. El primer enfoque detalla el disefio y la
configuracién de un nuevo dispositivo de nariz electrénica denominado nariz elec-
tronica de mdltiples cdmaras (Multi Chamber E-nose — MCE-nose), mientras que
el segundo enfoque aborda el uso de un modelo doble de primer orden del sensor
MOX para anticipar valores estacionarios de la respuesta del sensor a partir de medi-
das transitorias. Ambos enfoques son validados a través de diferentes experimentos,
demostrando la mejora en el desarrollo de las tareas olfativas con robots méviles.

El Capitulo 4 presenta un nuevo algoritmo probabilistico basado en procesos
Gaussianos para la cuantificacién de sustancias volatiles empleando un conjunto de
sensores de gas MOX. La primera parte de este capitulo se centra en la matemadtica
subyacente y describe el uso de la herramienta de determinacién automatica por rel-
evancia (ARD) para seleccionar las caracteristicas mas relevantes de la matriz de
sensores. La segunda parte se enfoca en los mecanismos de validacién empleados y
en las diferentes configuraciones experimentales, mostrando una atencién especial a
la introduccién de la dindmica de los sensores MOX en el proceso de cuantificacién.

El Capitulo 5 aborda una tarea importante de la robética mévil olfativa: la es-
timacion de la distribucion espacial de sustancias volatiles. Este capitulo propone
un nuevo método basado en campos aleatorios de Markov Gaussianos (GMRF) para
hacer frente a dos problemas fundamentales que no se han tenido en cuenta en en-
foques anteriores: la presencia de obsticulos en la zona inspeccionada, y la com-
binacién de las medidas de los sensores de gas tomadas en diferentes instantes de
tiempo. Resultados cuantitativos y cualitativos completan este capitulo, asi como una
comparacidén detallada con métodos existentes.
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El Capitulo 6 concluye esta tesis, proporcionando un resumen del trabajo pre-
sentado y dando una visién de cdmo las técnicas y avances propuestos pueden ser
extendidos en un futuro.

Conclusiones

En esta tesis se ha abordado el problema de la deteccién y cuantificacion de gases
con un robot mévil, y particularmente la construccién de mapas de distribucién de
gas. En aplicaciones de robdtica mévil, los sensores de gas se emplean generalmente
en configuraciones llamadas de muestreo abierto (Open Sampling Systems - OSS).
Bajo esta configuracion, los sensores son directamente expuestos al medio ambiente,
sin disponer de dispositivos para el control del flujo de aire, tiempos de exposicién
o condiciones ambientales (temperatura, humedad, etc.). Esto permite obtener infor-
macién muy valiosa acerca de la dindmica de la interaccion entre los sensores y los
gases a analizar, algo que no se puede lograr con un sistema de muestreo cerrado. No
obstante, debido también a esa exposicién directa, las medidas se ven fuertemente
condicionadas por los mecanismos fisicos de dispersioén de los gases: difusion y ad-
veccion. La difusién desempefa por lo general un papel mucho menos importante en
la dispersion de las moléculas olorosas, incluso en ambientes cerrados sin ventilacidn,
siendo la adveccion (generalmente de caracter turbulento) la que domina este proceso.
Como consecuencia, la distribucién espacial de un gas resulta ser generalmente irre-
gular y cadtica, y donde ademds la ubicacion de la fuente del gas no se encuentra por
lo general en el punto de maxima concentracién. Aparte de las dificultades derivadas
de los mecanismos de dispersion, una serie de limitaciones en el desarrollo de apli-
caciones olfativas con robots méviles vienen impuestas por la actual tecnologia de
sensores para la deteccidn de gases. Inconvenientes como la falta de selectividad o
la lenta recuperacién, hacen atin mas dificil el desarrollo de robots capaces de lle-
var a cabo tareas como la localizaciéon de una fuente de gas o la estimacién de su
distribucién espacial de forma auténoma.

A lo largo de esta tesis, la tecnologia mayormente empleada ha sido la basada en
la unién de metal, 6xido y semiconductor (MOX), debido principalmente a su alta
sensibilidad, amplia disponibilidad comercial y bajo coste. Dos enfoques para paliar
en cierta medida uno de sus principales inconvenientes (el largo periodo de recu-
peracidn), fueron propuestos en el Capitulo 3 de la presente tesis. Este largo periodo
de recuperacion (hasta decenas de segundos) limita notablemente su aplicabilidad en
aplicaciones donde el sensor estd expuesto a rapidos cambios en la concentracién del
gas, como es el caso de las aplicaciones de robética mévil olfativa. Dicho efecto es
particularmente notable en las fases de recuperacion, cuando la respuesta del sensor
retorna lentamente al nivel de reposo tras haber sido expuesto al gas. Consecuencia
directa es la ausencia palpable de valores estacionarios en la respuesta de los sensores
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MOX, siendo necesario por tanto la deteccion y cuantificacién de gases empleando
medidas pertenecientes al transitorio de las sefiales.

El primer enfoque sugerido para paliar los efectos de la lenta recuperacién de los
sensores MOX, se ha basado en la introduccién de la nariz electronica de multiples ca-
maras (MCE-nose). Esta novedosa nariz electronica acomoda conjuntos redundantes
de sensores en diferentes camaras, las cuales alternan entre los estados de deteccion
(cuando la camara es expuesta al gas) y recuperacion (cuando por ella circula aire
limpio). En cada instante de tiempo, tan solo una de esas cdmaras se encuentra en el
estado de deteccion. La clave de su funcionamiento se basa descartar las medidas de
los sensores cuando se detecta el comienzo de una fase de recuperacion, delegando
la tarea de deteccion a otra cdmara que contenga sus sensores en estado de reposo.
Siguiendo este procedimiento, la salida global de la MCE-nose viene dada por la
concatenacion de las fases de subida de una secuencia de sensores MOX. Aumentar
el nimero de cdmaras aumenta indudablemente la posibilidad de disponer un con-
junto de sensores en el estado de reposo y, en consecuencia, la posibilidad de detectar
cambios mds rdpidos en la concentracién del gas objetivo. Sin embargo, mayor coste,
consumo de energia y complejidad son también consecuencias directas de ello, por
lo tanto el nimero 6ptimo de cdmaras depende en gran medida de las caracteristicas
de la aplicacién objetivo. En esta tesis, un prototipo de la MCE-nose compuesto de
cuatro camaras ha sido construido e integrado en una plataforma mévil bajo la ar-
quitectura robdtica OpenMORA. Ademds de la validacion haciendo uso de entornos
simulados, se han presentado varios experimentos reales que corroboran la mejora
en la deteccién de cambios bruscos en la concentracién de gases. Finalmente, y a
través de esos experimentos, se encontré que aunque pequefias, las diferencias en
los sensores redundantes alojados en las diferentes cdmaras (del mismo fabricante y
modelo), influyen en el comportamiento de la MCE-nose. Estas diferencias, que se
deben no solo al proceso de fabricacion, sino también el envejecimiento y al envene-
namiento (reacciones quimicas que alteran las caracteristicas de un sensor de forma
permanente), requieren por tanto de una calibracién previa del sistema para lograr
resultados adecuados.

En contraste con la introduccién de la MCE-nose, el segundo enfoque, propuesto
en la Seccién 3.4, compensa la lenta dindmica de los sensores MOX estimando los
correspondientes valores estacionarios a partir de una secuencia de medidas transi-
torias. En general, los modelos de sensor MOX propuestos en la literatura tratan de
predecir su respuesta (valores de resistencia) cuando se expone a un cierto perfil de
concentracion de gas. Este segundo enfoque se inspira en la inversién de dicho mo-
delo: dada una secuencia de medidas de la respuesta transitoria del sensor MOX,
se predice el perfil de concentracién del gas que ha producido dicha respuesta me-
diante la estimacién de los valores estacionarios de la resistencia del sensor. El mo-
delo empleado en esta tesis se basa en dos sistemas de primer orden (excitacién y
recuperacion) con constantes de tiempo que dependen de la amplitud de respuesta del
sensor. Diferentes experimentos han sido presentados para validar dicho enfoque. En
primer lugar, y bajo condiciones de laboratorio en la que se controlaron los flujos de
aire y la distribucion de los gases, un experimento consistente en exponer periddi-
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camente una nariz electrénica a una fuente de gas permitio la validacion de este en-
foque. A continuacién, se consideraron dos experimentos de construccién de mapas
de distribucién de gas (1D y 2D) para enfatizar la aplicabilidad de dicho modelo en
aplicaciones de olfato con robots méviles. Con estos experimentos se demostré como
las "largas colas" producidas por la lenta recuperacion de los sensores pueden ser evi-
tadas, algo que conlleva implicitamente una mejora significativa en la deteccion de
gases con estos sensores. No obstante, la mejora introducida por este enfoque no se
debe solamente a que se previene la superposicion entre las fases de excitacién y recu-
peracién (producidas cuando los cambios en la concentracién del gas son mas rapidos
que el tiempo de respuesta del sensor), sino al hecho de que el perfil de concentracion
estimado por el modelo proporciona valores mds consistentes con la excitacion real
que cuando tan solo se observa la respuesta del sensor. Ademds, se demostré que am-
bos enfoques, tanto la MCE-nose como el modelo inverso del sensor MOX, permiten
un aumento considerable en la velocidad a la que una base mévil equipada con una
nariz electrénica puede inspeccionar el entorno. Esto ultimo conlleva en general una
importante reduccién en los tiempos de ejecucion de las tareas relacionadas con el
olfato.

En robética mévil, muchas de las tareas relacionadas con el olfato requieren poder
determinar la concentracién de los gases que se estdn analizando. Ejemplo de ello son
las especificaciones legales y reglamentos de seguridad relacionados con los niveles
de toxicidad, los cuales vienen definidos en términos de concentraciones absolutas.
Ademds, atendiendo a la naturaleza cadtica que domina la dispersién de los gases,
es deseable proporcionar, junto con la estimacién del valor de concentracién, una
estimacién de la incertidumbre asociada. Este problema fue abordado en el Capi-
tulo 4, donde se present6 una propuesta de aprendizaje supervisado basada en pro-
cesos Gaussianos (GP). El problema fue tratado desde un punto de vista probabilis-
tico, estimando una distribucién a posteriori sobre la concentracién de gas, dada la
respuesta de una matriz de sensores MOX. Esto permite no sélo predecir la concen-
tracién de gas, sino también la incertidumbre asociada por medio de la varianza de la
distribucién. Diferentes configuraciones de la matriz de sensores MOX fueron estu-
diadas, asi como la consideracién de herramientas para la determinacion automadtica
de la relevancia para excluir del proceso de cuantificacién los sensores menos rele-
vantes, reduciendo asf la dimensionalidad del problema. Por tltimo, se analizaron dos
propuestas para introducir la dindmica de la respuesta de los sensores MOX en el pro-
ceso de cuantificacién: considerar adicionalmente muestras retrasadas en el tiempo
(efecto memoria), e incluir la primera derivada de la respuesta de la matriz de sen-
sores. Resultados experimentales demostraron, sin embargo, que ninguna de las dos
propuestas producia una mejora significativa.

Habiendo dedicado la primera parte de esta tesis al estudio y la investigacién de
lo que se pueden considerar problemas a bajo nivel, el resto de la misma ha sido
consagrada al estudio de una tarea de alto nivel dentro de la robética olfativa: la cons-
truccién de mapas de distribucion de gas (GDM). Desde la perspectiva de la robdtica
movil, GDM aborda el problema de la estimacién de la distribucién espacial de sus-
tancias voldtiles utilizando un robot mévil equipado con una nariz electrénica. En
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el Capitulo 5 de esta tesis, se presenté un nuevo algoritmo para la construccién de
estos mapas de distribucién de gas. El problema se abord6 desde una perspectiva
probabilistica, modelando la estimacién de la distribucién espacial del gas como el
célculo del maximo a posteriori (MAP) sobre un campo aleatorio de Markov Gaus-
siano (GMRF). Este nuevo método incorpord por primera vez dos aspectos funda-
mentales que habian sido obviados anteriormente. El primero, relacionado con la
validez de las observaciones de gas con el paso del tiempo, viene determinado por la
naturaleza efimera de los olores y por el consiguiente hecho de que la informacién
aportada por una observacion de gas se desvanece con el tiempo. Para modelar este
hecho se introdujo un factor decreciente con el tiempo como medida de la "edad"
de cada observacion de gas. Cuando dicho factor alcanza un valor suficientemente
bajo (observacidn antigua) la observacidn asociada deja de tener validez y por tanto
es descartada del proceso. La segunda novedad introducida es la de considerar obs-
taculos tales como paredes o muebles en el proceso de construccién del mapa de
olores. Para ello, se propuso modelar la correlacion entre celdas vecinas atendiendo a
la presencia de estos obstdculos, asi, por ejemplo, la concentracién de gas de dos cel-
das que estdn separadas por una pared son consideradas independientes. Resultados
experimentales, tanto simulados como reales, han sido propuestos, proporcionando
una comparacién detallada con métodos existentes.

Lineas futuras

Ademds de las propuestas para el trabajo futuro incluidas en los diferentes capitulos
de esta tesis, una linea general de continuacién del trabajo presentado en esta tesis
estaria relacionada con la integracién de los avances propuestos en esta tesis, en el
campo de la robética de servicio aplicada a los hogares. La robdtica de servicio es ac-
tualmente un nicho de mercado en auge debido a los continuos avances en el campo de
la robdtica (SLAM, navegacion auténoma, semdntica, etc.) y a la mayor disponibili-
dad de robots comerciales. Sin embargo, dado que el olfato artificial atin se encuentra
en sus primeras fases de desarrollo comercial, la mayoria de los robots comerciales
atn no incorporan dispositivos de deteccion de gases. Se prestard especial cuidado a
la colaboracién activa entre el olfato y otras modalidades sensoriales, ya que para la
mayoria de las aplicaciones reales de robdtica el olfato no es por si mismo el objetivo
final, sino uno mds de los sentidos del robot para obtener informacidn ttil del entorno
que le rodea.






Chapter 1
Introduction

Smell is a very direct sense. In order for us to smell something, molecules from
that thing have to make it to our nose. Everything we smell, therefore, is giving off
molecules - whether it is a cake in the bakery, perfume, a piece of rotten fruit at the
bottom of your fridge or a butane leak underneath the stove. Those molecules are
generally light, volatile (easy to evaporate), chemicals that float through the air into
our nose.

The ability to detect chemicals in the environment is so basic and so important that
every organism from single-celled amoebas to human beings are endowed with some
kind of chemical awareness. All species use their chemical senses for the most basic
and fundamental behavior: approaching and being attracted to pleasant and poten-
tially safe aromas, as well as avoiding and being repelled by unpleasant or potentially
harmful ones.

Humans breathe, on average, 20,000 times a day [13]]. With each breath, we in-
hale a general mixture of nitrogen, oxygen, argon and carbon monoxide, but also
many other gases at lower concentrations, some of them which may be toxic [14]].
It is said that humans can distinguish more than 10,000 different smells (odorants),
which are detected by specialized olfactory receptor neurons lining the nose [3]]. De-
spite this stunning quantity, there is a considerable variety of toxic gases, found not
only in industrial environments but also in nature, which are odorless and generally
colourless to humans.

The presence of these contaminants and the potential risk they bear to human
health, together with the economical interest of the perfume and food industries (es-
pecially for the quality control process) are the major motivations that have boosted
the development of artificial olfaction. Devices called electronic noses or e-noses
made their debut in the 1980’s with the challenge of distinguish a variety of odors
using an array of gas sensors together with pattern recognition techniques [[120, [119]].
Since that debut, advances in electronics and sensor technologies have made possible
the manufacturing of compact e-noses, enabling their integration into platforms such
as mobile robots or intelligent appliances.

13
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A mobile robot equipped with e-nose devices exhibits several features that make
them auspicious to solve a wide range of olfaction applications. Among such features,
we can highlight its ability to continuously sample the air, and decide its actions based
on the perceived information in a closed-loop manner. This makes robots ideal for lo-
cating gas leaks, explosives, drugs, and other dangerous substances, avoiding the risk
of intoxication of a human or a dog. Furthermore, a mobile robot may benefit from
information provided by other sensors on board (anemometers, cameras, laser scan-
ners, etc.) to complement olfaction. When we face a cup with a dark liquid on it we
can assert that it is coffee not only because of what we see but also because of what
we smell. In the same way as other sensory modalities may complement olfaction, the
computational capacity of a robot together with methods of artificial intelligence can
be used to solve tasks that require some degree of reasoning or intelligent behavior.
When we perceive the scent of food being cooked we immediately associate it to that
particular human activity and infer that somebody must be in the kitchen. When we
detect an abnormal butane odor we do not look for the gas leak in the living room,
instead we go to the kitchen where we do not inspect everything in there but only
those appliances and items that use butane gas (heater, oven, ...). All these examples
illustrate an intelligent and complex mechanism of perceiving and acting in the envi-
ronment, which makes use of sensorial data fusion and high-level world knowledge,
especially semantic information.

Although we are still several years away from accomplishing real complex sce-
narios, the groundwork is essential to forge ahead the fusion of e-noses into robotics
and intelligent systems. This thesis contributes to this purpose, bringing closer artifi-
cial olfaction and mobile robotics.

1.1 Scope

This thesis concerns about two main topics: the process of gas sensing with mobile
robots in natural environments, and one particular task known as gas distribution
mapping. It starts by reviewing the concept of electronic nose to subsequently address
the most spread gas sensor technologies. Especial attention is devoted to the desired
characteristics of gas sensors when used in mobile robots, and particulary, focus is
placed on a specific gas sensing technology based on metal oxide semiconductor
(MOX), which is by far the most employed gas sensing technology in mobile robotics.
The advantages as well as the main drawbacks of this technology, broadly used along
the experiments in this thesis, are also detailed. One of their main drawbacks is their
slow recovery, which restricts their usage in applications where the gas concentration
may change rapidly, as in mobile robotics. This is the motivation that has instigated
the first two research questions of this thesis:

* Is there any e-nose configuration that may help overcoming the effects of the
long recovery time of MOX sensors?
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» Similarly, and since the MOX step response (forward model) its well known,
to which extent can we take advantage of this "model" to palliate the long
recovery period needed after each gas exposure?

The first question gives rise to the design of a novel e-nose baptized as Multi-
Chamber Electronic Nose (MCE-nose). This e-nose comprises several identical sets
of gas sensors accommodated in separate chambers which alternate between sens-
ing and recovery states, composing a device able to detect faster changes in the gas
concentration than traditional e-noses.

Answering the second question above, a proposal based on exploiting a double
first-order model of the MOX-based sensor is presented. From such model, and given
the measurements of the transient state signal, a steady-state output is anticipated
in real time which is an indirect way of speeding-up the sensor response. Both ap-
proaches, hardware and software, are detailed in Chapter 3.

Concentration estimation is a crucial step for realistic gas sensing applications
since legal requirements and regulations are expressed in terms of absolute gas con-
centration, e.g. parts-per-million (ppm). However, not all gas sensing technologies
are suitable to obtain such quantified values when working in natural environments.
MOX technology is not an exception. The reactions of a target gas with the sensor sur-
face produce a variation of its conductance, which is measured as an electrical signal
correlated to the gas concentration. This correlation is non-linear and is highly influ-
enced by the sensor dynamics and atmospheric parameters which makes not straight-
forward the translation to absolute gas concentrations. This problematic motivated
the next research question of this thesis:

* How can absolute gas concentrations be obtained from the response of MOX
gas sensors when used in natural environments?

This topic is dealt within Chapter 4, using Gaussian Processes to estimate a poste-
rior distribution over the gas concentration given the response from an array of MOX
sensors. Additionally, two different extensions are proposed to automatically account
for the dynamics of MOX sensors in the quantification process, analyzing to which
extent they can improve the accuracy of the probabilistic quantification. This proba-
bilistic approach is especially convenient for mobile robotics olfaction applications,
since from the posterior distribution confidence intervals can be obtained.

From the range of mobile robotics olfaction tasks, in this thesis we focus on the
so-called gas distribution mapping (GDM), which deals with the problem of esti-
mating the spatial distribution of volatile substances using a mobile robot equipped
with an electronic nose. Given the physical fact that the information provided by gas
sensors vanishes with time due to the volatile nature of gases and the dominance of
turbulent transport mechanisms in natural environments, the following two research
questions emerge:

* Which are the effects of the vanishing nature of gases in GDM? Can this char-
acteristic be taken into consideration to improve the estimation of the gas dis-
tribution?
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 Since we are interested in working in natural environments where the presence
of obstacles such as walls or furniture affect the dispersal of gases, how can the
GDM process account for it?

These questions are addressed in Chapter 5 by proposing a new approach to GDM
based on Gaussian Markov-Random Field (GMRF). This novel method accounts for
both the aging of the observations and the presence of obstacles in the environment.
Extensive validation of the proposed method is carried out with simulated and real
experiments, providing qualitative and quantitative comparison with other methods.
A C++ implementation of this method has been integrated into the Mobile Robot
Programming Toolkit (MRPT), and its source code is available online! at http://
mrpt.org|

1.2 Contributions of this thesis

The most relevant contributions of this thesis are:

* The design and implementation of a novel MOX based electronic nose for mea-
suring fast changing gas concentrations. As a result of this work, a patent and
some publications have been produced [49), 150, 51].

* The development of a new model for MOX gas sensors [38]], which consider-
ably mitigates one of their main limitations when used in mobile robotics: the
long recovery time.

e The introduction of a new probabilistic method for gas quantification with an
array of MOX gas sensors. This method allows us to obtain absolute concen-
tration readings together with confidence intervals, something that represents
an important advance to mobile robotics olfaction. The following publications
have arisen from this work [39, 40].

* The development of a novel probabilistic GDM method based on Gaussian
Markov-Random Fields which accounts, first, for the obstacles in the environ-
ment, obtaining maps which are more compliant with the actual mechanisms
of gas dispersion; and second, for the "age" of gas measurements as a way of
coping with the vanishing nature of volatile substances. The method has been
presented in [37].

* The collaboration in the design and development of a simulation framework for
mobile robotics olfaction [36].

!In particular, this method is implemented in the class mrpt : : slam: : CRandomFieldGridMap2D, part
of the mrpt-maps library.
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Next, all the publications derived from this thesis are compiled:

Journals

1. J. G. Monroy, J.L. Blanco, J. Gonzalez-Jimenez, Time-Variant Gas Distribution
Mapping with Obstacle Information, (2013) submitted

2. J. G. Monroy, A. Lilienthal, J.L. Blanco, J. Gonzalez-Jimenez, M. Trincavelli,
Probabilistic Gas Quantification with MOX Sensors in Open Sampling Systems
- A Gaussian Process Approach, (2013) in: Sensors and Actuators B: Chemical,
188:0(298 - 312)

3. J. G. Monroy, J. Gonzalez-Jimenez, J.L. Blanco, Overcoming the slow recovery
of MOX gas sensors through a system modeling approach, (2012) in: Sensors,
12:10(13664 - 13680)

4. J. Gonzalez-Jimenez, J. G. Monroy, J.L. Blanco, The Multi-Chamber Electronic
Nose - An Improved Olfaction Sensor for Mobile Robotics, (2011) in: Sensors,
11:6(6145 - 6164)

Conference Proceedings

1. J. G. Monroy, J.L. Blanco, J. Gonzalez-Jimenez, An Open Source Framework
for Simulating Mobile Robotics Olfaction, 15th International Symposium on
Olfaction and Electronic Nose (ISOEN), Daegu, South Korea, 2013

2. J.L. Blanco, J. G. Monroy, J. Gonzalez-Jimenez, A. Lilienthal, A Kalman Filter
Based Approach to Probabilistic Gas Distribution Mapping, Proceedings of the
28th Annual ACM Symposium on Applied Computing, SAC *13, Coimbra,
Portugal, pp. 217-222, 2013

3. J. G. Monroy, A. Lilienthal, J.L. Blanco, J. Gonzalez-Jimenez, M. Trincavelli,
Calibration of MOX gas sensors in open sampling systems based on Gaussian
Processes, IEEE Sensors, Taipei, Taiwan, pp. 1-4, 2012

4. J. Gonzalez-Jimenez, J. G. Monroy, F. Garcia, J.L. Blanco, The Multi-Chamber
Electronic Nose (MCE-nose), Proceedings of the IEEE International Confer-
ence on Mechatronics (ICM), Istambul, Turkey, pp. 636-641, 2011

Patent

1. J. Gonzalez-Jimenez, J. G. Monroy, J. L. Blanco and F. Garcia, Electronic nose
having a high sensing frequency and method for determining the quantitative
and qualitative composition of a gas or mixture of gases using same, WO Patent
2012-049341, 2012
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1.3 Framework of this thesis

This thesis is the outcome of four years of research activity of its author as a mem-
ber of the MAPIR research group?, which is within the Department of System En-
gineering and Automation? of the University of Malaga. For this research, funding
was supplied by the Andalucia Government and the European Regional Develop-
ment Fund (ERDF) under project TEP-2008-4016. This project addressed the prob-
lem of providing a mobile robot with olfaction capability to recognize and estimate
odor concentrations in real environments. One of the research lines of this project is
the combination of the olfactory information with other sensing modalities such as
cameras or laser scanners. The multiple sensing modalities incorporated into the re-
search robot Rhodon along its different development stages aim at this purpose (see
Appendix A).

During the PhD period, the author completed the doctoral program entitled "In-
genieria Mecatrénica" (Mechatronics Engineering) coordinated by the Department of
System Engineering and Automation. This doctoral program granted the author both
a general view of the multidisciplinary field of mechatronics which combines me-
chanical, electrical, control and computer engineering, and more importantly a deep
knowledge about mobile robotics, something that has proved fundamental throughout
these years of research.

Additionally, the author complemented his academic education with the participa-
tion in the Short Winter School (2012) entitled "Data Analysis, Robotics and Mobile
Applications of Chemical Sensors" arranged by the International Society for Olfac-
tion and Chemical Sensing (ISOCS), and a three months stay at the Centre for Applied
Autonomous Sensor Systems (AASS), university of Orebro (Sweden), with the Mo-
bile Robotics and Olfaction (MR&O) group. During this stay, research was focused
on studying MOX sensors and particularly how to obtain absolute concentration val-
ues from their transient response. The work and results obtained during this period
have been included in Chapter 4.

Furthermore, collaborations with other international research groups have been
established during this thesis to enrich and extend its scope. Examples are the coop-
erations with Prof. Michael Biehl at the University of Groningen (Netherlands) and
Dr. Frank-Michael Schleif at the Cognitive Interaction Technology-Center of Excel-
lence (CITEC) at the University of Bielefeld (Germany) focusing on the development
of high efficient odor classification tools for open sampling systems. Results of this
collaboration have been presented but not published at the time this thesis is written,
thus, only the data-sets that were collected as part of this collaboration are presented
in Appendix C.

Finally, it is worth mentioning that the scientific framework within this thesis
stands is characterized by the small research community engaged to this topic. This
is actually corroborated by the few international conferences and journals devoted

2 http://mapir.isa.uma.es
3 http://www.isa.uma.es
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to this field, as well as for the few research groups dedicated to olfaction with mo-
bile robots. However, the author believes that the rapid progress of mobile robotics
together with the continuous advances in the gas sensing technology, will, in a near
future, unlock the full potential of a mobile robot equipped with the capability to
smell.

1.4 Structure of this thesis

The remaining chapters of this thesis are organized as follows:

Chapter 2 gives a general introduction to the field of artificial olfaction and elec-
tronic nose technology, as well as to the main odor-related tasks of mobile robotics.
The first part of the chapter summarizes the concept of electronic nose and devises
relevant aspects of the most common gas sensor technologies, while the second part
reviews the mechanisms of gas dispersal in natural environments, and details the prin-
cipal tasks of a mobile robot with the capacity to detect and measure different volatile
substances: gas source localization, trail following, gas distribution mapping and gas
discrimination.

Chapter 3 presents two approaches to enhance the sensing of volatile substances
with metal oxide semiconductor (MOX) gas sensors in mobile robotics applications.
The first approach details the design and configuration of a new e-nose device called
Multi-Chamber Electronic Nose (MCE-nose), while the second approach exploits a
double first-order model of the MOX sensor to anticipate steady-state values from
measurements of the transient state signal. Qualitative experiments are reported for
both approaches, demonstrating the improvement achieved.

Chapter 4 introduces a new probabilistic algorithm based on Gaussian Processes
for the quantification of volatile substances using an array of MOX gas sensors. The
first part of this chapter focuses on the underlaying mathematics and describes the
use of automatic relevance determination to select the most relevant features from
the array of sensors. The second part deals with the validation mechanisms and the
different experimental configurations, giving a especial attention to the introduction
of the dynamics of MOX sensors in the quantification process.

Chapter 5 addresses an important task for mobile robotics olfaction: the estima-
tion of the spatial distribution of volatile substances. A new method based on Gaus-
sian Markov Random-Fields is proposed to deal with two important problems that
have been disregarded in previous approaches: the presence of obstacles in the in-
spection area, and the combination of odor measurements taken at different instants
of time. Quantitative and qualitative results are reported under different scenarios, as
well as a detailed comparison with existing methods for gas distribution mapping.

Chapter 6 concludes the thesis, providing a summary of the presented research
work and giving an outlook of how the proposed techniques can be extended further.






Chapter 2

On technology and
applications of mobile
robotics olfaction

This chapter provides an overview of electronic olfaction and elec-
tronic nose technology, with especial interest in their applicability
to mobile robots. The chapter summarizes the concept of electronic
nose and devises relevant aspects of the most common gas sensor
technologies. Then, it reviews the mechanisms of gas dispersal in
natural environments to end with a review of the four main odor-
related tasks of mobile robotics olfaction.

2.1 Electronic noses

A general accepted definition for an electronic nose was proposed by Gardner et
al. [44], after refining the initial concept introduced by Persaud et al. [120] in the
early 1980’s. According to this definition:

"An electronic nose is an instrument which comprises of an array of
electronic chemical sensors with partial specificity and an appropriate
pattern recognition system, capable of recognising simple or complex
odors." (Gardner, [44]).

This "electronic nose" term is rather general and consequently may lead to con-
fusion or misleading. In short, an electronic nose is a device designed to artificially
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mimic the animal sense of smell by providing an analysis of chemical mixtures. It
works as a non-separative mechanism: i.e. an odor is perceived as a global finger-
print, a signal pattern that is used to characterize it.

This pattern is formed by collecting the signal response from each sensor in the
array. The absorption of volatile molecules causes physical changes of the sensor,
which are measured as electrical signals to compose the fingerprint. In most electronic
noses, each sensor is sensitive to a broad range of volatile molecules (low selectivity),
but each in their specific way. Thus, the degree of selectivity and the type of odors
that can be detected largely depend on the choice and number of sensors in the array.

2.2 Gas sensor technologies

According to the transduction principle applied, gas sensors can be classified into the
following families: thermal, mass, electrochemical, and optical [[72]. Thermal sensors
use the heat generated by the chemical reaction between the analyte and the sensor as
the source of analytical information. The general strategy is to place the chemically
selective layer on top of a thermal probe and measure the heat evolved in the specific
chemical reaction taking place in that layer. For mass sensors, the transduction prin-
ciple is the detection of the change of mass through the variation in behavior of some
oscillator, usually piezoelectric crystals. Change of mass accompanies many interac-
tions of the chemical species with the sensor, thus, mass sensors represent an impor-
tant segment of the chemical sensing field. However, electrochemical transducers are
the largest and the oldest group employed for chemical sensors. This family includes
potentiometric sensors, which measure voltage, amperometric sensors, which mea-
sure current, and conductometric sensors which measure conductivity. Finally, the
measuring principle of optical gas sensors is based on the emission of electromag-
netic radiation through the gas sample. Different chemical species exhibit absorption
of such radiation at different regions of the electromagnetic spectrum. This property
is the basis for their detection and measurement.

Each of these sensor families has advantages and disadvantages over their coun-
terpart and choosing the right technology strongly depends on the type of application.
However, within the range of applications related to mobile robotics olfaction, there
are a set of desired sensor properties:

* High selectivity - It can be defined as the ability of a sensor to respond primar-
ily to only one analyte in the presence of a mixture. Ideally, the reactive layer
of the sensor should completely reject any interfering analyte, and respond ex-
clusively to the desired one.

* High sensitivity - Together with selectivity, they are possibly the most impor-
tant issues in chemical sensing. Sensitivity is the amount of change in the mea-
surable output magnitude per unit change in the volatile concentration.

» Rapid response - In general, sensors do not change their output state immedi-
ately when a change in the analyte concentration occurs. Rather, they change
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over a period of time called the response time. This property is especially im-
portant when integrating gas sensors with mobile robots which are continu-
ously inspecting an environment. Chapter 3 provides an exhaustive study of
this property and its influence in the applicability to mobile robotics.

* Robustness - Understood as stability of the sensor behavior under simultaneous
changes in model parameters caused by humidity, temperature, or even physical
motion.

* Reliability - It can be defined as the ability of a system to perform and maintain
its functions in routine circumstances. This property is closely related to the
undesired drift, defined as "a gradual change in any quantitative characteristic
that is supposed to remain constant" [155]]. Thus, a drifting chemical sensor
does not give exactly the same response even if it is exposed to exactly the
same environment for a long time.

There is no simple answer when looking for the best sensor because of the many
different sensing situations and criteria that must be considered. Instead, a general
precept must serve: the best sensor is the one that will do the job at a cost which
justifies its use [72]]. The cost must be viewed in terms of money, time, and ease of use.
This is fully applicable to mobile robotics, particularly for out-of-the-lab applications.

A complete survey of the different sensor technologies is out of scope of this
thesis and therefore, only a brief overview of the most spread gas sensing technologies
used in mobile robotics is provided in the following subsections.

2.2.1 Semiconducting metal oxide gas sensor

Metal oxides (MOX) such as SnO,, ZnO, Fe, O3, and W03 are intrinsically semi-
conductors that at temperatures of 200 — 500°C respond to reducible gases such as
H,, CH4, CO, CHs, or H,S and increase their conductivity (conductometric fam-
ily) [119]. Among the different semiconducting materials, SnO, doped with small
amounts of impurities is the most widely employed for gas sensor fabrication. By
changing the choice of impurity and operating conditions such as temperature (tem-
perature modulation), many types of gas sensors can been developed.

MOX competitive advantages include a good commercial availability, high sensi-
tivity, an effective life span from three to five years, and low prices when compared
with other sensing technologies. Additionally, they are usually small and light, which
make them very appealing for mobile robotic applications. They present, however,
different shortcomings, among others:

* The need to be pre-heated at temperatures up to 200 — 500°C in order to facil-
itate the interaction with the target gas, which involves a relatively high power
consumption.

* Poor selectivity and relatively low robustness.
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* The acquisition cycles are very long because of their slow response, espe-
cially when recovering to the baseline level after the exposure to the target
gas ends [107]. This baseline level represents the sensor output in absence of
target gases and varies with temperature, humidity and among sensors.

These limitations come from the chemical mechanism underlying MOX sensors,
related to the semiconductor behavior when exchanging oxygen molecules between
the volatile and the MOX film [2, [135]].

2.2.2 Photo ionization detector

A Photo Ionization Detector (PID) is a gas detector that is able to measure the concen-
tration of a variety of volatile organic compounds (VOCs) by using photo ionization.
This process occurs when an atom or molecule absorbs "light" of sufficient energy to
cause an electron to leave and create a positive ion. The PID is comprised of an ul-
traviolet lamp that emits photons that are absorbed by the compound in an ionization
chamber. Ions (atoms or molecules that have gained or lost electrons and thus have a
net positive or negative charge) produced during this process are collected by means
of an electric potential difference between electrodes. The current generated provides
then a measure of the analyte concentration. Because only a small fraction of the
analyte molecules are actually ionized, this method is considered nondestructive.

The principal advantage of PIDs compared with MOX sensors is that concentra-
tion measurements are almost immediate, that is, PIDs have a very short response
time, making them well-suited for mobile robotics applications where fast changing
gas concentrations are expected to be faced. However, as stand alone detectors PIDs
are not selective; that is, they ionize everything with an ionization energy less than
or equal to the lamp output. The latter additionally involves that only analytes which
have ionization energies similar to or lower than the energy of the photons produced
by the PID lamp will be detected.

2.2.3 Surface acoustic waves

Acoustic Wave (AW) gas sensors, also known as Quartz Crystal Microbalance (QCM)
gas sensors, are devices that weigh gas molecules (mass sensors family) by measuring
the change in frequency of a quartz crystal resonator [[131]]. The frequency of oscilla-
tion of the quartz crystal is partially dependent on the thickness of the crystal. As gas
molecules are deposited on the surface of the crystal, the thickness increases; con-
sequently the frequency of oscillation decreases from the initial value. By applying
different chemical coatings to the crystal, the QCM sensor can be made responsive to
different volatiles. Due to this dependency between thickness and frequency, QCM
sensors are sometimes termed as thickness-shear resonators.

Between the different modalities of AW sensors, surface acoustic waves (SAW)
sensors make use of the fact that the amplitude of an acoustic wave propagating along
the surface of a solid material decays rapidly, typically exponentially with the depth
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of the material. SAW devices typically apply an alternating electric field to a piezo-
electric material covered with a thin film, to generate a SAW. The mass of the film
temporarily increases as molecules of the target gas are absorbed, perturbing the prop-
agation of the acoustic waves. This causes a shift in resonance to a slightly lower
frequency and thus information about the gas concentration can be obtained. A more
detailed description is given by Gardner and Bartlett in [44].

The main advantages of this sensing technology are the low power consump-
tion, the possibility to control the selectivity over a wide range, long term stability,
long lifetime and a rapid response. The latter is especially important for applications
on mobile systems, requiring in general a shorter recovery time than MOX gas sen-
sors [81]]. Disadvantages include comparatively low sensitivity to the target gas and
limited robustness to variations in humidity and temperature.

2.2.4 Conductive polymer sensors

The term polymer derives from the ancient Greek word polus, meaning many/much
and meros, meaning parts. It refers to a molecule whose structure is composed of
multiple repeating units (monomers), with the characteristic property of having a
large molecular mass when compared to small molecule compounds. This large mass
produces unique physical properties which make polymers an appealing material for
sensor fabrication.

Conducting polymers (CP) are a popular sensing technology that is based on mea-
suring the resistance of a thin film polymer. The sensing mechanism is similar to this
of MOX gas sensors except because a thin polymer film is used instead of a semicon-
ductor material. The response given by the sensor is created by a chemical reaction
that occurs on the surface of a polymer placed between two electrodes. Since the
conductivity of pure conducting polymers is rather low, a doping process is usually
necessary. The concept of doping is the central theme which distinguish conductive
polymers from all other polymers [97]. When the doped polymer comes into contact
with particular gases, carriers on the polymer chain become mobile and produce an
electrical conductivity which is then measured as the sensor response.

In comparison with MOX gas sensors, polymers can operate at room temperatures
(with the consequent energy savings), they show a good sensitivity to a wide variety
of organic compounds (but approximately one order of magnitude lower than the
MOX sensors [81]]), and have short time responses.

2.3 Gas dispersal in natural environments

Far from the complex laboratory setups which use sophisticated sampling systems to
keep constant along the olfaction process parameters such as air flow, temperature,
humidity and analyte concentration, in most real-world applications, and particulary
in mobile robotics, gas sensors are directly exposed to the environment to be analyzed
with no control at all. This leads to additional sources of uncertainty, mainly due to
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Figure 2.1: Sample of a instantaneous concentration field (figure taken from Webster et al.
[154]). The chemical source is located at coordinates (0,0) releasing the gas into a turbulent
stream flowing in the positive x-direction.

the mechanisms that rule the dispersal of gases in natural environments: diffusion and
turbulent advection.

Diffusion, from Latin "diffundere"”, means "to spread out". This process causes
mass transport without requiring bulk motion. Diffusion can be considered as a result
of the "random walk" [74] of particles which are self-propelled by thermal energy.
The rate of this movement is a function of temperature, viscosity of the fluid and the
size (mass) of the particles. Although diffusion is present under almost all circum-
stances (as long as the temperature is over the absolute zero), in natural environments
advective flow [[137] is the process that dominates the dispersal of gases. In average,
the diffusion length of typical gas molecules for one hour is only 20 cm, while in both
outdoor and indoor environments we usually find airflows with much higher veloci-
ties [62]]. Thus, in general, the extremely slow process of molecular diffusion can be
neglected.

A turbulent flow can be defined as the viscous flow in which fluid particles move
in a random and chaotic way within the flow field [[141} [139]]. Velocity and all other
fluid properties vary continuously, with strong concurrent molecular mixing between
adjacent fluid layers. In natural environments, turbulence is the dominant mechanism
in the mixing and dilution of gaseous releases [22].

Odor patches released by an odor source are mainly transported by the advective
turbulent flow of an air stream, forming an odor plume. As the plume travels away
from the source, it becomes more diluted due to molecular diffusion and turbulence
that mixes the odor molecules with the clean air [99]. Figure 2.1 displays a repre-
sentative example of the instantaneous concentration of a gas plume in a turbulent
flow.

For the case of MOX gas sensors (broadly employed in this thesis), given their
slow dynamics and the rapid fluctuations in the gas concentration due to the mecha-
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nisms of gas dispersal, they never reach steady state but continuously fluctuate [146].
Thus, olfaction algorithms developed to work in such setups additionally require to
extract information about the target gas (the type of analyte, its distribution, the source
location, etc.) from the transient of the sensor response.

Understanding how the odor molecules disperse through the environment under
naturally turbulent flows is not a trivial task, being necessary the use of computational
fluid dynamics (CFD) to numerically approximate the solution. However, CFD appli-
cations cannot run online because of their high computational cost, which preclude
their use in mobile olfaction.

2.4 Mobile Robotics Olfaction

Gas sensing is a relatively recent research area within the field of mobile robotics.
This is in part because the technological progression of compact gas sensors is inte-
gral to the solution of detecting odors with mobile robots and there is still much devel-
opment needed before the gas sensors are satisfactory for real applications [88]. De-
spite this, significant advances have been reported since the beginning of the 1990s.
Four are the main odor-related tasks that have been addressed by the research com-
munity: gas source localization, trail following, gas distribution mapping and gas
discrimination. In the following subsections a review of the most relevant works on
each task is presented.

2.4.1 Gas source localization

Inspired by biology and the fundamental mechanisms of animal olfaction, the task
of localizing a gas source has been pursued since the first research works on mobile
robotics olfaction.

Researchers started to face the gas source tracing issue using techniques based
on gradient-following [[126}[134]], trying to localize the point of highest concentration
as a representative characteristic of a gas source. These methods assumed that dif-
fusion is the dominant short-term method of odor dispersal, leading to a stable and
smooth chemical concentrations [[77]. Exploiting this "chemical gradient", the robot
was expected to move towards the odor source, since on these scenarios the evolution
of the chemical concentration along the gas plume is well defined by a continuous
function with a peak close to the gas source location [116]. However, in real environ-
ments the dispersion of gases is not diffusion-based but it is governed by turbulence
(see Section 2.3). The flow contains eddying motions of a wide range of sizes that
produce a patchy and intermittent distribution of the gas. The gradient is then time
varying, steep, and frequently in the opposite direction to the source [25) [73]. This
makes gradient-following techniques not practical in real environments.
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Gas source localization under strong constant airflows

Methods designed to operate in the presence of strong and constant airflows are
mostly based on "reactive plume tracking" [[77]]. These methods, largely based on
the odor localizing behavior of microbes, insects, and crustaceans, employ reactive
control schemes and local sensing to track the plume along its entire length to the
source [79, (78, 127,182,186, [109]].

The main characteristic of these scenarios is that reliable information about the
air flow direction is available (anemotaxis), which can be used for upwind navigation
together with chemotaxis (gradient based navigation behavior). The first example of
an odor localizing robot that utilized both chemical and anemometric sensors was
described by Ishida and colleagues [68]]. Further developments have been introduced
by a number of researchers, most of them based on biological inspired methods.

Worth mentioning is the Zigzag/Dung Beetle method [63} 164} [132], which in-
volves moving upwind within the odor plume in a zigzagging fashion. Each time the
plume boundary is encountered (detected by measuring the gas concentration gradi-
ent), the robot turns back into the plume. Another version of this zigzag approach was
implemented for underwater robots and reported by Farrell et al. [29].

Other methods include the Plume-Centered upwind search 129,167} [100], which
involves moving towards the center of the plume while tracking upwind, or the Silk-
worm Moth method, which is probably the most studied animal behavior for gas
source localization. Male moths can trace a pheromone emitting source (female)
even at very long distances in a turbulent environment. The chemotactic behavior
of the silkworm moth has been implemented in many research works, as in the case
of [80, 78} 101} [121].

It is not until the work of Martinez and Perrinet [[102] that visual information was
used in collaboration with local chemical sensing. They proposed a visual identifica-
tion of salient features to locate candidates, reducing the time necessary to find the
real gas source. In [95] a similar approach is presented but employing standard image
processing techniques to detect cups (the potential odorsources), while in [[70} 169]
Ishida et al. proposed a subsumption architecture to combine random, visual and ol-
factory search behaviors.

Another approach that requires a strong and constant airflow condition is to model
the shape of the gas plume based on the measurements of the wind vector and chemi-
cal concentration. Analytical models of the gas plume [[65] or stochastic methods [30,
116]] can then be used to predict the gas source location.

Gas source localization under weak airflows

The localization of a gas source in weak airflow scenarios (e.g. unventilated indoor
environments) cannot rely on the anemometry information. Under these conditions,
an analyte plume can still be detected in most cases [152]], however, with different
properties concerning its shape, width, concentration profile and stability over time.
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Figure 2.2: (a) Source characterization with a strong airflow forced by a fan behind the gas
source, and (b) without the fan. Sensor0 is placed at a distance of 30 cm from the source. All
sensors are spaced 25 cm, so that the farthest sensor (Sensor4) is at a distance of 130 cm. For
the case of strong airflow, the sensors are placed inside the plume. Figure taken from Ferri et
al. [34]

Few research works have been proposed in this case due to the complexity of
gas dispersal in these scenarios: gas plumes are not well formed and the distribution
of gases is dominated by turbulence, that is, it is patchy and chaotic as shown in
Figure 2.2. The first works were proposed by Lilienthal et al. [92| 91] and Wandel et
al. [1531[152]], where only chemical sensing was employed to localize the gas source.
The importance of these works lies in the raise of questions about the operation of
mobile robots in more realistic environments, providing extent sets of experiments.

Further efforts to improve the localization of gas sources under these complex
scenarios were reported through the mimic of the repetitive movements of insects
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Pheromone trail

Figure 2.3: An ant following a pheromone trail marked on the ground. Concentrations per-
ceived at the left and right antennae are compared and used to turn back to the trail. Figure
taken from Ishida et al. [[119]

searching for an odor source [34]], or the use of analytical models [90]]. The latter
approach involves creating a gas concentration gridmap of the environment [84, [83]],
without tracking the gas plume (if it exists). This approach is further detailed in Sec-
tion 2.4.3.

2.4.2 Trail following

Inspired by the olfactory-guided behaviors of insects and animals where chemical
substances are often used to mark trails or territories, trail following has become an
active research area within mobile robotics olfaction. Probably, the most famous ex-
ample of olfactory-guided behavior is the case of ants. Ants, as many other insects,
secrete pheromones to constrain the behavior of other individuals. Pheromone trails
serve as a multi-purpose chemical signaling system: it leads members of its own
species (and generally same nest) towards a food source or home, while it represents
a territorial mark to other species [156]. Once the trail is laid, other members of the
nest will recognize the chemical signal and follow the trail [1]] (see Figure 2.3). Since
chemical marks evaporate with time, each individual following the trail renews the
marks on the way back home. While this pheromone is constantly deposited by its
members, the chemicals diffuse up into the environment propagating its message.
Once the food source runs out, the organisms will simply skip the task of renew-
ing the trail on the way back, thus resulting in the diffusion and weakening of the
pheromone [104]].

Another example are honey bees. They use chemical markers not to follow a
trail, but to increase their efficiency when gathering nectar. After visiting a flower
and gathering its nectar, the honey bee marks the flower with a short-life odor to
indicate that the nectar of that flower has been recently collected, thus it may be left
uninspected for a while [47]].

The use of chemical markings for trail guidance or signaling may be of benefit
for a number of applications in the field of mobile robotics. Odor trails could provide
an inexpensive and more flexible alternative to the metal wires buried under the floor
that are often used for industrial automated guided vehicles (AGV) [142]]. Odor trails
provide higher flexibility since they are easier to lay on the floor, however, they decay
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over time as the chemical substance gradually evaporates, which represents one of
their fundamental constraints.

Other scenarios in which odor trails may simplify the tasks to be accomplished by
mobile robots were proposed by Russell [128}[129]]. One example is the use of chem-
ical markings to provide temporary warning signals, for example to indicate areas
on the floor that have been cleaned [26]. While this would be particularly beneficial
to coordinate the behavior of multiple robots, it could also be helpful in the case of
a single robot, because it avoids the necessity for maintaining a consistent spatial
representation [81].

To reduce the "odor confusion" effect generated mostly by the advection and dif-
fusion of odor particles, but also due to the slow response of gas sensors, mechanisms
to create an air curtain around the sensors has been proposed [127]. This air curtain
increases the gas sensing differentiation near the floor by blocking external airflows
that may interfere and create confusion in the readings.

Several navigation strategies have been suggested for trail following. The most
straightforward implementation is a robot performing tropotaxis (imitating the be-
havior of ants) with two gas sensors (left and right), as the proposed by Russell et
al. [129], or Stella et al. [142]. Further trail following strategies rely on using only
one gas sensor, as in [128]] where a klinotactic algorithm is employed to follow the
edge of a trail, or based on more robust strategies against sensor errors, which involve
frequent crossings of the trail along a sinusoidal walk [130].

2.4.3 Gas distribution mapping

Gas distribution mapping (GDM) is the process of creating a representation of how
gases spread in an environment from a set of spatially and temporally distributed
measurements of relevant variables [9} [89]. Foremost, these measurements include
the gas concentration itself, but may also comprise wind, pressure or temperature.

Gas distribution mapping is of great help not only because it can be used to pin-
point the location of a gas source (or of multiple sources) without depending on the
environmental conditions (see Section 2.4.1), but also because it provides informa-
tion of how the gas emissions have spread in the environment, which is crucial in
many real olfaction-related applications. For example, lets consider an industrial plant
where a leak of a toxic gas has been detected. For safety considerations, it is not
enough to locate the room or even the pipe that is leaking, but it is necessary to know
which areas of the plant have been affected by the toxic gas to safely prepare the
action plan.

Traditionally, the way to create a representation of the gas concentration field is to
measure the response of a grid of gas sensors distributed in the environment [150, [71]].
The main advantage of these networks of static gas sensors is that the instantaneous
gas distribution can be obtained by reading all the sensors in the grid at a time, similar
to taking a "picture” of how gases are distributed. Nonetheless, given the dynamic and
changing characteristics of the gas distribution in real environments (see Section 2.3)
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for many applications it is better to obtain the time-averaged concentration field by
averaging the readings over a prolonged time [66]].

An important drawback of the sensor network is that it is not scalable when the
area to inspect increases, rising considerably the deployment cost and reducing its
flexibility. Because of this, the attention shifted to GDM with mobile robots, which
using only one electronic nose allows obtaining gas maps with high flexibility. Ad-
vantages of this approach include the use of only one sensing device (which may
be complex and expensive), the capability of the robot to sample at adaptive reso-
Iutions depending on the area being inspected, and the possibility to use additional
environmental information gathered by other sensors on board (cameras, laser scan-
ners, anemometers, etc.) [70]. Chapter 5 discusses in detail the advantages of using
mobile robots for GDM while providing an innovative approach which accounts for
the obstacles in the environment and the dynamic characteristics of gas distribution.

Probably, the first work studying the distribution of gases with mobile robots was
presented by Hayes et al. [56]], where a group of mobile robots (swarm of robots)
worked in a coordinated manner to create a histogram representation of the gas dis-
tribution. The histogram bins contained the number of "odor hits", that is, the number
of measurements above a predefined threshold. This binary information was collected
by all the robots while inspecting the area following a simple random walk pattern.
Apart from requiring an even coverage of the environment, this approach also takes a
very long time to obtain statistically reliable data, and no extrapolation is performed
to areas not inspected. These drawbacks lead to a bad scalability when applied to
large environments, fact that makes doubtful its applicability in real scenarios.

Improvements to this approach were reported by Pyk et al. [121], employing bi-
cubic interpolation to extrapolate the gas distribution to zones not directly inspected
by the robot. A disadvantage of this method is, however, that no spatial averaging is
carried out and therefore fluctuations appear directly on the map.

Nevertheless, the most remarkable works in this field have been reported by
Lilienthal and colleagues. In the pioneer work [85]] they proposed the kernel-based
method, which consists of convolving sensor readings with a Gaussian kernel, thus
providing a representation of the gas map without assuming any predefined paramet-
ric form for the distribution. This method was later extended for the case of multiple
odor sources [96] and to the three-dimensional case [[124]]. It was further shown how
gas distribution mapping methods can be embedded into a Blackwellized particle fil-
ter approach to account for the uncertainty about the position of the robot [87]. A
deeper review of the works proposed in the field of GDM with ground mobile robots
is later presented in Section 5.2.

In the last few years, it’s worth highlighting the attention paid by the research
community to GDM with unmanned aerial vehicles (UAVs). Quickly deployable,
cost-efficient or easy to transport are some of the advantages that flying mobile mea-
surement devices provide when measuring the gas concentration outdoor [113]]. Ad-
ditionally, micro vertical take-off and landing (VTOL) UAVs, such as quadrocopters,
have the ability to hover over a certain point of interest for a prolonged time, which
makes them promising tools for environmental monitoring applications. For exam-
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ple, Kovacina et al. [76] proposed a decentralized control algorithm for localizing
gas sources and mapping chemical clouds within a region. This approach relied on
constrained randomized behaviors and attended to the UAV restrictions on sensors,
computation, and flight envelope. Later, Bermudez et al. [60] investigated the use of
blimp-based gas-sensitive UAVs for demining tasks, including strategies for chemical
mapping. Recent projects like AirShield (airborne remote sensing for hazard inspec-
tion by network enabled lightweight drones) [15] investigate the use of autonomous
swarm of micro UAVs to support emergency units. For a more detailed review of the
state of the art in this field see [113]].

2.4.4 Gas discrimination

Gas discrimination deals with the problem of identifying to which of a set of cate-
gories a new volatile sample belongs [[147]. Traditionally, this process is carried out
by hosting gas sensors inside a chamber with controlled humidity, temperature and
airflow conditions, as well as regulating the exposure time to the gas and its concen-
tration. Under these conditions, many studies have been proposed on how to classify
odours using an array of gas sensors and a pattern recognition algorithm. In [[136,|53|]
the principal methods for chemical classification are reviewed, ranging from classical
methods such as k-nearest neighbour (kNN), Mahalanobis linear discriminant anal-
ysis, or Bayesian classifiers to most recent artificial neural networks (ANN), cluster
analysis with self-organizing maps (SOM) and support vector machines (SVM).
However, when the discrimination is performed with a mobile robot equipped
with an e-nose, there is no control over the sensing conditions. This entails that the
sensor signals to be processed are noisy and dominated by the signal transient be-
haviour [145]], which entails a number of additional challenges with respect standard
analyte identification. Few are the works found in literature that perform classification
focussing only on the transient phase of the sensor signals. Probably, the first work
addressing this problem was [[L00], where Marques et al. proposed a feature extrac-
tion method based on discrete wavelet transform (DWT). Here, the authors claimed
that only 4 seconds of exposure of an array composed of 4 MOX sensors were suf-
ficient to reliably classify from a set of 6 different gas mixtures. Later, Martinez et
al. [103] proposed a biomimetic robot for tracking a specific gas plume, dealing with
the discrimination of gases by means of a spiking neuronal network. An evaluation
for the suitability of different feature extraction techniques for such scenarios was
provided in [147]], where Trincavelli et al. proposed a preprocessing stage to isolate
the relevant parts of the sensor signals that can then be passed to the pattern recogni-
tion algorithm. More recently, in [24] a support vector machine was applied to a set
of features obtained from changes of the spectral sensor signal characteristics (fre-
quency components, phase shift and energy sums), reporting a substantially increase
of the classification performance. For a more detailed review of the field see [1435]].






Chapter 3
Improving MOX-based gas
sensing for mobile robots

Metal Oxide Semiconductor (MOX) gas transducers are one of the
preferable technologies to build electronic noses because of their
high sensitivity and low price. In this chapter we present two ap-
proaches to overcome to a certain extent one of their major dis-
advantages: their slow recovery time (tens of seconds), which lim-
its their suitability to applications where the sensor is exposed to
rapid changes of the gas concentration. The first approach is based
in the design of a new e-nose called Multi-Chamber Electronic Nose
(MCE-nose), which comprises several identical sets of MOX sen-
sors accommodated in separate chambers (four in our current pro-
totype), alternating between sensing and recovery states, providing,
as a whole, a device capable of sensing faster changes in chemical
concentrations. The second proposal consists of exploiting a double
first-order model of the MOX-based sensor from which a steady-
state output is anticipated in real time given measurements of the
transient state signal. This approach assumes that the nature of the
volatile is known and requires a pre-calibration of the system time
constants for each substance, an issue that is also described in this
chapter. The applicability of both approaches is validated with sev-
eral experiments involving rapid sensing of gas concentration in real
and uncontrolled scenarios with a mobile robot bearing an e-nose.

35
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3.1 Introduction

The deployment of olfactory sensors is becoming an increasing practice in many in-
dustrial and environmental applications due to advances in the gas sensing technol-
ogy. The exploitation of olfactory sensors can be classified into two main groups
according to the level of control over the measurement conditions: Closed Sampling
Systems (CSS), where the gas sensors are usually hosted in test chambers with con-
trolled airflow, volatile exposure times, temperature and humidity, efc., and Open
Sampling Systems (OSS), with no control over the sensing conditions. Our interest is
in the latter, which are more flexible and practical for field applications. Examples of
such uses are environmental exploration [148]], gas distribution modeling [89], buried
land mine detection [122] or pollution monitoring [149]]. Some of these applications
are usually accomplished with the help of a mobile robot carrying the sensors on
board, which makes the sensing task even more challenging.

Within the different technologies and materials available for gas sensor fabrica-
tion [L19], MOX (Metal Oxide Semiconductor) transducers are one of the most pop-
ular and widely employed in mobile robotics olfaction, due to their high sensitivity
and low prices. However they present some shortcomings including poor selectivity,
response drift (age factor), influence by environmental factors such as humidity and
temperature [107] and major limitations in their response speed [49]. These limita-
tions come from the sensing mechanism underlying MOX technology, that is, the
exchange of oxygen molecules between the volatile and the metal film [2} [135].

Among these drawbacks, the long duration of the acquisition cycles (up to tens of
seconds) is of especial concern for OSS, since inaccurate readings are inevitable when
measuring rapid changes of gas concentration, as illustrated in Figure 3.1. Observe
how this limitation is particularly noticeable in the decay phase, when the output
recovers to the baseline level (the steady output value given by a gas sensor when
exposed to clean air). As a consequence of this slow dynamic response and because
of the intermittent and chaotic nature of turbulent airflow in OSS [139] 91]], steady
state values are rarely reached, and therefore gas sensing based on MOX technology
must deal with the transient information of the signals [[147]]. This problem becomes
crucial when the sensors are carried on a vehicle (typically a mobile robot) to provide
measurements along the way. The adopted solution in such cases is to reduce the
vehicle velocity to a few cm/s, such in [68]]. This proposal, however, is not acceptable
in many applications since the sampling of space must be as quickly as possible to
cope with the rapid dynamics intrinsic to gas propagation.

To overcome this shortcoming of MOX-based electronic noses, in this chapter
we propose two different approaches: one hardware and one software. The former is
based on the design of a new MOX-based e-nose which comprises several identical
sets of MOX sensors accommodated in separate chambers. It enables the sensing of
faster changes in chemical concentrations by commuting the sensing task to another
clean set of sensors when the decay phase is detected. The latter estimates the steady
state sensor output from the noisy and distorted transient signal, which corresponds
to the search for an inverse dynamical model of MOX sensors. The applicability of
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Figure 3.1: Rise and recovery phases of MOX sensor response to a step gas concentration.
Subfigure (a) shows a 2D plot of the sensor response over time. The shaded blue region denotes
the sensor exposure to the analyte. Subfigure (b) depicts a 3D gas distribution map generated
from the readings of an MOX sensor carried by a mobile robot along a corridor. Observe how
the recovery phase after the gas exposure is several times longer than the rise one.

both approaches to OSS is validated through different experiments in real scenarios,
performed with a mobile robot bearing an MOX-based e-nose.

The rest of this chapter is outlined as follows: after a discussion of the important
influence of the e-nose slow recovery in mobile robotic olfaction in Section 3.2, we
introduce the proposed sensor configuration, called Multi-Chamber E-nose (MCE-
nose, for short) in Section 3.3. Then, Section 3.4 describes the software alternative by
introducing the proposed MOX model, giving especial attention to the experimental
results. Finally, we end up with some conclusions and discussing future research.
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3.2 On the importance of the e-nose long
recovery time in mobile robotics olfaction

For a mobile robot intended to accomplish olfaction-related tasks, the problems as-
sociated to the slow recovery of MOX gas sensors are manifested, among others,
through the following issues:

1. A gas concentration may be masked by another close, stronger one. Suppose
two gas sources of different concentrations, separated by a short distance. If
the robot trajectory first leads to the lower-concentration gas source, both of
them will be probably detected. However, if it happens the other way around,
the lower one may be overlooked since it could be hidden below the decay of
the stronger concentration. Figure 3.2 displays a simulation of such scenario.

2. Gas concentration maps are not accurate, as a consequence of the integration
into the map of unreliable sensed values from the decay phase of the sensor
response.

3. Gas source search methods that rely on gradient techniques may not be appli-
cable. These methods require to measure and compare the gas concentration
at different points, either successive readings (klinotaxis') or simultaneously
sensed intensities from two or more sensors (tropotaxisz) as in [86]. For the
first case, we cannot trust in the sensor measurement if it is still in the decay
phase of the previous sensing.

Thus far, mobile olfaction tasks have managed this limitation in, basically, two
ways:

* Slowing down the robot speed up to a few c¢m/s in order to allow the sensor
response to slowly follow the gas distribution even in the decaying phases [68]].

* Defining paths that force the robot to pass several times over the same locations
but along different directions, in such a way that the decay effect is averaged
out over all the measurements. This is a common strategy employed to explore
a space with the intention of building a gas concentration map, such as in [96].

Clearly, this type of solutions affect the overall efficiency of the olfactory task
and, in many cases, it may be even unacceptable for the robot mission. It is important

Klinotaxis is the achievement of orientation by alternate lateral movements of part or all of a body;
there appears to occur a comparison of intensities of stimulation between one position and another and
a "choice" between them. Klinotaxis is shown by animals with a single intensity receptor such as the
protozoan Euglena, earthworms, and fly larvae.

2In tropotaxis, attainment of orientation is direct, resulting from turning toward the less stimulated
(negative) or more stimulated (positive) side as simultaneous, automatic comparisons of intensities on two
sides of the body are made. No deviations (trial movements) are required. Tropotaxis is shown by animals
with paired intensity receptors.
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Figure 3.2: Simulations of the behavior of a MOX sensor when sensing a low gas concentration
right after being exposed to a stronger one. The MOX sensor response has been modeled as
a double first-order system with time constants 1.7s, and 14.8s, for the rise and decay stages
respectively (estimated from system identification techniques). Observe that, when the second
gas source is much lower than the first, the response of the MOX sensor (in red) is very similar
to that obtained from the first source alone (blue).
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to remark that, for most real robot applications, smell is not by itself the ultimate goal
for the robot, but just another of the robot senses to gather useful information from
the environment (along with vision, range sensing, touch, etc.).

3.3 The multi-chamber electronic nose - an
improved olfaction sensor for mobile
robotics

It is well known that wine testers have a very developed and well trained sense of
smell. In a typical session, to avoid mixing the smells or tastes of different wine
samples, they have to clean their mouths and noses by eating a little piece of bread and
wiping their noses, for example. Thus, they undergo a "purge/clean" stage between
tests and they also stop for a few seconds to ensure their noses are ready to provide
new accurate olfactory information. MOX gas sensors behave in a quite similar way,
as they require a time (decay phase) to ensure their readings are accurate.

The MCE-nose proposed in this chapter pretends to work in similar way that wine
testers, but taking advantage of the reproducibility of electronic devices to avoid the
off-time between readings. Thus, the key idea behind the proposed design is to ignore
the MOX sensor output when the decay phase is detected and delegate the sensing
task to another clean, almost identical sensor. In order to achieve that, we accommo-
date a set of redundant sensors in different chambers, which are alternatively acti-
vated. Thus, the output signal of the whole setup results from the concatenation of
the rise phases of a sequence of MOX sensors.

The design of the MCE-nose aims at providing the following characteristics:

» To shorten the cycle of effective sensing as exposed above.

» To recognize a variety of odors by hosting MOX sensors with different selec-
tivity in each chamber.

* To reduce the influence of residuals from previous measurements by scaling
down both the chamber room where the sensors are accommodated and the air
circuit volume.

* To speed up the interchange of molecules onto the MOX film by feeding a
pressured air flow into the chamber by means of a pneumatic pump.

Next, the three main aspects of the MCE-nose design are exposed: mechanics,
electronics, and software.

3.3.1 Mechanical design

Figure 3.3 shows a schematic diagram illustrating the interconnections of the different
components of the proposed e-nose. The design is conceived to comprise a general
number of M chambers with N MOX sensors each. All chambers are identical and
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Figure 3.3: A functional schematic diagram of the MCE-nose. There are two pumps: one
aspirating clean air and the other the target gas. At each time, only one chamber is receiving
the target gas while the other M-1 chambers are being purged with clean air.

contain the same set of sensors. Chambers are also isolated from each other, that is,
no airflow circulates between them.

There are two pneumatic circuits: one for clean air and one for the target gas (i.e.
odor charged), which are connected to each chamber. Clean and contaminated air
flows are taken from opposite sides of the MCE-nose device via two separate pumps.
Besides, clean air is forced to flow through an active carbon filter to eliminate possible
impurities.

At any given time, only one chamber is fed with the target gas, while the others
M-1 are being cleaned. This is done thanks to a set of electro-valves placed at the
entrance of each chamber, controlled by embedded software built in the MCE-nose
micro-controller, as will be described later in this section.

At any time, each chamber can be found in one of the following three states:

Clean: A chamber is said to be "clean" if all of its MOX sensors are at their baseline
level. This may happen because either the chamber has not being used yet for
sensing or because it has been injected with clean air long enough.

On-Cleaning: Opposite to a clean chamber, an on-cleaning one is that whose sensors
are not completely cleaned (i.e. they have not reached the baseline yet), despite
the chamber is being injected with clean air.
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Figure 3.4: Different views of the 3D model (a) upper view, (b) bottom view, of the pneumatic
circuit and the main block containing four chambers which can accommodate up to 8§ MOX

sensors each.
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Active: The chamber is being injected with the target air.

Figure 3.4 shows some of the 3D models created for the current prototype, which
consists of four chambers with identical configuration which can accommodate up to
8 MOX sensors each. Our choice of such particular number of chambers obeys to a
trade-off between two issues:

* On the one hand, the obvious higher cost and complexity of the device as this
number increases: more sensors, valves, A/D converters, etc. as well as prob-
lems for dissipating heat on the PCB, power consumption, etc.

* On the other hand, the possibility of having an array of sensors at the baseline
level and, consequently, the possibility of sensing at a higher frequency.

The main block, which accommodates the 4 chambers, has been fabricated of
resin with a stereolithography machine. Each chamber has a circular array of 8 sock-
ets to lodge MOX sensors of standard size (§ mm diameter). It can be appreciated in
Figure 3.4(b) how the sensors are hosted. They are introduced from the bottom side
of the main block, leaving the sensing surface inside the chamber and, at same time,
facilitating the electronic connections (pin soldering). A cone at the entrance of the
chamber scatters the incoming airflow evenly directing it towards the active sensing
surface of the sensors. The air is then forced to escape through the upper orifices of
the chamber, as illustrated in Figure 3.5.

Each of the 8 sockets can lodge a different sensor. In our case, each chamber
contains 7 different MOX sensors, with the extra socket employed for a temperature

Output | 77 (EEE Input
airflows : ) airflow

Sensing MOX surface

Figure 3.5: Approximate airflow scheme inside each chamber.
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Chambers

Contaminated air
input

Clean air input

Figure 3.6: The complete MCE-nose. The current prototype contains 4 chambers, hosting 8
different MOX sensors each.

sensor (ADT7301). The 7 MOX sensors were selected with different gas selectivity
in order to facilitate odor classification. This amount of sensors has demonstrated to
be large enough to allow the recognition of a wide range of odors.

In our prototype, the pumps mounted are EAD NEO IP3 diaphragm pumps: 15V
dc, 180kPa maximum attainable pressure, and working flow of 4 Ipm. For each of
the chambers, two SMC S070C6BG32 electro-valves are used: one for the clean and
one for the polluted air flow. To interconnect pumps, electro-valves and chambers, we
have used standard pneumatic PVC tubes with diameters of 8 and 3 mm, as well as
the required plugs. Figure 3.6 shows a picture of the built prototype.

3.3.2 Electronics

Any conventional MOX-based e-nose requires a minimum of electronics to cope with
sensor pre-heating and sensor readings, including signal conditioning and A/D con-
version. In our design, the electronic module has to take care also of the synchro-
nization of the pneumatic circuits by controlling the eight electro-valves (one pair for
each chamber). As seen in Figure 3.7, such electronics has been mounted on a sin-
gle printed circuit board (PCB) which is connected to all the components by means
of four 16-pins connectors (for the gas and temperature sensors) and eight 2-pins
connectors (for the electro-valves).
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Figure 3.7: PCB where all the electronic components have been mounted.

The core component of the PCB is an ATMegal6 8-bit micro-controller at 16
MHz, which provides 32 programmable I/O lines to control two A/D 16-bits convert-
ers (connected to the gas sensors), four temperature chips (placed inside each chamber
to measure working temperature), and the eight electro-valves. Additionally, the PCB
comprises a USB connection to a PC host for easy interfacing and a standard JTAG
interface for development.

3.3.3 Embedded software

The firmware we designed for the ATMegal6 micro-controller is in charge of con-
trolling the behavior of the MCE-nose components. The operation flow is based on
three main stages, described in Figure 3.8:

» The first stage checks if a data frame containing the information about the next
active chamber is received from the PC. If this is the case, the appropriate sig-
nals are issued such that the electro-valves switch the airflow into the newly
selected active chamber. Notice that the switch strategy that dictates the active
chamber at any given time has not been embedded into the micro-controller,
but it relies on orders from the computer. This decision obeys to our interest in
implementing high-level switching strategies that may take into account infor-
mation from other sensors and the robot task.

» The second stage is in charge of collecting the readings from all the sensors of
the MCE-nose (28 MOX and 4 temperature sensors in our case). This is done
by means of two A/D 12-bits converters of 16 channels each.
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Figure 3.8: Operation flow of the embedded software.

* Finally, all the collected data are packed into one frame, which is assigned a
timestamp and the ID of the active chamber. This data frame is then sent to the
PC via a USB-to-serial UART interface (FT232RL).

3.3.4 Calibration of gas sensors

As depicted above, the output signal of the MCE-nose results from the concatena-
tion of the rise phases of identical MOX sensors, placed in the different chambers.
Nevertheless, in practice, such identical sensors do not response the same and thus,
a calibration is required in order to make their responses as similar as possible. For
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such calibration, we have to compare the readings of all chambers when exposed to
the same concentration.

To ensure that all chambers are flooded with the same gas concentration, the four
chambers where individually and sequentially flooded during 60 seconds, allowing
their sensors to reach the steady state (see Figure 3.9).

Since only the baseline and the rise phase of each sensor are of interest for the
MCE-nose output (as the decay phases are discarded ), we compensate outputs of
sensors in chamber 1, 2 and 3 to achieve the baseline level and the amplitude of the
reference output (chamber 0). Concretely:

* An offset was added to each sensor output to force them to have a similar
baseline level when sensors are not exposed to target gases.

* A multiplying factor was estimated for each sensor to ensure identical gain. To
account for the non-linear behavior of the sensors we selected an average gain
computed from three different concentrations.
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Figure 3.9: (a) Readings of four TGS-2602 sensors placed in each chamber of the MCE-nose
prototype during the calibration procedure. (b) Comparison of the four sensor readings before
calibration, and (c) after it.
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Figure 3.9(a) shows the readings of TGS-2602 sensors placed in each chamber of
the MCE-nose prototype during the calibration procedure. It may be notice that even
before calibration the readings of the four sensors are all very similar (as reasonably
expected). Figure 3.9(c) plots the readings of the same sensors after the calibration
has been carried out.

3.3.5 Integration of the MCE-nose into a mobile platform

The MCE-nose presented in this chapter has been designed to be integrated into a
mobile robot. Figure 3.10 shows a PatrolBot mobile platform [106] with the MCE-
nose already integrated into it. The robot is also equipped with a SICK and a Hokuyo
laser range scanners and a sonar ring to provide the necessary functionality for local-
ization and obstacle detection. For a detailed description of the mobile platform and
the components onboard, see Appendix A.

One of the main advantages of the MCE-nose is its suitability for mobile olfaction
tasks. The mechanical design of the MCE-noise opens a variety of possible configu-
rations:

e It can work either as a MCE-nose (as explained above) or as a conventional
e-nose by using only one of the chambers. This may be convenient in some
phases of an olfaction task (e.g. odor classification).

MCE-nose

Electro valves

On-board PC

SICK .
Sonar ring

MCE-nose aspiration

Figure 3.10: The MCE-nose integrated in a mobile platform Patrolbot mobile base.
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 Since the aspiration is carried out through a tube, the air input can be con-
veniently placed at any point around the robot. This allows the MCE-nose to
be mounted at any place on the platform, no matter of its shape or size. Also,
olfaction strategies that need to compare concentrations from several points
around the robot (as gradient techniques) are easily accomplished by just mov-
ing the aspiration tube, for example, with a servo motor. Even if no comparison
is needed, having such capability bears some advantages: 1) we are not limited
by the robot nonholonomic constraints while sampling the workspace, and 2)
we reduce the air disturbance caused by the robot movement to a minimum,
since we reach the target point with the tube which generates a negligible tur-
bulent airflow.

Considering the possibilities offered by a MCE-nose integrated into a robotic plat-
form, it is necessary to account for high level software able to exploit such potential
for any robotic olfaction task. These possibilities include: switching between cham-
bers, focusing only on some specific (more suitable) MOX sensors from the array,
taking into account the robot mobility as well as surrounding information from other
sensors of the robot (laser scanner, sonar, ...), etc.

Among others, this software has to deal with the following tasks:

1. To detect abnormal level of a gas (probably while accomplishing a non-specific
olfaction mission), through a pilot "watchdog" sensor from the MCE-nose. This
could be done instead, by a static gas sensor network deployed in the environ-
ment.

2. To classify the target gas. MOX sensors have low selectivity, so the multivariate
response of an array of chemical gas sensors with broad and partially overlap-
ping selectivity can be used as an "electronic fingerprint" to characterize a wide
range of odors or volatile compounds by pattern-recognition means [53[]. For
this task, typically only one chamber is necessary, thus no chamber switch is
required. As an illustrative example, Figure 3.11 shows the responses to a spe-
cific odor of seven different MOX sensors within one chamber.

3. Measuring the target gas concentration is crucial for almost all robotic olfaction
tasks, including gas source localization and gas mapping. With the purpose of
obtaining the best estimation of such concentration, is advisable to select, from
the sensors of each chamber, those more sensitive to the target gas. Referring
to Figure 3.11, sensors TGS-2620 and TGS-2600 are good candidates for gas
concentration purposes due to their high sensitivity to that gas.

4. To control and manage complex switch strategies which could take into ac-
count not just the gas sensor readings, but also information provided by other
sensors (laser scanner o camera), as well as the olfaction task at hand (e.g.
plume detection, gradient following, etc).
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Figure 3.11: Readings from seven different MOX sensors within a chamber when exposed to
acetone.

Such software has been implemented under the Open Mobile Robot Architecture
(OpenMORA) [52], based on MOOS [[114]] and MRPT [108]]. This architecture al-
lows us to easily control a robot platform and the available sensors as range lasers,
cameras or sonar, as well as providing high level functionality as obstacle avoidance,
autonomous path planning or localization.

3.3.6 Experiments with the MCE-nose

This section describes different experiments we have carried out to validate the MCE-
nose with regard to the improvement in rapid sensing of gas concentrations. The ex-
periments consist of a static smell test, a mobile experiment with multiple gas sources,
amobile test with different gas concentration sources and finally a gas mapping exper-
iment. Since the kind of gas to sense was known a priory, neither odor classification
nor sensor selection was required here. The implemented switch strategy is based on
two rules for deciding when to switch and what chamber to switch to:

Rule 1: A switch of chamber must happen whenever the sensor readings from the
current active chamber (being fed with the input stream) start to decay.

Rule 2: Provided a switching event has been triggered by rule 1, it is necessary to
check the state and sensor levels of all the M chambers (clean, on-cleaning and
the active one). The one with the lowest sensor readings is chosen to be the
next chamber to commute to.
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Chamber 1 Chamber 2

Chamber 3 Chamber 4 ‘ MCE-nose output

Figure 3.12: Snapshot of the MCE-nose static smelling experiment. The four plots on the
left side present the readings of each of the four chambers of our current prototype, while the
MCE-nose output is shown on the bottom-right plot. The active chamber is marked in green
(chamber 2 in this case).

Static test

In this experiment the robot was kept still, being the gas source (composed by a small
cup filled with acetone) the mobile element. The experiment consisted in repeatedly
presenting the gas source to the MCE-nose air input, waiting a few seconds and mov-
ing it apart. Figure 3.12 shows a snapshot of the experiment and the responses ob-
tained with every chamber (conventional e-nose) and with the MCE-nose. It can be
appreciated how the MCE-nose output is able to capture the (three) different expo-
sures by changing to a clean chamber whenever the response of the active one (being
odor flooded) starts decaying.

Detecting multiple odor sources

The second experiment was designed to test the behavior of the MCE-nose in the
case of multiple gas sources in a more realistic robotic scenario. The scenario con-
sists of a long corridor where three equal-sized small cups filled with acetone were
placed at 2 meters from each other. Figure 3.13 displays the experiment setup, and a
picture of the MCE-nose integrated in the PatrolBot platform. For the experiment the
PatrolBot was commanded to move in a straight line at a constant speed of 20 cm/s.
Figure 3.14 illustrates the comparison between the outputs of a conventional e-nose
(one chamber) and the MCE-nose.
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(small caps filled with Acetone)

Figure 3.13: Description of the multiple gas source experiment. Three small cups filled with
acetone where placed along the robot trajectory to test the behavior of the MCE-nose.
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Figure 3.14: Comparison between the readings of a conventional e-nose (right) and the MCE-
nose (left) for the multiple gas source experiment. It can be appreciated how the MCE-nose
can clearly distinguish the three gas sources presented along the robot path, while the conven-
tional e-nose can hardly detect the second source, and how the third one became completely
unnoticed.
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Notice that for such a robot speed, the readings provided for a conventional e-nose
do not reveal the presence of the three odor sources and the low concentration zones
between gas sources are not correctly gauged. The common solution to this problem
would be to slow down the robot speed, so the MOX sensors could have time to
recover their baseline level, which is not possible or practical in many real robotic
applications. Observe, on the other hand, that the MCE-nose is able to provide more
accurate measures.

Detecting multiple odor sources of different concentrations

The objective of this experiment is to demonstrate that using the MCE-nose, the prob-
lem of disguising lower concentrations or even additional gas sources (as stated in
Section 3.2), can be notably palliated.

The experiment was carried out in the same scenario than the previous exper-
iment. In this case, only two gas sources separated one from each other 2m were
used. The first one was a wide open vessel (approximately 15cm diameter), while
the second one was a small cup (4cm diameter) covered by a grid lid to reduce the
gas dissipation. Using this setup, two gas sources of different concentrations were
presented to the robot along its path.

Figure 3.15 shows the raw readings of the experiment. These values (after a pre-
vious normalization) were then applied to an ICP based SLAM process to generate
the map shown in Figure 3.16. We must remark the improvement in the detection
of a low concentration source after a high one. From a comparison of the "peak"
concentrations from the MCE-nose and the conventional e-nose in Figure 3.16, one
may wonder why in the former case the peak seems to extend in a larger area. How-
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Figure 3.15: 2D comparison of the raw readings between a conventional e-nose (dashed blue)
and the MCE-nose (solid red), when faced to two sources of different concentration.
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Figure 3.16: 3D comparison of the ICP SLAM generated maps between a conventional e-nose
and the MCE-nose when faced to two gas sources of different concentration.

High conc. Gas source

ever, observing the raw readings in Figure 3.15, it becomes clear that the chamber’s
switch in the MCE-nose takes place as soon as the decay phase starts. Thus, the
observed differences are only due to the real differences between experiment repe-
titions. The MCE-nose switches to a different chamber when the readings from the
active chamber decay bellow a threshold. This threshold was set to 0,1volts in the cur-
rent experiment to avoid miss-switches due to noise or spurious readings. Decreasing
the threshold value would mean faster switching after a gas source is detected, but
it could then produce non-desired switches due to noise, spurious or because of the
small fluctuations inherent in MOX sensors.

Gas distribution mapping

The objective pursued with this experiment is to analyze the performance of the MCE-
nose when creating a gas distribution map of a room. A gas source composed by a
10 x 2 cm container filled with Acetone was placed in a 6 X 4 meters empty room,
next to a wall. The robot was commanded to move following a predefined set of
way-points to force the MCE-nose to prove most of the space.

To be able to compare the results obtained in different trials, a methodology was
established to ensure similar conditions in the room. Door and windows were kept
closed during the experiments and sensors were conveniently preheated before oper-
ation. After each trial, the room was purged of residual gases by opening the door and
windows, creating a strong airflow of clean air for at least 5 minutes.

Figure 3.17 shows a comparative between the MCE-nose and a conventional e-
nose for three different robot speeds. Each map represents the gas distribution esti-
mated in the room at the end of the robot trajectory, making use of the robot positions
given by an ICP-based SLAM method and the Kernel DM+V algorithm [89]. It is im-
portant to keep in mind that these maps come from different runs of the experiment
and, even though we have tried to reproduce the tests in the same conditions, it is in-
evitable the appearance of some gas patches from one test to another. In our opinion,
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Figure 3.17: Comparison of the ICP SLAM generated maps between a conventional e-nose
and the MCE-nose for three different robot speeds.

this explains, for example, the high concentrations near the source when using the
MCE-nose at 10cm/s.

In spite of this consideration, it can be seen how the MCE-nose is able to localize
the gas source more accurately than a conventional e-nose. This improvement is more
apparent when increasing the robot speed, which allows it to perform a simple gas
reconnaissance of the environment in a shorter time while obtaining results of high
quality.

3.4 Overcoming the slow recovery of MOX
sensors through a system modelling
approach

In general, a model seeks to represent a system (empirical objects, phenomena, and
physical processes) in a logical, objective and simplified way, allowing to predict
the output of the system provided the input. Thus, a model of a MOX sensor must
predict the sensor resistance (transient and steady state) when exposed to a certain
gas concentration profile. Our interest in having such a model is to use it in a reverse
way: given a sequence of measurements from the transient response of the MOX
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sensor, we seek the exciting gas distribution through the estimation of the steady state
sensor resistance.

The modeling of the dynamics of MOX sensors has been addressed in the liter-
ature for a variety of purposes. Gardner et al. [42] proposed a non-linear diffusion-
reaction model to obtain the theoretical transient and steady state responses based
on the reactions taking place at semiconductor level. This model is not applicable to
our approach since we pretend to obtain the gas distribution from the sensor readings
rather than from the electrical and physical properties of the sensors. Later, aiming
at increasing the response speed of gas sensors, T. Yamanaka et al. [158] reported a
two-phases (corresponding to the rise and decay phases) second order linear model to
describe the transient response of a semiconductor gas sensor from a visualized gas
distribution image. Despite its success, this model requires the use of a CCD camera
as a gas detector, which is neither our case.

More recently, E. Llobet [94] reviewed the principal methods for dynamic anal-
ysis of the gas sensor response. Interestingly, the main use of these methods is to
perform gas classification based on the transient response, from which a feature vec-
tor is extracted. For example, in [59] Box—Jenkins linear filters were applied to model
an array of MOX sensors in the presence of four alcohols and water vapor with the
aim of reducing the effect of the sensor drift in a classification process, and in [133] a
multi-exponential transient spectroscopy (METS) method is proposed to improve the
selectivity of chemical sensors in the analysis of gas mixtures.

Especial mention deserves some works that rely, as it is our case, on modeling
the sensor response to predict steady state values from the initial part of the transient.
In [111], a so-called ARMA and multi-exponential models are proposed for reduc-
ing the time necessary to calibrate a sensor array. Nevertheless, since the focus is
on the calibration of MOX sensors, the dynamic models are only applied to the rise
transient signals recorded in Closed Sampling Systems over long time periods (over
800 s), while we aim to predict the gas distribution profile in real time and in OSS.
In [117], A. Pardo et al. propose and compare different nonlinear inverse dynamic
models of gas sensing systems for quantitative measurements. However, the consid-
ered dynamic conditions differ from those of OSS. First, a measurement chamber is
used to obtain the gas sensor readings, which implicitly modifies the dynamic prop-
erties of the measured signals, and second, the acquisition frequency is too low (one
sample per minute) to reflect the fast and highly dynamic changes of the gas concen-
tration in OSS.

Based on the multi-exponential model proposed elsewhere [[111] 54], and taking
into account the differences between rise and decay phases of MOX sensors, in this
section we exploit a simplified version of it, where only one exponential is consid-
ered to model each phase (see Figure 3.18). According to this model, mathematically
expressed in Eq. (3.1), three phases can be considered in the output of a typical MOX
gas sensor when exposed to an ideal step in concentration: baseline, gas measurement
(rise) and recovery.
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Figure 3.18: Ideal response of an MOX sensor (solid red line) when excited with a step gas
concentration (dashed blue line). The curve shows the three phases of a measurement: (I) base-
line, (I) gas measurement, and (III) recovery phase.
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where 7, and 7, are the time constants for the rise and recovery phases respectively, #,
and , represent the starting and ending times of the step excitation, Ry and R} are the
sensor response level before and after the stimulus, R, is the saturation level, and
R, is the maximum response level during the gas measurement phase. Notice that
R, is usually lower than Ry, for short input pulses, as depicted in Figure 3.18.

This model was used by [81] for characterizing the response of an MOX-based
e-nose carried by a robot. In this section we also exploit this model but making use
of its inverted form, that is, to predict the gas distribution that the sensor is exposed
to from its readings.

3.4.1 The proposed MOX model

As shown in the block diagram of Figure 3.19, three different sub-processes can be
distinguished in an MOX-based gas sensing process:

1. A non-linear static system representing the measurement electronic circuit (2
to V).
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Figure 3.19: Block diagram of a smelling process with an MOX gas sensor. The sensor is
excited by a volatile [ppm] producing a variation in the sensor resistance that is measured as
an electrical signal [V] by means of a measurement circuit.

2. A transformation (Q to Q) that captures the non-linear rate at which the sensor
resistance varies over time (although we have separated the transduction and
dynamic phases to explicitly denote both functionalities, both stages take place
within the MOX transducer and they are most likely coupled).

3. A signal transduction mechanism (ppm to Q) which results from the chemical
interaction between the sensor sensitive surface and the molecules of reducing
gases.

Next, we model each of these stages and invert them to come up with a complete
inverted MOX sensor model. It is important to remark that the proposed inverted
model does not aim to recover the gas concentration (X[ppm]), which corresponds
to a sensor quantification problem not addressed here, but only the gas distribution,
providing relative results proportional to the gas concentration (Ry).

Measurement circuit

This stage stands for the electronic circuit in charge of measuring the changes in the
sensor resistance, which typically consists of a simple voltage divider:

_ Vee XRp
C Ra(t)+Re
where V¢ is the circuit voltage and Ry, is the load resistance.

Since the magnitude measured is the output voltage Y (i), we can easily recover
the MOX resistance changes R; (i) by solving Eq. (3.3).

Y = Vg (2) (3.2)

_ Rux(Vee =Y (i)

Ry(i) = 0] (3.3)
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Transient behavior stage

As reported by previous authors [49, [81], the transient response of an MOX sensor
can be expressed by two first-order systems, as depicted in Eq. (3.1). It clearly resem-
bles a low-pass filter response with the particularity that the filter cutoff frequency
(fe = %) is different for each phase the sensor is working at (rise or recovery).
Equation (3.4) presents the two phases transfer function of this stage in the Laplace
domain, where a common static delay (¢;) has additionally been considered in both
phases to compensate for the delay introduced by the pneumatic circuit used to draw

in the gas and flow it through the sensors:

A__e~'as  for rise phases

R Trs+1
R2 ES; N G4
s
! Td5A+1 e '¢*  for recovery phases

where s is the Laplace variable, A is the filter gain, T,.andt; are the filter time constants
in the rise or recovery phase respectively, and #; (in seconds) is the system delay.
For nomenclature clarification Tyecovery has been denoted as 7,4, where the subindex d
stands for decay.

Since our interest remains in estimating the volatile distribution that the sensor
is being exposed to, given the sensor readings, we work out R; as a function of
the sensor resistance measurements R, by applying the inverse Laplace transform
to Eq. (3.4). As the transfer function has different expressions according to the phase
(rise or recovery) that the sensor is working at, the parameters of the resulting dif-
ferential equation will have to switch accordingly. Approximating the derivative of
the measured sensor resistance R’2 by a backward first order finite difference, such
differential equation can be written as:

Ry(i) —Rp(i—1)

Ri(i—N) o« Ry(i)+7 -~

(3.5)
where R| (i) is the unknown steady resistance value for the given gas concentration at
the time step i, R, is the measured sensor resistance, T is the time constant for either
the rise (7,) or the recovery phase (7;), N is the number of samples for the system
delay, and At is the time between samples. Notice also that the scale factor A from
Eq. (3.4) has been dropped.

As observed in Eq. (3.5), at each time step this dynamic model requires to know
the value of parameters 7, and 7;, and the phase the sensor is working at. The latter
may be determined from the slope of the measured MOX resistance R, considering
that the sensor is working under rise phase for positive values of the derivative, and
under decay phase for negative values of it.

Notice that instead of working with the sensor resistance (which is inversely pro-
portional to the volatile concentration), it may be more convenient to deal with the
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sensor conductance (Gyox = 1/Ryox), which is proportional to the gas concentra-
tion.

For estimating the values of 7, and 7;, a common practice in system modelling
is that of identifying the parameters of the system upon its step response [115]]. The
problem with such procedure is that the time constants, in practice, depend not only
on the type of volatile but also on its concentration [[117]. In this chapter this depen-
dency is made explicit by adjusting a polynomial regression model over a sequence
of concentration pulses with different amplitudes for each target gas. In Section 3.4.3,
an example of such relation is depicted for the target gas ethanol.

Transduction stage

The transduction stage is commonly defined by the sensitivity characteristics and the
temperature and humidity dependencies of the transducer. For the case of Closed
Sampling Systems, those characteristics are usually provided by the sensor manufac-
turer, relating the volatile concentration [ppm] to the sensor resistance ratio Rs/Ro
(sensor resistance in gas over sensor resistance in air) for different target gases and
test conditions. Nevertheless, those sensitivity characteristics are obtained by mea-
suring steady state values of the MOX sensor resistance after very long and constant
exposure times, which are not applicable to Open Sampling Systems and thus not
considered in this chapter.

3.4.2 Signal conditioning and preprocessing

The proposed model-based approach given by Eq. (3.3) and Eq. (3.5) relies on the
sensor readings to obtain an estimation of the gas. As can be appreciated, a first order
derivative needs to be computed to obtain such estimation, which notably degrades
the signal-to-noise ratio and consequently the accuracy in the estimation (see Fig-
ure 3.20). Additionally, MOX sensors are susceptible to long and short term drift
[L19]], gradually changing the sensor resistance even if exposed to exactly the same
gas concentration under identical environmental conditions.

It then becomes necessary to carry out a signal conditioning to prepare the sensor
readings to the posterior estimation process. Initially, for the purpose of drift compen-
sation and dynamic range enhancement, the raw sensor readings R; (i) are divided by
the sensor baseline resistance at ¢ = 0, that is, R, (0). This transformation is known as
relative baseline manipulation [[119]]. Later, in order to mitigate the noise effects on the
model, a low pass filter followed by a sub-sampling process are applied to the signal,
as depicted in Figure 3.20. The cutoff frequency of the filter and the down-sampling
rate have been determined experimentally according to the sampling frequency.

3.4.3 Experimental results
This section presents three different experiments designed with increasing complex-

ity to test how the proposed model can anticipate the steady state values of the sen-
sor resistance from transient measurements in Open Sampling Systems. We start by
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Figure 3.20: Noisy sensor conductance readings and its derivative (solid red line), and the
corresponding filtered versions (dashed blue line).

testing our approach in a scenario where airflow and volatile distribution were well
controlled. Then, two experiments of 