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Resumen de la Tesis
Doctoral

Introducción

El olfato es uno de los sentidos más directos del ser humano. Para que podamos
oler algo, moléculas de ese “algo” tienen que llegar a nuestra nariz. Todo lo que
olemos, por lo tanto, está emitiendo moléculas – ya sea un pastel horneándose en
una pastelería cercana, perfume, una pieza de fruta podrida en la parte de atrás del
refrigerador o una fuga de gas butano bajo la estufa del salón. Esas moléculas son
generalmente ligeras, volátiles (fáciles de evaporar), que flotan en el aire hasta llegar
a nuestra nariz.

La capacidad para detectar substancias olorosas en el medio ambiente es tan
básica y tan importante que todos los organismos desde las amebas unicelulares hasta
los seres humanos están dotados de algún tipo de detección química. Todas las es-
pecies usan esta capacidad para llevar a cabo uno de los comportamientos más básicos
y fundamentales: acercarse y ser atraído por los aromas agradables y potencialmente
seguros, así como evitar y ser repelidos por los desagradables o potencialmente dañi-
nos.

Los seres humanos respiramos, en promedio, 20.000 veces al día [13]. Con cada
respiración, inhalamos una mezcla genérica compuesta mayormente de nitrógeno,
oxígeno, argón y monóxido de carbono, pero también de muchos otros gases en con-
centraciones mucho más bajas, algunos de los cuales pueden ser tóxicos [14]. Se dice
que los seres humanos tenemos la capacidad de distinguir más de 10.000 compuestos
diferentes (olores), que son detectados por unas neuronas especializadas que recubren
el interior de la nariz [3]. A pesar de esta impresionante cantidad, existe aún una con-
siderable variedad de gases tóxicos, que se encuentran no sólo en el ámbito industrial,
sino también en la naturaleza, que son inodoros y, generalmente, incoloros para los
seres humanos. La presencia de estos gases tóxicos y el riesgo potencial que presen-
tan para la salud humana, junto con el fuerte interés económico de la industria del
perfume y la alimentación (mayoritariamente referente a los procesos de calidad) son
las principales causas que han impulsado el desarrollo del olfato artificial.

1
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Dispositivos llamados narices electrónicas o e-noses hicieron su debut en los
ochenta con el objetivo fundamental de distinguir una variedad de olores utilizando
una matriz de sensores de gas, junto a técnicas de reconocimiento de patrones [120,
119]. Desde entonces, los avances en la electrónica y en la tecnología de los sensores
han hecho posible la fabricación de narices electrónicas compactas, permitiendo su
integración en plataformas tales como robots móviles o dispositivos inteligentes.

Un robot móvil equipado con una o varias narices electrónicas presenta una serie
de cualidades que lo hacen propicio para afrontar una amplia gama de aplicaciones
relacionadas con la detección de sustancias olorosas. Entre dichas cualidades, una
plataforma móvil con una nariz electrónica puede muestrear continuamente el aire a
su alrededor, y decidir en función de esa información olfativa las acciones pertinentes
a realizar. Esto hace que los robots sean herramientas ideales para localizar fugas de
gas, explosivos, drogas u otras sustancias peligrosas, evitando la exposición de un ser
humano o un perro a tales gases. Además, un robot móvil puede beneficiarse de la
información proporcionada por otros sensores a bordo (anemómetros, cámaras, es-
cáneres láser, etc.) para complementar el sentido del olfato. Cuando nos encontramos
una taza con un líquido oscuro en ella podemos afirmar que se trata de café no sólo
por lo que vemos, sino también por lo que olemos. Asimismo, la capacidad de proce-
samiento de un robot junto con la consideración de técnicas de inteligencia artificial
pueden ser usadas para resolver tareas que implican un cierto grado de razonamiento
por parte del robot. Cuando percibimos aroma a comida en una casa, inmediatamente
asociamos dicho olor a la actividad humana de cocinar e inferimos que alguien debe
estar en la cocina. Cuando detectamos un olor a butano no buscamos el posible es-
cape de gas en la sala de estar, sino que vamos directamente a la cocina donde además
no inspeccionamos todos los elementos, mas sólo aquellos aparatos que utilizan gas
butano (calentador, horno, etc.). Todos estos ejemplos ilustran un comportamiento
inteligente y altamente complejo de percibir y actuar en el entorno, haciendo uso de
la fusión de datos sensoriales y de conocimientos del mundo a un alto nivel, especial-
mente relacionados con información semántica.

No obstante, aún nos encontramos en fases muy primitivas del desarrollo de apli-
caciones olfativas con robots móviles, necesitando posiblemente varios años antes de
poder afrontar escenarios reales y complejos. Esta tesis se centra en esa línea, la in-
vestigación y el desarrollo de métodos y modelos que sirvan para avanzar un paso
más en el camino hacia la integración de las narices electrónicas en el campo de la
robótica móvil.

Ámbito de la tesis

Esta tesis aborda dos temas principales: por un lado el proceso de detección de gases
en entornos reales mediante el uso de robots móviles y, por otro lado, el estudio de
una aplicación concreta dentro del campo de la robótica olfativa, la construcción de
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mapas de olores (Gas Distribution Mapping - GDM). La tesis comienza con una re-
visión del concepto de nariz electrónica (e-nose) para posteriormente introducir las
principales tecnologías de sensores de gas existentes en la actualidad. Luego, las car-
acterísticas más relevantes de cada tecnología son descritas, haciendo un énfasis par-
ticular en la tecnología MOX (metal oxide semiconductor) ampliamente utilizada a
lo largo de esta tesis, describiendo sus ventajas y desventajas en lo referente a su uso
en robots móviles. Precisamente, una de sus principales desventajas, la lenta veloci-
dad de recuperación, que limita su uso en aplicaciones donde la concentración de gas
puede cambiar rápidamente (como es el caso de la robótica móvil), es la causa que ha
inspirado las dos primeras cuestiones que se investigan en esta tesis:

• ¿Existe alguna configuración de nariz electrónica que pueda ayudar a superar
los efectos del largo tiempo de recuperación de los sensores MOX?

• Así mismo, y dado que la respuesta al escalón de los sensores MOX es cono-
cida, ¿hasta qué punto podemos hacer uso de este "modelo" para paliar el largo
período de recuperación necesario después de cada exposición al gas?

La primera pregunta da lugar al diseño de una novedosa nariz electrónica bautizada
como multi-chamber electronic nose (MCE-nose). Esta nariz electrónica está com-
puesta por varios grupos idénticos de sensores de gas, alojados en cámaras separadas
que alternan entre los estados de detección (cuando la cámara es expuesta al gas)
y recuperación (cuando por ella circula aire limpio). El resultado es un dispositivo
capaz de detectar cambios más rápidos en la concentración del gas que las narices
electrónicas convencionales.

De la segunda cuestión surge una propuesta basada en la explotación de un mo-
delo doble de primer orden del sensor MOX. A partir de dicho modelo, y haciendo uso
solamente de la respuesta transitoria del sensor, se predice la respuesta estacionaria
en tiempo real, lo que equivale a acelerar la velocidad de respuesta del sensor. Ambos
enfoques, son detallados en el Capítulo 3 de esta tesis.

Dado que las especificaciones legales y reglamentos de seguridad relacionados
con los niveles de toxicidad vienen dados en términos de concentraciones absolutas,
es de enorme interés que la medida proporcionada por una nariz electrónica venga
también expresada en esos términos absolutos y en esas mismas unidades. Sin em-
bargo, no todas las tecnologías de sensores de gas son adecuadas para obtener dichos
valores de concentración cuantificados. La tecnología MOX no es una excepción a
este problema. Las reacciones que se producen entre las moléculas de un gas obje-
tivo con la superficie del sensor MOX producen una variación en la conductancia
del sensor que puede ser medida como una señal eléctrica correlada con la concen-
tración del gas. Esta correlación es, no obstante, no-lineal y además está fuertemente
influenciada por la propia dinámica del sensor y por los parámetros atmosféricos del
entorno de trabajo, lo cual complica aún más la traducción a niveles absolutos de
concentración. Esta problemática en la cuantificación de la concentración de gases ha
motivado la siguiente cuestión de esta tesis:
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• ¿Cómo pueden obtenerse valores absolutos de concentración de gas a partir de
la respuesta de sensores basados en tecnología MOX cuando son utilizados en
entornos reales?

Este tema se abordada en el Capítulo 4, empleando Procesos Gaussianos (Gaus-
sian Processes - GP) para obtener una estimación de la distribución a posteriori de la
concentración del gas dada la respuesta de un conjunto de sensores MOX. Adicional-
mente, se presentan dos propuestas para considerar de forma automática la dinámica
de los sensores MOX en el proceso de cuantificación, analizando de forma detal-
lada su relevancia en la mejora de la precisión. Este enfoque probabilístico es es-
pecialmente conveniente para aplicaciones de robótica móvil olfativa, ya que de la
distribución a posteriori de la concentración del gas se pueden obtener intervalos de
confianza.

De entre las diferentes tareas olfativas a realizar por un robot móvil, esta tesis se
centra en la construcción de mapas de distribución de gas, que aborda el problema de
estimar la distribución espacial de sustancias volátiles haciendo uso de un robot móvil
equipado con una nariz electrónica. Teniendo en cuenta el hecho físico de que la
información proporcionada por los sensores de gas se desvanece con el tiempo debido
primeramente a la naturaleza volátil de los gases, pero también a los mecanismos
de transporte turbulentos que dominan la dispersión de estos, se plantean las dos
siguientes cuestiones:

• ¿Cómo puede tenerse en cuenta el hecho de que los gases se desvanecen con el
tiempo en la estimación de su distribución (GDM)?

• Dado que estamos interesados en trabajar en ambientes reales dónde la presen-
cia de obstáculos influye en la distribución de los gases, ¿puede este proceso
de construcción de mapas de olor tenerlos en cuenta?

Estas cuestiones se abordan en el Capítulo 5 donde se propone un nuevo enfoque a
la construcción de mapas de distribución de gas basado en Gaussian Markov-Random
Fields (GMRF). Este novedoso método no sólo atiende al "envejecimiento" de las
observaciones de gas, sino que también considera la presencia de obstáculos en el
entorno de trabajo. Diversos experimentos, tanto simulados como reales, validan este
enfoque, proporcionando una comparación cualitativa y cuantitativa con métodos ex-
istentes.

Contribuciones

Las aportaciones más relevantes de esta tesis son:

• El diseño e implementación de una novedosa nariz electrónica basada en tec-
nología MOX para la detección de cambios rápidos en la concentración de
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sustancias olorosas. Resultado de este trabajo son una patente y diversas publi-
caciones [49, 50, 51].

• El desarrollo de un nuevo modelo de sensor MOX [38], el cual mitiga consi-
derablemente una de sus principales limitaciones cuando se emplea junto a un
robot móvil: el largo tiempo de recuperación.

• La introducción de un nuevo método probabilístico para la cuantificación de
gases con una nariz electrónica basada en sensores MOX. Este método permite
obtener valores de concentración absolutos junto con una medida de la incer-
tidumbre (intervalos de confianza), algo que representa un avance importante
para las aplicaciones de olfato con robots móviles. Las siguientes publicaciones
han surgido de este trabajo [39, 40].

• El desarrollo de un novedoso método probabilístico para la creación de mapas
de distribución de gases basado en campos aleatorios de Markov Gaussianos
(GMRF). Este método tiene en cuenta por primera vez dos aspectos fundamen-
tales: primero la inclusión de los obstáculos presentes en el entorno de trabajo,
obteniendo mapas que son más coherentes con los mecanismos de dispersión
del gas; y segundo, la consideración de la "edad" de las observaciones como
una medida del desvanecimiento de los gases en entornos reales.

• La colaboración en el diseño y desarrollo de un entorno de simulación para
aplicaciones olfativas con robots móviles [36].

Todas las publicaciones derivadas de esta tesis están disponibles en: http://
mapir.isa.uma.es

Marco de esta tesis

Esta tesis es el resultado de cuatro años de actividad investigadora de su autor como
miembro del grupo de investigación MAPIR, el cual forma parte del departamento de
Ingeniería de Sistemas y Automática de la Universidad de Málaga. La financiación
de este periodo de investigación ha sido proporcionada por la Junta de Andalucía y el
Fondo Europeo de Desarrollo Regional (FEDER) en el marco del proyecto TEP-
2008-4016. Dicho proyecto abordaba el problema de dotar a un robot móvil con
la capacidad olfativa para poder reconocer y estimar la concentración de sustancias
olorosas. Uno de los puntos más importantes de este proyecto era la combinación de
la información obtenida mediante sensores de gas, con otras modalidades sensoria-
les tales como cámaras o escáneres láser para alcanzar dicho objetivo. Las múltiples
modalidades de sensores incorporados en el robot Rhodon a lo largo de sus diferentes
etapas de desarrollo (véase Apéndice A), son un claro ejemplo de este compromiso.

http://mapir.isa.uma.es
http://mapir.isa.uma.es
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El autor completó el programa de doctorado titulado Ingeniería Mecatrónica, co-
ordinado por el departamento de Ingeniería de Sistemas y Automática. Este programa
de doctorado otorgó al autor por un lado una visión general del campo multidisci-
plinario de la mecatrónica, el cual combina las ingenierías mecánica, electrónica, de
control e informática, y por otro lado, un conocimiento más profundo sobre el campo
de la robótica móvil, algo que ha resultado fundamental a lo largo de estos años de
investigación.

Además, el autor complementó su formación académica con la participación en
un curso intensivo de invierno (2012), titulado "Análisis de datos, robótica y aplica-
ciones móviles de sensores químicos" organizado por la Sociedad Internacional para
el Olfato y Detección Química (ISOCS), y con una estancia de tres meses en el Cen-
tre for Applied Autonomous Sensor Systems (AASS), de la universidad de Orebro
(Suecia), junto al grupo de robótica móvil y olfato (MR&O group). Durante dicha
estancia, la temática de investigación se centró en el estudio de los sensores MOX
y particularmente en cómo obtener valores absolutos de concentración a partir de su
respuesta transitoria. Resultados obtenidos durante este período han sido incluidos en
el Capítulo 4 de esta tesis.

Asimismo, durante el transcurso de esta tesis han surgido colaboraciones con
otros grupos de investigación internacionales que han enriquecido y ampliado el al-
cance de la misma. Ejemplos son las colaboraciones con el Prof. Michael Biehl de
la Universidad de Groningen (Países Bajos) y con el Dr. Frank-Michael Scheif del
centro tecnológico de excelencia de interacción cognitiva (CITEC) de la Universidad
de Bielefeld (Alemania), trabajando en el desarrollo de algoritmos de clasificación de
olores para sistemas de muestreo abierto (open sampling systems – OSS). Aunque los
resultados de dicha colaboración han sido presentados, no se encuentran publicados
en el momento en que esta tesis ha sido escrita, por lo tanto, sólo los datos que se
recogieron como parte de esta colaboración se presentan en el Apéndice C.

Por último, destacar que el marco científico en el que se encuadra esta tesis se
caracteriza por la pequeña comunidad científica dedicada a esta temática. Esto es
corroborado por los escasos congresos y revistas internacionales, así como por los
pocos grupos de investigación dedicados al olfato con robots móviles. Sin embargo, es
opinión del autor que el rápido progreso de la robótica móvil, junto con los continuos
avances en la tecnología de detección de gases, permitirán en un futuro cercano hacer
uso de todo el potencial que un robot móvil equipado con la capacidad de oler posee.

Estructura de la tesis

Con el objetivo de obtener la mención de Doctorado Internacional por la universidad
de Málaga, el desarrollo completo de esta tesis está escrito en español e inglés. Así,
el texto está dividido en dos partes. La primera parte, escrita en español, describe de
forma resumida el contenido del trabajo, mientras que en la segunda parte, redac-
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tada íntegramente en inglés, se presenta una descripción completa del mismo. Esta
segunda parte se compone de los siguientes capítulos:

El Capítulo 1 introduce la temática de esta tesis y provee una visión general de
las contribuciones, del ámbito y de la estructura de la misma.

El Capítulo 2 introduce de forma general al campo del olfato artificial y la tec-
nología de narices electrónicas, así como los principales campos de aplicación de un
robot móvil con capacidad olfativa. En la primera parte de este capítulo se aborda el
concepto de nariz electrónica y se describen las principales tecnologías de sensores de
gas. En la segunda parte se revisan los mecanismos físicos que controlan la dispersión
de los gases en ambientes reales, y se detallan los principales campos de aplicación
de un robot móvil con la capacidad de detectar y medir diferentes sustancias olorosas:
localización de fuentes de gas, seguimiento de caminos y construcción de mapas de
distribución de gas.

El Capítulo 3 presenta dos enfoques para mejorar la detección de sustancias
volátiles con sensores de gas basados en tecnología MOX (metal oxido semicon-
ductor) en el ámbito de la robótica móvil. El primer enfoque detalla el diseño y la
configuración de un nuevo dispositivo de nariz electrónica denominado nariz elec-
trónica de múltiples cámaras (Multi Chamber E-nose – MCE-nose), mientras que
el segundo enfoque aborda el uso de un modelo doble de primer orden del sensor
MOX para anticipar valores estacionarios de la respuesta del sensor a partir de medi-
das transitorias. Ambos enfoques son validados a través de diferentes experimentos,
demostrando la mejora en el desarrollo de las tareas olfativas con robots móviles.

El Capítulo 4 presenta un nuevo algoritmo probabilístico basado en procesos
Gaussianos para la cuantificación de sustancias volátiles empleando un conjunto de
sensores de gas MOX. La primera parte de este capítulo se centra en la matemática
subyacente y describe el uso de la herramienta de determinación automática por rel-
evancia (ARD) para seleccionar las características más relevantes de la matriz de
sensores. La segunda parte se enfoca en los mecanismos de validación empleados y
en las diferentes configuraciones experimentales, mostrando una atención especial a
la introducción de la dinámica de los sensores MOX en el proceso de cuantificación.

El Capítulo 5 aborda una tarea importante de la robótica móvil olfativa: la es-
timación de la distribución espacial de sustancias volátiles. Este capítulo propone
un nuevo método basado en campos aleatorios de Markov Gaussianos (GMRF) para
hacer frente a dos problemas fundamentales que no se han tenido en cuenta en en-
foques anteriores: la presencia de obstáculos en la zona inspeccionada, y la com-
binación de las medidas de los sensores de gas tomadas en diferentes instantes de
tiempo. Resultados cuantitativos y cualitativos completan este capítulo, así como una
comparación detallada con métodos existentes.
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El Capítulo 6 concluye esta tesis, proporcionando un resumen del trabajo pre-
sentado y dando una visión de cómo las técnicas y avances propuestos pueden ser
extendidos en un futuro.

Conclusiones

En esta tesis se ha abordado el problema de la detección y cuantificación de gases
con un robot móvil, y particularmente la construcción de mapas de distribución de
gas. En aplicaciones de robótica móvil, los sensores de gas se emplean generalmente
en configuraciones llamadas de muestreo abierto (Open Sampling Systems - OSS).
Bajo esta configuración, los sensores son directamente expuestos al medio ambiente,
sin disponer de dispositivos para el control del flujo de aire, tiempos de exposición
o condiciones ambientales (temperatura, humedad, etc.). Esto permite obtener infor-
mación muy valiosa acerca de la dinámica de la interacción entre los sensores y los
gases a analizar, algo que no se puede lograr con un sistema de muestreo cerrado. No
obstante, debido también a esa exposición directa, las medidas se ven fuertemente
condicionadas por los mecanismos físicos de dispersión de los gases: difusión y ad-
vección. La difusión desempeña por lo general un papel mucho menos importante en
la dispersión de las moléculas olorosas, incluso en ambientes cerrados sin ventilación,
siendo la advección (generalmente de carácter turbulento) la que domina este proceso.
Como consecuencia, la distribución espacial de un gas resulta ser generalmente irre-
gular y caótica, y donde además la ubicación de la fuente del gas no se encuentra por
lo general en el punto de máxima concentración. Aparte de las dificultades derivadas
de los mecanismos de dispersión, una serie de limitaciones en el desarrollo de apli-
caciones olfativas con robots móviles vienen impuestas por la actual tecnología de
sensores para la detección de gases. Inconvenientes como la falta de selectividad o
la lenta recuperación, hacen aún más difícil el desarrollo de robots capaces de lle-
var a cabo tareas como la localización de una fuente de gas o la estimación de su
distribución espacial de forma autónoma.

A lo largo de esta tesis, la tecnología mayormente empleada ha sido la basada en
la unión de metal, óxido y semiconductor (MOX), debido principalmente a su alta
sensibilidad, amplia disponibilidad comercial y bajo coste. Dos enfoques para paliar
en cierta medida uno de sus principales inconvenientes (el largo período de recu-
peración), fueron propuestos en el Capítulo 3 de la presente tesis. Este largo período
de recuperación (hasta decenas de segundos) limita notablemente su aplicabilidad en
aplicaciones donde el sensor está expuesto a rápidos cambios en la concentración del
gas, como es el caso de las aplicaciones de robótica móvil olfativa. Dicho efecto es
particularmente notable en las fases de recuperación, cuando la respuesta del sensor
retorna lentamente al nivel de reposo tras haber sido expuesto al gas. Consecuencia
directa es la ausencia palpable de valores estacionarios en la respuesta de los sensores
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MOX, siendo necesario por tanto la detección y cuantificación de gases empleando
medidas pertenecientes al transitorio de las señales.

El primer enfoque sugerido para paliar los efectos de la lenta recuperación de los
sensores MOX, se ha basado en la introducción de la nariz electrónica de múltiples cá-
maras (MCE-nose). Esta novedosa nariz electrónica acomoda conjuntos redundantes
de sensores en diferentes cámaras, las cuales alternan entre los estados de detección
(cuando la cámara es expuesta al gas) y recuperación (cuando por ella circula aire
limpio). En cada instante de tiempo, tan solo una de esas cámaras se encuentra en el
estado de detección. La clave de su funcionamiento se basa descartar las medidas de
los sensores cuando se detecta el comienzo de una fase de recuperación, delegando
la tarea de detección a otra cámara que contenga sus sensores en estado de reposo.
Siguiendo este procedimiento, la salida global de la MCE-nose viene dada por la
concatenación de las fases de subida de una secuencia de sensores MOX. Aumentar
el número de cámaras aumenta indudablemente la posibilidad de disponer un con-
junto de sensores en el estado de reposo y, en consecuencia, la posibilidad de detectar
cambios más rápidos en la concentración del gas objetivo. Sin embargo, mayor coste,
consumo de energía y complejidad son también consecuencias directas de ello, por
lo tanto el número óptimo de cámaras depende en gran medida de las características
de la aplicación objetivo. En esta tesis, un prototipo de la MCE-nose compuesto de
cuatro cámaras ha sido construido e integrado en una plataforma móvil bajo la ar-
quitectura robótica OpenMORA. Además de la validación haciendo uso de entornos
simulados, se han presentado varios experimentos reales que corroboran la mejora
en la detección de cambios bruscos en la concentración de gases. Finalmente, y a
través de esos experimentos, se encontró que aunque pequeñas, las diferencias en
los sensores redundantes alojados en las diferentes cámaras (del mismo fabricante y
modelo), influyen en el comportamiento de la MCE-nose. Estas diferencias, que se
deben no solo al proceso de fabricación, sino también el envejecimiento y al envene-
namiento (reacciones químicas que alteran las características de un sensor de forma
permanente), requieren por tanto de una calibración previa del sistema para lograr
resultados adecuados.

En contraste con la introducción de la MCE-nose, el segundo enfoque, propuesto
en la Sección 3.4, compensa la lenta dinámica de los sensores MOX estimando los
correspondientes valores estacionarios a partir de una secuencia de medidas transi-
torias. En general, los modelos de sensor MOX propuestos en la literatura tratan de
predecir su respuesta (valores de resistencia) cuando se expone a un cierto perfil de
concentración de gas. Este segundo enfoque se inspira en la inversión de dicho mo-
delo: dada una secuencia de medidas de la respuesta transitoria del sensor MOX,
se predice el perfil de concentración del gas que ha producido dicha respuesta me-
diante la estimación de los valores estacionarios de la resistencia del sensor. El mo-
delo empleado en esta tesis se basa en dos sistemas de primer orden (excitación y
recuperación) con constantes de tiempo que dependen de la amplitud de respuesta del
sensor. Diferentes experimentos han sido presentados para validar dicho enfoque. En
primer lugar, y bajo condiciones de laboratorio en la que se controlaron los flujos de
aire y la distribución de los gases, un experimento consistente en exponer periódi-
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camente una nariz electrónica a una fuente de gas permitió la validación de este en-
foque. A continuación, se consideraron dos experimentos de construcción de mapas
de distribución de gas (1D y 2D) para enfatizar la aplicabilidad de dicho modelo en
aplicaciones de olfato con robots móviles. Con estos experimentos se demostró cómo
las "largas colas" producidas por la lenta recuperación de los sensores pueden ser evi-
tadas, algo que conlleva implícitamente una mejora significativa en la detección de
gases con estos sensores. No obstante, la mejora introducida por este enfoque no se
debe solamente a que se previene la superposición entre las fases de excitación y recu-
peración (producidas cuando los cambios en la concentración del gas son más rápidos
que el tiempo de respuesta del sensor), sino al hecho de que el perfil de concentración
estimado por el modelo proporciona valores más consistentes con la excitación real
que cuando tan solo se observa la respuesta del sensor. Además, se demostró que am-
bos enfoques, tanto la MCE-nose como el modelo inverso del sensor MOX, permiten
un aumento considerable en la velocidad a la que una base móvil equipada con una
nariz electrónica puede inspeccionar el entorno. Esto último conlleva en general una
importante reducción en los tiempos de ejecución de las tareas relacionadas con el
olfato.

En robótica móvil, muchas de las tareas relacionadas con el olfato requieren poder
determinar la concentración de los gases que se están analizando. Ejemplo de ello son
las especificaciones legales y reglamentos de seguridad relacionados con los niveles
de toxicidad, los cuales vienen definidos en términos de concentraciones absolutas.
Además, atendiendo a la naturaleza caótica que domina la dispersión de los gases,
es deseable proporcionar, junto con la estimación del valor de concentración, una
estimación de la incertidumbre asociada. Este problema fue abordado en el Capí-
tulo 4, donde se presentó una propuesta de aprendizaje supervisado basada en pro-
cesos Gaussianos (GP). El problema fue tratado desde un punto de vista probabilís-
tico, estimando una distribución a posteriori sobre la concentración de gas, dada la
respuesta de una matriz de sensores MOX. Esto permite no sólo predecir la concen-
tración de gas, sino también la incertidumbre asociada por medio de la varianza de la
distribución. Diferentes configuraciones de la matriz de sensores MOX fueron estu-
diadas, así como la consideración de herramientas para la determinación automática
de la relevancia para excluir del proceso de cuantificación los sensores menos rele-
vantes, reduciendo así la dimensionalidad del problema. Por último, se analizaron dos
propuestas para introducir la dinámica de la respuesta de los sensores MOX en el pro-
ceso de cuantificación: considerar adicionalmente muestras retrasadas en el tiempo
(efecto memoria), e incluir la primera derivada de la respuesta de la matriz de sen-
sores. Resultados experimentales demostraron, sin embargo, que ninguna de las dos
propuestas producía una mejora significativa.

Habiendo dedicado la primera parte de esta tesis al estudio y la investigación de
lo que se pueden considerar problemas a bajo nivel, el resto de la misma ha sido
consagrada al estudio de una tarea de alto nivel dentro de la robótica olfativa: la cons-
trucción de mapas de distribución de gas (GDM). Desde la perspectiva de la robótica
móvil, GDM aborda el problema de la estimación de la distribución espacial de sus-
tancias volátiles utilizando un robot móvil equipado con una nariz electrónica. En
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el Capítulo 5 de esta tesis, se presentó un nuevo algoritmo para la construcción de
estos mapas de distribución de gas. El problema se abordó desde una perspectiva
probabilística, modelando la estimación de la distribución espacial del gas como el
cálculo del máximo a posteriori (MAP) sobre un campo aleatorio de Markov Gaus-
siano (GMRF). Este nuevo método incorporó por primera vez dos aspectos funda-
mentales que habían sido obviados anteriormente. El primero, relacionado con la
validez de las observaciones de gas con el paso del tiempo, viene determinado por la
naturaleza efímera de los olores y por el consiguiente hecho de que la información
aportada por una observación de gas se desvanece con el tiempo. Para modelar este
hecho se introdujo un factor decreciente con el tiempo como medida de la "edad"
de cada observación de gas. Cuando dicho factor alcanza un valor suficientemente
bajo (observación antigua) la observación asociada deja de tener validez y por tanto
es descartada del proceso. La segunda novedad introducida es la de considerar obs-
táculos tales como paredes o muebles en el proceso de construcción del mapa de
olores. Para ello, se propuso modelar la correlación entre celdas vecinas atendiendo a
la presencia de estos obstáculos, así, por ejemplo, la concentración de gas de dos cel-
das que están separadas por una pared son consideradas independientes. Resultados
experimentales, tanto simulados como reales, han sido propuestos, proporcionando
una comparación detallada con métodos existentes.

Líneas futuras

Además de las propuestas para el trabajo futuro incluidas en los diferentes capítulos
de esta tesis, una línea general de continuación del trabajo presentado en esta tesis
estaría relacionada con la integración de los avances propuestos en esta tesis, en el
campo de la robótica de servicio aplicada a los hogares. La robótica de servicio es ac-
tualmente un nicho de mercado en auge debido a los continuos avances en el campo de
la robótica (SLAM, navegación autónoma, semántica, etc.) y a la mayor disponibili-
dad de robots comerciales. Sin embargo, dado que el olfato artificial aún se encuentra
en sus primeras fases de desarrollo comercial, la mayoría de los robots comerciales
aún no incorporan dispositivos de detección de gases. Se prestará especial cuidado a
la colaboración activa entre el olfato y otras modalidades sensoriales, ya que para la
mayoría de las aplicaciones reales de robótica el olfato no es por sí mismo el objetivo
final, sino uno más de los sentidos del robot para obtener información útil del entorno
que le rodea.





Chapter 1
Introduction

Smell is a very direct sense. In order for us to smell something, molecules from
that thing have to make it to our nose. Everything we smell, therefore, is giving off
molecules - whether it is a cake in the bakery, perfume, a piece of rotten fruit at the
bottom of your fridge or a butane leak underneath the stove. Those molecules are
generally light, volatile (easy to evaporate), chemicals that float through the air into
our nose.

The ability to detect chemicals in the environment is so basic and so important that
every organism from single-celled amoebas to human beings are endowed with some
kind of chemical awareness. All species use their chemical senses for the most basic
and fundamental behavior: approaching and being attracted to pleasant and poten-
tially safe aromas, as well as avoiding and being repelled by unpleasant or potentially
harmful ones.

Humans breathe, on average, 20,000 times a day [13]. With each breath, we in-
hale a general mixture of nitrogen, oxygen, argon and carbon monoxide, but also
many other gases at lower concentrations, some of them which may be toxic [14].
It is said that humans can distinguish more than 10,000 different smells (odorants),
which are detected by specialized olfactory receptor neurons lining the nose [3]. De-
spite this stunning quantity, there is a considerable variety of toxic gases, found not
only in industrial environments but also in nature, which are odorless and generally
colourless to humans.

The presence of these contaminants and the potential risk they bear to human
health, together with the economical interest of the perfume and food industries (es-
pecially for the quality control process) are the major motivations that have boosted
the development of artificial olfaction. Devices called electronic noses or e-noses
made their debut in the 1980’s with the challenge of distinguish a variety of odors
using an array of gas sensors together with pattern recognition techniques [120, 119].
Since that debut, advances in electronics and sensor technologies have made possible
the manufacturing of compact e-noses, enabling their integration into platforms such
as mobile robots or intelligent appliances.

13
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A mobile robot equipped with e-nose devices exhibits several features that make
them auspicious to solve a wide range of olfaction applications. Among such features,
we can highlight its ability to continuously sample the air, and decide its actions based
on the perceived information in a closed-loop manner. This makes robots ideal for lo-
cating gas leaks, explosives, drugs, and other dangerous substances, avoiding the risk
of intoxication of a human or a dog. Furthermore, a mobile robot may benefit from
information provided by other sensors on board (anemometers, cameras, laser scan-
ners, etc.) to complement olfaction. When we face a cup with a dark liquid on it we
can assert that it is coffee not only because of what we see but also because of what
we smell. In the same way as other sensory modalities may complement olfaction, the
computational capacity of a robot together with methods of artificial intelligence can
be used to solve tasks that require some degree of reasoning or intelligent behavior.
When we perceive the scent of food being cooked we immediately associate it to that
particular human activity and infer that somebody must be in the kitchen. When we
detect an abnormal butane odor we do not look for the gas leak in the living room,
instead we go to the kitchen where we do not inspect everything in there but only
those appliances and items that use butane gas (heater, oven, ...). All these examples
illustrate an intelligent and complex mechanism of perceiving and acting in the envi-
ronment, which makes use of sensorial data fusion and high-level world knowledge,
especially semantic information.

Although we are still several years away from accomplishing real complex sce-
narios, the groundwork is essential to forge ahead the fusion of e-noses into robotics
and intelligent systems. This thesis contributes to this purpose, bringing closer artifi-
cial olfaction and mobile robotics.

1.1 Scope

This thesis concerns about two main topics: the process of gas sensing with mobile
robots in natural environments, and one particular task known as gas distribution
mapping. It starts by reviewing the concept of electronic nose to subsequently address
the most spread gas sensor technologies. Especial attention is devoted to the desired
characteristics of gas sensors when used in mobile robots, and particulary, focus is
placed on a specific gas sensing technology based on metal oxide semiconductor
(MOX), which is by far the most employed gas sensing technology in mobile robotics.
The advantages as well as the main drawbacks of this technology, broadly used along
the experiments in this thesis, are also detailed. One of their main drawbacks is their
slow recovery, which restricts their usage in applications where the gas concentration
may change rapidly, as in mobile robotics. This is the motivation that has instigated
the first two research questions of this thesis:

• Is there any e-nose configuration that may help overcoming the effects of the
long recovery time of MOX sensors?
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• Similarly, and since the MOX step response (forward model) its well known,
to which extent can we take advantage of this "model" to palliate the long
recovery period needed after each gas exposure?

The first question gives rise to the design of a novel e-nose baptized as Multi-
Chamber Electronic Nose (MCE-nose). This e-nose comprises several identical sets
of gas sensors accommodated in separate chambers which alternate between sens-
ing and recovery states, composing a device able to detect faster changes in the gas
concentration than traditional e-noses.

Answering the second question above, a proposal based on exploiting a double
first-order model of the MOX-based sensor is presented. From such model, and given
the measurements of the transient state signal, a steady-state output is anticipated
in real time which is an indirect way of speeding-up the sensor response. Both ap-
proaches, hardware and software, are detailed in Chapter 3.

Concentration estimation is a crucial step for realistic gas sensing applications
since legal requirements and regulations are expressed in terms of absolute gas con-
centration, e.g. parts-per-million (ppm). However, not all gas sensing technologies
are suitable to obtain such quantified values when working in natural environments.
MOX technology is not an exception. The reactions of a target gas with the sensor sur-
face produce a variation of its conductance, which is measured as an electrical signal
correlated to the gas concentration. This correlation is non-linear and is highly influ-
enced by the sensor dynamics and atmospheric parameters which makes not straight-
forward the translation to absolute gas concentrations. This problematic motivated
the next research question of this thesis:

• How can absolute gas concentrations be obtained from the response of MOX
gas sensors when used in natural environments?

This topic is dealt within Chapter 4, using Gaussian Processes to estimate a poste-
rior distribution over the gas concentration given the response from an array of MOX
sensors. Additionally, two different extensions are proposed to automatically account
for the dynamics of MOX sensors in the quantification process, analyzing to which
extent they can improve the accuracy of the probabilistic quantification. This proba-
bilistic approach is especially convenient for mobile robotics olfaction applications,
since from the posterior distribution confidence intervals can be obtained.

From the range of mobile robotics olfaction tasks, in this thesis we focus on the
so-called gas distribution mapping (GDM), which deals with the problem of esti-
mating the spatial distribution of volatile substances using a mobile robot equipped
with an electronic nose. Given the physical fact that the information provided by gas
sensors vanishes with time due to the volatile nature of gases and the dominance of
turbulent transport mechanisms in natural environments, the following two research
questions emerge:

• Which are the effects of the vanishing nature of gases in GDM? Can this char-
acteristic be taken into consideration to improve the estimation of the gas dis-
tribution?



16 CHAPTER 1. INTRODUCTION

• Since we are interested in working in natural environments where the presence
of obstacles such as walls or furniture affect the dispersal of gases, how can the
GDM process account for it?

These questions are addressed in Chapter 5 by proposing a new approach to GDM
based on Gaussian Markov-Random Field (GMRF). This novel method accounts for
both the aging of the observations and the presence of obstacles in the environment.
Extensive validation of the proposed method is carried out with simulated and real
experiments, providing qualitative and quantitative comparison with other methods.
A C++ implementation of this method has been integrated into the Mobile Robot
Programming Toolkit (MRPT), and its source code is available online1 at http://
mrpt.org.

1.2 Contributions of this thesis

The most relevant contributions of this thesis are:

• The design and implementation of a novel MOX based electronic nose for mea-
suring fast changing gas concentrations. As a result of this work, a patent and
some publications have been produced [49, 50, 51].

• The development of a new model for MOX gas sensors [38], which consider-
ably mitigates one of their main limitations when used in mobile robotics: the
long recovery time.

• The introduction of a new probabilistic method for gas quantification with an
array of MOX gas sensors. This method allows us to obtain absolute concen-
tration readings together with confidence intervals, something that represents
an important advance to mobile robotics olfaction. The following publications
have arisen from this work [39, 40].

• The development of a novel probabilistic GDM method based on Gaussian
Markov-Random Fields which accounts, first, for the obstacles in the environ-
ment, obtaining maps which are more compliant with the actual mechanisms
of gas dispersion; and second, for the "age" of gas measurements as a way of
coping with the vanishing nature of volatile substances. The method has been
presented in [37].

• The collaboration in the design and development of a simulation framework for
mobile robotics olfaction [36].

1In particular, this method is implemented in the class mrpt::slam::CRandomFieldGridMap2D, part
of the mrpt-maps library.

http://mrpt.org
http://mrpt.org
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Next, all the publications derived from this thesis are compiled:

Journals
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1.3 Framework of this thesis

This thesis is the outcome of four years of research activity of its author as a mem-
ber of the MAPIR research group2, which is within the Department of System En-
gineering and Automation3 of the University of Málaga. For this research, funding
was supplied by the Andalucía Government and the European Regional Develop-
ment Fund (ERDF) under project TEP-2008-4016. This project addressed the prob-
lem of providing a mobile robot with olfaction capability to recognize and estimate
odor concentrations in real environments. One of the research lines of this project is
the combination of the olfactory information with other sensing modalities such as
cameras or laser scanners. The multiple sensing modalities incorporated into the re-
search robot Rhodon along its different development stages aim at this purpose (see
Appendix A).

During the PhD period, the author completed the doctoral program entitled "In-
geniería Mecatrónica" (Mechatronics Engineering) coordinated by the Department of
System Engineering and Automation. This doctoral program granted the author both
a general view of the multidisciplinary field of mechatronics which combines me-
chanical, electrical, control and computer engineering, and more importantly a deep
knowledge about mobile robotics, something that has proved fundamental throughout
these years of research.

Additionally, the author complemented his academic education with the participa-
tion in the Short Winter School (2012) entitled "Data Analysis, Robotics and Mobile
Applications of Chemical Sensors" arranged by the International Society for Olfac-
tion and Chemical Sensing (ISOCS), and a three months stay at the Centre for Applied
Autonomous Sensor Systems (AASS), university of Orebro (Sweden), with the Mo-
bile Robotics and Olfaction (MR&O) group. During this stay, research was focused
on studying MOX sensors and particularly how to obtain absolute concentration val-
ues from their transient response. The work and results obtained during this period
have been included in Chapter 4.

Furthermore, collaborations with other international research groups have been
established during this thesis to enrich and extend its scope. Examples are the coop-
erations with Prof. Michael Biehl at the University of Groningen (Netherlands) and
Dr. Frank-Michael Schleif at the Cognitive Interaction Technology-Center of Excel-
lence (CITEC) at the University of Bielefeld (Germany) focusing on the development
of high efficient odor classification tools for open sampling systems. Results of this
collaboration have been presented but not published at the time this thesis is written,
thus, only the data-sets that were collected as part of this collaboration are presented
in Appendix C.

Finally, it is worth mentioning that the scientific framework within this thesis
stands is characterized by the small research community engaged to this topic. This
is actually corroborated by the few international conferences and journals devoted

2 http://mapir.isa.uma.es
3 http://www.isa.uma.es



1.4. STRUCTURE OF THIS THESIS 19

to this field, as well as for the few research groups dedicated to olfaction with mo-
bile robots. However, the author believes that the rapid progress of mobile robotics
together with the continuous advances in the gas sensing technology, will, in a near
future, unlock the full potential of a mobile robot equipped with the capability to
smell.

1.4 Structure of this thesis

The remaining chapters of this thesis are organized as follows:

Chapter 2 gives a general introduction to the field of artificial olfaction and elec-
tronic nose technology, as well as to the main odor-related tasks of mobile robotics.
The first part of the chapter summarizes the concept of electronic nose and devises
relevant aspects of the most common gas sensor technologies, while the second part
reviews the mechanisms of gas dispersal in natural environments, and details the prin-
cipal tasks of a mobile robot with the capacity to detect and measure different volatile
substances: gas source localization, trail following, gas distribution mapping and gas
discrimination.

Chapter 3 presents two approaches to enhance the sensing of volatile substances
with metal oxide semiconductor (MOX) gas sensors in mobile robotics applications.
The first approach details the design and configuration of a new e-nose device called
Multi-Chamber Electronic Nose (MCE-nose), while the second approach exploits a
double first-order model of the MOX sensor to anticipate steady-state values from
measurements of the transient state signal. Qualitative experiments are reported for
both approaches, demonstrating the improvement achieved.

Chapter 4 introduces a new probabilistic algorithm based on Gaussian Processes
for the quantification of volatile substances using an array of MOX gas sensors. The
first part of this chapter focuses on the underlaying mathematics and describes the
use of automatic relevance determination to select the most relevant features from
the array of sensors. The second part deals with the validation mechanisms and the
different experimental configurations, giving a especial attention to the introduction
of the dynamics of MOX sensors in the quantification process.

Chapter 5 addresses an important task for mobile robotics olfaction: the estima-
tion of the spatial distribution of volatile substances. A new method based on Gaus-
sian Markov Random-Fields is proposed to deal with two important problems that
have been disregarded in previous approaches: the presence of obstacles in the in-
spection area, and the combination of odor measurements taken at different instants
of time. Quantitative and qualitative results are reported under different scenarios, as
well as a detailed comparison with existing methods for gas distribution mapping.

Chapter 6 concludes the thesis, providing a summary of the presented research
work and giving an outlook of how the proposed techniques can be extended further.





Chapter 2
On technology and
applications of mobile
robotics olfaction

This chapter provides an overview of electronic olfaction and elec-
tronic nose technology, with especial interest in their applicability
to mobile robots. The chapter summarizes the concept of electronic
nose and devises relevant aspects of the most common gas sensor
technologies. Then, it reviews the mechanisms of gas dispersal in
natural environments to end with a review of the four main odor-
related tasks of mobile robotics olfaction.

2.1 Electronic noses

A general accepted definition for an electronic nose was proposed by Gardner et
al. [44], after refining the initial concept introduced by Persaud et al. [120] in the
early 1980’s. According to this definition:

"An electronic nose is an instrument which comprises of an array of
electronic chemical sensors with partial specificity and an appropriate
pattern recognition system, capable of recognising simple or complex
odors." (Gardner, [44]).

This "electronic nose" term is rather general and consequently may lead to con-
fusion or misleading. In short, an electronic nose is a device designed to artificially
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mimic the animal sense of smell by providing an analysis of chemical mixtures. It
works as a non-separative mechanism: i.e. an odor is perceived as a global finger-
print, a signal pattern that is used to characterize it.

This pattern is formed by collecting the signal response from each sensor in the
array. The absorption of volatile molecules causes physical changes of the sensor,
which are measured as electrical signals to compose the fingerprint. In most electronic
noses, each sensor is sensitive to a broad range of volatile molecules (low selectivity),
but each in their specific way. Thus, the degree of selectivity and the type of odors
that can be detected largely depend on the choice and number of sensors in the array.

2.2 Gas sensor technologies

According to the transduction principle applied, gas sensors can be classified into the
following families: thermal, mass, electrochemical, and optical [72]. Thermal sensors
use the heat generated by the chemical reaction between the analyte and the sensor as
the source of analytical information. The general strategy is to place the chemically
selective layer on top of a thermal probe and measure the heat evolved in the specific
chemical reaction taking place in that layer. For mass sensors, the transduction prin-
ciple is the detection of the change of mass through the variation in behavior of some
oscillator, usually piezoelectric crystals. Change of mass accompanies many interac-
tions of the chemical species with the sensor, thus, mass sensors represent an impor-
tant segment of the chemical sensing field. However, electrochemical transducers are
the largest and the oldest group employed for chemical sensors. This family includes
potentiometric sensors, which measure voltage, amperometric sensors, which mea-
sure current, and conductometric sensors which measure conductivity. Finally, the
measuring principle of optical gas sensors is based on the emission of electromag-
netic radiation through the gas sample. Different chemical species exhibit absorption
of such radiation at different regions of the electromagnetic spectrum. This property
is the basis for their detection and measurement.

Each of these sensor families has advantages and disadvantages over their coun-
terpart and choosing the right technology strongly depends on the type of application.
However, within the range of applications related to mobile robotics olfaction, there
are a set of desired sensor properties:

• High selectivity - It can be defined as the ability of a sensor to respond primar-
ily to only one analyte in the presence of a mixture. Ideally, the reactive layer
of the sensor should completely reject any interfering analyte, and respond ex-
clusively to the desired one.

• High sensitivity - Together with selectivity, they are possibly the most impor-
tant issues in chemical sensing. Sensitivity is the amount of change in the mea-
surable output magnitude per unit change in the volatile concentration.

• Rapid response - In general, sensors do not change their output state immedi-
ately when a change in the analyte concentration occurs. Rather, they change
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over a period of time called the response time. This property is especially im-
portant when integrating gas sensors with mobile robots which are continu-
ously inspecting an environment. Chapter 3 provides an exhaustive study of
this property and its influence in the applicability to mobile robotics.

• Robustness - Understood as stability of the sensor behavior under simultaneous
changes in model parameters caused by humidity, temperature, or even physical
motion.

• Reliability - It can be defined as the ability of a system to perform and maintain
its functions in routine circumstances. This property is closely related to the
undesired drift, defined as "a gradual change in any quantitative characteristic
that is supposed to remain constant" [155]. Thus, a drifting chemical sensor
does not give exactly the same response even if it is exposed to exactly the
same environment for a long time.

There is no simple answer when looking for the best sensor because of the many
different sensing situations and criteria that must be considered. Instead, a general
precept must serve: the best sensor is the one that will do the job at a cost which
justifies its use [72]. The cost must be viewed in terms of money, time, and ease of use.
This is fully applicable to mobile robotics, particularly for out-of-the-lab applications.

A complete survey of the different sensor technologies is out of scope of this
thesis and therefore, only a brief overview of the most spread gas sensing technologies
used in mobile robotics is provided in the following subsections.

2.2.1 Semiconducting metal oxide gas sensor

Metal oxides (MOX) such as SnO2, ZnO, Fe2O3, and WO3 are intrinsically semi-
conductors that at temperatures of 200− 500°C respond to reducible gases such as
H2, CH4, CO, C2H5, or H2S and increase their conductivity (conductometric fam-
ily) [119]. Among the different semiconducting materials, SnO2 doped with small
amounts of impurities is the most widely employed for gas sensor fabrication. By
changing the choice of impurity and operating conditions such as temperature (tem-
perature modulation), many types of gas sensors can been developed.

MOX competitive advantages include a good commercial availability, high sensi-
tivity, an effective life span from three to five years, and low prices when compared
with other sensing technologies. Additionally, they are usually small and light, which
make them very appealing for mobile robotic applications. They present, however,
different shortcomings, among others:

• The need to be pre-heated at temperatures up to 200−500°C in order to facil-
itate the interaction with the target gas, which involves a relatively high power
consumption.

• Poor selectivity and relatively low robustness.
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• The acquisition cycles are very long because of their slow response, espe-
cially when recovering to the baseline level after the exposure to the target
gas ends [107]. This baseline level represents the sensor output in absence of
target gases and varies with temperature, humidity and among sensors.

These limitations come from the chemical mechanism underlying MOX sensors,
related to the semiconductor behavior when exchanging oxygen molecules between
the volatile and the MOX film [2, 135].

2.2.2 Photo ionization detector

A Photo Ionization Detector (PID) is a gas detector that is able to measure the concen-
tration of a variety of volatile organic compounds (VOCs) by using photo ionization.
This process occurs when an atom or molecule absorbs "light" of sufficient energy to
cause an electron to leave and create a positive ion. The PID is comprised of an ul-
traviolet lamp that emits photons that are absorbed by the compound in an ionization
chamber. Ions (atoms or molecules that have gained or lost electrons and thus have a
net positive or negative charge) produced during this process are collected by means
of an electric potential difference between electrodes. The current generated provides
then a measure of the analyte concentration. Because only a small fraction of the
analyte molecules are actually ionized, this method is considered nondestructive.

The principal advantage of PIDs compared with MOX sensors is that concentra-
tion measurements are almost immediate, that is, PIDs have a very short response
time, making them well-suited for mobile robotics applications where fast changing
gas concentrations are expected to be faced. However, as stand alone detectors PIDs
are not selective; that is, they ionize everything with an ionization energy less than
or equal to the lamp output. The latter additionally involves that only analytes which
have ionization energies similar to or lower than the energy of the photons produced
by the PID lamp will be detected.

2.2.3 Surface acoustic waves

Acoustic Wave (AW) gas sensors, also known as Quartz Crystal Microbalance (QCM)
gas sensors, are devices that weigh gas molecules (mass sensors family) by measuring
the change in frequency of a quartz crystal resonator [131]. The frequency of oscilla-
tion of the quartz crystal is partially dependent on the thickness of the crystal. As gas
molecules are deposited on the surface of the crystal, the thickness increases; con-
sequently the frequency of oscillation decreases from the initial value. By applying
different chemical coatings to the crystal, the QCM sensor can be made responsive to
different volatiles. Due to this dependency between thickness and frequency, QCM
sensors are sometimes termed as thickness-shear resonators.

Between the different modalities of AW sensors, surface acoustic waves (SAW)
sensors make use of the fact that the amplitude of an acoustic wave propagating along
the surface of a solid material decays rapidly, typically exponentially with the depth
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of the material. SAW devices typically apply an alternating electric field to a piezo-
electric material covered with a thin film, to generate a SAW. The mass of the film
temporarily increases as molecules of the target gas are absorbed, perturbing the prop-
agation of the acoustic waves. This causes a shift in resonance to a slightly lower
frequency and thus information about the gas concentration can be obtained. A more
detailed description is given by Gardner and Bartlett in [44].

The main advantages of this sensing technology are the low power consump-
tion, the possibility to control the selectivity over a wide range, long term stability,
long lifetime and a rapid response. The latter is especially important for applications
on mobile systems, requiring in general a shorter recovery time than MOX gas sen-
sors [81]. Disadvantages include comparatively low sensitivity to the target gas and
limited robustness to variations in humidity and temperature.

2.2.4 Conductive polymer sensors

The term polymer derives from the ancient Greek word polus, meaning many/much
and meros, meaning parts. It refers to a molecule whose structure is composed of
multiple repeating units (monomers), with the characteristic property of having a
large molecular mass when compared to small molecule compounds. This large mass
produces unique physical properties which make polymers an appealing material for
sensor fabrication.

Conducting polymers (CP) are a popular sensing technology that is based on mea-
suring the resistance of a thin film polymer. The sensing mechanism is similar to this
of MOX gas sensors except because a thin polymer film is used instead of a semicon-
ductor material. The response given by the sensor is created by a chemical reaction
that occurs on the surface of a polymer placed between two electrodes. Since the
conductivity of pure conducting polymers is rather low, a doping process is usually
necessary. The concept of doping is the central theme which distinguish conductive
polymers from all other polymers [97]. When the doped polymer comes into contact
with particular gases, carriers on the polymer chain become mobile and produce an
electrical conductivity which is then measured as the sensor response.

In comparison with MOX gas sensors, polymers can operate at room temperatures
(with the consequent energy savings), they show a good sensitivity to a wide variety
of organic compounds (but approximately one order of magnitude lower than the
MOX sensors [81]), and have short time responses.

2.3 Gas dispersal in natural environments

Far from the complex laboratory setups which use sophisticated sampling systems to
keep constant along the olfaction process parameters such as air flow, temperature,
humidity and analyte concentration, in most real-world applications, and particulary
in mobile robotics, gas sensors are directly exposed to the environment to be analyzed
with no control at all. This leads to additional sources of uncertainty, mainly due to
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Figure 2.1: Sample of a instantaneous concentration field (figure taken from Webster et al.
[154]). The chemical source is located at coordinates (0,0) releasing the gas into a turbulent
stream flowing in the positive x-direction.

the mechanisms that rule the dispersal of gases in natural environments: diffusion and
turbulent advection.

Diffusion, from Latin "diffundere", means "to spread out". This process causes
mass transport without requiring bulk motion. Diffusion can be considered as a result
of the "random walk" [74] of particles which are self-propelled by thermal energy.
The rate of this movement is a function of temperature, viscosity of the fluid and the
size (mass) of the particles. Although diffusion is present under almost all circum-
stances (as long as the temperature is over the absolute zero), in natural environments
advective flow [137] is the process that dominates the dispersal of gases. In average,
the diffusion length of typical gas molecules for one hour is only 20 cm, while in both
outdoor and indoor environments we usually find airflows with much higher veloci-
ties [62]. Thus, in general, the extremely slow process of molecular diffusion can be
neglected.

A turbulent flow can be defined as the viscous flow in which fluid particles move
in a random and chaotic way within the flow field [141, 139]. Velocity and all other
fluid properties vary continuously, with strong concurrent molecular mixing between
adjacent fluid layers. In natural environments, turbulence is the dominant mechanism
in the mixing and dilution of gaseous releases [22].

Odor patches released by an odor source are mainly transported by the advective
turbulent flow of an air stream, forming an odor plume. As the plume travels away
from the source, it becomes more diluted due to molecular diffusion and turbulence
that mixes the odor molecules with the clean air [99]. Figure 2.1 displays a repre-
sentative example of the instantaneous concentration of a gas plume in a turbulent
flow.

For the case of MOX gas sensors (broadly employed in this thesis), given their
slow dynamics and the rapid fluctuations in the gas concentration due to the mecha-
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nisms of gas dispersal, they never reach steady state but continuously fluctuate [146].
Thus, olfaction algorithms developed to work in such setups additionally require to
extract information about the target gas (the type of analyte, its distribution, the source
location, etc.) from the transient of the sensor response.

Understanding how the odor molecules disperse through the environment under
naturally turbulent flows is not a trivial task, being necessary the use of computational
fluid dynamics (CFD) to numerically approximate the solution. However, CFD appli-
cations cannot run online because of their high computational cost, which preclude
their use in mobile olfaction.

2.4 Mobile Robotics Olfaction

Gas sensing is a relatively recent research area within the field of mobile robotics.
This is in part because the technological progression of compact gas sensors is inte-
gral to the solution of detecting odors with mobile robots and there is still much devel-
opment needed before the gas sensors are satisfactory for real applications [88]. De-
spite this, significant advances have been reported since the beginning of the 1990s.
Four are the main odor-related tasks that have been addressed by the research com-
munity: gas source localization, trail following, gas distribution mapping and gas
discrimination. In the following subsections a review of the most relevant works on
each task is presented.

2.4.1 Gas source localization

Inspired by biology and the fundamental mechanisms of animal olfaction, the task
of localizing a gas source has been pursued since the first research works on mobile
robotics olfaction.

Researchers started to face the gas source tracing issue using techniques based
on gradient-following [126, 134], trying to localize the point of highest concentration
as a representative characteristic of a gas source. These methods assumed that dif-
fusion is the dominant short-term method of odor dispersal, leading to a stable and
smooth chemical concentrations [77]. Exploiting this "chemical gradient", the robot
was expected to move towards the odor source, since on these scenarios the evolution
of the chemical concentration along the gas plume is well defined by a continuous
function with a peak close to the gas source location [116]. However, in real environ-
ments the dispersion of gases is not diffusion-based but it is governed by turbulence
(see Section 2.3). The flow contains eddying motions of a wide range of sizes that
produce a patchy and intermittent distribution of the gas. The gradient is then time
varying, steep, and frequently in the opposite direction to the source [25, 73]. This
makes gradient-following techniques not practical in real environments.



28
CHAPTER 2. ON TECHNOLOGY AND APPLICATIONS OF MOBILE ROBOTICS

OLFACTION

Gas source localization under strong constant airflows

Methods designed to operate in the presence of strong and constant airflows are
mostly based on "reactive plume tracking" [77]. These methods, largely based on
the odor localizing behavior of microbes, insects, and crustaceans, employ reactive
control schemes and local sensing to track the plume along its entire length to the
source [79, 78, 27, 82, 86, 109].

The main characteristic of these scenarios is that reliable information about the
air flow direction is available (anemotaxis), which can be used for upwind navigation
together with chemotaxis (gradient based navigation behavior). The first example of
an odor localizing robot that utilized both chemical and anemometric sensors was
described by Ishida and colleagues [68]. Further developments have been introduced
by a number of researchers, most of them based on biological inspired methods.

Worth mentioning is the Zigzag/Dung Beetle method [63, 64, 132], which in-
volves moving upwind within the odor plume in a zigzagging fashion. Each time the
plume boundary is encountered (detected by measuring the gas concentration gradi-
ent), the robot turns back into the plume. Another version of this zigzag approach was
implemented for underwater robots and reported by Farrell et al. [29].

Other methods include the Plume-Centered upwind search [129, 67, 100], which
involves moving towards the center of the plume while tracking upwind, or the Silk-
worm Moth method, which is probably the most studied animal behavior for gas
source localization. Male moths can trace a pheromone emitting source (female)
even at very long distances in a turbulent environment. The chemotactic behavior
of the silkworm moth has been implemented in many research works, as in the case
of [80, 78, 101, 121].

It is not until the work of Martinez and Perrinet [102] that visual information was
used in collaboration with local chemical sensing. They proposed a visual identifica-
tion of salient features to locate candidates, reducing the time necessary to find the
real gas source. In [95] a similar approach is presented but employing standard image
processing techniques to detect cups (the potential odorsources), while in [70, 69]
Ishida et al. proposed a subsumption architecture to combine random, visual and ol-
factory search behaviors.

Another approach that requires a strong and constant airflow condition is to model
the shape of the gas plume based on the measurements of the wind vector and chemi-
cal concentration. Analytical models of the gas plume [65] or stochastic methods [30,
116] can then be used to predict the gas source location.

Gas source localization under weak airflows

The localization of a gas source in weak airflow scenarios (e.g. unventilated indoor
environments) cannot rely on the anemometry information. Under these conditions,
an analyte plume can still be detected in most cases [152], however, with different
properties concerning its shape, width, concentration profile and stability over time.
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(a)

(b)

Figure 2.2: (a) Source characterization with a strong airflow forced by a fan behind the gas
source, and (b) without the fan. Sensor0 is placed at a distance of 30 cm from the source. All
sensors are spaced 25 cm, so that the farthest sensor (Sensor4) is at a distance of 130 cm. For
the case of strong airflow, the sensors are placed inside the plume. Figure taken from Ferri et
al. [34]

Few research works have been proposed in this case due to the complexity of
gas dispersal in these scenarios: gas plumes are not well formed and the distribution
of gases is dominated by turbulence, that is, it is patchy and chaotic as shown in
Figure 2.2. The first works were proposed by Lilienthal et al. [92, 91] and Wandel et
al. [153, 152], where only chemical sensing was employed to localize the gas source.
The importance of these works lies in the raise of questions about the operation of
mobile robots in more realistic environments, providing extent sets of experiments.

Further efforts to improve the localization of gas sources under these complex
scenarios were reported through the mimic of the repetitive movements of insects
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Figure 2.3: An ant following a pheromone trail marked on the ground. Concentrations per-
ceived at the left and right antennae are compared and used to turn back to the trail. Figure
taken from Ishida et al. [119]

searching for an odor source [34], or the use of analytical models [90]. The latter
approach involves creating a gas concentration gridmap of the environment [84, 83],
without tracking the gas plume (if it exists). This approach is further detailed in Sec-
tion 2.4.3.

2.4.2 Trail following

Inspired by the olfactory-guided behaviors of insects and animals where chemical
substances are often used to mark trails or territories, trail following has become an
active research area within mobile robotics olfaction. Probably, the most famous ex-
ample of olfactory-guided behavior is the case of ants. Ants, as many other insects,
secrete pheromones to constrain the behavior of other individuals. Pheromone trails
serve as a multi-purpose chemical signaling system: it leads members of its own
species (and generally same nest) towards a food source or home, while it represents
a territorial mark to other species [156]. Once the trail is laid, other members of the
nest will recognize the chemical signal and follow the trail [1] (see Figure 2.3). Since
chemical marks evaporate with time, each individual following the trail renews the
marks on the way back home. While this pheromone is constantly deposited by its
members, the chemicals diffuse up into the environment propagating its message.
Once the food source runs out, the organisms will simply skip the task of renew-
ing the trail on the way back, thus resulting in the diffusion and weakening of the
pheromone [104].

Another example are honey bees. They use chemical markers not to follow a
trail, but to increase their efficiency when gathering nectar. After visiting a flower
and gathering its nectar, the honey bee marks the flower with a short-life odor to
indicate that the nectar of that flower has been recently collected, thus it may be left
uninspected for a while [47].

The use of chemical markings for trail guidance or signaling may be of benefit
for a number of applications in the field of mobile robotics. Odor trails could provide
an inexpensive and more flexible alternative to the metal wires buried under the floor
that are often used for industrial automated guided vehicles (AGV) [142]. Odor trails
provide higher flexibility since they are easier to lay on the floor, however, they decay
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over time as the chemical substance gradually evaporates, which represents one of
their fundamental constraints.

Other scenarios in which odor trails may simplify the tasks to be accomplished by
mobile robots were proposed by Russell [128, 129]. One example is the use of chem-
ical markings to provide temporary warning signals, for example to indicate areas
on the floor that have been cleaned [26]. While this would be particularly beneficial
to coordinate the behavior of multiple robots, it could also be helpful in the case of
a single robot, because it avoids the necessity for maintaining a consistent spatial
representation [81].

To reduce the "odor confusion" effect generated mostly by the advection and dif-
fusion of odor particles, but also due to the slow response of gas sensors, mechanisms
to create an air curtain around the sensors has been proposed [127]. This air curtain
increases the gas sensing differentiation near the floor by blocking external airflows
that may interfere and create confusion in the readings.

Several navigation strategies have been suggested for trail following. The most
straightforward implementation is a robot performing tropotaxis (imitating the be-
havior of ants) with two gas sensors (left and right), as the proposed by Russell et
al. [129], or Stella et al. [142]. Further trail following strategies rely on using only
one gas sensor, as in [128] where a klinotactic algorithm is employed to follow the
edge of a trail, or based on more robust strategies against sensor errors, which involve
frequent crossings of the trail along a sinusoidal walk [130].

2.4.3 Gas distribution mapping

Gas distribution mapping (GDM) is the process of creating a representation of how
gases spread in an environment from a set of spatially and temporally distributed
measurements of relevant variables [9, 89]. Foremost, these measurements include
the gas concentration itself, but may also comprise wind, pressure or temperature.

Gas distribution mapping is of great help not only because it can be used to pin-
point the location of a gas source (or of multiple sources) without depending on the
environmental conditions (see Section 2.4.1), but also because it provides informa-
tion of how the gas emissions have spread in the environment, which is crucial in
many real olfaction-related applications. For example, lets consider an industrial plant
where a leak of a toxic gas has been detected. For safety considerations, it is not
enough to locate the room or even the pipe that is leaking, but it is necessary to know
which areas of the plant have been affected by the toxic gas to safely prepare the
action plan.

Traditionally, the way to create a representation of the gas concentration field is to
measure the response of a grid of gas sensors distributed in the environment [150, 71].
The main advantage of these networks of static gas sensors is that the instantaneous
gas distribution can be obtained by reading all the sensors in the grid at a time, similar
to taking a "picture" of how gases are distributed. Nonetheless, given the dynamic and
changing characteristics of the gas distribution in real environments (see Section 2.3)
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for many applications it is better to obtain the time-averaged concentration field by
averaging the readings over a prolonged time [66].

An important drawback of the sensor network is that it is not scalable when the
area to inspect increases, rising considerably the deployment cost and reducing its
flexibility. Because of this, the attention shifted to GDM with mobile robots, which
using only one electronic nose allows obtaining gas maps with high flexibility. Ad-
vantages of this approach include the use of only one sensing device (which may
be complex and expensive), the capability of the robot to sample at adaptive reso-
lutions depending on the area being inspected, and the possibility to use additional
environmental information gathered by other sensors on board (cameras, laser scan-
ners, anemometers, etc.) [70]. Chapter 5 discusses in detail the advantages of using
mobile robots for GDM while providing an innovative approach which accounts for
the obstacles in the environment and the dynamic characteristics of gas distribution.

Probably, the first work studying the distribution of gases with mobile robots was
presented by Hayes et al. [56], where a group of mobile robots (swarm of robots)
worked in a coordinated manner to create a histogram representation of the gas dis-
tribution. The histogram bins contained the number of "odor hits", that is, the number
of measurements above a predefined threshold. This binary information was collected
by all the robots while inspecting the area following a simple random walk pattern.
Apart from requiring an even coverage of the environment, this approach also takes a
very long time to obtain statistically reliable data, and no extrapolation is performed
to areas not inspected. These drawbacks lead to a bad scalability when applied to
large environments, fact that makes doubtful its applicability in real scenarios.

Improvements to this approach were reported by Pyk et al. [121], employing bi-
cubic interpolation to extrapolate the gas distribution to zones not directly inspected
by the robot. A disadvantage of this method is, however, that no spatial averaging is
carried out and therefore fluctuations appear directly on the map.

Nevertheless, the most remarkable works in this field have been reported by
Lilienthal and colleagues. In the pioneer work [85] they proposed the kernel-based
method, which consists of convolving sensor readings with a Gaussian kernel, thus
providing a representation of the gas map without assuming any predefined paramet-
ric form for the distribution. This method was later extended for the case of multiple
odor sources [96] and to the three-dimensional case [124]. It was further shown how
gas distribution mapping methods can be embedded into a Blackwellized particle fil-
ter approach to account for the uncertainty about the position of the robot [87]. A
deeper review of the works proposed in the field of GDM with ground mobile robots
is later presented in Section 5.2.

In the last few years, it’s worth highlighting the attention paid by the research
community to GDM with unmanned aerial vehicles (UAVs). Quickly deployable,
cost-efficient or easy to transport are some of the advantages that flying mobile mea-
surement devices provide when measuring the gas concentration outdoor [113]. Ad-
ditionally, micro vertical take-off and landing (VTOL) UAVs, such as quadrocopters,
have the ability to hover over a certain point of interest for a prolonged time, which
makes them promising tools for environmental monitoring applications. For exam-
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ple, Kovacina et al. [76] proposed a decentralized control algorithm for localizing
gas sources and mapping chemical clouds within a region. This approach relied on
constrained randomized behaviors and attended to the UAV restrictions on sensors,
computation, and flight envelope. Later, Bermúdez et al. [60] investigated the use of
blimp-based gas-sensitive UAVs for demining tasks, including strategies for chemical
mapping. Recent projects like AirShield (airborne remote sensing for hazard inspec-
tion by network enabled lightweight drones) [15] investigate the use of autonomous
swarm of micro UAVs to support emergency units. For a more detailed review of the
state of the art in this field see [113].

2.4.4 Gas discrimination

Gas discrimination deals with the problem of identifying to which of a set of cate-
gories a new volatile sample belongs [147]. Traditionally, this process is carried out
by hosting gas sensors inside a chamber with controlled humidity, temperature and
airflow conditions, as well as regulating the exposure time to the gas and its concen-
tration. Under these conditions, many studies have been proposed on how to classify
odours using an array of gas sensors and a pattern recognition algorithm. In [136, 53]
the principal methods for chemical classification are reviewed, ranging from classical
methods such as k-nearest neighbour (kNN), Mahalanobis linear discriminant anal-
ysis, or Bayesian classifiers to most recent artificial neural networks (ANN), cluster
analysis with self-organizing maps (SOM) and support vector machines (SVM).

However, when the discrimination is performed with a mobile robot equipped
with an e-nose, there is no control over the sensing conditions. This entails that the
sensor signals to be processed are noisy and dominated by the signal transient be-
haviour [145], which entails a number of additional challenges with respect standard
analyte identification. Few are the works found in literature that perform classification
focussing only on the transient phase of the sensor signals. Probably, the first work
addressing this problem was [100], where Marques et al. proposed a feature extrac-
tion method based on discrete wavelet transform (DWT). Here, the authors claimed
that only 4 seconds of exposure of an array composed of 4 MOX sensors were suf-
ficient to reliably classify from a set of 6 different gas mixtures. Later, Martinez et
al. [103] proposed a biomimetic robot for tracking a specific gas plume, dealing with
the discrimination of gases by means of a spiking neuronal network. An evaluation
for the suitability of different feature extraction techniques for such scenarios was
provided in [147], where Trincavelli et al. proposed a preprocessing stage to isolate
the relevant parts of the sensor signals that can then be passed to the pattern recogni-
tion algorithm. More recently, in [24] a support vector machine was applied to a set
of features obtained from changes of the spectral sensor signal characteristics (fre-
quency components, phase shift and energy sums), reporting a substantially increase
of the classification performance. For a more detailed review of the field see [145].





Chapter 3
Improving MOX-based gas
sensing for mobile robots

Metal Oxide Semiconductor (MOX) gas transducers are one of the
preferable technologies to build electronic noses because of their
high sensitivity and low price. In this chapter we present two ap-
proaches to overcome to a certain extent one of their major dis-
advantages: their slow recovery time (tens of seconds), which lim-
its their suitability to applications where the sensor is exposed to
rapid changes of the gas concentration. The first approach is based
in the design of a new e-nose called Multi-Chamber Electronic Nose
(MCE-nose), which comprises several identical sets of MOX sen-
sors accommodated in separate chambers (four in our current pro-
totype), alternating between sensing and recovery states, providing,
as a whole, a device capable of sensing faster changes in chemical
concentrations. The second proposal consists of exploiting a double
first-order model of the MOX-based sensor from which a steady-
state output is anticipated in real time given measurements of the
transient state signal. This approach assumes that the nature of the
volatile is known and requires a pre-calibration of the system time
constants for each substance, an issue that is also described in this
chapter. The applicability of both approaches is validated with sev-
eral experiments involving rapid sensing of gas concentration in real
and uncontrolled scenarios with a mobile robot bearing an e-nose.

35
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3.1 Introduction

The deployment of olfactory sensors is becoming an increasing practice in many in-
dustrial and environmental applications due to advances in the gas sensing technol-
ogy. The exploitation of olfactory sensors can be classified into two main groups
according to the level of control over the measurement conditions: Closed Sampling
Systems (CSS), where the gas sensors are usually hosted in test chambers with con-
trolled airflow, volatile exposure times, temperature and humidity, etc., and Open
Sampling Systems (OSS), with no control over the sensing conditions. Our interest is
in the latter, which are more flexible and practical for field applications. Examples of
such uses are environmental exploration [148], gas distribution modeling [89], buried
land mine detection [122] or pollution monitoring [149]. Some of these applications
are usually accomplished with the help of a mobile robot carrying the sensors on
board, which makes the sensing task even more challenging.

Within the different technologies and materials available for gas sensor fabrica-
tion [119], MOX (Metal Oxide Semiconductor) transducers are one of the most pop-
ular and widely employed in mobile robotics olfaction, due to their high sensitivity
and low prices. However they present some shortcomings including poor selectivity,
response drift (age factor), influence by environmental factors such as humidity and
temperature [107] and major limitations in their response speed [49]. These limita-
tions come from the sensing mechanism underlying MOX technology, that is, the
exchange of oxygen molecules between the volatile and the metal film [2, 135].

Among these drawbacks, the long duration of the acquisition cycles (up to tens of
seconds) is of especial concern for OSS, since inaccurate readings are inevitable when
measuring rapid changes of gas concentration, as illustrated in Figure 3.1. Observe
how this limitation is particularly noticeable in the decay phase, when the output
recovers to the baseline level (the steady output value given by a gas sensor when
exposed to clean air). As a consequence of this slow dynamic response and because
of the intermittent and chaotic nature of turbulent airflow in OSS [139, 91], steady
state values are rarely reached, and therefore gas sensing based on MOX technology
must deal with the transient information of the signals [147]. This problem becomes
crucial when the sensors are carried on a vehicle (typically a mobile robot) to provide
measurements along the way. The adopted solution in such cases is to reduce the
vehicle velocity to a few cm/s, such in [68]. This proposal, however, is not acceptable
in many applications since the sampling of space must be as quickly as possible to
cope with the rapid dynamics intrinsic to gas propagation.

To overcome this shortcoming of MOX-based electronic noses, in this chapter
we propose two different approaches: one hardware and one software. The former is
based on the design of a new MOX-based e-nose which comprises several identical
sets of MOX sensors accommodated in separate chambers. It enables the sensing of
faster changes in chemical concentrations by commuting the sensing task to another
clean set of sensors when the decay phase is detected. The latter estimates the steady
state sensor output from the noisy and distorted transient signal, which corresponds
to the search for an inverse dynamical model of MOX sensors. The applicability of
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Figure 3.1: Rise and recovery phases of MOX sensor response to a step gas concentration.
Subfigure (a) shows a 2D plot of the sensor response over time. The shaded blue region denotes
the sensor exposure to the analyte. Subfigure (b) depicts a 3D gas distribution map generated
from the readings of an MOX sensor carried by a mobile robot along a corridor. Observe how
the recovery phase after the gas exposure is several times longer than the rise one.

both approaches to OSS is validated through different experiments in real scenarios,
performed with a mobile robot bearing an MOX-based e-nose.

The rest of this chapter is outlined as follows: after a discussion of the important
influence of the e-nose slow recovery in mobile robotic olfaction in Section 3.2, we
introduce the proposed sensor configuration, called Multi-Chamber E-nose (MCE-
nose, for short) in Section 3.3. Then, Section 3.4 describes the software alternative by
introducing the proposed MOX model, giving especial attention to the experimental
results. Finally, we end up with some conclusions and discussing future research.



38 CHAPTER 3. IMPROVING MOX-BASED GAS SENSING FOR MOBILE ROBOTS

3.2 On the importance of the e-nose long
recovery time in mobile robotics olfaction

For a mobile robot intended to accomplish olfaction-related tasks, the problems as-
sociated to the slow recovery of MOX gas sensors are manifested, among others,
through the following issues:

1. A gas concentration may be masked by another close, stronger one. Suppose
two gas sources of different concentrations, separated by a short distance. If
the robot trajectory first leads to the lower-concentration gas source, both of
them will be probably detected. However, if it happens the other way around,
the lower one may be overlooked since it could be hidden below the decay of
the stronger concentration. Figure 3.2 displays a simulation of such scenario.

2. Gas concentration maps are not accurate, as a consequence of the integration
into the map of unreliable sensed values from the decay phase of the sensor
response.

3. Gas source search methods that rely on gradient techniques may not be appli-
cable. These methods require to measure and compare the gas concentration
at different points, either successive readings (klinotaxis1) or simultaneously
sensed intensities from two or more sensors (tropotaxis2) as in [86]. For the
first case, we cannot trust in the sensor measurement if it is still in the decay
phase of the previous sensing.

Thus far, mobile olfaction tasks have managed this limitation in, basically, two
ways:

• Slowing down the robot speed up to a few cm/s in order to allow the sensor
response to slowly follow the gas distribution even in the decaying phases [68].

• Defining paths that force the robot to pass several times over the same locations
but along different directions, in such a way that the decay effect is averaged
out over all the measurements. This is a common strategy employed to explore
a space with the intention of building a gas concentration map, such as in [96].

Clearly, this type of solutions affect the overall efficiency of the olfactory task
and, in many cases, it may be even unacceptable for the robot mission. It is important

1Klinotaxis is the achievement of orientation by alternate lateral movements of part or all of a body;
there appears to occur a comparison of intensities of stimulation between one position and another and
a "choice" between them. Klinotaxis is shown by animals with a single intensity receptor such as the
protozoan Euglena, earthworms, and fly larvae.

2In tropotaxis, attainment of orientation is direct, resulting from turning toward the less stimulated
(negative) or more stimulated (positive) side as simultaneous, automatic comparisons of intensities on two
sides of the body are made. No deviations (trial movements) are required. Tropotaxis is shown by animals
with paired intensity receptors.
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Figure 3.2: Simulations of the behavior of a MOX sensor when sensing a low gas concentration
right after being exposed to a stronger one. The MOX sensor response has been modeled as
a double first-order system with time constants 1.7s, and 14.8s, for the rise and decay stages
respectively (estimated from system identification techniques). Observe that, when the second
gas source is much lower than the first, the response of the MOX sensor (in red) is very similar
to that obtained from the first source alone (blue).
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to remark that, for most real robot applications, smell is not by itself the ultimate goal
for the robot, but just another of the robot senses to gather useful information from
the environment (along with vision, range sensing, touch, etc.).

3.3 The multi-chamber electronic nose - an
improved olfaction sensor for mobile
robotics

It is well known that wine testers have a very developed and well trained sense of
smell. In a typical session, to avoid mixing the smells or tastes of different wine
samples, they have to clean their mouths and noses by eating a little piece of bread and
wiping their noses, for example. Thus, they undergo a "purge/clean" stage between
tests and they also stop for a few seconds to ensure their noses are ready to provide
new accurate olfactory information. MOX gas sensors behave in a quite similar way,
as they require a time (decay phase) to ensure their readings are accurate.

The MCE-nose proposed in this chapter pretends to work in similar way that wine
testers, but taking advantage of the reproducibility of electronic devices to avoid the
off-time between readings. Thus, the key idea behind the proposed design is to ignore
the MOX sensor output when the decay phase is detected and delegate the sensing
task to another clean, almost identical sensor. In order to achieve that, we accommo-
date a set of redundant sensors in different chambers, which are alternatively acti-
vated. Thus, the output signal of the whole setup results from the concatenation of
the rise phases of a sequence of MOX sensors.

The design of the MCE-nose aims at providing the following characteristics:

• To shorten the cycle of effective sensing as exposed above.

• To recognize a variety of odors by hosting MOX sensors with different selec-
tivity in each chamber.

• To reduce the influence of residuals from previous measurements by scaling
down both the chamber room where the sensors are accommodated and the air
circuit volume.

• To speed up the interchange of molecules onto the MOX film by feeding a
pressured air flow into the chamber by means of a pneumatic pump.

Next, the three main aspects of the MCE-nose design are exposed: mechanics,
electronics, and software.

3.3.1 Mechanical design

Figure 3.3 shows a schematic diagram illustrating the interconnections of the different
components of the proposed e-nose. The design is conceived to comprise a general
number of M chambers with N MOX sensors each. All chambers are identical and
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Chamber 1

•MOX Sensor  1
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•MOX Sensor  N

Chamber M

•MOX Sensor  1
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•MOX Sensor  N
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Electrovalves pair
for chamber 1

Electrovalves pair
for chamber M

Clean air Target gas

Figure 3.3: A functional schematic diagram of the MCE-nose. There are two pumps: one
aspirating clean air and the other the target gas. At each time, only one chamber is receiving
the target gas while the other M-1 chambers are being purged with clean air.

contain the same set of sensors. Chambers are also isolated from each other, that is,
no airflow circulates between them.

There are two pneumatic circuits: one for clean air and one for the target gas (i.e.
odor charged), which are connected to each chamber. Clean and contaminated air
flows are taken from opposite sides of the MCE-nose device via two separate pumps.
Besides, clean air is forced to flow through an active carbon filter to eliminate possible
impurities.

At any given time, only one chamber is fed with the target gas, while the others
M-1 are being cleaned. This is done thanks to a set of electro-valves placed at the
entrance of each chamber, controlled by embedded software built in the MCE-nose
micro-controller, as will be described later in this section.

At any time, each chamber can be found in one of the following three states:

Clean: A chamber is said to be "clean" if all of its MOX sensors are at their baseline
level. This may happen because either the chamber has not being used yet for
sensing or because it has been injected with clean air long enough.

On-Cleaning: Opposite to a clean chamber, an on-cleaning one is that whose sensors
are not completely cleaned (i.e. they have not reached the baseline yet), despite
the chamber is being injected with clean air.
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Figure 3.4: Different views of the 3D model (a) upper view, (b) bottom view, of the pneumatic
circuit and the main block containing four chambers which can accommodate up to 8 MOX
sensors each.
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Active: The chamber is being injected with the target air.

Figure 3.4 shows some of the 3D models created for the current prototype, which
consists of four chambers with identical configuration which can accommodate up to
8 MOX sensors each. Our choice of such particular number of chambers obeys to a
trade-off between two issues:

• On the one hand, the obvious higher cost and complexity of the device as this
number increases: more sensors, valves, A/D converters, etc. as well as prob-
lems for dissipating heat on the PCB, power consumption, etc.

• On the other hand, the possibility of having an array of sensors at the baseline
level and, consequently, the possibility of sensing at a higher frequency.

The main block, which accommodates the 4 chambers, has been fabricated of
resin with a stereolithography machine. Each chamber has a circular array of 8 sock-
ets to lodge MOX sensors of standard size (8 mm diameter). It can be appreciated in
Figure 3.4(b) how the sensors are hosted. They are introduced from the bottom side
of the main block, leaving the sensing surface inside the chamber and, at same time,
facilitating the electronic connections (pin soldering). A cone at the entrance of the
chamber scatters the incoming airflow evenly directing it towards the active sensing
surface of the sensors. The air is then forced to escape through the upper orifices of
the chamber, as illustrated in Figure 3.5.

Each of the 8 sockets can lodge a different sensor. In our case, each chamber
contains 7 different MOX sensors, with the extra socket employed for a temperature

Sensing MOX surface

Output 
airflows

Input 
airflow

Figure 3.5: Approximate airflow scheme inside each chamber.
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Clean air input

Contaminated air 
input

Electro‐valves
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Figure 3.6: The complete MCE-nose. The current prototype contains 4 chambers, hosting 8
different MOX sensors each.

sensor (ADT7301). The 7 MOX sensors were selected with different gas selectivity
in order to facilitate odor classification. This amount of sensors has demonstrated to
be large enough to allow the recognition of a wide range of odors.

In our prototype, the pumps mounted are EAD NEO IP3 diaphragm pumps: 15V
dc, 180kPa maximum attainable pressure, and working flow of 4 lpm. For each of
the chambers, two SMC S070C6BG32 electro-valves are used: one for the clean and
one for the polluted air flow. To interconnect pumps, electro-valves and chambers, we
have used standard pneumatic PVC tubes with diameters of 8 and 3 mm, as well as
the required plugs. Figure 3.6 shows a picture of the built prototype.

3.3.2 Electronics

Any conventional MOX-based e-nose requires a minimum of electronics to cope with
sensor pre-heating and sensor readings, including signal conditioning and A/D con-
version. In our design, the electronic module has to take care also of the synchro-
nization of the pneumatic circuits by controlling the eight electro-valves (one pair for
each chamber). As seen in Figure 3.7, such electronics has been mounted on a sin-
gle printed circuit board (PCB) which is connected to all the components by means
of four 16-pins connectors (for the gas and temperature sensors) and eight 2-pins
connectors (for the electro-valves).
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Figure 3.7: PCB where all the electronic components have been mounted.

The core component of the PCB is an ATMega16 8-bit micro-controller at 16
MHz, which provides 32 programmable I/O lines to control two A/D 16-bits convert-
ers (connected to the gas sensors), four temperature chips (placed inside each chamber
to measure working temperature), and the eight electro-valves. Additionally, the PCB
comprises a USB connection to a PC host for easy interfacing and a standard JTAG
interface for development.

3.3.3 Embedded software

The firmware we designed for the ATMega16 micro-controller is in charge of con-
trolling the behavior of the MCE-nose components. The operation flow is based on
three main stages, described in Figure 3.8:

• The first stage checks if a data frame containing the information about the next
active chamber is received from the PC. If this is the case, the appropriate sig-
nals are issued such that the electro-valves switch the airflow into the newly
selected active chamber. Notice that the switch strategy that dictates the active
chamber at any given time has not been embedded into the micro-controller,
but it relies on orders from the computer. This decision obeys to our interest in
implementing high-level switching strategies that may take into account infor-
mation from other sensors and the robot task.

• The second stage is in charge of collecting the readings from all the sensors of
the MCE-nose (28 MOX and 4 temperature sensors in our case). This is done
by means of two A/D 12-bits converters of 16 channels each.
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Figure 3.8: Operation flow of the embedded software.

• Finally, all the collected data are packed into one frame, which is assigned a
timestamp and the ID of the active chamber. This data frame is then sent to the
PC via a USB-to-serial UART interface (FT232RL).

3.3.4 Calibration of gas sensors

As depicted above, the output signal of the MCE-nose results from the concatena-
tion of the rise phases of identical MOX sensors, placed in the different chambers.
Nevertheless, in practice, such identical sensors do not response the same and thus,
a calibration is required in order to make their responses as similar as possible. For



3.3. THE MULTI-CHAMBER ELECTRONIC NOSE - AN IMPROVED OLFACTION
SENSOR FOR MOBILE ROBOTICS 47

such calibration, we have to compare the readings of all chambers when exposed to
the same concentration.

To ensure that all chambers are flooded with the same gas concentration, the four
chambers where individually and sequentially flooded during 60 seconds, allowing
their sensors to reach the steady state (see Figure 3.9).

Since only the baseline and the rise phase of each sensor are of interest for the
MCE-nose output (as the decay phases are discarded ), we compensate outputs of
sensors in chamber 1, 2 and 3 to achieve the baseline level and the amplitude of the
reference output (chamber 0). Concretely:

• An offset was added to each sensor output to force them to have a similar
baseline level when sensors are not exposed to target gases.

• A multiplying factor was estimated for each sensor to ensure identical gain. To
account for the non-linear behavior of the sensors we selected an average gain
computed from three different concentrations.
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Figure 3.9: (a) Readings of four TGS-2602 sensors placed in each chamber of the MCE-nose
prototype during the calibration procedure. (b) Comparison of the four sensor readings before
calibration, and (c) after it.
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Figure 3.9(a) shows the readings of TGS-2602 sensors placed in each chamber of
the MCE-nose prototype during the calibration procedure. It may be notice that even
before calibration the readings of the four sensors are all very similar (as reasonably
expected). Figure 3.9(c) plots the readings of the same sensors after the calibration
has been carried out.

3.3.5 Integration of the MCE-nose into a mobile platform

The MCE-nose presented in this chapter has been designed to be integrated into a
mobile robot. Figure 3.10 shows a PatrolBot mobile platform [106] with the MCE-
nose already integrated into it. The robot is also equipped with a SICK and a Hokuyo
laser range scanners and a sonar ring to provide the necessary functionality for local-
ization and obstacle detection. For a detailed description of the mobile platform and
the components onboard, see Appendix A.

One of the main advantages of the MCE-nose is its suitability for mobile olfaction
tasks. The mechanical design of the MCE-noise opens a variety of possible configu-
rations:

• It can work either as a MCE-nose (as explained above) or as a conventional
e-nose by using only one of the chambers. This may be convenient in some
phases of an olfaction task (e.g. odor classification).

Sonar ring

Hokuyo

SICK

MCE‐nose aspiration

On‐board PC

MCE‐nose

Electro valves

Figure 3.10: The MCE-nose integrated in a mobile platform Patrolbot mobile base.
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• Since the aspiration is carried out through a tube, the air input can be con-
veniently placed at any point around the robot. This allows the MCE-nose to
be mounted at any place on the platform, no matter of its shape or size. Also,
olfaction strategies that need to compare concentrations from several points
around the robot (as gradient techniques) are easily accomplished by just mov-
ing the aspiration tube, for example, with a servo motor. Even if no comparison
is needed, having such capability bears some advantages: 1) we are not limited
by the robot nonholonomic constraints while sampling the workspace, and 2)
we reduce the air disturbance caused by the robot movement to a minimum,
since we reach the target point with the tube which generates a negligible tur-
bulent airflow.

Considering the possibilities offered by a MCE-nose integrated into a robotic plat-
form, it is necessary to account for high level software able to exploit such potential
for any robotic olfaction task. These possibilities include: switching between cham-
bers, focusing only on some specific (more suitable) MOX sensors from the array,
taking into account the robot mobility as well as surrounding information from other
sensors of the robot (laser scanner, sonar, ...), etc.

Among others, this software has to deal with the following tasks:

1. To detect abnormal level of a gas (probably while accomplishing a non-specific
olfaction mission), through a pilot "watchdog" sensor from the MCE-nose. This
could be done instead, by a static gas sensor network deployed in the environ-
ment.

2. To classify the target gas. MOX sensors have low selectivity, so the multivariate
response of an array of chemical gas sensors with broad and partially overlap-
ping selectivity can be used as an "electronic fingerprint" to characterize a wide
range of odors or volatile compounds by pattern-recognition means [53]. For
this task, typically only one chamber is necessary, thus no chamber switch is
required. As an illustrative example, Figure 3.11 shows the responses to a spe-
cific odor of seven different MOX sensors within one chamber.

3. Measuring the target gas concentration is crucial for almost all robotic olfaction
tasks, including gas source localization and gas mapping. With the purpose of
obtaining the best estimation of such concentration, is advisable to select, from
the sensors of each chamber, those more sensitive to the target gas. Referring
to Figure 3.11, sensors TGS-2620 and TGS-2600 are good candidates for gas
concentration purposes due to their high sensitivity to that gas.

4. To control and manage complex switch strategies which could take into ac-
count not just the gas sensor readings, but also information provided by other
sensors (laser scanner o camera), as well as the olfaction task at hand (e.g.
plume detection, gradient following, etc).
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Figure 3.11: Readings from seven different MOX sensors within a chamber when exposed to
acetone.

Such software has been implemented under the Open Mobile Robot Architecture
(OpenMORA) [52], based on MOOS [114] and MRPT [108]. This architecture al-
lows us to easily control a robot platform and the available sensors as range lasers,
cameras or sonar, as well as providing high level functionality as obstacle avoidance,
autonomous path planning or localization.

3.3.6 Experiments with the MCE-nose

This section describes different experiments we have carried out to validate the MCE-
nose with regard to the improvement in rapid sensing of gas concentrations. The ex-
periments consist of a static smell test, a mobile experiment with multiple gas sources,
a mobile test with different gas concentration sources and finally a gas mapping exper-
iment. Since the kind of gas to sense was known a priory, neither odor classification
nor sensor selection was required here. The implemented switch strategy is based on
two rules for deciding when to switch and what chamber to switch to:

Rule 1: A switch of chamber must happen whenever the sensor readings from the
current active chamber (being fed with the input stream) start to decay.

Rule 2: Provided a switching event has been triggered by rule 1, it is necessary to
check the state and sensor levels of all the M chambers (clean, on-cleaning and
the active one). The one with the lowest sensor readings is chosen to be the
next chamber to commute to.
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Chamber 1

Chamber 3 Chamber 4

Chamber 2

MCE‐nose output

Figure 3.12: Snapshot of the MCE-nose static smelling experiment. The four plots on the
left side present the readings of each of the four chambers of our current prototype, while the
MCE-nose output is shown on the bottom-right plot. The active chamber is marked in green
(chamber 2 in this case).

Static test

In this experiment the robot was kept still, being the gas source (composed by a small
cup filled with acetone) the mobile element. The experiment consisted in repeatedly
presenting the gas source to the MCE-nose air input, waiting a few seconds and mov-
ing it apart. Figure 3.12 shows a snapshot of the experiment and the responses ob-
tained with every chamber (conventional e-nose) and with the MCE-nose. It can be
appreciated how the MCE-nose output is able to capture the (three) different expo-
sures by changing to a clean chamber whenever the response of the active one (being
odor flooded) starts decaying.

Detecting multiple odor sources

The second experiment was designed to test the behavior of the MCE-nose in the
case of multiple gas sources in a more realistic robotic scenario. The scenario con-
sists of a long corridor where three equal-sized small cups filled with acetone were
placed at 2 meters from each other. Figure 3.13 displays the experiment setup, and a
picture of the MCE-nose integrated in the PatrolBot platform. For the experiment the
PatrolBot was commanded to move in a straight line at a constant speed of 20 cm/s.
Figure 3.14 illustrates the comparison between the outputs of a conventional e-nose
(one chamber) and the MCE-nose.
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2m

2m

Gas Sources
(small caps filled with Acetone)

Figure 3.13: Description of the multiple gas source experiment. Three small cups filled with
acetone where placed along the robot trajectory to test the behavior of the MCE-nose.
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Figure 3.14: Comparison between the readings of a conventional e-nose (right) and the MCE-
nose (left) for the multiple gas source experiment. It can be appreciated how the MCE-nose
can clearly distinguish the three gas sources presented along the robot path, while the conven-
tional e-nose can hardly detect the second source, and how the third one became completely
unnoticed.
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Notice that for such a robot speed, the readings provided for a conventional e-nose
do not reveal the presence of the three odor sources and the low concentration zones
between gas sources are not correctly gauged. The common solution to this problem
would be to slow down the robot speed, so the MOX sensors could have time to
recover their baseline level, which is not possible or practical in many real robotic
applications. Observe, on the other hand, that the MCE-nose is able to provide more
accurate measures.

Detecting multiple odor sources of different concentrations

The objective of this experiment is to demonstrate that using the MCE-nose, the prob-
lem of disguising lower concentrations or even additional gas sources (as stated in
Section 3.2), can be notably palliated.

The experiment was carried out in the same scenario than the previous exper-
iment. In this case, only two gas sources separated one from each other 2m were
used. The first one was a wide open vessel (approximately 15cm diameter), while
the second one was a small cup (4cm diameter) covered by a grid lid to reduce the
gas dissipation. Using this setup, two gas sources of different concentrations were
presented to the robot along its path.

Figure 3.15 shows the raw readings of the experiment. These values (after a pre-
vious normalization) were then applied to an ICP based SLAM process to generate
the map shown in Figure 3.16. We must remark the improvement in the detection
of a low concentration source after a high one. From a comparison of the "peak"
concentrations from the MCE-nose and the conventional e-nose in Figure 3.16, one
may wonder why in the former case the peak seems to extend in a larger area. How-

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

R
ea

di
ng

s
(V

)

MCE-nose
Conventional e-nose

Figure 3.15: 2D comparison of the raw readings between a conventional e-nose (dashed blue)
and the MCE-nose (solid red), when faced to two sources of different concentration.
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Conventional
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MCE‐nose

High conc. Gas source
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Figure 3.16: 3D comparison of the ICP SLAM generated maps between a conventional e-nose
and the MCE-nose when faced to two gas sources of different concentration.

ever, observing the raw readings in Figure 3.15, it becomes clear that the chamber’s
switch in the MCE-nose takes place as soon as the decay phase starts. Thus, the
observed differences are only due to the real differences between experiment repe-
titions. The MCE-nose switches to a different chamber when the readings from the
active chamber decay bellow a threshold. This threshold was set to 0,1volts in the cur-
rent experiment to avoid miss-switches due to noise or spurious readings. Decreasing
the threshold value would mean faster switching after a gas source is detected, but
it could then produce non-desired switches due to noise, spurious or because of the
small fluctuations inherent in MOX sensors.

Gas distribution mapping

The objective pursued with this experiment is to analyze the performance of the MCE-
nose when creating a gas distribution map of a room. A gas source composed by a
10× 2 cm container filled with Acetone was placed in a 6× 4 meters empty room,
next to a wall. The robot was commanded to move following a predefined set of
way-points to force the MCE-nose to prove most of the space.

To be able to compare the results obtained in different trials, a methodology was
established to ensure similar conditions in the room. Door and windows were kept
closed during the experiments and sensors were conveniently preheated before oper-
ation. After each trial, the room was purged of residual gases by opening the door and
windows, creating a strong airflow of clean air for at least 5 minutes.

Figure 3.17 shows a comparative between the MCE-nose and a conventional e-
nose for three different robot speeds. Each map represents the gas distribution esti-
mated in the room at the end of the robot trajectory, making use of the robot positions
given by an ICP-based SLAM method and the Kernel DM+V algorithm [89]. It is im-
portant to keep in mind that these maps come from different runs of the experiment
and, even though we have tried to reproduce the tests in the same conditions, it is in-
evitable the appearance of some gas patches from one test to another. In our opinion,
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Figure 3.17: Comparison of the ICP SLAM generated maps between a conventional e-nose
and the MCE-nose for three different robot speeds.

this explains, for example, the high concentrations near the source when using the
MCE-nose at 10cm/s.

In spite of this consideration, it can be seen how the MCE-nose is able to localize
the gas source more accurately than a conventional e-nose. This improvement is more
apparent when increasing the robot speed, which allows it to perform a simple gas
reconnaissance of the environment in a shorter time while obtaining results of high
quality.

3.4 Overcoming the slow recovery of MOX
sensors through a system modelling
approach

In general, a model seeks to represent a system (empirical objects, phenomena, and
physical processes) in a logical, objective and simplified way, allowing to predict
the output of the system provided the input. Thus, a model of a MOX sensor must
predict the sensor resistance (transient and steady state) when exposed to a certain
gas concentration profile. Our interest in having such a model is to use it in a reverse
way: given a sequence of measurements from the transient response of the MOX
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sensor, we seek the exciting gas distribution through the estimation of the steady state
sensor resistance.

The modeling of the dynamics of MOX sensors has been addressed in the liter-
ature for a variety of purposes. Gardner et al. [42] proposed a non-linear diffusion-
reaction model to obtain the theoretical transient and steady state responses based
on the reactions taking place at semiconductor level. This model is not applicable to
our approach since we pretend to obtain the gas distribution from the sensor readings
rather than from the electrical and physical properties of the sensors. Later, aiming
at increasing the response speed of gas sensors, T. Yamanaka et al. [158] reported a
two-phases (corresponding to the rise and decay phases) second order linear model to
describe the transient response of a semiconductor gas sensor from a visualized gas
distribution image. Despite its success, this model requires the use of a CCD camera
as a gas detector, which is neither our case.

More recently, E. Llobet [94] reviewed the principal methods for dynamic anal-
ysis of the gas sensor response. Interestingly, the main use of these methods is to
perform gas classification based on the transient response, from which a feature vec-
tor is extracted. For example, in [59] Box–Jenkins linear filters were applied to model
an array of MOX sensors in the presence of four alcohols and water vapor with the
aim of reducing the effect of the sensor drift in a classification process, and in [133] a
multi-exponential transient spectroscopy (METS) method is proposed to improve the
selectivity of chemical sensors in the analysis of gas mixtures.

Especial mention deserves some works that rely, as it is our case, on modeling
the sensor response to predict steady state values from the initial part of the transient.
In [111], a so-called ARMA and multi-exponential models are proposed for reduc-
ing the time necessary to calibrate a sensor array. Nevertheless, since the focus is
on the calibration of MOX sensors, the dynamic models are only applied to the rise
transient signals recorded in Closed Sampling Systems over long time periods (over
800 s), while we aim to predict the gas distribution profile in real time and in OSS.
In [117], A. Pardo et al. propose and compare different nonlinear inverse dynamic
models of gas sensing systems for quantitative measurements. However, the consid-
ered dynamic conditions differ from those of OSS. First, a measurement chamber is
used to obtain the gas sensor readings, which implicitly modifies the dynamic prop-
erties of the measured signals, and second, the acquisition frequency is too low (one
sample per minute) to reflect the fast and highly dynamic changes of the gas concen-
tration in OSS.

Based on the multi-exponential model proposed elsewhere [111, 54], and taking
into account the differences between rise and decay phases of MOX sensors, in this
section we exploit a simplified version of it, where only one exponential is consid-
ered to model each phase (see Figure 3.18). According to this model, mathematically
expressed in Eq. (3.1), three phases can be considered in the output of a typical MOX
gas sensor when exposed to an ideal step in concentration: baseline, gas measurement
(rise) and recovery.
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Figure 3.18: Ideal response of an MOX sensor (solid red line) when excited with a step gas
concentration (dashed blue line). The curve shows the three phases of a measurement: (I) base-
line, (II) gas measurement, and (III) recovery phase.
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R′0 +(R′max−R′0)e
−(t−ts−∆t)

τd te < t

(3.1)

where τr and τd are the time constants for the rise and recovery phases respectively, ts
and te represent the starting and ending times of the step excitation, R0 and R′0 are the
sensor response level before and after the stimulus, Rmax is the saturation level, and
R′max is the maximum response level during the gas measurement phase. Notice that
R′max is usually lower than Rmax for short input pulses, as depicted in Figure 3.18.

This model was used by [81] for characterizing the response of an MOX-based
e-nose carried by a robot. In this section we also exploit this model but making use
of its inverted form, that is, to predict the gas distribution that the sensor is exposed
to from its readings.

3.4.1 The proposed MOX model

As shown in the block diagram of Figure 3.19, three different sub-processes can be
distinguished in an MOX-based gas sensing process:

1. A non-linear static system representing the measurement electronic circuit (Ω
to V ).
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Figure 3.19: Block diagram of a smelling process with an MOX gas sensor. The sensor is
excited by a volatile [ppm] producing a variation in the sensor resistance that is measured as
an electrical signal [V] by means of a measurement circuit.

2. A transformation (Ω to Ω) that captures the non-linear rate at which the sensor
resistance varies over time (although we have separated the transduction and
dynamic phases to explicitly denote both functionalities, both stages take place
within the MOX transducer and they are most likely coupled).

3. A signal transduction mechanism (ppm to Ω) which results from the chemical
interaction between the sensor sensitive surface and the molecules of reducing
gases.

Next, we model each of these stages and invert them to come up with a complete
inverted MOX sensor model. It is important to remark that the proposed inverted
model does not aim to recover the gas concentration (X[ppm]), which corresponds
to a sensor quantification problem not addressed here, but only the gas distribution,
providing relative results proportional to the gas concentration (R1).

Measurement circuit

This stage stands for the electronic circuit in charge of measuring the changes in the
sensor resistance, which typically consists of a simple voltage divider:

Y =VRL(t) =
VCC×RL

R2(t)+RL
(3.2)

where VCC is the circuit voltage and RL is the load resistance.
Since the magnitude measured is the output voltage Y (i), we can easily recover

the MOX resistance changes R2(i) by solving Eq. (3.3).

R2(i) =
RL× (VCC−Y (i))

Y (i)
(3.3)
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Transient behavior stage

As reported by previous authors [49, 81], the transient response of an MOX sensor
can be expressed by two first-order systems, as depicted in Eq. (3.1). It clearly resem-
bles a low-pass filter response with the particularity that the filter cutoff frequency
( fc = 1

2πτ
) is different for each phase the sensor is working at (rise or recovery).

Equation (3.4) presents the two phases transfer function of this stage in the Laplace
domain, where a common static delay (td) has additionally been considered in both
phases to compensate for the delay introduced by the pneumatic circuit used to draw
in the gas and flow it through the sensors:

R2(s)
R1(s)

=


A

τrs+1 e−tds ,for rise phases

A
τds+1 e−tds ,for recovery phases

(3.4)

where s is the Laplace variable, A is the filter gain, τrandτd are the filter time constants
in the rise or recovery phase respectively, and td (in seconds) is the system delay.
For nomenclature clarification τrecovery has been denoted as τd , where the subindex d
stands for decay.

Since our interest remains in estimating the volatile distribution that the sensor
is being exposed to, given the sensor readings, we work out R1 as a function of
the sensor resistance measurements R2 by applying the inverse Laplace transform
to Eq. (3.4). As the transfer function has different expressions according to the phase
(rise or recovery) that the sensor is working at, the parameters of the resulting dif-
ferential equation will have to switch accordingly. Approximating the derivative of
the measured sensor resistance R′2 by a backward first order finite difference, such
differential equation can be written as:

R1(i−N) ∝ R2(i)+ τ
R2(i)−R2(i−1)

4t
(3.5)

where R1(i) is the unknown steady resistance value for the given gas concentration at
the time step i, R2 is the measured sensor resistance, τ is the time constant for either
the rise (τr) or the recovery phase (τd), N is the number of samples for the system
delay, and 4t is the time between samples. Notice also that the scale factor A from
Eq. (3.4) has been dropped.

As observed in Eq. (3.5), at each time step this dynamic model requires to know
the value of parameters τr and τd , and the phase the sensor is working at. The latter
may be determined from the slope of the measured MOX resistance R2, considering
that the sensor is working under rise phase for positive values of the derivative, and
under decay phase for negative values of it.

Notice that instead of working with the sensor resistance (which is inversely pro-
portional to the volatile concentration), it may be more convenient to deal with the
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sensor conductance (GMOX = 1/RMOX ), which is proportional to the gas concentra-
tion.

For estimating the values of τr and τd , a common practice in system modelling
is that of identifying the parameters of the system upon its step response [115]. The
problem with such procedure is that the time constants, in practice, depend not only
on the type of volatile but also on its concentration [117]. In this chapter this depen-
dency is made explicit by adjusting a polynomial regression model over a sequence
of concentration pulses with different amplitudes for each target gas. In Section 3.4.3,
an example of such relation is depicted for the target gas ethanol.

Transduction stage

The transduction stage is commonly defined by the sensitivity characteristics and the
temperature and humidity dependencies of the transducer. For the case of Closed
Sampling Systems, those characteristics are usually provided by the sensor manufac-
turer, relating the volatile concentration [ppm] to the sensor resistance ratio RS/R0
(sensor resistance in gas over sensor resistance in air) for different target gases and
test conditions. Nevertheless, those sensitivity characteristics are obtained by mea-
suring steady state values of the MOX sensor resistance after very long and constant
exposure times, which are not applicable to Open Sampling Systems and thus not
considered in this chapter.

3.4.2 Signal conditioning and preprocessing

The proposed model-based approach given by Eq. (3.3) and Eq. (3.5) relies on the
sensor readings to obtain an estimation of the gas. As can be appreciated, a first order
derivative needs to be computed to obtain such estimation, which notably degrades
the signal-to-noise ratio and consequently the accuracy in the estimation (see Fig-
ure 3.20). Additionally, MOX sensors are susceptible to long and short term drift
[119], gradually changing the sensor resistance even if exposed to exactly the same
gas concentration under identical environmental conditions.

It then becomes necessary to carry out a signal conditioning to prepare the sensor
readings to the posterior estimation process. Initially, for the purpose of drift compen-
sation and dynamic range enhancement, the raw sensor readings R2(i) are divided by
the sensor baseline resistance at t = 0, that is, R2(0). This transformation is known as
relative baseline manipulation [119]. Later, in order to mitigate the noise effects on the
model, a low pass filter followed by a sub-sampling process are applied to the signal,
as depicted in Figure 3.20. The cutoff frequency of the filter and the down-sampling
rate have been determined experimentally according to the sampling frequency.

3.4.3 Experimental results

This section presents three different experiments designed with increasing complex-
ity to test how the proposed model can anticipate the steady state values of the sen-
sor resistance from transient measurements in Open Sampling Systems. We start by
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Figure 3.20: Noisy sensor conductance readings and its derivative (solid red line), and the
corresponding filtered versions (dashed blue line).

testing our approach in a scenario where airflow and volatile distribution were well
controlled. Then, two experiments of gas distribution mapping in unmodified envi-
ronments are described.

Train of gas pulses in a controlled scenario

This experiment is designed to validate, in the simplest possible way, the ability of
the proposed approach, given by Eq. (3.3) and Eq. (3.5), to estimate the volatile dis-
tribution that the MOX gas sensors are being exposed to.

Since knowing the ground truth distribution of a volatile in an OSS is a tough task
(we can even say utopian), a specific setup was designed to keep its concentration as
constant as possible and to confine it in a predefined region, avoiding the dispersion of
gas particles to undesired locations. The experiment setup is depicted in Figure 3.21.
The gas source, composed by a small cup filled with acetone, was placed inside a
cardboard box with a small upper aperture. A fan located at the bottom of the box
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Figure 3.21: Picture of the Patrolbot mobile robot, the e-nose and the scheme of the gas source
setup.

(beneath the gas source) was used to generate a constant upstream airflow pushing
the volatile through the chamber aperture, while a second fan, placed about 20 cm
over the box, sucked up the air from the box. This setup allows us to keep the volatile
confined in an approximated gas column between both fans.

A Patrolbot robotic base (see Appendix A) was then placed in front of the gas
source and commanded to rotate with constant angular speed ω . The e-nose, placed
at the right side of the mobile base, then described a circular trajectory being exposed
to the volatile only when passing through the gas column. The resulting excitation
signal was then a train of identical duration pulses. The position of the source at each
lap (and consequently the duration of each excitation pulse) was precisely obtained
from the radial scan provided by a laser range scanner (SICK LMS200) carried by
the Patrolbot.

Strictly speaking, because the sensor needs some time to entirely enter into the
odor column, the excitation signal will not be a perfect pulse, but the deviation is
small and can be neglected.

The pre-calibration of the time constants with the gas concentration, as depicted
in Section 3.4.1, has been achieved by a polynomial regression over more than 50
short pulses with different amplitudes of the same volatile, in this case ethanol. The
resulting dependency is depicted in Figure 3.22. Please, note that since the gas con-
centration is not available, we are considering the sensor conductance (1/R2) instead.

Figure 3.23 presents the results of this experiment for a robot angular speed of
30◦/s, that is, the e-nose is exposed to the same pulse every 12 s. The width of the
pulse (in seconds) is computed from the robot rotational speed and the angular refer-
ences detected from the laser scan. The sequence of rise and recovery phases in the
sensor output (solid red line) can be observed. It is also clear how the long tails of the
recovery phases are interrupted by the next rising phase. (This phase overlap produces
an interesting accumulation effect in the sensor output, increasing the sensor reading
value on each exposition to the gas source even though the volatile concentration was
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Figure 3.22: Pre-calibration of the time constants τr and τd with the gas concentration (i.e.,
sensor conductance). Red circles and green squares represent the values of τr and τd respec-
tively, while the lines represent their linear regression.

50 60 70 80 90 100 110 120 130

Time(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

se
ns

or
 r

es
po

ns
e

N
or

m
al

iz
ed

ga
s 

di
st

rib
ut

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.23: Results of the experiment in the controlled scenario for a robot angular speed
ω = 30◦/s. The train of acetone pulses (ground truth) is plotted as green shaded bars, the
normalized raw sensor readings (Y) (See Figure 3.19) are plotted as a solid red line and the gas
distribution estimated by the proposed approach is plotted as a dashed blue line.



64 CHAPTER 3. IMPROVING MOX-BASED GAS SENSING FOR MOBILE ROBOTS

constant along the experiment duration. The study of this effect is out of the scope of
this thesis.)

As can be noticed, the estimation of the gas distribution (dashed blue line) as
provided by applying the proposed model is a more accurate estimation of the train of
pulses than the raw sensor readings. The improvement is significant for the recovering
phases, not only because the overlap between phases is avoided (the recovery phase
is interrupted by the next rise phase before reaching the baseline), but because our
estimation provides values of the gas distribution more consistent with the reality.

1D gas distribution mapping

The motivation of this experiment is to demonstrate the utility of the proposed ap-
proach in the generation of gas distribution maps, a challenging problem in robotic
olfaction [96, 90].

As described in the introduction, the slow recovery of MOX sensors becomes a
serious drawback when the sensors are carried on a vehicle (typically a mobile robot).
In such cases, the adopted solution is to reduce the vehicle velocity to a few cm/s,
increasing considerably the execution time of the task. We demonstrate here that our
estimation of the gas distribution to a certain extent removes the need to reduce the
robot velocity for maintaining the map accuracy.

For such a goal, two different gas distribution maps of an unmodified long indoor
corridor are generated by driving the robot at two different velocities. Figure 3.24
shows a comparison of the gas maps generated using the Kernel-based method pro-
posed in [85] for a reduced robot speed of 0.1 m/s, while Figure 3.25 represents the
results of a similar experiment using a robot speed of 0.4 m/s.

In both cases, the robot travels the corridor twice (round trip), passing over a cap
filled with acetone placed in the middle of it. The map evolves as the robot moves and
collects new sensory data, so we decided to analyze the map as built, at two different
points of the robot path: at the end of the corridor (top row sub-figures), and at the
initial position after the task has been completed (bottom row sub-figures).

As can be seen from the results, the “tail" effect produced by the slow recov-
ery of MOX sensors leads to a gas distribution map with high concentrations along
the robot path once the source has been hit. As expected, this effect is more harmful
when increasing the robot speed, one of the reasons why the speed of olfactory robots
is usually kept small. Please, note how this effect is substantially palliated when ap-
plying the proposed gas estimation (see Figure 3.25(e) and Figure 3.25(f)), even when
the robot speed is high.

As a conclusion, our approach not only presents a noticeable improvement in
the correct localization of the gas source but also provides confident values of the gas
distribution along the robot path. This is important since in most cases it is desirable to
not only know the location of the gas source but also know how the volatile emanating
from it has spread in the surroundings.
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Figure 3.24: Snapshots of the maps generated in the 1D gas distribution mapping experiment
at the middle and end of the robot path (left/right column, respectively), for a robot speed of
0.1m/s. Top row sub-figures illustrate a comparison between the normalized sensor readings
and the gas distribution estimated here. Middle and bottom row sub-figures show a 3D recon-
struction of the maps generated with the raw MOX readings (middle row), or the estimation
provided by the proposed model (bottom row).
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Figure 3.25: Snapshots of the maps generated in the 1D gas distribution mapping experiment
at the middle and end of the robot path (left/right column, respectively), for a robot speed of
0.4m/s. Top row sub-figures illustrate a comparison between the normalized sensor readings
and the gas distribution estimated here. The middle and bottom row sub-figures show a 3D re-
construction of the maps generated with the raw MOX readings (middle row), or the estimation
provided by the proposed model (bottom row).
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2D gas distribution mapping

In this last experiment, we pursue to test our model-based estimation of the gas con-
centration in a more complex environment. The idea is to accomplish a complete
olfaction mission in a realistic scenario where no alterations of the environment are
done. Typical examples are the localization of leaks or the declaration of areas of high
concentration levels of harmful gases.

The testing scenario consisted of two adjacent rooms communicated through a
small corridor (see Figure 3.26). The robot inspected both rooms following the pre-
defined path marked as solid red line, at a speed of 0.3m/s. The gas source, composed
by a cardboard plate impregnated in ethanol, was placed on the floor along the robot
path. To be able to compare the maps generated from the raw sensor readings with
those provided after applying the proposed MOX sensor model, doors and windows
were kept closed to avoid uncontrolled airflows.

Figures 3.27 and 3.28 depict the mean and predictive variance gas distribution
maps generated by the Kernel DM+V algorithm [89], when fed with the MOX sensor
readings and the model-based gas estimation, respectively.

Focusing on the mean maps, it can be seen that in both cases the maximum con-
centration falls near the real source location (marked as a white circle). However,
when the map is built from the raw sensor readings, a high concentration area ap-
pears along the corridor connecting both rooms. The shape reassembles that of a gas
plume generated by a dominant airflow, which we know is not possible since doors
and windows were kept closed during the experiment. This ”fake” plume is attributed
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Figure 3.26: Map of the experimental area used in the 2D mapping experiment. Blue points
represent obstacles detected by the onboard SICK laser scan, the robot path is marked as red
solid line, and the gas source position is pointed with a green circle.
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Variance mapFigure 3.27: Mean and predictive variance gas distribution maps of the inspected area gener-
ated by the Kernel DM+V algorithm when fed with the sensor readings (after baseline manip-
ulation and delay correction). The gas source location has been marked as a white circle.
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Figure 3.28: Mean and predictive variance gas distribution maps of the inspected area gener-
ated by the Kernel DM+V algorithm after applying the proposed model-base estimation of the
gas concentration. The gas source location has been marked as a white circle.

to the actual robot path and the slow recovery of MOX sensors. When building the
map from the gas concentration estimated by the proposed model (Figure 3.28), this
"fake" plume does not appear, correctly representing the gas distribution in the in-
spected area.

Focusing now on the predictive variance maps, it has been previously reported
that the variance of a set of gas concentration measurements has been suggested as
a feature that can identify the location of a source of gas [85, 57]. Following this
principle, it can be seen that the gas source cannot be precisely located in the first case
(Figure 3.27) since there are high variance values not only nearby the real location of
the source but also along the corridor. Again, the application of the proposed MOX
model leads to a predictive variance map where all high variance values fall near the
real source location, allowing a correct estimation of it.
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3.5 Conclusions and outlook

In this chapter, we have presented two approaches to deal with the long recovery
period of MOX gas sensors. This is a serious drawback for mobile robot olfaction
since a rapid cycle of measurement is required in many olfaction-related tasks: source
finding, gas concentration mapping, etc.

First, we have introduced a new electronic nose, the MCE-nose, which partially
overcomes this problem by accommodating a set of redundant sensors in different
chambers. These redundant sensors are alternatively activated, ignoring the sensor
output when a decay phase is detected and delegating the sensing task to another
clean, almost identical sensor. The output signal of the whole setup results then from
the concatenation of the rise phases of a sequence of MOX sensors. A prototype of
the MCE-nose has been built and integrated in a mobile robotic platform under the
OpenMORA robotic architecture. Then, a modelling approach which compensates
the slow dynamic behavior of the MOX sensor, by forecasting the steady state values
of the sensor resistance from a sequence of transient measurements has been pre-
sented. The exploited model is based on two first order systems (rise and recovery)
with time constants that depend on the sensor reading amplitude.

Both approaches have been validated in different scenarios, demonstrating their
utility in applications like gas source localization or gas distribution mapping. Addi-
tionally, we have proved that these approaches enable a considerable increase in the
speed at which a mobile base carrying the MOX-based e-nose can inspect the envi-
ronment, which directly implies an important reduction in the execution times of the
olfaction task.

Future work includes some improvements in the MCE-nose, such as the incor-
poration of another electro-valve to purge the pneumatic circuit or the enlargement
of the tubes section to increase the airflow through the sensor’s surface. Related to
the proposed model, modeling additional parameters as temperature and humidity
to improve the gas distribution estimation in real complex scenarios will be consid-
ered. Besides, the study of the transduction stage (quantification) for open sampling
systems will be considered to complete the MOX sensor model.





Chapter 4
Gas quantification with
MOX sensors in open
sampling systems

Gas quantification based on the response of an array of metal oxide
(MOX) gas sensors in an open sampling system is a complex prob-
lem due to the highly dynamic characteristic of turbulent airflow and
the slow dynamics of the MOX sensors. However, many gas related
applications require to determine the gas concentration the sensors
are being exposed to. Due to the chaotic nature that dominates gas
dispersal, in most cases it is desirable to provide, together with an
estimate of the mean concentration, an estimate of the uncertainty
of the prediction. This chapter presents a probabilistic approach for
gas quantification with an array of MOX gas sensors based on Gaus-
sian Processes, estimating for every measurement of the sensors a
posterior distribution of the concentration, from which confidence
intervals can be obtained. The proposed approach has been tested
with an experimental setup where an array of MOX sensors and a
photo ionization detector (PID), used to obtain ground truth con-
centration, are placed downwind with respect to the gas source.
Our approach has been implemented and compared with standard
gas quantification methods, demonstrating the advantages when es-
timating gas concentrations.
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4.1 Introduction

The problem addressed in this chapter is the estimation of gas concentration from
the readings of an array of metal oxide semiconductor (MOX) gas sensors (see Sec-
tion 2.2) deployed in an open sampling system (OSS). In other words, the problem
can be formalized as finding a function that maps the readings of N gas sensors to-
gether with any other extra parameters (like temperature and humidity) to a posterior
distribution over concentrations.

Concentration estimation is a crucial step for realistic gas sensing applications
since legal requirements and regulations are expressed in terms of absolute gas con-
centration, toxicity levels, etc. For example, it would be of little utility for many
applications if we could detect a gas leak in an industrial scenario but we were un-
able to quantify the amount of leaked gas: should an alarm be issued for workers to
abandon the area, or is localization of the source and subsequent notification to the
maintenance unit enough to handle the problem?

Gas quantification using an array of MOX sensors in an OSS is indeed an impor-
tant problem. Most of the previous works dealing with OSS do not estimate the gas
concentration but work directly with the sensor signal (conductance readings in case
of MOX gas sensors). In contrast to gas quantification with sensors within a sensing
chamber (where controlled conditions can be imposed), gas quantification in OSS
implies additional complications due to the many sources of uncertainty. The most
relevant source of uncertainty is the exposition of the sensors to the turbulent airflow
that brings the chemical compound in contact with the sensors. As a consequence,
given the slow dynamics of MOX gas sensors and the rapid fluctuations in concentra-
tion due to turbulent airflow, the sensors never reach a steady state but continuously
fluctuate [146].

Instead of trying to find a deterministic function for mapping directly the sen-
sors readings to concentration values, in this chapter we calculate instead a posterior
distribution over concentrations c at time t given the measurements of N sensors
rt = (r1(t),r2(t) . . .rN(t)) at times t = (t1, . . . , tk). That is, we search a probability
density function:

p
(
c(t)|rt1 , . . . ,rtk

)
(4.1)

where k is the number of past sensor readings considered for the prediction.
Tasks like chemical detection, gas source localization, gas distribution mapping,

and odor trail tracking are common tasks for working in OSS. For this kind of systems
it is acceptable to have only an approximate estimate of the concentration if there is
also an indication of the corresponding confidence. This is exactly what the method
proposed in this chapter provides.

We propose to estimate the posterior in Eq. (4.1) using a Gaussian Process (GP)
model [123]. Gaussian Processes provide principled supervised machine learning
methods which, given a set of samples (i.e. pairs of sensor readings and their cor-
responding concentration), can estimate the posterior joint probability of the process.



4.2. RELATED RESEARCH 73

We analyze gas quantification using either a single sensor or the whole sensor array.
In the latter context we additionally investigate how Automatic Relevance Determi-
nation (ARD) [112, 98] can be used to identify which sensors in the array contribute
most to the estimate of the concentration posterior distribution. Finally, we analyze
to which extent considering past sensor readings can improve the accuracy of proba-
bilistic quantification.

The rest of this chapter is outlined as follow: After a discussion of related research
in Section 4.2, we introduce in Section 4.3 the basics of Gaussian Process regression
for gas quantification, giving especial attention to learning a GP from the data. Finally,
Section 4.4 presents some experimental results under different configurations of the
GP.

4.2 Related research

Estimation of gas concentration from raw readings of MOX-based gas sensors has
been traditionally focused on setups where such sensors are enclosed inside a cham-
ber, where environmental conditions, gas exposure times and concentrations are known
and controlled. This setup allows the measurement of steady state values, which are
used as input to a regressor. Under such controlled conditions, the relation between
sensor conductance (Ω−1) and gas concentration (ppm) is usually modelled as an
exponential [61]:

gi ≡
1
ri
= Ai · cαi (4.2)

where gi is the conductance of sensor i within the array (inverse of sensor resistance
ri), c is the gas concentration, and Ai and αi are the parameters of the exponential
model to be estimated during an initial training process.

For concentration estimation with an array of MOX sensors, multivariate linear
regression methods like Principal Component Regression (PCR) and Partial Least
Squares Regression (PLSR) have been proposed [45, 143, 23]. The main motivation
behind the use of these two methods is the strong correlation of the response of dif-
ferent MOX sensors. This allows both PCR and PLSR to reduce the dimensionality
of the input space before fitting a regression function, thus reducing the possibility
of curse of dimensionality related issues. Alternatively, non-linear estimation meth-
ods like Artificial Neural Networks (ANN) [55, 12] or kernel algorithms like Support
Vector Regression (SVR) [138, 19] have also been proposed.

It is worth noting that some authors consider the transient information for gas
quantification with MOX sensors. In [111], a multi-exponential model is used to de-
scribe the sensor dynamics and to predict the steady state value of the sensors which
is then mapped to a concentration based on the initial values of the transient state.
These existing approaches rely on steady state measurements of the sensor. Thus,
they are not immediately applicable to OSS because steady state values are almost
never reached [146].
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The work in [151] addressed gas quantification for urban pollution monitoring.
Measurements collected over a long period of time are averaged out and therefore the
dynamic information in the sensor response is discarded. The focus of this chapter is
instead on applications where sensors are deployed in a highly dynamic environment,
where they are exposed to intermittent patches of gas.

Most of the works in mobile robot olfaction avoids quantification issues and use
instead the conductance readings of the sensors as an approximate measure of the gas
concentration. An exception is [66], where Ishida et al. propose to use steady state
calibration to obtain a rough approximation of gas concentration with an OSS.

All the methods mentioned ignore the uncertainty in the quantification, while for
OSS it is desirable to provide the uncertainty together with the concentration estimate.
The GP-based method detailed in the following section generates an estimate of the
uncertainty (as a variance), which can be used, for example, to calculate confidence
intervals for the predictions.

4.3 An algorithm for probabilistic gas
concentration estimation

This section details our proposal for the concentration estimation in MOX-OSS. Ini-
tially, two signal preprocessing methods and their influence on the posterior distri-
bution estimation are described. Next, Gaussian Process regression for the particular
case of gas quantification with an array of sensors is summarized, and how Automatic
Relevance Determination can be used to select the model parameters. Finally, two dif-
ferent loss functions are proposed for evaluating the results, allowing a comparison
between the various proposed configurations.

4.3.1 Signal preprocessing

In the first step, the raw sensor resistance readings ri(t) are divided by the baseline
of the sensor at t = 0, that is, ri(0). This transformation in Eq. (4.3), known as rela-
tive baseline manipulation [119],is applied for drift compensation and dynamic range
enhancement:

r̃t = [r̃i(t)]
N
i=1 , r̃i(t) =

ri(t)
ri(0)

(4.3)

Next, GP regression is used to predict the gas concentration c(t) from the values
r̃t. However, considering the commonly assumed exponential relation between sensor
resistance and the concentration, see Eq. (4.2), we will also investigate applying a
logarithmic transformation and perform regression between log(r̃t) and log(c(t)).

In summary, we will compare two regression problems:

c(t) = f1 (r̃t) (4.4)
logc(t) = f2 (log r̃t) (4.5)
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4.3.2 Gaussian Process regression for gas concentration
estimation

In the general case, the process of inferring the relationship f : rt 7−→ c(t) between
the response of an array of sensors and the gas concentration using a training dataset
D = {(rt j ,c(t j)| j = 1, ...,n} is a supervised machine learning problem. Among the
numerous available options, GPs provide a powerful non-parametric tool for Bayesian
inference and learning [123]. GPs can be seen as a generalization of the Gaussian
probability distribution to distributions over functions. That is, they perform inference
directly in the space of functions, starting with a prior distribution over all possible
functions and subsequently learning the target function from data samples. Defining
a prior over functions corresponds to making assumptions about the characteristics of
the function f , as otherwise any function which is consistent with the training data
will be equally valid and therefore the learning problem would be ill-defined.

A GP is completely specified by its mean and covariance functions, m(rt) and
k(rt,rt′) respectively:

m(rt) = E [ f (rt)] , (4.6)
k(rt,rt′) = cov( f (rt), f (rt′)) (4.7)

= E [( f (rt)−m(rt))( f (rt′)−m(rt′))] . (4.8)

we denote the GP as:

f (rt)∼ G P (m(rt),k(rt,rt′)) . (4.9)

To account for noise in the sensor it is assumed that the observed concentration
values c(t) are corrupted with an additive i.i.d. Gaussian noise with zero mean and
variance σ2

n , that is:

c(t) = f (rt)+ ε, (4.10)
ε ∼ N (0,σ2

n ).

It is important to notice that we did not assess experimentally whether the noise
is i.i.d. with Gaussian distribution. We rather make this assumption to obtain a closed
form solution, and validate the resulting predictions with real sensor data.

In our case of study we consider GPs with zero mean and the commonly used
squared exponential (SE) covariance function, that is:

m(rt) = 0, (4.11)

k(rt,rt′) = σ
2
f exp

(
−1

2
‖ rt− rt′ ‖2

`2

)
, (4.12)
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where σ2
f is the overall variance hyper-parameter and ` is the characteristic length

scale. It is common but not necessary to consider GPs with zero mean. Note that
the mean of the posterior process is not restricted to be zero. The choice of the SE
covariance function leads to GP predictions that are smooth over the characteristic
length scale. That is, if rt ≈ rt′ , then k(rt,rt′) approaches its maximum and f (rt)
is strongly correlated with f (rt′). For large distances between rt and rt′ , k(rt,rt′)
approaches 0. So, when predicting the concentration value for new data points, distant
observations will have a negligible effect. The region of influence, depends on the
scale parameter `.

The regression model depends on the selection of the hyper-parameters, which
are summarized in a vector θ = (`2,σ2

f ,σ
2
n ). The optimal hyper-parameters are found

by maximizing the marginal likelihood function p(c|R,θ), where c is a vector of
training concentration values, R is the matrix containing the measurements of the
sensor array, and θ are the hyper-parameters. As it is common practice, we minimize
the corresponding negative log-likelihood to avoid numerical issues:

− log(p(c|R,θ)) =
1
2

c>K−1c+
1
2

log |K|+ n
2

log2π (4.13)

whereK = k(rt,rt′)+σ
2
n I

To find the minimum of Eq. (4.13) we use the scaled conjugate gradient method,
which requires the calculation of the partial derivatives of the log marginal likelihood
w.r.t. the hyper-parameters:

∂

∂θ j
log(p(c|R,θ)) =

1
2

tr
[(

αα
>−K−1

)
∂K
∂θ j

]
(4.14)

whereα = K−1c

The complexity of this step is dominated by the matrix inversion K−1 in Eq. (4.14),
which has a complexity O(n3) with n being the number of training points. This rep-
resents one of the principal inconveniences of GP.

Learning the calibration GP corresponds to the selection of the hyper-parameters.
The GP then allows to predict gas concentration values c∗ and a corresponding vari-
ance for arbitrary sensor resistances r∗.

The posterior distribution over functions (our prediction) is also a Gaussian, and
it is given by:

c∗|R,c,R∗ ∼ N (c̄∗,cov(c∗)) ,where (4.15)

c̄∗ , E[c∗|R,c,R∗] = K(R∗,R)[K(R,R)+σ
2
n I]−1c

cov(c∗) = K(R∗,R∗)−K(R∗,R)[K(R,R)+σ
2
n I]−1K(R,R∗)
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and where R = {r1...rn} is the n×N matrix of the n training samples of dimensional-
ity N, R∗ the matrix for the testing inputs, K(·, ·) refers to the matrix with the entries
given by the covariance function k(·, ·) and c the vector of the observed concentrations
ci.

Note that the predictive distribution is based on a mean value c̄∗ (our best estimate
for c∗), which is a linear combination of the observed values c, and a variance value
cov(c∗) which denotes the uncertainty in our estimation, and does not depend on the
observed targets but only on the inputs.

4.3.3 Automatic relevance determination

Automatic Relevance Determination (ARD) is a method based on Bayesian interfer-
ence for pruning large feature sets with the aim to obtain a sparse explanatory subset.
Making use of this powerful tool we can consider different configurations of the input
space of higher dimensionality, and then allow ARD to select the most relevant fea-
tures, which avoids overfitting due to high input dimensionality. In order to introduce
ARD Eq. (4.12) can be rewritten as:

k(rt,rt′) = σ
2
f exp

(
−1

2
(rt− rt′)

>M(rt− rt′)

)
, (4.16)

where M denotes the diagonal weight matrix M = `−2I.
We have seen how maximizing the log marginal likelihood can be used to deter-

mine the value of the hyper-parameters. By incorporating a separate hyper-parameter
`i for each input variable [123], i.e. for each sensor in the array, we modify M to be:

M = diag
(
[`−2

1 , `−2
2 , . . . , `−2

n ]
)

(4.17)

where ` = [`1, `2, . . . , `n] is a vector of positive values, corresponding to the length-
scale of each input variable. This is in contrast to a global hyper-parameter ` for all
input variables.

Since the inverse of the length-scale determines how relevant an input is, the
extension (4.17) enables to identify the importance of each different input– if the
length-scale has a very large value, the covariance will become almost independent
of that input, effectively ignoring its values during the inference.

ARD is performed during the training phase of the GP, specifically during the
selection of the covariance function hyper-parameters. When the inputs related to a
sensor are discarded by ARD, the corresponding sensors can be excluded from the
array. ARD has been applied for two different configurations of the input space: (i)
when the whole sensor array is considered at one instant of time in the inference pro-
cess and (ii) when additional features from previous time steps of the sensor response
are considered to account for the dynamics of the signal.
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4.3.4 Evaluation of the predictions

To compare different configurations of the GP based quantification proposed in this
chapter, among themselves, and with other methods previously proposed in the liter-
ature, two performance measures are proposed:

Root Mean Squared Error (RMSE): The RMSE is calculated as the difference be-
tween the ground-truth concentration, obtained with the readings from a photo
ionization detector - PID (refer to Section 2.2), and the expected value of the
predictive distribution obtained from Eq. (4.15).

RMSE =

√
1
n

n

∑
i=1

(ci− c̄∗i)2 (4.18)

Notice that the RMSE takes only into account the predictive mean, while it ig-
nores its uncertainty. However, this indicator allows to compare the predictions
of the proposed GP quantification approach with other regression methods, like
Partial Least Squares Regression (PLSR) or Support Vector Regression (SVR),
which do not provide any estimation of the prediction uncertainty.

Negative Log Predictive Density (NLPD): The NLPD is a standard criterion to eval-
uate probabilistic models (see Eq. (4.19)).

NLPD =−1
n

n

∑
i=1

log(p(ci|ri)) (4.19)

It is worth noting that the NLPD considers the whole posterior distribution and
not only its expected value. In general, more negative NLPD values indicate
better predictions with a small uncertainty.

Considering the two preprocessing methods proposed in Section 4.3.1, two dif-
ferent NLPD formulas arise. In the first case (linear preprocessing - Eq. (4.4)),
the posterior distribution of the concentration is a normal distribution, while in
the second case, (logarithmic preprocessing - Eq. (4.5)), the posterior distribu-
tion of the concentration is a log-normal distribution. Therefore the NLPD is
calculated for the two cases respectively:

NLPDnormal =
log(2π)

2
+

1
2N

n

∑
i=1

[
log(σ2(ci))+

(ci−µ(ci))
2

σ2(ci)

]
(4.20)

NLPDlog−normal =
log(2π)

2
+

1
2N

n

∑
i=1

[
log(c2

i σ
2(ci))+

(log(ci)−µ(ci))
2

σ2(ci)

]
where ci is the ground truth gas concentration, σ(ci) is the predictive standard
deviation, and µ(ci) the predictive mean.
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4.4 Experimental evaluation and discussion

4.4.1 Experimental setup

The experiments are carried out in a 4.85 m × 3.42 m × 2 m room with an induced
artificial airflow of approximately 0.1 m/s. The airflow is created using two arrays of
six standard microprocessor cooling fans. The gas source is an odor blender (olfactory
display), a device described in [110] that can mix up to 13 gas components from
arbitrary recipes using rapidly switching solenoid valves. The odor blender samples
from the headspace of the compounds, which are kept in liquid phase. This odor
blender enables rapid switching of compound and concentration. The odor blender
uses headspace sampling and therefore does not intensify evaporation, contrary to an
odor bubbler [128]. The outlet of the olfactory blender is placed on the floor, 0.5 m
upwind with respect to an array of 11 MOX gas sensors and a PID1. The airflow at
the outlet of the odor blender is set to 1 l/min. Figure 4.1 displays the configuration of
the experiments. The sensors included in the array are listed in Table 4.1. The sensors
are sampled at 4 Hz. The PID is placed next to the array of MOX sensors in order
to obtain calibrated measurements in the proximity of the active area of the MOX
sensors. This is important since, due to diffusion and advection, the estimation of the
gas concentration at the sensors would be very complicated if only the intensity of
the gas source would be available. The position of the MOX sensors and the PID
has been carefully chosen in order to ensure that the sensors are exposed to a very
similar gas concentration. This can be verified calculating the Pearson’s coefficient
to estimate the linear correlation among the response of the sensors. From the results
reported in Table 4.2 it is clear that the response of the MOX sensors and the PID

1PID model ppbRAE2000 from RAESystem with a 10.6 eV UV lamp.

(a) (b)

Figure 4.1: Sketch of the experimental setup (a), and detailed picture of the MOX sensors and
the PID used to sample the volatiles (b).
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Model Gases Detected Quantity

Figaro TGS 2600 Hydrogen, Carbon Monoxide 2

Figaro TGS 2602 Ammonia, Hydrogen Sulfide, VOC (volatile
organic compound)

1

Figaro TGS 2611 Methane 1

Figaro TGS 2620 Organic Solvents 1

e2V MiCS 2610 Ozone 1

e2V MiCS 2710 Nitrogen Dioxide 1

e2V MiCS 5521 Carbon Monoxide, Hydrocarbons, VOC 2

e2V MiCS 5121 Carbon Monoxide, Hydrocarbons, VOC 1

e2V MiCS 5135 Carbon Monoxide, Hydrocarbons, VOC 1

Table 4.1: Gas sensors used in the sensor array.

are highly correlated and therefore it can be inferred that the sensors are exposed to
very similar concentration profiles. Due to the faster sensor dynamics, the correlation
of the PID response with the response of the MOX sensors is in general slightly
lower than the correlation between the response of two MOX sensors. The compound
selected for these experiments is ethanol, which is heavier than air and, consequently,
forms plumes at ground level.

PID MiCS
2610

MiCS
2710

MiCS
5521-1

MiCS
5121

MiCS
3135

MiCS
5521-2

TGS
2600-1

TGS
2611

TGS
2620

TGS
2600-2

TGS
2602

1,00 -0,75 -0,88 -0,86 -0,89 -0,82 -0,89 -0,82 -0,92 -0,80 -0,81 -0,69

-0,75 1,00 0,93 0,93 0,95 0,98 0,91 0,98 0,90 0,98 0,98 0,98

-0,88 0,93 1,00 0,94 0,98 0,97 0,95 0,97 0,97 0,96 0,97 0,90

-0,86 0,93 0,94 1,00 0,98 0,97 0,99 0,96 0,97 0,96 0,96 0,90

-0,89 0,95 0,98 0,98 1,00 0,98 0,98 0,98 0,98 0,97 0,98 0,91

-0,82 0,98 0,97 0,97 0,98 1,00 0,96 1,00 0,96 1,00 1,00 0,96

-0,89 0,91 0,95 0,99 0,98 0,96 1,00 0,95 0,97 0,94 0,95 0,87

-0,82 0,98 0,97 0,96 0,98 1,00 0,95 1,00 0,95 1,00 1,00 0,97

-0,92 0,90 0,97 0,97 0,98 0,96 0,97 0,95 1,00 0,95 0,95 0,86

-0,80 0,98 0,96 0,96 0,97 1,00 0,94 1,00 0,95 1,00 1,00 0,97

-0,81 0,98 0,97 0,96 0,98 1,00 0,95 1,00 0,95 1,00 1,00 0,97

-0,69 0,98 0,90 0,90 0,91 0,96 0,87 0,97 0,86 0,97 0,97 1,00

Table 4.2: Cross-correlation coefficients for the MOX sensors in the array and the PID. High
values suggest that the sensors are exposed to the same concentrations.

In order to create a dataset that represents a variety of scenarios, four different
odor emitting profiles have been used (see Figure 4.2). For all the profiles the gas
source does not emit gas for two minutes (this is equivalent to releasing no gas) and
the signal of the sensors during this period is assumed as the baseline. Also, at the end
of all the experiments the source emits clean air for 2 minutes. Overall, the dataset
includes a total of 18 experiments, 3 for the deterministic emission strategies and 9
for the randomized emission strategy.
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(a) Steps (b) Ascending Stairway

(c) Descending Stairway (d) Random Stairway

Figure 4.2: Gas source emission strategies. For the randomized strategy (d), one exemplary
instance is displayed.

4.4.2 Results

In this section we present and compare the gas sensor quantification results obtained
with the two preprocessing methods (linear & logarithmic).

We further compare three different sets of input variables. First, we consider the
sensors independently. Second, we compare to the case where the whole array is con-
sidered as the input to the inference process. Third, we discuss the effect of including
the dynamics of MOX sensors by using delayed sensor samples as part of the input
space.

For the evaluation we used cross-validation, selecting the folds at the experiment
level and not at the sample level. This means that if samples from an experiment
have been used during the training procedure, no sample from that experiment was
used for calculating the performance measures. In this way an optimistic bias in the
results due to evaluation with samples collected in the same trial, i.e. under exactly
equal environmental conditions, is avoided. All the experiments have been carried
out in the time span of one week and therefore effects due to long term drift are
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not considered in this chapter. Furthermore, due to the computational complexity of
the training algorithm of the GP (which is dominated by the inversion of the kernel
matrix, to be performed at every step of the maximization of the marginal likelihood)
a subset of 1000 points from the experiments considered for the training set, was
randomly selected for training the GP.

We compare the proposed quantification method with Partial Least Squares Re-
gression (PLSR) and Support Vector Machine Regression (SVR) for all input con-
figurations. Since both methods only provide an estimate of the gas concentration
without information about its uncertainty, only the RMSE can be used as a perfor-
mance indicator for comparison. Please note that PLSR and SVR have been widely
used in classical sensor calibration in controlled environments.

4.4.3 Gas quantification using a single sensor

A typical sensor response in an OSS is depicted in Figure 4.3. The PID measurements
displayed in Figure 4.3(b) show the fast fluctuations around an average value to which
the MOX sensors are exposed when the output of the gas source is steady. These
fluctuations are caused by the turbulent airflow and are the reason why the MOX gas
sensors do not reach a steady state.

For the case of single gas sensor input, i.e. a univariate function f : ri 7−→ c, it
is possible to plot the relation between sensor resistance and gas concentrations ob-
tained in the experiments (see Figure 4.4). Notice how the distribution of training
points (represented by blue dots) corresponds to uncertainty about the measured con-
centration.

The predictive variance is not necessarily constant across the whole input space,
but it depends on the density and dispersion of the training points. If many training
points are available in a certain region, then the predictive variance goes down to the
global estimate of the signal variance (given by the hyper-parameter σ f ). On the other
hand, when few or no training points are available in a region, the predictive variance
in that region increases indicating less reliable estimates.

In our case, since we used a uniform distribution to sample the input space for se-
lecting the training points, the posterior variance turns out to be almost constant over
the input space (see Figure 4.4(a)). It can be seen in Figure 4.4 that a constant variance
does not describe the true signal variance adequately. When the inference is carried
out after applying the logarithmic transformation to the sensor resistance and gas con-
centration, however, the predictive variance represents more accurately the variance
in the training points, see Figure 4.4(b). This shows that the process generating the
data is indeed not Gaussian and is therefore modelled better by a Log-Normal (non-
Gaussian) process. Nevertheless, we can efficiently obtain this non-Gaussian Process
by applying a non-linear transformation to the data and then performing Gaussian
Process regression.

The estimated gas concentrations for three different gas emitting strategies are
displayed in Figure 4.5 and Figure 4.6 for the linear and logarithmic preprocessing
respectively. A notable difference exists between the predictive uncertainty in the two
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(a)

(b)

Figure 4.3: (a) Instantaneous sensor response and (b) PID measurements for a standard open
sampling system experiment.
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(a)

(b)

Figure 4.4: Examples of the learned regression functions for the case where a single sensor
(here TGS-2611) is considered. Blue dots represent the training data. The solid red line is
the mean of the posterior, and its variance is visualized by the ±1σ confidence interval. (a) A
typical calibration function learned when using linear pre-processing, Eq. (4.4). (b) Calibration
after applying a logarithmic transformation not only to the input data, Eq. (4.5).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Estimation of the gas concentration for three different gas emitting strategies
(rows), obtained from sensor TGS-2611 with linear pre-processing c = f (r̃(t)), and the pro-
posed GP calibration. The left column shows the ground truth (blue) together with the GP
calibration estimate (the red line is the posterior mean and the shaded grey region represents
±1σ confidence interval), the PLSR (green line), and the SVR estimate (magenta line). The
right column shows for each scenario the error between the different estimates and ground truth
(in the case of GPs only the mean value is taken into account).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: The predictions of the same experiment as in Figure 4.5, but after training on
log-transformed inputs: log(c) = f (log(r̃i(t))).



4.4. EXPERIMENTAL EVALUATION AND DISCUSSION 87

cases. In Figure 4.7 and Figure 4.8 the NLPD and RMSE are plotted for each sensor
in the array using a box-plot format. When calibrating using the linear relation we
obtain, in average over all the sensors, a RMSE of 35.15± 10.32ppm, and a NLPD
of 5.16± 0.71, while for logarithmic preprocessing the achieved average RMSE is
31.17± 6.27ppm and the NLPD is 4.27± 0.18. The results after applying the log
transformation in Eq. (4.5) are better according to both performance measures.

From the results in Figures 4.7 and 4.8 we can also see that the sensors TGS-2611
and MiCS-5121 perform best for the specific target gas (ethanol).

Table 4.3 summarizes the comparison of the proposed GP quantification with
PLSR and SVR. For the same input, the RMSE, averaged over all sensors is 33.77±
5.77ppm for the PLSR approach and 30.94± 6.78ppm for the SVR approach. The
PLSR approach performs slightly worse than SVR, and SVR is on par with the GP
approach considering only the RMSE. A possible explanation for this result is that
PLSR is a linear method while both SVR and GP are non-linear and use an SE (RBF)
kernel.

Sensor Model GPs PLSR SVR

MiCS 2610 43.81±22.88 44.79±14.26 46.01±19.44

MiCS 2710 30.38±7.83 31.89±6.13 29.71±6.42

MiCS 5521-1 33.64±9.02 34.26±7.03 34.09±7.56

MiCS 5121 23.84±5.58 25.44±4.20 24.18±5.91

MiCS 5135 32.09±12.00 35.61±8.21 33.37±12.31

MiCS 5521-2 31.11±8.01 32.37±7.47 31.80±8.09

TGS 2600-1 26.05±10.08 31.10±5.42 25.71±8.79

TGS 2611 21.46±3.54 26.27±3.59 21.57±3.14

TGS 2620 34.16±24.02 35.41±7.08 29.61±8.38

TGS 2600-2 28.96±15.13 32.43±5.98 27.23±9.92

TGS 2602 44.64±15.58 41.87±8.21 37.12±12.69

OVERALL 31.17±6.27 33.77±5.77 30.94±6.78

Table 4.3: RMSE values (Mean ± 1σ ) of three different calibration methods when using only
one sensor at a time. Sensors MiCS-5121 and TGS-2611 provide the overall best performance.

4.4.4 Gas quantification using a sensor array

In OSS applications where the goal is discriminating among several different odors [148],
an array of MOX sensors is usually employed instead of a single sensor. For this rea-
son, we investigate whether also gas quantification benefits from using the whole sen-
sor array. In order to do this we apply the GP calibration method with an input space
of dimension d = 11, and apply ARD (see Section 4.3.3) to automatically select the
most relevant inputs, that is, the most relevant gas sensors in the array.

Table 4.4 summarizes the mean and the ± 1σ confidence interval of the nor-
malized length scale hyper-parameter (l) for the different sensors in the array, after
ARD has been computed for the 13 folds used in the cross-validation. As explained



88
CHAPTER 4. GAS QUANTIFICATION WITH MOX SENSORS IN OPEN SAMPLING

SYSTEMS

(a)

(b)

Figure 4.7: NLPD and RMSE box-plot for the case of one-sensor GP calibration. For both
indicators, as lower the value the better the calibration. On each box, the central red mark is
the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considering outliers, and outliers are plotted individually as red
crosses.
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(a)

(b)

Figure 4.8: NLPD and RMSE box-plot for the case of one-sensor GP calibration with logarith-
mic transformation. For both indicators, as lower the value the better the calibration. On each
box, the central red mark is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points not considering outliers, and outliers are
plotted individually as red crosses.
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in Section 4.3, large values of the length scale corresponds to less relevant sources of
information.

Sensor Length scale (l)

MiCS 2610 0.386±0.272

MiCS 2710 0.732±0.337

MiCS 5521-1 0.869±0.145

MiCS 5121 0.212±0.175

MiCS 5135 0.533±0.312

MiCS 5521-2 0.761±0.305

TGS 2600-1 0.200±0.167

TGS 2611 0.001±0.004

TGS 2620 0.554±0.387

TGS 2600-2 0.749±0.247

TGS 2602 0.116±0.042

Table 4.4: Mean ±1σ interval of the length scale hyper-parameter for the different sensors in
the array as obtained from ARD.

Our results show that sensors which perform well in the case of single sensor
quantification are in most cases also relevant for array quantification. An exception
is the sensor TGS-2602, which did not perform well individually, but was found to
provide valuable information when considering the whole array (TGS-2602 is the
second most relevant sensor according to ARD but was ranked last in its individual
quantification performance, see Table 4.3). Figures 4.9 and 4.10 show gas concen-
tration estimates for three different scenarios when considering the readings of the
eleven sensors at once.

In general, the gas concentration estimation obtained using the whole array of
sensors outperforms the estimation based on a single sensor. Linear preprocessing
provides an average RMSE of 16.44± 3.38ppm and a NLPD of 4.22± 0.20, while
for the logarithmic preprocessing the results are slightly better: RMSE of 15.97±
2.77ppm, NLPD of 3.59±0.76.

In comparison, PLSR applied to the same input achieves a RMSE of 17.55±
2.42ppm which, is slightly worse than the GPs quantification, as in the single sensor
case (Section 4.4.3). SVR achieves a RMSE of 16.20±2.50ppm, very similar to the
results obtained with the GP approach but without providing the additional informa-
tion about the uncertainty in the prediction.

The uncertainty estimate is particularly meaningful when the posterior distribu-
tion is modelled as a Log-Normal distribution, rather than with a Gaussian distri-
bution. High uncertainty estimates (which can be identified in the left column of
Figure 4.10 and Figure 4.8 in the case of predictions performed with a single sen-
sor) correspond to an increased mean and variance of the RMSE (observable in the
right column of Figures 4.10 and 4.8). This describes the observed fluctuations in the
signal well and thus provides a reliable confidence measure for concentration predic-
tions.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Estimation of the gas concentration for three different gas emitting strategies (rows)
when considering the readings of the whole array and linear pre-processing c = f (r̃t). The left
column shows the ground truth (blue), together with the GP calibration estimate (the red line
is the posterior mean and the shaded grey region represents the ±1σ confidence interval), the
PLSR (green line), and the SVR estimate (magenta line). The right column shows for each
scenario the error between the different estimates and ground truth (in the case of GPs only the
mean value is taken into account).



92
CHAPTER 4. GAS QUANTIFICATION WITH MOX SENSORS IN OPEN SAMPLING

SYSTEMS

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: The predictions of the same experiment as in Figure 4.9, but after training with
the logarithmic relation log(c) = f (log(rb(t)))



4.5. CONCLUSIONS AND OUTLOOK 93

Our results also lead to the conclusion that it is recommendable to start using the
whole sensor array and select the most relevant sensors with ARD. This allows for
better concentration estimate.

4.4.5 Taking into account the dynamics of MOX gas
sensors

The signals from MOX gas sensors in an OSS are strongly influenced by the sensor
dynamics (see Section 2.3). The uncertainty about concentration estimates is due to
the chaotic nature of gas transport in combination with the sensor dynamics, i.e. the
non-negligible response and recovery times of the MOX sensors. In this section we
propose two different extensions so that the proposed GP quantification can automat-
ically account for the dynamics of MOX sensors. Both methods augment the input
signal: the first method ("Memory") by additionally considering delayed samples of
every sensor in the input variables (in a so called tapped delay line). The second
method ("Derivatives") accounts for the dynamics of each sensor by considering the
derivatives of the signal in addition to the signal itself. Figure 4.11 depicts the gas
quantification results when considering both alternatives. For the first case ("Mem-
ory"), the x-axis k = 0 . . .5 represents the number of additional delayed samples for
each training point, while in the second case it represents the maximum order of
derivatives taken into account as additional inputs to the inference process.

The first conclusion from these results is that our GP quantification was not able
to infer the dynamics of MOX sensors from delayed samples of the sensor signals,
and thus, the quantification results do not improve when increasing k. Furthermore,
and possibly due to the increase in the input dimensionality, the results tend to get
worse for high values of k, probably due to curse of dimensionality. On the other
hand, the "Derivatives" approach yields slightly positive results. The improvement
is mainly observable in the RMSE where mean as well as the confidence intervals
decrease when increasing k.

4.5 Conclusions and outlook

In this chapter we proposed a new approach for gas concentration estimation using an
array of MOX gas sensors in a Open Sampling System (OSS). Despite its importance,
this topic has been largely neglected. We addressed the problem in a probabilistic
manner and used Gaussian Processes to estimate a posterior distribution over the
gas concentration given the response from an array of MOX sensors. This has the
advantage of enabling not only predictions of the expected gas concentration but also
predictions of the uncertainty of this estimate. This advantage is particularly relevant
for OSS applications where typically many sources of uncertainty exist.

In the first part of this chapter, we focussed on gas quantification using a single
MOX sensor, and then turned to gas quantification using a sensor array. We found a
clearly improved prediction quality with a sensor array compared to using a single
sensor. Given the high correlation among different MOX sensors, we used ARD to
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Figure 4.11: Mean and confidence interval (±1σ ) of the NLPD and RMSE of two gas concen-
tration estimation methods, considering: (red) a number of delayed samples and (blue) deriva-
tives with increasing order, as additional inputs.

exclude sensors that are not relevant for estimating the posterior distribution. This
proves useful in keeping the dimensionality of the input space low.

We also analysed two data preprocessing strategies, one that performs GP regres-
sion directly with the sensor response and ground truth gas concentrations, and a sec-
ond one that performs GP regression on the logarithms of sensor response and ground
truth concentrations. Logarithmic preprocessing has proven advantageous both for the
estimation of the expected gas concentration and for uncertainty prediction.

Finally, we studied approaches to mitigate the effect of the slow dynamics of
MOX sensors by taking into account past sensor readings in the GP regression. Nei-
ther using additional inputs from previous time steps, nor adding the signal deriva-
tives, produced a significant improvement over the concentration estimation algo-
rithm that considers only the current sensors readings.

Future work will include exploring sparse Gaussian Processes like the Relevance
Vector Machine (RVM) or Informative Vector Machine (IVM) to improve over the
currently random selection of training points, which is a major bottleneck for GP re-
gression. Another interesting aspect to study is the generation of confidence intervals
on the prediction and in particular how the Bayesian approach we propose here com-
pares with frequentist approaches like Conformal Prediction (CP). Finally, another
aspect to investigate is the use of kernels for time series like the Autoregressive (AR)
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or Dynamic Time Warping (DTW) kernel to study if they can efficiently model the
dynamics of MOX sensors, and therefore produce even more accurate gas concentra-
tion estimates.





Chapter 5
Dealing with obstacles and
the ephemeral nature of
odors in gas distribution
mapping

This chapter addresses the problem of estimating the spatial dis-
tribution of volatile substances using a mobile robot equipped with
an electronic nose (e-nose). It contributes an effective solution to
two important problems that have been disregarded so far: First,
obstacles in the environment (walls, furniture, ...) do affect the gas
spatial distribution. Second, when combining odor measurements
taken at different instants of time, their "ages" must be taken into
account to model the ephemeral nature of gas distributions. In order
to incorporate these two characteristics into the mapping process
we propose modeling the spatial distribution of gases as a Gaus-
sian Markov Random-Field (GMRF). This mathematical framework
allows us to consider, for the first time in the gas mapping litera-
ture, both: (i) the vanishing information of gas readings by means of
a time-increasing uncertainty in sensor measurements, and (ii) the
influence of obstacles by means of assumed correlations (and the
lack of them) among the different areas. Experimental validation is
provided with both, simulated and real-world datasets, demonstrat-
ing the out-performance of our method when compared to previous
standard techniques in gas mapping.
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5.1 Introduction

Gas distribution mapping (GDM) is the process of creating a representation of how
gases spread in an environment from a set of spatially and temporally distributed
measurements of relevant variables [9, 89]. Foremost, these measurements include
the gas concentration itself, but may also comprise wind, pressure or temperature.

In the last decade, GDM is gaining attention in the mobile robotics community
because of the advantages a mobile robot offers when compared with the traditional
approach based on networks of static gas sensors [150, 71]. To start with, a mo-
bile robot usually carries only one but more expensive and powerful gas sensing de-
vice (e-nose), which can analyze more complex compounds, i.e mixtures of different
volatiles. Also, the robot can sample at a higher (and adaptive) resolution, while still
providing the required accurate localization of each measurement. Moreover, the gas
distribution map is created by a robot in an online fashion, allowing decision making
to occur depending on such a map, e.g. for exploration tasks. Finally, a mobile robot
can leverage environmental information provided by other sensors on board (cam-
eras, laser scanners, etc.) to both enhance the GDM process itself, for example by
detecting obstacles, as proposed in this chapter, and to help in any other odor-related
task, as can be the identification of potential gas sources [70].

Building a gas distribution model with a mobile robot turns out to be a tough
problem for a number of reasons. First of all, and in contrast to most exteroceptive
sensors employed in mobile robotics, an e-nose is a point sampling device, that is,
it only samples the very near air around it. Furthermore, the dispersion of gases is
strongly conditioned by the obstacles in the environment, such as walls and furniture.
Consequently, when building a GDM, they should indeed be taken into consideration
to yield accurate estimations. Finally, but not less important, odors are ephemeral due
to the mechanisms that rule gas dispersion, mostly, advection and turbulence (refer to
Section 2.3). Thus, we can say that the information conveyed by a given measurement
quickly vanishes as time goes by.

The two latest points are pivotal characteristics that have been overlooked by pre-
vious works on GDM [96, 9, 89]. Traditionally, the influence of obstacles in the gas
distribution has been only considered explicitly for the simulation of the gas dis-
persal [118, 144], and in some works on plume tracking [99]. However, when fac-
ing the GDM problem the information related to obstacles is neglected, leading to
maps where nearby areas are always correlated, even when physical obstacles sep-
arate them. Moreover, existing approaches to GDM provide the same confidence to
all gas measurements regardless of when they were taken. As a result, the estimated
gas distribution averages out measurements taken at very different moments in time,
something that strongly contradicts the vanishing nature of gases (odors).

The example in Figure 5.1, which illustrates the discussion above, shows a robot
which is commanded to inspect the different rooms of a house to determine, for ex-
ample, the possible existence of bad odors. As it moves, the robot collects new gas
observations that are incorporated to the GDM. Occasionally the same place is revis-
ited, thus samples from the same location must be somehow combined. Since time-
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Figure 5.1: An illustrative example where a smelling robot is commanded to inspect an indoor
environment by following the predefined path (the blue-dashed line). The robot gathers odor
observations as it moves and builds a gas distribution map. Crucial aspects to be considered
for such map building include how gas concentrations observed at different instants of time are
combined (as for example, t1 and t2), and the influence of obstacles such as walls or furniture.

separated observations are gathered at close locations (e.g. samples at t1 and t2), the
GDM method has to deal with these questions: (i) are observations taken at t1 and t2
equally relevant?, and (ii) if not, how do their significance evolve over time? Further-
more, the GDM method has to settle whether or not considering the obstacles present
in the environment. That is, to provide an estimation of the gas distribution based only
on the observations collected along the covered path, or to additionally account for
walls and furniture to model the correlation between the areas they separate (e.g. the
presence of bad odors in the kitchen do not imply the same at bedroom-3, since its
gas concentration can be considered "independent" given the presence of walls and
the closed door).

We can summarize the two contributions of the present chapter as follows. First,
we propose accounting for the obstacles in the environment, obtaining maps which
are more compliant with the actual mechanisms of gas dispersion. Secondly, we claim
that the “age” of a measurement is of relevance in the GDM process. In particular, we
propose to associate a time-decreasing weight to each gas measurement, modeling the
fact that recent measurements more significantly represent the current gas distribution
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than older ones. Thus, observations taken at the same locations and separated in time
will be combined according to their respective weights.

As estimation tool for the gas mapping process, we propose to employ a Gaussian
Markov-Random-Field (GMRF), which perfectly suits the characteristics of GDM
by accounting not only for the information carried by the gas observations, but also
for any prior knowledge which, in our case, includes both the obstacles in the en-
vironment (detected by the robot sensors), and the physics of how gases spatially
distribute. A C++ implementation of this method has been integrated into the Mo-
bile Robot Programming Toolkit (MRPT), and its source code is available online1 at
http://mrpt.org.

The rest of this chapter is organized as follows. We first discuss the related liter-
ature on GDM with mobile robots in Section 5.2, to continue with the introduction
of the proposed probabilistic model for GDM in Section 5.3. Then, we show how
the maximum a posteriori (MAP) estimation becomes a sparse least squared problem
in Section 5.4, and finally, in Section 5.5, we report simulated and real experimental
results.

5.2 Related research

We are interested in statistical modeling of gas distributions without making strong
assumptions about the environmental conditions (temperature, pressure or airflows).
Given that analytical solutions are intractable, it is common practice to divide the
space into a regular lattice of cells (gridmap), and then estimate a probability density
function (pdf) of the gas concentration at each cell of the grid. Under these circum-
stances, only a few gas distribution modeling methods have been proposed in the
literature.

As mentioned in Section 2.4.3, the most remarkable works in this field have been
reported by Lilienthal and colleagues. In the pioneer work [85] they proposed the
kernel-based method, which consists of convolving sensor readings with a Gaussian
kernel, thus providing a representation of the gas map without assuming any prede-
fined parametric form for the distribution. This method was later extended for the
case of multiple odor sources [96] and to the three-dimensional case [124]. It was
further shown how gas distribution mapping methods can be embedded into a Black-
wellized particle filter approach to account for the uncertainty about the position of
the robot [87].

More recently we find approaches that, in addition to providing the most-likely
value for the gas distribution, also estimate the uncertainty (via a variance value) for
each grid cell of the map. In [89], Lilienthal et al. carried out two parallel estimation
processes, one for the mean and another for the variance, understanding the latter as
the variability of the gas readings, not the uncertainty in the mean estimation which
is the standard in probabilistic estimators. In [9], Blanco et al. proposed another ap-

1In particular, the method described in this chapter is implemented in the class
mrpt::slam::CRandomFieldGridMap2D, part of the mrpt-maps library.

http://mrpt.org
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proach, in this case based on a Bayesian interpretation of the problem, which also
obtains the variance of each map cell employing a sparsified Kalman filter.

None of these works take into account the constraints imposed by the obstacles
of the environment when estimating the gas distribution, neither the physical fact that
the information provided by a gas sensor vanishes with time. The latter, however,
was pointed out by Assadi et.al [5], although, as far as the author knows, no map
estimator taking this into account was ever reported. Therefore, the GMRF-based
approach proposed in this chapter exploits, for the first time, both concepts.

5.3 Modeling GDM as a Markov Random-Field

In this section we introduce the basis for the estimation of the gas distribution over a
2D lattice of cells using GMRFs. We also describe the highly-sparse structure of the
problem which leads to efficient estimates of the problem and, finally, we present our
model for observation time-varying uncertainty.

5.3.1 Probabilistic model for GDM

The proposed approach aims at estimating the probability density function of the gas
concentration in an environment. As in most previous works on GDM we simplify
the problem by estimating a discrete two-dimensional map, dividing the space into
a rectangular lattice of cells. A map m = {mi}N

i=1 is then modeled as a random field
where mi are scalar variables standing for the gas concentration inside the i′th cell
with coordinates (xi,yi). Let N be the overall number of variables in the map, such
that if the map is Nx×Ny cells, N =NxNy. Notice that this model resembles occupancy
grids in robotics, with the difference of not holding a discrete distribution (occupied
vs. free) but a continuous magnitude. Concretely, the gas concentration at each cell is
modeled as a univariate Gaussian distribution N

(
µi,σ

2
i
)
, with µi its mean estimate

and σ2
i the corresponding uncertainty (see Figure 5.2).

Our goal is obtaining the maximum a posteriori (MAP) estimation of m, along
with its uncertainty, given the gas concentrations measured by the robot e-nose (ran-
dom variables z) and some prior knowledge that includes (i) how the gas spread over
the environment, and (ii) how the perceived obstacles affect the propagation of gases
between nearby cells. Given the small space sampled by an e-nose (even when em-
ploying pumps or fans to aspire the air), this prior is extremely important for inferring
the gas concentration at distant locations not subject to direct sensing.

Our proposal is to use a Markov Random-Field (MRF), a tool widely employed
in other estimation problems on grids. For example, in image processing, where sta-
tistical models are defined for the intensity of image pixels [157]. Notice the strong
analogy between problems such as image de-noising or image restoration and the
GDM stated here, where gridmap cells play the role of pixels.

According to the Hammersley-Clifford theorem [18], the joint probability distri-
bution p(m,z) can be expressed as a Gibbs distribution, that is, it can be factored
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Figure 5.2: The 2D map is represented by a lattice where each cell keeps the estimate of gas
concentration by means of a Gaussian density, represented here along the vertical axis.

as the product of the potential functions ϕ(·) for the set of all its maximal cliques
(C m) [6]:

p(m,z) =
1
Z ∏

C∈C m

ϕC (nC ) (5.1)

where the proportionality constant Z (called the partition function) is not relevant in
our problem, C denotes the different cliques and nC the set of variables (m,z) in that
clique.

Since we are restricted to potential functions which are strictly positive ( ϕ(·)> 0
), it is convenient to express them as exponentials:

p(m,z) ∝ ∏
C∈C m

exp{−E(nC )} (5.2)

= exp

{
− ∑

C∈C m

E(nC )

}

where E is the energy function, obtained by adding up the energies of each of the
maximal cliques.

An intuitive and convenient way of dealing with the dependencies encoded in a
MRF is to consider its factor graph [20] as the graphical model from which to de-
rive the optimization equations. In this graphical model, each potential functions ϕ(·)
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Figure 5.3: Factor graph derived from the MRF employed in our approach. There are two types
of nodes: gas concentrations at cells (white circles), and gas observations (grey shaded circles),
and two kind of factors: prior factors (Fp), and observation factors (Fo).

over a maximal clique becomes a factor F . As shown in Figure 5.3, this model com-
prises two kinds of nodes: (i) gas concentrations at cells (unknowns to be estimated),
and (ii) gas observations (known data). We also define two distinct sets of factors be-
tween nodes: observation factors which represent sensor observations and constrain
the concentration value of a cell i according to all sensor measurements taken by the
robot at that cell, and prior factors, which being independent of observations capture
our a priori knowledge on how the gas distribution behaves over space.

Attending to the two different set of factors, the joint probability distribution can
then be expressed as:

p(m,z) ∝ exp

{
−∑

Co

Eo(nCo)−∑
Cp

Ep(nCp)

}
(5.3)

5.3.2 Factor parameters

We assume that all the conditional distributions involved in the problem can be rea-
sonably modeled as Gaussians, thus the underlying graphical model becomes a Gaus-
sian MRF (GMRF). This assumption works well in practice, as demonstrated experi-
mentally. Therefore, we need to provide the parameters of each Gaussian distribution
that appears in our graphical model in order to have it completely defined.
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Observation factors

They encode the observation model, that is, the relationship between an e-nose read-
ing and the true gas concentration of the cell at which it was taken.

Let M be the number of e-nose observations collected by the robot. Each ob-
servation consists of a gas concentration value zk taken at a particular cell ik at
a given instant of time tk, with k = 1 . . .M. Each such observation is assumed to
be corrupted with two additive Gaussian errors: one from the inherent sensor noise
(ωk ∼N (0,σ2

s )) and another time-dependent term that models the potential changes
that may have occurred since the sensing time (ζk ∼N (0,σ2

ζ
(t− tk))). With this last

noise, we model the loss of information of a measurement as an increase of uncer-
tainty (variance). Denoting the ideal (noiseless) sensor model as h(m), we have:

zk = h(m)+ωk +ζk (5.4)

Given the moderately large size of grid cells in GDM (typically in the range of
decimeters) it becomes reasonable to assume that every measurement is associated to
one single cell, the one which the robot e-nose is sniffing at, which takes us to the
minimalistic sensor model h(m) = h(mik) = mik .

Under a probabilistic point of view, each observation factor in the graphical model
then stands for the conditional pdf:

p(zk|m) = p(zk|mik) = N (mik ,σ
2
s +σ

2
ζ
(t− tk)) (5.5)

where we have applied the conditional independence between zk and the rest of the
cells given mik .

Then, the energy function associated to the observation factors can be expressed
as:

Eo = ∑
Co

Eo(nCo) =
M

∑
k=1

(mik − zk)
2

σ2
s +σ2

ζ
(t− tk)

(5.6)

We must stress the novelty of the time-increasing variance σ2
ζ
(t−tk) above: if two

observations from the same cell are combined to estimate its gas concentration, this
variable variance gives more weight to the most recent one. This physical-grounded
concept has been obviated in previous works.

Eventually, during a GDM process the variance of older measurements will be-
come large enough as to neglect them. Thus, in practice, only a finite set of M observa-
tions will account for the estimation, bounding the overall computational complexity
of our method for a fixed-size map.

Prior factors

These factors capture the knowledge about how gases distribute spatially. Particularly,
we want to model the correlation between gas concentrations of neighboring cells.
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We insist in the necessity and relevance of this term in GDM, since gas observations
provide us very localized information, i.e. only for the cell at which the sample was
taken.

Correlation between cells: Previous approaches based on kernel methods [89]
or Kalman filtering [9] have modeled these correlations as Gaussian functions. Simi-
larly, we model the correlation between cells by penalizing the difference in the gas
concentration (li j) between pairs of (vertically and horizontally) adjacent cells:

li, j = mi−m j (5.7)

where mi, m j are the gas concentrations at adjacent cells with lattice indices i and j,
respectively. Each prior factor then stands for the following pdf:

p(li, j|¬oi, j) = N (0,σ2
p) (5.8)

meaning that adjacent cells are forced to have the same gas concentration with a
tolerance stated by σ2

p . The meaning of the conditioning on ¬oi, j is explained next.
Obstacles: Environment obstacles and their influence in the gas distribution must

be accounted for while modeling the expected difference between adjacent cells in
Eq. (5.7). We assume that the probability of their intermediary space to be occupied,
P(oi, j) ∈ [0,1], is readily available in the form of an occupancy grid representation of
the environment. Note that the cell size of this grid is not required to match that of
the gas map and, in practice, will often be finer.

Denoting as oi, j the fact that an obstacle exists between cells i and j, we can then
apply the law of total probability over the two only possibilities (either oi, j or ¬oi, j)
to obtain:

p(li, j) = p(li, j|oi, j)P(oi, j)+ p(li, j|¬oi, j)P(¬oi, j) (5.9)

where P(¬oi, j) = 1−P(oi, j) and p(li, j|¬oi, j) was already given in Eq. (5.8). Regard-
ing our a priori distribution for li, j in the case of an obstacle blocking the way between
two cells, it seems reasonable to assume no correlation at all. Then, a good candidate
for p(li, j|oi, j) is a uniform distribution over a sufficiently large interval. Since mixing
Gaussians and uniform densities would prevent the formulation of the estimator as a
least-squares problem, the following approximation is conveniently proposed:

p(li, j) ≈ N

(
0,

σ2
p

(1−P(oi, j))2

)
(5.10)

which only exactly matches the ideal model in Eq. (5.9) for P(oi, j) equals to 0 or 1,
while providing a smoothly changing Gaussian model for intermediary values. Since
the relevant parts of the map will have occupancy probabilities close to these extremes
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Isolated room

Open doorClosed door

Figure 5.4: Example MRF which considers the physical obstacles in the environment. Nodes
represent the gas concentration at cells and edges encode the a priori assumption of correlation
between some adjacent nodes. Factors and observations have been omitted here for clarity.

it becomes a minor issue that Eq. (5.10) only poorly models Eq. (5.9) in unexplored
areas where P(oi, j) is close to 0.5. As depicted in Figure 5.4, when two adjacent
cells are physically separated by an obstacle (P(oi, j)→ 1), no correlation is assumed
between these cells. Note that this leads to infinite variance in Eq. (5.10), which is
not problematic since the estimator ultimately handles inverse variances instead.

Finally, the energy function capturing the prior constraints reads:

Ep = ∑
Cp

Ep(nCp) =
L

∑
k=1

(mik −m jk)
2

σ2
p/(1−P(oik, jk))

2 (5.11)

with L the number of pairwise cliques of cell nodes in the GMRF, and ik, jk the adja-
cent cells for each such pairwise clique k.

5.4 Maximum a posteriori estimation of the
GDM

We show next how the MAP estimation of the GDM becomes a least-squares problem
for the proposed GMRF model. We also describe that the uncertainty of the estimated
map can be retrieved from its graphical model.

5.4.1 Derivation

We start by conditioning the gas concentration map m to all available data, that is,
to all gas observations z = {z1, . . . ,zM}. Then, we seek to maximize the posterior
p(m|z1:M) ∝ p(m,z1:M) which gives us the MAP estimate m̂.
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By taking the negative logarithm over such posterior, the complete energy func-
tion becomes the well-known least-squares form of a GMRF inference problem,
which in our case reads:

E(n) =
L

∑
k=1

(mik −m jk)
2

σ2
p/(1−P(oi, j))2 +

M

∑
k=1

(mik − zk)
2

σ2
s +σ2

ζ
(t− tk)

(5.12)

We can rearrange the terms of the energy function E(·) as a sum of quadratic
errors r weighted by an information matrix Λ, i.e. E(n) = r>Λr. Errors can be con-
veniently defined in terms of a prediction function f(m) such that r = f(m)− y for
some vector of known data y. From the assumed statistical independence between
variables and model noises, it follows that Λ is diagonal, leading to:

E(n) = r>Λr =
L+M

∑
k=1

Λk( fk(m)− yk)
2 (5.13)

where the k subscript denotes the corresponding scalar entry in each matrix or vector.
The minimum of the quadratic expression in Eq. (5.13) can be found by solving the
Newton method equations [31, 21] (refer to Appendix D):

(J>ΛJ)︸ ︷︷ ︸
Hessian H

∆m∗ =−J>Λ(f(m)−y)︸ ︷︷ ︸
Gradient g

(5.14)

where J = dr
dm is the Jacobian of the error function r, and ∆m∗ is the increment that

leads to the MAP estimate m̂.
It should be emphasized that unlike other mapping problems in mobile robotics,

both factor types (F p,F o) are linear with the map m, which implies that m̂ can be
solved in closed form, without iterating.

Matching the generic Eq. (5.13) to our particular case in Eq. (5.12) we have:

f(m) = [ l1(·) · · · lL(·) | mi1 · · · miM ]>

y = [ 0 · · · 0 | z1 · · · zM ]>
(5.15)

from which in section 5.4.2 we will derive the sparse Jacobian expressions.
Regarding the (L+M)× (L+M) information matrix Λ, its first L diagonal en-

tries correspond to the prior factors, that is, to the correlation between adjacent cells,
and is Λpk = (1−P(oi, j))

2/σ2
p . The rest M diagonal entries are the weights of e-

nose observations, which decrease over time according to their "age", that is, Λok =
1/(σ2

s +σ2
ζ
(t− tk)).

As a important remark for an efficient implementation, the Ax = b-like system
of equations to be solved in Eq. (5.14) is highly sparse due to the strongly local
structure of the constraints, leading to a symmetric banded Hessian matrix with a
bandwidth of W =max(Nx,Ny). Then, a sparse LL> (Cholesky) decomposition can be
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used for efficiently factoring and solving the system in O(NxNyW 2) and O(NxNyW )
time, respectively [7, p.220]. This means that, for example, estimating a square map
with N = NxNy cells has an overall cost that grows with O(N1.5).

5.4.2 Jacobian, Hessian and Gradient

Based on Eq. (5.14) and the particular structure denoted in Eq. (5.15), next we devise
the structure of the system matrices:

• Jacobian J: The J matrix contains the dr
dm for every factor in the graph. Rows

of the Jacobian derived from prior factors contain zeros but for the i’th and j’th
columns, corresponding to adjacent cells in the map (see Eq. (5.11)), which
have values 1 and −1, respectively. Rows for observation factors are all zeros
except at the column of the observed cell.

J =



m1 m2 ··· mi ··· m j ··· mN

1 1 −1 · · · 0 · · · 0 · · · 0

2 1 0 · · · −1 · · · 0 · · · 0
...

...

L 0 0 · · · 1 · · · −1 · · · 0

L+1 0 1 · · · 0 · · · 0 · · · 0

L+2 1 0 · · · 0 · · · 0 · · · 0
...

...

L+M 0 0 · · · 1 · · · 0 · · · 0



• Hessian H: Since all functions in our problem are linear, the Hessian is exactly
J>ΛJ. The existence of two blocks in the Jacobian matrix, with its upper block
corresponding to the prior factors which typically will not change over time,
advices us to decompose the Hessian into the sum of two components:

H = Hp +Ho (5.16)

The first part, Hp, only contains the following nonzero entries:

– Each off-diagonal entry Hp(i, j) is the sum ∑k J(k, j)Λpk for each prior
factor k relating cells (i, j). Following the graphical model in Figure 5.3,
and attending to the sparse structure of the Jacobian, in our case Hp(i, j)=
−Λpk if cell i is adjacent to cell j, zero otherwise.

– Each diagonal element Hp(i, i) becomes the sum ∑k J(k, i)Λpk J(k, i) =
∑k Λpk , for each prior factor k defined over cell i, that is, for each neigh-
bor of cell i.
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The second part, Ho, is exactly diagonal and depends only on the observations.
The i′th element of its diagonal Ho(i, i) amounts to ∑k Λok , being k the index of
each observation taken at cell i.

• Gradient vector g: The gradient vector g = J>Λr, with length the number of
grid cells N, simply becomes:

gi = ∑
k

Λok(mi− zk)+∑
j

Λpk(mi−m j) (5.17)

for all the observations k taken at cell i, and all the neighbor cells j of cell i.

5.4.3 Recovering the uncertainty

To obtain the uncertainty of the gas distribution at each cell, we have to compute the
diagonal of H−1. Each diagonal element H−1(i, i) corresponds to the variance of cell
i (σ2

ii ).
Given that matrix inversion is a computationally expensive operation, and since

we are only interested in recovering the diagonal of the inverse Hessian, efficient
approximations as the one presented by Golub and Plemmons [48] can be employed.
They proposed a method for recovering only the entries σi j of the covariance matrix Σ

that coincide with nonzero entries in the factor matrix R, being R the upper triangular
matrix that results from the Cholesky decomposition of H.

5.5 Experimental evaluation and discussion

This section presents an experiment aimed at validating the performance of the pro-
posed method when estimating the GDM of a time-variant gas distribution in an in-
door scenario. The experiment consists of a mobile robot which is patrolling an area
with several rooms while building a GDM of the inspected environment.

To provide quantitative results of the accuracy of the estimated gas maps, as well
as to allow for a stringent comparison between different GDM methods, we first per-
form the experiment in simulation in order to have a ground truth (GT) of the gas
distribution. Then, we carry out a real experiment in a very similar scenario.

5.5.1 Experiment setup

Both the real and simulated experiment are conducted in an indoor scenario composed
of two adjacent rooms connected through a corridor (see Figure 5.5). Each room is
inspected through a complete loop by a mobile robot equipped with an e-nose which
collects samples along the path (red-dashed line). To go from one room to the other,
the robot traverses the corridor (path marked as blue-dashed line).
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Figure 5.5: (a) Sketch of the experimental scenario. White color represent free space, grey
color obstacles as tables or cabinets, and black color walls. (b) Picture of the leftmost room of
the above plan. The path followed by the robot is marked as a dashed line.

To study how different GDM methods behave under time-variant gas distribu-
tions, both rooms are alternatively inspected by repeating the pattern "left(x3), right(x1)",
under the following three cases: (i) when both rooms are clean of odors, (ii) when an
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ethanol leak appears in the leftmost room, and (iii) when the ethanol odor is removed
and both rooms become clean again.

We compare the gas maps as estimated by the GMRF approach presented in this
chapter, with the Kernel DM+V [89], which is probably the more accurate and ef-
fective existing method for GDM. In particular, we take snapshots at the following
representative instants of time: (t0) at the start of the experiment, (t1) after inspecting
both rooms when no odor has yet been released, (t2) once the ethanol has spread in the
leftmost room, and it has been inspected once, (t3) after the three inspections (loops)
in the leftmost room with odor presence, (t4) after the first inspection of the leftmost
room, again clean of odors, and finally (t5) after the three inspections of the leftmost
room with no odor presence.

In both, the simulation and the real experiment, the cell size of the gas gridmap is
set to 0.5 m and the robot average speed to 0.25 m/s. Regarding the GMRF parame-
ters, we set σ2

p = 2 and restrict occupancy probabilities to binary values (P(o) = 0 for
free space, P(o) = 1 for obstacles), which gives a value for Λp of 0.5 and 0, respec-
tively. We also set Λo(∆t = 0) = 10 and decreases it over time at a rate of 0.12336 per
second, which corresponds to an observation lifespan of 80 s. For the Kernel DM+V
method, we set the kernel width to σ = 0.4, which governs the amount of extrapola-
tion of individual gas readings, while the cutoff radius for updating close cells is set
to 0.7 m.

For each instant of time ti, the path followed by the robot will be displayed as a
grey-thin line, highlighting the last minute of it as a thick-white line. The start point
is marked as a circumference, and the current robot localization as a triangle.

5.5.2 Simulated experiment

For the synthetic scenario we have employed the simulation framework presented
in [36] and described in Appendix B, which allows an easy comparison between
the ground truth of the gas distribution and the maps estimated by different GDM
methods.

Figure 5.6 displays the ground truth and the estimated mean and variance maps
for the GMRF and Kernel DM+V methods, at the different instants of time (ti). For
an easier interpretation of results we have highlighted obstacles (walls and office
furnishings) in the map in white color.

The following conclusions can be drawn from this experiment:

1. At the beginning of the experiment (t0), both methods initialize their estimate
as absence of gases, providing a zero mean map. However, their variance maps
differ considerably, highlighting the following important difference between
our proposal and the Kernel DM+V:

• For the GMRF method, the variance map provides the uncertainty about
the estimated mean. High variance values indicate that the estimation at
such cells cannot be trusted because of the lack of information. This is
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Figure 5.6: Mean and variance gas distribution maps estimated by two different methods
(GMRF and Kernel DM+V) at the different time steps ti of the simulated experiment.
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the case of cells distant to the robot path, cells not measured recently, or
cells not correlated to those that have been measured (i.e cells separated
by obstacles).

• For the kernel DM+V, however, the variance map represents the estimated
variability of the gas distribution, that is, cells with different observation
values exhibit a high variance. Since it does not account for the obstacles
in the environment, it provides a less satisfactory variance value of zero
for all non-sensed cells.

2. At time step t1, after inspecting both rooms for the first time, both methods
estimate correctly the absence of ethanol in the environment as appreciated
in their respective mean maps. Since e-nose observations are now available in
both rooms, the GMRF provides low variances for the visited cells, while for
those falling on obstacles or in non-visited rooms (as the isolated room at the
top left of the map), still maintain high variance values, as desired.

3. Once the gas is released, we take snapshots at two time instants: t2 after only
one loop through the contaminated area, and t3 after three loops, as displayed in
Figure 5.5. Since the Kernel DM+V (as any other previous GDM method) does
not consider the time at which observations are taken, the estimated mean maps
are the result of averaging recent observations with older ones, that is, with ob-
servations gathered when no gas was still released. Notice how at such time
instants, the kernel DM+V method fails to detect the high concentration values
present in the ground truth maps. This, which represents one of the main lim-
itations of existing GDM methods, is successfully overcome by the proposed
approach.

By increasing the uncertainty of observations as they become older, together
with the fact that we consider the presence of obstacles in the environment, our
approach is able to detect and correctly localize the high gas emissions with
only one lap over the contaminated zone. The main difference between time-
instants t2 and t3, is that at t3 the variances at the right room start increasing as
a consequence of the rise in the uncertainty of observations, which allows us to
remove them from the set of observations.

4. Finally, at time steps t4 and t5, when the gas has been removed, the "average"
effect of the Kernel DM+V method can still be appreciated as gas patches in
the mean map. On the contrary, our approach adapts faster to changing gas
concentrations, and so it correctly provides a zero mean map at the left room,
even after only one lap (t4).

For the purpose of providing a quantitative comparison of both GDM methods, we
choose the negative log probability density (NLPD) of the ground truth state evaluated
in the probabilistic map estimation. The resulting magnitude not only accounts for
the mean estimations, but also considers the respective variance values. Figure 5.7
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summarizes such comparison for the different time-steps (ti) of the simulation, where
low NLPD values are desired.

As can be appreciated, our approach performs much better than the kernel DM+V
method for all the studied time-steps ti. This notable improvement in the NLPD is the
result of providing high variance values to those cells where none or little information
is available, together with the fact that our mean estimation does not "average", but
combine observations attending to their "age".

5.5.3 Real experiment

Following the same setup than in the simulated experiment, we show next the results
of a real experience. In this case the gas observations are collected with a photo ion-
ization detector (PID2), mounted on the gas sensitive robot Rhodon (see Appendix A).
To generate the gas leak in the left room, we place an ethanol bottle in front of a fan
to boost the gas dispersion. The ethanol bottle was timely opened or closed to match
the setup described in Section 5.5.1. This configuration generates a gas plume to-
wards the door heading to the corridor when the ethanol bottle is open, while it helps
cleaning the room from gases when the bottle is closed.

For a fair comparison among the GDM methods, the experimental data is col-
lected and saved to a log file for off-line processing. In this way, differences from

2Model ppbRAE2000 from RAESystem, with a 10.6 eV UV lamp.
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Figure 5.7: Negative log probability density (NLPD) at the different time steps (ti) of the
simulated experiment, for the GMRF and Kernel DM+V methods.
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both estimations will be only attributable to differences in the methods and not to the
data.

Figure 5.8 shows the mean and variance maps generated by the GMRF and the
Kernel DM+V. As in the simulation experiment, snapshots of the maps at the differ-
ent time steps (ti) are depicted. Since the ground truth of the gas distribution is not
available, we plot instead the obstacles map together with the robot localization.
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Figure 5.8: Mean and variance gas distribution maps estimated by two different methods
(GMRF and Kernel DM+V) at the different time steps ti of the real experiment.
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As can be noticed, the results are quite similar to those obtained in simulation,
which corroborates the already highlighted advantages of our proposal. The main
difference resides in the presence of low concentration gases in the left room at time-
steps t4 and t5, after the ethanol bottle is closed. This can be attributed to the fact
that the time elapsed since the ethanol bottle was closed till the robot inspected back
the room, was not enough to allow the gas to be completely "removed" from the
environment.

5.6 Conclusions and outlook

In this chapter we have revised the problem of creating a map of the gas distribu-
tion and proposed a new approach that accounts for two important issues that had
been ignored in previous works: the validity of the observations over time and the
presence of obstacles in the environment. The former is achieved by introducing a
time-decreasing weighting factor to each gas observation. Thus, when combining ob-
servations taken at close locations, their longevity is used to determine their respec-
tive relevances, avoiding the detrimental "average" effect of previous approaches. On
the other hand, obstacles such as walls or furniture are now taken into account by
modeling the correlation between the map cells they separate. We have addressed the
problem in a probabilistic manner modeling the problem as a MAP estimation over a
Gaussian Markov Random-Field (GMRF).

Our approach has been validated with simulated and real experiments, providing
qualitative and quantitative comparison with classical methods and demonstrating the
advantages in the estimation of the gas distribution.

Future work includes the consideration of additional sources of information such
as vision or semantics to improve the way cell correlations are modeled, exploiting
properties of the obstacles that influence the gas dispersion (shape, height, etc). Fur-
thermore, efficient alternatives to obtain the GDM of non rectangular scenarios will
be studied, for example, by only estimating the gas concentration at desired areas
instead of the complete rectangular lattice.



Chapter 6
Conclusions

This thesis has addressed the problem of gas sensing with mobile robots, paying par-
ticular attention to the detection of gases with an array of metal oxide semiconductor
(MOX) gas sensors, and to the tasks of gas distribution mapping in natural environ-
ments.

In robotics applications gas sensors are usually deployed in the so called open
sampling systems (OSS). Here, sensors are directly exposed to the environment,
which enables gathering valuable information about the dynamics of the interaction
between the sensors and the gases to be analyzed. However, this also entails that gas
readings are strongly influenced by the dispersal mechanisms of gases, especially
in natural, real environments where turbulent advection produces the distribution of
gases to be patchy and chaotic. Additionally, the limitations of the current state of the
gas sensing technology make even more difficult the development of olfactory robots
able to autonomously accomplish tasks like gas source localization or gas distribution
mapping. This is specially important for MOX sensors due to their lack of selectiv-
ity, slow recovery and dependence of the environmental conditions. Two approaches
to palliate one of their main drawbacks, the long recovery period, were proposed in
Chapter 3. This disadvantage limits their suitability to applications where the sensors
are exposed to rapid changes of the gas concentration. The long duration of the acqui-
sition cycles (up to tens of seconds) is of especial concern for mobile robotics, since
inaccurate readings are inevitable when measuring the gas concentration. It is partic-
ularly noticeable in the decaying phases, when the output of the sensor recovers to
the baseline level. Consequently, steady state values are rarely reached, and therefore
gas sensing based on MOX technology must deal with the transient information of
the signals.

The first proposal to overcome the slow recovery of MOX sensors consisted of
the introduction of a new electronic nose, the multi chamber electronic nose (MCE-
nose). The key of the proposed design is the accommodation of a set of redundant
sensors in different chambers, being alternatively activated to ignore the inaccurate

117
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sensor output when a decay phase is detected. The output signal then results from
the concatenation of the rise phases of a sequence of MOX sensors. Increasing the
number of chambers also increase the possibility of having an array of sensors at the
desired baseline level and, consequently, the possibility of sensing faster changes in
the gas concentration. However, a higher cost, power consumption and complexity are
also a direct consequence of having more chambers, thus the optimal number strongly
depends on the characteristics of the target application. A prototype of the MCE-
nose was built and integrated in a mobile robotic platform under the OpenMORA
robotic architecture, being tested in real experiments to measure the improvement
in the sensing of rapid changing gas concentrations. Through these experiments it
was found that although small, the differences on the replicated sensors hosted in the
different chambers, compromised the correct chamber-switching functionality of the
MCE-nose. These differences, which are mostly due to the fabrication process, but
also ageing or poisoning, require therefore a pre-calibration of the system to achieve
proper results.

In contrast to the MCE-nose, the second approach suggested in Section 3.4 com-
pensates the slow dynamic behavior of MOX sensors by forecasting the steady state
values of the sensor resistance from a sequence of transient measurements. In gen-
eral, MOX sensor models proposed in the literature seek to predict the sensor output
(resistance) when exposed to a certain gas concentration profile. The suggested ap-
proach is inspired on reversing such a model: given a sequence of measurements
from the transient response of the MOX sensor, the concentration profile of the ex-
citing gas is forecasted by estimating the steady state values of the sensor resistance.
The exploited model is based on two first order systems (rise and recovery) with time
constants that depend on the sensor reading amplitude. Different experimental scenar-
ios were presented for the validation of the suggested model-based approach. These
experiments demonstrated how the "long tail" effect of the recovery phases could be
effectively avoided, something that prevents the overlapping between the rise and re-
covery phases of the MOX sensor. On this basis, the profile of the gas concentration
as estimated by the model, provides values more consistent with the reality than when
using the raw sensor signal. Additionally, it was proved that both, the MCE-nose and
the inverse MOX model, entail a considerable increase in the speed at which a mobile
base carrying a MOX-based e-nose can inspect the environment. The latter directly
implies an important reduction in the execution times of olfaction related tasks.

In mobile robotics, many of the olfaction related tasks require determining the
gas concentration the sensors are being exposed to. This is a crucial step for realis-
tic gas sensing applications since legal requirements and regulations are expressed
in terms of absolute gas concentration, toxicity levels, etc. Additionally, and due to
the chaotic nature that dominates gas dispersal in OSS, in most cases it is desirable
to provide, together with an estimate of the mean concentration, an estimate of the
uncertainty of the prediction. As a solution to this quantification problem, a super-
vised machine learning approach based on Gaussian Processes (GPs) was presented
in Chapter 4. This issue has been addressed in a probabilistic manner, estimating a
posterior distribution over the gas concentration given the response from an array of



119

MOX gas sensors. This has the advantage of enabling not only predictions of the
expected gas concentration but also predictions of the uncertainty of this estimate.
Different configurations of the array of gas sensors were studied, and automatic rele-
vance determination (ARD) was considered to exclude those sensors not relevant for
the estimation of the posterior gas distribution. Finally, two suggestions to account for
the dynamics of the MOX response within the quantification problem were analyzed.
Interestingly enough, Experiments showed that neither using additional samples from
previous time steps, nor adding the signal derivatives, produced any significant im-
provement.

From a mobile robotics perspective, GDM addresses the problem of estimating
the spatial distribution of volatile substances using a mobile robot equipped with an
electronic nose (e-nose). The proposed algorithm described in Chapter 5 presents the
novelty of accounting for two important issues that have been ignored in previous
works: the validity of a gas observation as time goes by (ageing) and the presence of
obstacles in the environment. Odors are ephemeral, thus, we can say that the infor-
mation carried by a given gas measurement quickly vanishes as time goes by. A time-
decreasing weighting factor was then suggested as a measure of the "age" of each gas
measurement, modeling the fact that recent measurements more significantly repre-
sent the current gas distribution than older ones. On the other hand, obstacles such as
walls or furniture are also taken into account in the GDM process by modeling the
correlation between the map cells they separate. These two considerations produce
maps of the gas distribution which are more compliant with the actual mechanisms
of gas dispersion. The problem was addressed in a probabilistic manner, modeling
it as an efficient MAP estimation over a Gaussian Markov Random-Field (GMRF).
Results of time-variant GDM experiments were presented, providing a detailed com-
parison with existing mapping methods in both, simulated and real scenarios. Among
the important advantages introduced with this new method, highlight the fact that
the "averaging" effect between recent observations and older ones is avoided, which
presents a faster adaptation of the map to changing gas concentrations.

Apart from the specific lines for future work included in the different chapters of
this thesis, we envisage as a long-term path the integration of the gas sensing advances
and algorithms presented in this thesis within the area of home-oriented robotics ap-
plications. Service robots are a potential market niche that is nowadays blooming
because of the continuous advances in the field (SLAM, navigation, semantics, etc)
and the greater availability of commercial robots. However, since artificial olfaction
is not mature enough, most commercial robots do not yet incorporate gas sensing de-
vices. In spite of this, we believe that olfaction can play a key role in making service
robots more intelligent and valuable, by combining it with other sensing modalities
like vision, range sensing or touch.
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Appendix A
Rhodon: a gas sensitive
robot

This appendix is devoted to Rhodon, the gas-sensitive robot that has been used in
most of the experiments presented in this thesis. Rhodon has been built with the
funding supplied by the Andalucía Government and the European Regional Devel-
opment Fund (ERDF) under project TEP-2008-4016. The author, among the rest of
the MAPIR group, has devoted great efforts to the development of this robot, includ-
ing both software and hardware implementation tasks.

Rhodon is a mobile robot intended to perform olfaction tasks. It has been con-
structed upon a Patrolbot commercial platform [106], on which a number of sensors
and devices have been integrated. Additionally, a structure has been mounted on the
platform in order to support the sensory system, which comprises, among other de-
vices, two radial laser scanners (front and back), a ring of sonar sensors and a Kinect
sensor. However, during the course of this thesis, both its structure and components
have varied significatively to cope with the requirements of the new experiments and
to adapt to the advances in the sensing technology. Next, we detail the main charac-
teristics of the robot along its different stages.

A.1 First Stage: Experimental mobile platform

At the beginning of this thesis, Rhodon was composed only by the Patrolbot mobile
platform on which a laptop, a SICK LMS200 and a custom designed e-nose were
mounted. Due to the simplicity of the sensory system, no structure was necessary as
shown in Figure A.1.

The SICK laser range scanner (embedded in an internal compartment designed to
accommodate such sensor) was only intended to provide precise detection of obsta-
cles, since localization was still not achieved at this early stage. The robot olfaction
capability was provided by an e-nose which design was based in a mono-PCB with a
central circular opening. The array of gas sensors composed by 6 TGS (Figaro) and 2
MiCS (e2V) gas sensors, was distributed around this aperture. A small fan placed over
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(a) (b) (c)

Figure A.1: Images of Rhodon at its initial stage of development. Only a laptop and a custom
designed e-nose were then mounted on the Patrolbot mobile platform.

the circular opening generated then a constant airflow through the array of sensors,
allowing the sensing of different volatile substances. This simple setup was employed
on the first olfaction experiments of this thesis, those related to improve the gas sens-
ing process with a mobile robot as detailed in Chapter 3.

The onboard e-nose was then substituted by an improved sensor: the MCE-nose
(see Section 3.3). Figure A.2 shows different snapshots of experiments carried out
with this robotic setup. Due to the simplicity of the experiments at this stage where
neither precise localization nor high computation was required, no additional sensors
or electronic devices where integrated. Even the sonar ring (embedded in the Patrolbot
platform) was not employed at this stage.

(a) (b) (c)

Figure A.2: Images of Rhodon during different experiments carrying the novel MCE-nose.
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A.2 Second Stage: Autonomous mobile
olfaction robot

Raised by the the need of computational power for executing the more and more
sophisticated and complex algorithms, as well as to provide autonomy to the robot
with tasks such as navigation, obstacle avoidance, path planning, etc., Rhodon was
rebuilt completely.

At this stage, a structure to organize the different devices, sensors and electron-
ics was built. To improve the range sensing capabilities for tasks as localization and
mapping, another laser scanner (Hokuyo UTM-30LX) was integrated at the rear of
Rhodon, providing together with the already mounted SICK a 360° field of vision.
The laptop was then replaced by a compact and powerful computer to cope with the
requirements of high computational capacity. Additionally, a touch screen was placed
at the top of the structure to improve the interaction with the user. Due to the conse-
quent increase in power consumption, a set of commercial 12V batteries was mounted
to avoid an excessive discharge of the mobile platform batteries, improving the robot
autonomy time. Finally, a panel of switches was placed at one side of Rhodon, al-
lowing the control of which components are turned-on or off. Figure A.3 shows two
pictures of the resulting setup, pinpointing the onboard components.

Naturally, a software architecture was then a necessary step towards an autonomous
gas sensitive robot. The open mobile robot architecture (OpenMORA) [41] was then
introduced. It is a MOOS [114] and MRPT [108] based distributed architecture for

(a) (b)

Figure A.3: (a) Picture of Rhodon during an olfaction experiment.(b) Description of the dif-
ferent elements onboard.
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mobile robots, providing off-the-shelf modules for common robotics platforms and
sensors, MonteCarlo localization, reactive navigation, simulation, etc. Despite its ex-
tensive variety of robotic modules, further development was necessary to incorporate
the desired olfaction functionality, by means of different modules and the extension
of the simulator as described in Appendix B.

A.3 Third Stage: Multi-purpose gas sensitive
robot

A gas sensitive robot as the described above is of only use for carrying out specific
olfaction-related tasks exclusively (see Section 2.4). That is, even if the main charac-
teristic of a gas sensitive robot is to be able to detect and analyze volatile substances,
it is desired for such a robot to be able to interact with the environment based on
the sensed information. Additionally, for high level olfaction applications it is almost
necessary to attend to other sensing disciplines rather than only olfaction, thus, the
collaboration between sensing modalities should be allowed by the robot.

With this goal, the structure and components of Rhodon were once more cus-
tomized. The main modification was the incorporation of a robotic arm, a research
edition of the commercial JACO arm from Kinova [125]. This robotic arm is ideal to
be used on a mobile robot, meeting the constraints of being lightweight and having
a low power consumption. To increase the area of operation without interfering with
other parts of the robot, the arm was placed at the top-center of the structure. To pro-
vide weight-compensation when the arm is fully extended and prevent the swaying of
the robot, a new set of batteries were placed at its rear. Figure A.4 depicts the location
of the different components onboard Rhodon.

A metal bar was then attached to the structure of the robot to allow vision cam-
eras to obtain images from a wider perspective. A Kinect sensor and a thermal camera

Figure A.4: Detailed view of the sensors and components of Rhodon at its current stage.
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(a) (b)

Figure A.5: Images of Rhodon at its current stage. (a) Picture of an experiment where Rhodon
was commanded to prepare a cocktail. (b) Detail of the attached e-nose aspiration to the robotic
hand, and grasping of the plastic cup after the cocktail has been prepared.

were then positioned over the robotic arm, allowing the use of vision and range sens-
ing for manipulating objets among other robotic tasks. Figure A.5 shows different pic-
tures of Rhodon from an experiment where it was commanded to prepare a cocktail.
In this experiment, almost all the capabilities of Rhodon were tested, ranging from lo-
calization and path planning, to olfaction and object manipulation. A video describing
this experiment can be found at the Youtube channel of the MAPIR group at http:
//mapir.isa.uma.es/ or directly at Youtube: http://youtu.be/BsQMewX8yNQ

http://mapir.isa.uma.es/
http://mapir.isa.uma.es/
http://youtu.be/BsQMewX8yNQ




Appendix B
An olfaction plugin for
simulating mobile robotics
olfaction

A noticeable characteristic of most mobile robotics olfaction experiments is their
complex and time consuming development life-cycle. The main reason behind it lies
in the impossibility of deriving a ground truth (GT) representation of the gas dis-
tribution in the environment, making difficult, almost impossible, to validate new
algorithms or to compare different proposals aiming at the same objective. For this
reason, real experiments usually employ complex setups with the intention of con-
trolling, as much as possible, the dispersion of volatiles (generation of plumes with
fans, shutting doors and windows to reduce undesired airflows, etc.), but even then,
the results cannot be completely validated because of the lack of information about
the real state of the gas distribution.

As in many other scientific fields, this drawback can be considerably reduced
by making use of simulation environments. Among their many advantages, we can
highlight:

• They provide a ground truth of the simulated environment, a fundamental req-
uisite for validating new algorithms.

• Repeatability is easily achieved and so the comparison of different algorithms.

• Simulation allows testing an algorithm under different and complex environ-
mental conditions (e.g. laminar flow, turbulent flow, plumes, etc.), and can be
even more realistic than traditional experiments, as they allow the free config-
uration of the environmental parameters found in the operational application.

• Using simulated data is generally cheaper, safer (e.g. toxic gases) and less time-
consuming than conducting laboratory experiments.
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However, due to the still low presence of artificial olfaction in the area of mobile
robotics, most currently-existing robotic simulators do not account yet for olfaction
methods and models. In this appendix, an olfaction plugin developed to provide the
necessary mechanisms for efficiently testing and validating algorithms related, but
not limited to, gas distribution mapping (GDM), is introduced. This plugin, used in
some of the olfaction experiments presented in this thesis, is designed to work with
the robotic simulator included into the Open Mobile Robotics Architecture (Open-
MORA) [52].

The organization of this appendix is as follows: after a review of the most spread
mobile robotics simulators, an overview of the chosen OpenMORA’s simulation envi-
ronment is provided in Section B.2. Then, the proposed olfaction plugin is introduced
in Section B.3, to finish with an illustrative example in Section B.4.

B.1 Related research

In robotics research, simulation plays a significant role as a tool for quickly and ef-
ficiently testing new concepts, strategies, and algorithms. Its importance can be ap-
preciated in the number of simulation toolkits that have been proposed, including:
Webots [105] a commercial development environment used to model, program and
simulate mobile robots, with a large choice of simulated sensors and actuators, the
Virtual robot experimentation platform (v-rep) [35], a distributed and modular robotic
framework that concurrently simulates control, actuation, sensing and monitoring, or
CARMEN [17] an open-source collection of software for mobile robot control from
the university of Carnegie Mellon, which implements a moderately useful 2-D robotic
simulator.

When simulating multiple mobile robots, Stage [46] is possibly the most com-
monly used 2D swarm robot simulator for research and university teaching nowadays,
while Gazebo [75] extends the framework to 3D dynamic multi-robot environment,
providing tools for recreating complex world scenarios.

Related to robotics olfaction, Cabrita et al. [16] proposed a Player/Stage based
simulator for mobile robot olfactory experiments, focusing mainly on extending its
functionality to support chemical plume simulation and plume tracking. This frame-
work lacks, nevertheless, of a realistic model for the gas sensors and the inclusion
of gas distribution mapping algorithms. In [93], the simulation of a single robot in
a dynamic time-variable environment generated with the computational fluid dy-
namics software Fluent [4] is proposed to study the gradient and equilateral trian-
gle search methods. However, this software package only considers a simple mobile
object equipped with a gas sensor, thus it does not provide the variety of tools nec-
essary to simulate a mobile robot (collision avoidance, path planning, etc.). Finally,
a more complete olfaction simulator for mobile robotics is presented as a plugin for
Webots [105]. Although it includes the simulation of odor dispersion based on the
filament-based atmospheric dispersion model proposed by Farrell et al. [28], it still
lacks a model of the gas sensors and the implementation of gas mapping methods.
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B.2 Description of the OpenMORA’s
simulation environment

The robotic simulation environment used along this thesis is a C++ based-application
consisting of a number of modules built using the Mobile Robot Programming Toolkit
(MRPT) [108] and integrated into the Open Mobile Robotics Architecture (Open-
MORA) [52]. The set of libraries which this simulation environment is based on,
has been developed to keep flexibility, modularity and reusability as much as possi-
ble [32, 33]. These libraries are continuously being updated as a collaborative open
project, maintained by researchers and developers worldwide within the area of mo-
bile robotics1. In this section, the main components of this robotic simulator, corre-
sponding to the grey shaded blocks in Figure B.1, are outlined.

B.2.1 Geometric map

Although the robotic simulator included in the OpenMORA architecture is a full
3D simulation environment, the specification of the scenario where the robot will
be simulated in (dimensions, walls, obstacles, doors, free space, etc.) is only two
dimensional. The simulator is configured to receive an external geometric map file.
This map file can be either a simple png format image, or a simplemap2 format file,
sometimes called "view-based map", which is composed of a set of poses and their

1For a detailed list of collaborators, please visit www.mrpt.org/Authors and source-
forge.net/p/openmora/_members

2For detailed information about robotics file formats visit: www.mrpt.org/Robotics_file_formats
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Figure B.1: Block diagram of the OpenMORA’s simulation framework. The backbone robotic
simulator (grey shaded/solid line blocks) is complemented with an olfaction plugin (green
shaded/dashed line blocks) enabling the simulation of olfaction robotic tasks.
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associated observations (generally laser scans). These simplemap files can be easily
obtained by a generic ICP-based algorithm. Figure B.2 displays an example of both
alternatives. Additionally, there exists also the possibility for arranging the map in a
metric-topological structure as described in [8].

B.2.2 Robot simulation block

This block concerns three modules related to the simulation of the robot: the motion
control, the localization of the robot in the environment, and the simulation of the
sensors onboard.

Motion control: This module is in charge of simulating the movements of the robot.
It implements different control alternatives:

1. Joystick mode, where the simulated robot moves following the commands
provided by a user controlled joystick/keyboard.

2. Path planning with reactive navigation. In this mode, the robot automat-
ically plans the best route to follow according to the distance to a user
defined destination, while avoiding obstacles encountered along the path.
The reactive navigation employs space transformations (PTGs) to drive
the simulated robot using an internal simpler holonomic algorithm [10].

3. Predefined paths. In this mode the path is given as a sequence of nodes
for the robot to go through and, as before, a reactive navigator takes care

Ground truth gas map

Laser scans

Geometric
map

Ground truth wind map

(a)

Ground truth gas map

Laser scans

Geometric
map

Ground truth wind map

(b)

Figure B.2: Two examples of geometric map input files: (a) a png image, and (b) a simplemap
format file (created from odometry and laser scan observations of a real robot experiment). For
both file formats, white colors represent free space while black occupied zones.
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of the obstacle avoidance. This mode allows defining paths for inspect-
ing complex scenarios, as well as for reproducing the same paths in the
experiments.

Localization: The localization of the robot is handled by an efficient particle filter
implementation [11], upon the information provided by the simulated robot
odometry and laser scans, and a known map (see Section B.2.1). This method
performs pose tracking of the robot using an adaptive number of particles.

Sensing: This module simulates the responses of different sensory systems that can
be configured on the simulated robot. Implemented sensors include:

• Range scan lasers, as the SICK [140] or Hokuyo [58], which are useful
for the correct localization of the robot, a fundamental requisite for the
generation of GDM.

• The robot odometry, which is simulated by providing linear and angular
speeds.

• Sonar sensors, which can be used to detect obstacles at low range.

Gas sensors as the MOX or PID (see Section 2.2) are also considered. Nonethe-
less, a detailed description of their implementation is left for Section B.3, where
the specific modules related to olfaction are described.

B.2.3 Graphical user interface

To visualize and manage all the simulated information, a powerful 3D graphical user
interface (GUI) is integrated in the environment. Figure B.3 depicts its main compo-
nents:

1. The system bar, which hosts the navigation buttons related to the localization
and motion control of the robot (e.g. re-localize, stop, move to, etc), as well as
with some visualization options.

2. The navigation planning, which details the nodes visited by the robot along the
planned path (see Section B.2.2), as well as the coordinates of the target node
where the robot is heading to.

3. The panel view. It is composed of a checkbox list that allows the customization
of the 3D view by selecting which sensors and layers are to be displayed (e.g.
the robot shape, position of the particles used for localization, laser beams,
mean and variance gas distribution maps, wind, etc).

4. The 3D view. An OpenGL based viewer to visualize the simulation.

5. The system messages panel. It displays valuable information about the simu-
lation status (exceptions, warnings, flags, etc) of the different modules being
executed.
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Figure B.3: Snapshot of the graphical user interface.

B.3 The proposed olfaction plugin

The olfaction plugin, which has been developed as part of this thesis, comprises three
important parts as depicted in Figure B.1: a sensor model for MOX gas sensors, gas
and wind ground truth maps, and several GDM algorithms.

B.3.1 Model of MOX gas sensors

A fundamental requirement for simulating olfaction tasks with mobile robots is to
accurately describe the response of the gas sensors being simulated. This is even more
important for the case of MOX gas sensors, since, as explained in Section 3.2, their
long recovery times has a strong influence in the task performance. In the proposed
plugin, the MOX sensor is modeled as low pass filters with different time constants for
the rise and decay phases of the response (see Section 3.4 for a detailed description).
Additionally, an additive Gaussian noise is considered to account for both the intrinsic
sensor noise and the one in the measurement system.

The plugin allows the simulation of multiple MOX sensors simultaneously (array
of sensors). Each simulated sensor is defined by selecting the target gas it is sensitive
to and the characterization of its parameters: time constants and noise. This enables
the simulation of complex tasks which require to detect multiple gases.

B.3.2 Ground-truth of gas concentration maps

As mentioned in above, having a ground truth (GT) of the gas distribution at each
time step is fundamental for validating and comparing GDM approaches. The plugin
provides two different types of ground truth maps (see Figure B.4):
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• GT wind maps: By default, the plugin is only able to simulate constant wind
fields, that is, homogeneous laminar flows. Although constant flows are not a
very realistic model, they are very simple to configure and straightforward for
comparison of different GDM approaches. To account for more realistic wind
fields, including turbulence and obstacles, future development will consider the
loading of computational fluid dynamic (CFD) simulations.

• GT gas maps: Given the complexity of the gas dispersal mechanisms and the
many different configurations for the simulation (turbulence strength, single
or multiple gas sources, source positions, obstacles, etc), the proposed plugin
does not generate the GT gas maps itself, but rather it allows loading them from
third party software. One interesting property is the fact that it can handle mul-
tiple GT gas maps simultaneously. This enables, for example, to account for
the simulation of multiple gases in the environment (e.g. multiple and differ-
ent gas sources). Additionally, GT gas maps can be static (e.g. being obtained
from a simple grayscale image), or dynamic, being loaded from a sequence of
successive gas maps at a configurable rate.

B.3.3 Gas distribution mapping algorithms

The plugin is specifically designed for developing and testing GDM algorithms, thus,
it implements the most important alternatives proposed in literature.

• Kernel methods: Two different kernel methods for GDM are included. The first
one, described in [85], convolves the sensor readings using a radially symmet-
ric two-dimensional Gaussian functions to estimate the gas distribution, while

Ground truth gas map
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Ground truth wind map

Figure B.4: Snapshot of a gas ground truth map (left) as displayed by the GUI, together with
the geometric map and the simulated laser scans. (right) Sample of a wind ground truth map,
displaying the vector grid that indicates the wind direction and strength (color scaled).
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a later version called kernel DM+V [89], aims at probabilistic GDM by incor-
porating the variance in the estimation.

• Kalman filter based method: This approach to GDM is based on sequential
Bayesian estimation given a lattice of 2D cells treated as hidden variables using
a Kalman filter [9]. Two implementations of the algorithm are available: a stan-
dard version which employs the whole covariance matrix in the computation of
the posterior, characteristic of Kalman filters, and an efficient and optimized
version for real time applications. The implementation and advantages of the
latter are described in detail in the cited work.

• Gaussian Markov Random-Field method: This is the novel approach to GDM
presented in Chapter 5 which accounts for the aging of sensor observations as
well as for the obstacles in the map.

B.4 An illustrative example

To illustrate the usefulness and potential of the proposed olfaction plugin, apart from
the results presented in Section 5.5.2, in this section we estimate the GDM of a sim-
ulated environment, providing a detailed description for the different components, as
well as the resulting maps for two different GDM methods.

The simulated scenario consists of two adjacent rooms that the robot inspects to
check for dangerous levels of contaminant gases. The robot path is defined in order
to explore both rooms sequentially, as depicted in Figure B.5(a). For this experiment,
and considering that the tested GDM methods do not account for wind information,
we set a constant wind field of zero strength, while the gas ground truth map (see Fig-
ure B.5(b)) is set to simulate a gas leak in the leftmost room, by generating different
gas patches dispersed around the middle table.

Figure B.5(c-f) show the estimated maps using the kernel DM+V and the Kalman
based method. The results can be analyzed in the GUI, or they can be saved to a file for
a posterior analysis (e.g. using Matlab). A video of a similar simulation experiment
can be found at: youtu.be/UKhtIem7u0g
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(a) (b)

(c) (d)

(e) (f)

Figure B.5: Snapshots of the illustrative example: (a) Metric map with the predefined inspec-
tion path (red circles represent nodes to visit, while green lines represent allowed paths). (b)
Gas ground truth map and detailed view of the laser beams emitted by the simulated SICK
laser. (c-d) 3D snapshots of the mean and variance maps for the Kernel DM+V method, and
(e-f) for the Kalman based method.





Appendix C
Data-Sets for odor
classification

Odor classification by a robot equipped with an electronic nose (e-nose) is a chal-
lenging task for pattern recognition since volatiles have to be classified quickly and
reliably even in the case of short measurement sequences, gathered under operation in
the field. The discrimination of gases performed with this setup presents a number of
additional challenges when compared to standard analyte identification applications,
mostly due to the differences in the measurement conditions. While standard clas-
sification tasks usually host gas sensors inside a chamber with controlled humidity,
temperature and airflow conditions; in robotics olfaction there is no control over the
sensing conditions. This entails that the sensor signals to be processed are noisy and
dominated by the signal transient behavior, as described in Section 2.3.

Although classification is not the main focus of this thesis, in this chapter dif-
ferent classification data-sets gathered with an array of MOX gas sensors in an open
sampling system are presented. These data-sets, available online at http://mrpt.
org/Robotics_olfaction_dataset, are the result of a collaboration with the Uni-
versity of Bielefeld (Germany) and the University of Groningen (The Netherlands),
which aims at classifying different volatiles using only short data sequences of high
dimensionality. Nevertheless, by the time this thesis was written no published results
were available, thus only the data-sets gathered for the experiments are presented
next.

C.1 Data-set 1: Controlled gas pulses

The first data-set is composed by samples gathered under restrained environmental
conditions. The objective is to collect a set of e-nose signals from different volatile
substances under very similar conditions. It can then be used for training and valida-
tion at the initial developing stages of new classification algorithms.

The odor samples are recorded from an e-nose containing an array of six differ-
ent MOX gas sensors, whose readings are recorded to obtain an odor fingerprint of
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the odor. These sensors are Figaro TGS-2600, TGS-2602, TGS-2611 and TGS-2620,
and two e2v sensors: MICS-5135 and MICS-5521. Those sensors are hosted within
a small-volume chamber where a continuous airflow is injected through a pneumatic
circuit powered by a pump. The aspiration of that circuit is done through a thin tube,
allowing an easy handling in the smelling process described in Section C.1.1. Fig-
ure C.1 shows a snapshot of this setup.

This data-set is comprised by 69 odor samples gathered by exposing the e-nose
aspiration to gas pulses of seven different analytes (see Figure C.2): four of them are
commercial alcoholic beverages (Negrita Rum, Larios and Gordon Gin, and Coin-
treau), and the other three are commercial polish remover based on acetone, standard
ethanol and lighter’s gas (usually butane, but sometimes mixed with propane). Ace-
tone is given by 9 samples and the other classes by 10 samples each.

C.1.1 Setup

Odor samples have been collected following a fixed and systematic protocol for all
the samples and test runs. In all cases, the bottle containing the target odor (in liquid
or gas state) was used directly to smell from it. Each sample is collected according to
the following three-phases procedure:

Seconds (0-30): For the initial 30s, the baseline level of each sensor in the array is
estimated by measuring the sensor response in absence of the target gas. This is
achieved by leaving the target volatile container closed and separated from the

Figure C.1: Snapshot during the collection of the first presented data-set. It can be seen the
e-nose aspiration (blue thin tube) and containers of different target odors.
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Negrita Rum Larios Gin Gordon’s
Gin

Cointreau Polish
remover

(Acetone)

Ethanol Butane-
Propane

Figure C.2: The seven odor volatiles used on the first classification data-set.

e-nose aspiration. After the first 20s, the container is opened and left unattended
for another 10 seconds, allowing the stabilization of the gas dispersion rate and
avoiding measuring a burst of concentration due to the time the container was
closed.

Seconds (30-90): For a duration of 60s the e-nose aspiration is placed next to the gas
source (at a distance of 10cm approximately) exposing the sensor array to the
target volatile.

Seconds (90- ): Finally, the e-nose aspiration is taken away from the gas source al-
lowing the sensor array to recover to its initial state (baseline). The volatile con-
tainer is then closed to avoid an excessive contamination of the testing room.
Due to the long recovery time of MOX sensors (see Chapter 3), the e-nose was
left to recover its baseline level for almost 10 min. before starting a new run.

Figure C.3 shows two different samples of such data-set. Notice that although the
gas exposure was "controlled" by time exposure and distance to the source, strong
fluctuations in the sensor readings occur due to the chaotic nature of gas dispersal.

C.1.2 Data-set structure

Each target analyte is represented by a folder containing all the samples in a plain
text file format ("*.txt"). Each of these txt files (recorded using a sampling frequency
of approximately 7Hz) is organized in columns as follows:

Column 1 Time

Column 2 Temperature (Not available)

Column 3 MICS 5521 readings

Column 4 MICS 5135 readings
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Figure C.3: Two different samples of the first olfaction data-set. The three phases in which
the samples can be decomposed are marked at the bottom of each figure as (1),(2) and (3).
Readings of sensor MiCS-5521 have been omitted here because of the lack of sensitivity to the
target gases.

Column 5 TGS 2602 readings

Column 6 TGS 2600 readings

Column 7 TGS 2611 readings

Column 8 TGS 2620 readings

Column 9 and following Not used

Additionally to the available data-set, a Matlab script file is provided to easily
display the information graphically. This script asks for a dataset.txt file, and plots
the contents of it according to the previous organization. This data-set can be found
online at http://mrpt.org/Robotics_olfaction_dataset.

C.2 Data-set 2: Classification with different
sensors

The objective of this second data-set is to provide a collection of olfaction samples
that may be used to determine the strength of a classification algorithm under more re-
alistic robotic scenarios, where environmental conditions cannot be controlled. More
specifically, this data-set aims at studying the impact on the classification perfor-
mance of different effects that disturb the behavior of gas sensors in real scenarios:

• Ageing: It is well known that most gas sensor technologies suffer from ageing,
that is, the change of their chemical properties (size of the response to a certain
amount of a given gas, selectivity, response speed, etc.) by the simple pass of
time [43]. These changes give rise to drift in the sensor response.

http://mrpt.org/Robotics_olfaction_dataset
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• Poisoning: For real environments where a lot of different gases are present
(several of them in very small amounts), little can be said beforehand regarding
the chemical reactions and their reversibility. Therefore, some reactions will be
irreversible, thereby blocking or creating reaction sites on the sensor surface
and/or bulk of the sensing material. This will lead to a change in the sensitivity
of the sensor towards other gases. [119]

• Sensor replacement: In the breakage of a sensor, it is replaced by an "identi-
cal" sensor, that is, a sensor from the same manufacturer and model than the
initial one. Nevertheless, there are not two identical sensors, so differences in
the sampled data will be appreciated after replacement.

To this extend, multiple sensors of the same model will be employed to sample
the volatiles. Different sensors (even from the same manufacturer and model) will
react differently to the same gas exposure, allowing the study of the above effects on
the classification performance. An interesting point to be studied by the classification
algorithm would be determining if a pre-calibration of all the sensors of the same
model is required, or if the algorithm is capable of correctly classifying the volatiles
despite the differences in the sensors responses.

C.2.1 Setup

The experimental setup consists of a robot that is commanded to sample the content
of four recipients containing different substances (acetone, ethanol, butane 1 and gin).
To address this, the robot is provided with a robotic arm [125] (see Figure C.4) which
allows an easy displacement and correct positioning of the e-nose aspiration (attached

1Since butane is found at gas state at ambient temperature, the content of a lighter was released when
the e-nose aspiration moved over the container.

Figure C.4: The JACO robotic arm mounted on a mobile platform, and a detailed view of the
attached e-nose aspiration.
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Figure C.5: Picture of the proposed setup. Each of the black plastic vessels contains a different
substance.

to its hand) over the recipients containing the volatile samples. Figure C.5 shows a
picture of the proposed setup.

To avoid waiting for the sensors to recover their baseline levels after each expo-
sure (which would take more than a minute), this data-set employs the MCE-nose
(see Section 3.3) which allows the measurement of fast changing gas concentrations.
However, the consideration of the MCE-nose aims not only at increase the measure-
ment rate of the different volatiles, but to enable the study of the effects of ageing,
poisoning and sensor replacement on the classification performance, by using mul-
tiple arrays of "identical" MOX sensors, corresponding to the different chambers of
the MCE-nose.

The robotic arm is then commanded to approximate to the containers following a
predefined sequence. The exposition to each of the substances takes 20s, after which
the arm moves to another container and the MCE-nose switches to a new, clean cham-
ber. In particular, the MCE-nose employed to collect the samples for this data-set has
four chambers, each of which hosts an array of 4 MOX gas sensors: TGS-2602, TGS-
2600, TGS-2611 and TGS-2620. The volatile sequence and the gathered signals are
depicted in Figure C.6.

C.2.2 Data-set structure

The samples of this data set have been conveniently organized in a .mat file containing
two variables:

AC-index: Column array with the index of the MCE-nose active chamber (AC), that
is, the chamber being exposed to the analyte. The index values are 0, 1, 2 or 3.

AC-readings: Matrix containing the readings of the gas sensors, as provided by the
MCE-nose. Each column corresponds to:
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Figure C.6: Signals collected with the MCE-nose during the classification experiment with a
robotic arm, and the "ground-truth" sequence of the inspected analytes. The active chamber
[0,1,2,3] is switched every 20 seconds.

• Column 1: Timestamp (Elapsed time since the start of the experiment).

• Column 2: Readings of sensor Figaro TGS-2602

• Column 3: Readings of sensor Figaro TGS-2600

• Column 4: Readings of sensor Figaro TGS-2611

• Column 5: Readings of sensor Figaro TGS-2620

Additionally, with visualization purposes, the raw readings as gathered from the
MCE-nose are provided in a .txt file in conjunction with a Matlab script designed to
plot the readings of each chamber independently. This data-set can be downloaded at:
http://mrpt.org/Robotics_olfaction_dataset.

C.3 Data-set 3: Classification of odors in
turbulent environments

This third data-set has been built employing an open sampling system, that is, no
control over the environmental conditions is performed during data acquisition. The

http://mrpt.org/Robotics_olfaction_dataset
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Figure C.7: Picture of the different analytes used in the generation of the third data-set.

objective of such setup is to obtain signals similar to those gathered by an e-nose
carried by a mobile robot. Those signals are characterized by the continuous fluctu-
ations (and consequently absence of steady state values) produced by the intrinsics
mechanism of gas propagation: advection and turbulence (see Section 2.3).

Four different odor classes (acetone, ethanol, methane and gin) have been selected
as target gases (see Figure C.7) for an e-nose composed by an array of 4 different
MOX gas sensors: TGS-2600, TGS-2602, TGS-2611, TGS-2620. In order to enable
the sensor surfaces to interact with the volatile molecules dispersed in the environ-
ment, a fan is used to generate a constant airflow through the array of sensors.

C.3.1 Cases of study

Four different cases have been considered in the generation of the presented data-set.
In the first one, the e-nose is placed at a fixed distance from the gas source, while in
the second case, the distance between the e-nose and the gas source varies recreating
the movement of a mobile robot when passing over a gas source. Then, the third case
of study exploits the exposition of the e-nose to different gas sources consecutively.
Finally, the fourth case focusses in the mixture of different volatiles. Next, each of
these cases of study is detailed:

First case

This part of the data-set deals with samples collected when the e-nose is placed at
a fixed distance from the gas source. Initially, the e-nose is allowed to measure the
baseline level for 20 seconds after which the volatile is released for a duration of
another 60 seconds approximately. After that time, the volatile is removed to allow
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0 20 40 80 (cm)

Gas Source

Figure C.8: Diagram of the setup employed to collect the samples of the first case of study. A
fixed distance between the gas source and the e-nose is kept during the sampling process.

the sensors to slowly recover to their initial state. Three different distances between
e-nose and gas source have been selected: 20cm, 40cm and 80cm (see Figure C.8).
For each combination of volatile and distance, three repetitions are collected. A total
of 3x4x3 = 36 samples compose this section of the data-set.

Second case

This second case is conceived to recreate the aspects of the signals gathered by an e-
nose carried by a mobile robot when passing near or over a gas source. Each sample
contains the measurement of the baseline level for the initial 20 seconds, and then the
sensor readings for two runs of the e-nose passing over the gas source (towards and
back). Considering the generally slow movement speeds of robots carrying an e-nose,
two different velocities of 5cm/s and 10cm/s are proposed here. As in the previous
case, three repetitions of each speed are recorded, generating a total of 24 samples.
Figure C.9 shows an example of the signals gathered with this setup.
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Figure C.9: Two different samples of the second case of study where an e-nose pass over the
gas source at a constant speed: (a) Methane gas source at 5cm/s (b) Ethanol gas source at
10cm/s.
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Third case

This case of study exploits the exposition of the e-nose to different volatiles consec-
utively, which means that at each instant of time, only one volatile is presented to
the e-nose; but the nature of the volatile changes with time. The objective of such
configuration is to determine if a pattern recognition algorithm would be capable of
determining the different analytes the e-nose has been exposed to and the respective
time-slots, even when the sensors are not allowed to recover their baseline levels.

The samples collected have been categorized in three different groups attending
to the order of exposure of the different volatiles, the distance between source and
e-nose, and the exposure time:

Group 1: Samples of this group contains three out of the four volatiles, following
the sequence: acetone - gin - ethanol. This sequence is repeated twice after
the initial 20s assigned to baseline measurement. The distance between the e-
nose and the gas source is kept constant at 30cm, and the different volatiles are
presented to the e-nose each 20s.

Group 2: Again, only three out of the four volatiles available are used. In this case
the sequence is based on acetone - ethanol - gin. As in the previous configura-
tions, this sequence is repeated twice after the initial 20s assigned to baseline
measurement. The distance to the source is increased to 65cm to scale up the
effect of turbulence, and the exposure time is set to 40s.

Group 3: Finally, the third configuration employs all the four volatiles substances.
The exposure sequence is set to: acetone - methane - ethanol - gin. As in the
previous configuration, the distance to the source is set to 65cm and volatiles
are presented each 40s.

To reduce the time necessary for the volatile molecules to reach the e-nose, in
this scenario, a second fan was placed bellow the gas source container as depicted in
Figure C.10. Additionally, an example of the signals gathered with this configuration
is shown in Figure C.11.

Fourth case

To conclude this data-set, some experiments related to the mixture of multiple ana-
lytes are considered. Three repetitions of the volatile sequence detailed in Table C.1
compose this section of the data-set. The experimental setup is identical to the third
case of study, setting a distance between e-nose and gas source of 65cm.
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Analyte container and 
the beneath fan

E‐nose aspiration

E‐nose

Figure C.10: Picture of the experimental setup employed in the third and fourth cases of study.
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Figure C.11: Sample belonging to the third case of study (consecutive analyte exposition). The
bottom rule depicts the time-slots of each analyte exposure, meaning: (B) baseline/recovery,
(A) acetone, (M) methane, (E) ethanol and (G) gin.

C.3.2 Data-set structure

Samples of this third data-set have been conveniently organized in folders. Each sam-
ple (.txt file) is named using the following rule:

V_[at_D]_[S]_[each_P]_dataset_DATE.rawlog_gasSensors.txt

where V is the ordered sequence of volatiles used in the sample, D is the distance
between e-nose and gas source in cm, S is the movement speed of the e-nose measured
in cm/s, P is the exposure time of each analyte in seconds and DATE is the time-stamp
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Table C.1: Sequence of volatile exposure used for the fourth case of study.

Timeslot analytes

0-20 Baseline

20-40 Methane

40-60 Methane + Acetone

60-80 Acetone

80-100 Acetone + Ethanol

100-120 Ethanol

120-140 Ethanol + Gin

140-160 Gin

160-180 Gin + Methane

in the format (yyyy−mm− dd_hhmmss). Square brackets indicates that the value is
optional depending on the case of study.

Samples of the two first cases of study have been separated by analyte, thus,
each folder named as one of the four analytes contains the samples corresponding
to these two cases of study. Two additional folders, each containing the samples of
the third and fourth cases of study respectively, are also provided. As in the previ-
ous data-sets a Matlab script designed to visualize the readings of each sample is
also attached. This data-set can be downloaded at: http://mrpt.org/Robotics_
olfaction_dataset.

http://mrpt.org/Robotics_olfaction_dataset
http://mrpt.org/Robotics_olfaction_dataset


Appendix D
Least Squares

This appendix details the optimization of the least squares form of the cost function
F(m), defined as the following sum of quadratic forms:

F(m) = r>Λr (D.1)

where r is the vector of errors or residuals, a measure of the mismatch between the
prediction and the observation, and Λ stands for the information matrix, i.e. the in-
verse of the covariance matrix.

In general this process is iterative, providing for each iteration a small increment
(∆m) of the current state towards the optimal value (m̂). Nevertheless, in the case
proposed in Chapter 5, since the residuals are linear functions, the optimal value can
be found in only one iteration:

m̂←m+∆m∗ (D.2)

This increment ∆m∗ can be shown to arise as a solution to the equation:

∆m∗← ∂F (mk +∆m)

∂∆m

∣∣∣∣
∆m=0

= 0 (D.3)

Approximating the cost function F(m) by its second-order Taylor series expan-
sion in the vicinity of its actual state mk:
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F(mk +∆m) ≈ F̂k (mk +∆m)

= F(mk)+
∂F
∂m

∣∣∣∣
m=mk︸ ︷︷ ︸

∇mF(mk)

∆m+
1
2

∆mT ∂ 2F
∂m∂mT

∣∣∣∣
m=mk︸ ︷︷ ︸

∇2
mF(mk)

∆m

= F(mk)+∇mF(mk)︸ ︷︷ ︸
gT

k

∆m+
1
2

∆mT
∇

2
mF(mk)︸ ︷︷ ︸

Hk

∆m (D.4)

= F(mk)+gT
k ∆m+

1
2

∆mT Hk ∆m

where we introduce the first and second-order derivatives of F(m), namely the gradi-
ent vector gk = ∇mF(m)> and the Hessian matrix Hk = ∇2

mF(mk).
Taking now derivatives with respect to an increment in the unknowns, we obtain:

∂F(mk +∆m)

∂∆m
≈ ∂ F̂k (mk +∆m)

∂∆m
(D.5)
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Provided that ∂aTMa
∂a =

(
M+MT)a and ∂aTb

∂b = a, and since the Hessian matrix
is symmetric:

∂ F̂k (mk +∆m)

∂∆m
= g+H∆m (D.6)

The increment of the current state that leads to the optimal value of the gas distri-
bution map is then determined by identifying Eq. (D.6) to zero:

∂ F̂k (mk +∆m)

∂∆m

∣∣∣∣
∆m=0

= 0 → gk +Hk ∆m∗k = 0

Therefore, ∆m∗k is computed by solving the linear system of the form Ax = b:

Hk∆m∗k =−gk (D.7)

This linear system can be rewritten by taking the first order Taylor extension on
the residuals r, leading to:

(J>ΛJ)︸ ︷︷ ︸
Hessian H

∆m∗ =− J>Λr︸ ︷︷ ︸
Gradient g

(D.8)
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