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Abstract—Building a model of gas concentrations has im-
portant industrial and environmental applications, and mobile
robots on their own or in cooperation with stationary sensors
play an important role in this task. Since an exact analytical
description of turbulent flow remains an intractable problem, we
propose an approximate approach which not only estimates the
concentrations but also their variances for each location. Our
point of view is that of sequential Bayesian estimation given a
lattice of 2D cells treated as hidden variables. We first discuss
how a simple Kalman filter provides a solution to the estimation
problem. To overcome the quadratic computational complexity
with the mapped area exhibited by a straighforward application
of Kalman filtering, we introduce a sparse implementation which
runs in constant time. Experimental results for a real robot
validate the proposed method.

Index Terms—alman Filter, Gas Distribution Mapping, Mobile
Olfactionalman Filter, Gas Distribution Mapping, Mobile Olfac-
tionK

I. INTRODUCTION

Modeling the gas distribution of an environment implies
deriving a truthful representation of the observed gas distribution
from a set of spatially and temporally distributed measurements
of relevant variables, foremost gas concentration, but also wind,
pressure, and temperature, for example. Building gas distribution
models (GDM) is a challenging task, mainly because in many
realistic scenarios gas is dispersed by turbulent advection, which
creates packets of gas that follow chaotic trajectories [16].

While an exact description of turbulent flow remains an
intractable problem, it is possible to approach the problem by
aiming at a representation of the average gas distribution. A gas
distribution model should therefore represent an estimate of the
time-averaged concentration and the statistics of the expected
fluctuations. In this sense, a gas distribution model is truthful if
it explains new observations well and allows to identify hidden
parameters such as the location of the source of gas, for example.

Instead of trying to solve the physical equations governing gas
distribution, we create a statistical model of the observed gas
distribution from the sparse set of measurements, treating gas
sensor readings as random variables. Under the assumption of a
static gas distribution and given a sufficient number of measure-
ments, such a description will provide a truthful representation.

Gas distribution modeling constitutes an ideal application
area for mobile robots since they can carry out the required
repetitive measurement procedure without suffering from fatigue,
can provide a higher (and adaptive) resolution of the distribution
model than a stationary sensor network and offer the required
accurate localization, the capabilities to create the gas distribution
model on-line and to decide based on this model which locations
need to be observed next. Mobile robots equipped with gas
sensors, as our robot shown in Fig. 1, have a great potential

Fig. 1. A picture of the e-nose mounted on the mobile robot employed in
the experiments.

for pollution monitoring in public areas [1] or inspection of
hazardous industrial facilities.

In this work we introduce a probabilistic method to learn a
gas distribution model of planar environments given a sequence
of localized gas sensor readings, that is, we assume that robot
localization is either solved or decoupled from gas mapping
as in [11], a common practice in the mobile robotics olfaction
literature. The space is divided into a two-dimensional lattice
where cells are treated as hidden variables to be estimated
through sequential Bayesian estimation. As discussed later on,
the simple sensor model we propose allows the derivation of an
efficient implementation of a Kalman Filter, such that updates
can be performed in constant time. The estimated model, also
referred as the map of gas concentrations, keeps a density
distribution of the expected concentration at each cell, including
its uncertainty. We present experimental results with a mobile
robot equipped with an electronic nose that validate our proposal.

This paper is organized as follows. We first discuss related
works in Section II, then we introduce the map model in
Section III and derive the probabilistic method in Section IV.
Finally, experimental results for a dataset gathered by a real
mobile robot are discussed.

II. RELATED RESEARCH

This section gives an overview of the work in the area of gas
distribution mapping with a particular focus on methods that
have been developed for mobile robots.
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According to the assumptions about the nature of the gas
distribution, these methods can be classified as model-based
approaches or statistical approaches. Model-based approaches as
in Ishida et al. [7] infer the parameters of an analytical gas dis-
tribution model from the measurements. They crucially depend
on the underlying model. As discussed above, the application of
complex numerical models based on fluid dynamics simulations
is not feasible in practical situations. Simpler analytical models,
on the other hand, often rest on rather unrealistic assumptions
and are of course only applicable for situations in which the
model assumptions hold.

Among the statistical approaches, histogram methods take the
spatial correlation of concentration measurements into account
because of the implicit extrapolation on the measurements by the
quantization into histogram bins. Hayes et al. [6] suggest a two-
dimensional histogram where the bins contain the accumulated
number of “odor hits” received in the corresponding area. Odor
hits are counted whenever the response level of a gas sensor
exceeds a defined threshold. In addition to the dependency of
the gas distribution map on the selected threshold, a problem
with using only binary information from the gas sensors is that
much useful information about fine gradations in the average
concentration is discarded. A further disadvantage of histogram
methods for gas distribution modeling is their dependency on
the bin size and that they require perfectly even coverage of the
inspected area.

Kernel extrapolation gas distribution mapping, which can be
seen as an extension of histogram methods, was introduced by
Lilienthal and Duckett [9]. Spatial integration is carried out by
convolving sensor readings and modeling the information content
of the point measurements with a Gaussian kernel. The Kernel
extrapolation method was extended for the case of multiple odor
sources [14] and it was demonstrated how a post-processing step,
in which the obtained map is interpreted by an analytical physical
model, allows to locate the gas source with a higher certainty and
accuracy [13]. It was further shown on the basis of the Kernel
extrapolation method how gas distribution mapping methods can
be embedded into a Blackwellized particle filter approach to
account for the uncertainty about the position of the robot [11].

All the methods mentioned so far model the average or the
peak gas concentration but not the concentration fluctuations,
or variance. The probabilistic model introduced in this paper
estimates both parameters for each location (concretely, for each
cell of the grid). Estimating the predictive variance is important
for techniques that suggest new measurement locations based on
the current model (sensor planning), for evaluating the model
quality in terms of the data likelihood and for integrating the
predictions into probabilistic localization methods [2]. Addition-
ally, the Bayesian estimation of the variance proposed in this
paper allows taking into consideration a transition model of the
system, providing a promising tool to model certain instances of
the GDM problem in the presence of wind.

Another method which predicts the mean concentration and its
uncertainty using Gaussian process mixture models (“GPMM”)
was presented by Stachnis et al. [17]. The proposed method treats
gas distribution modeling as a regression problem. In contrast
to the approach introduced here, the model is represented
directly using the training data. Since it requires the inversion
of matrices growing with the number of training samples n,
the computational complexity for learning the GPMM is O(n3),
while the sparse Kalman filter implementation introduced later
on achieves a constant update time per observed measurement.

More recently, Lilienthal et al. [12] proposed the Kernel
DM+V algorithm to estimate in addition to the distribution
mean, the predictive variance per grid cell. They carried out
two parallel estimation process, one for the mean and another
for the variance, with the aim to adapt to the real variability of

gas readings. The method proposed in this paper is based on a
Bayesian interpretation, providing the covariance of the mean gas
concentration as an estimate of the variance at each grid cell. As
mentioned above, a remarkable advantage of the Kalman Filter-
based mapping with respect to previous proposals is its potential
for integrating in the gas mapping process a transition model
that accounts for environmental information such as wind. This
transition model for the gas concentration map is not addressed
here and remains as future work.

III. A STOCHASTIC MODEL FOR GDM
As in most previous works, we simplify the problem of estimat-

ing the gas concentration in an environment by estimating a two-
dimensional map. A map m is modeled as a random field where
mxy are scalar variables representing the gas concentration at
coordinates (x, y).

In this work we propose a very simple probabilistic model for
gas measurements: an observation zt taken by the robot at time
t is simply the actual value of the gas concentration at that point
of space (denoted here as mc), corrupted by additive Gaussian
noise of variance σ2

n, that is:

zt = mc + nt , nt ∼ N
(
0, σ2

n

)
(1)

The model is backed up by the physical principle of gas
sensors which indeed are limited by a few square millimeters
of sensing surface. Nevertheless, in practice the slow reaction
time of sensors leads to an “averaging” effect over time. This
effect can be reduced by forcing the robot to move very slowly
or by using an specific e-nose configuration [5], [15].

Going back to the map model, and given analytical solutions
are intractable, we divide the space into a regular lattice of cells.
Since our aim is a probabilistic model of gas concentrations,
the probability density function (pdf) of the concentration will
be estimated at each cell within this gas concentration grid
(GCG). In principle, this map model resembles occupancy grid
(OG) maps [3] used for sonar or laser mapping. However, two
fundamental properties set GCGs apart from OGs:

• In an OG, each cell is uniquely characterized by the discrete
property of occupancy, thus each cell is modelled through
a Bernoulli distribution. In contrast, the property we are
modeling in a gas map is concentration, a continuous
variable. Thus, we propose to model the density of cells
as Gaussians.

• Many common sensors provide information about a much
larger portion of space in comparison to gas sensors. This
is the reason why assuming independence between cells is
a common and plausible approach to building OGs [3]
(a notable exception is [18]): several cells are observed
simultaneously, while a gas sensor takes just one reading
of a point. Motivated by this observation, the present
approach does not assume independence between cells which
would lead to an severe lack of information about locations
the robot has not visited yet. Moreover, assuming certain
correlations between neighbor cells has a clear foundation
in the way gasses spread through an environment, thus
the assumption of cell dependency arises naturally in gas
mapping.

To summarize our model, we represent the map of gas
concentrations, m, as a multidimensional Gaussian distribution,

m ∼ N (µ,Σ) (2)

where the mean vector µ = {µi}Ni=1 keeps the average concen-
tration for each of the N cells, and the N × N matrix Σ is
the full covariance matrix. Thus, each cell mxy is individually

Authors' accepted manuscript. 
Proceedings of the 28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, 2013 

The final publication is available at: http://dx.doi.org/10.1145/2480362.2480409 



x

y

N
o
rm

a
li

z
e
d
 c

o
n

c
e
n

tr
a
ti

o
n

pdf of the concentration

at cell (x0,y0)

y0

x0

0 0x y
µ

0 0x y
σ

(a)

y0

x0

x

y

( )
0 0

cov ,
x y xy

m m

(b)
Fig. 2. (a) The 2D map is represented by a lattice where each cell keeps the estimate of gas concentration by means of a Gaussian density, represented here
in the vertical axis. (b) We also estimate the covariance between cells and their neighbors. This plot shows the initial value of this covariance, representing
the assumption that closer cells have more similar concentrations.
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Fig. 3. Our sparse Kalman filter approach takes into account correlations between one cell and those within a given range W only (left). By assuming
that the rest of covariance values are null, only a subset of the full N ×N covariance matrix must be kept, the “compressed” covariance, its structure being
depicted at the right. Note that only half of the covariances (σi,j iff i ≤ j) must be kept due to the symmetry of Σt.

modelled by N
(
µxy, σ

2
xy

)
, as depicted in Fig. 2(a), in addition

to the covariances with the other cells. For convenience, mean
values are normalized gas concentrations in the range [0, 1].

The initialization of the covariance matrix Σ is the only point
in our method where a physical model of gas distribution enters.
Inspired by the kernel-based gas mapping algorithm [10], closer
cells are assigned higher correlations which is modeled by an
isotropic 2D gaussian as depicted in Fig. 2(b). The initial variance
of each cell is set to a value larger than the range of normalized
concentrations, e.g. σ2

xy = 3, such as the Gaussian approximates
a uniform distribution for each unobserved cell.

The notation used in the rest of the paper deserves further
discussion. Referring to cells by their 2-d coordinates (e.g. µxy)
is useful for visualizing the spatial arrangement of cells. Nev-
ertheless, when dealing with the state vector-covariance matrix
representation it becomes more convenient to denote individual
cells by a single index, e.g. µc, thus the variance of a given cell
c is denoted by σ2

c and cross-covariances by σi,j .

IV. DERIVATION

In this section we first introduce Bayesian estimation of gas
concentration grids using Kalman filtering, then we describe
how a sparse representation of covariances leads to a dramatic
improvement in efficiency resulting in a constant time complexity
(i.e. independent of the map size).

A. Kalman filtering
Let µt and Σt denote the mean and covariance matrix of the

map estimate at time step t. Kalman filtering (KF) [8] allows

us to incrementally update this estimate given new evidences, or
observations zt. Without loss of generality, we assume that only
one gas sensor is read at each time. In the case of robots with
several sensors, the following equations are just applied more
than once sequentially.

Since the sensor model proposed in this work is linear, see
Eq. (1), the original KF algorithm suffices to our problem. Here
the updated mean vector is computed as:

µt = µt−1 +Kt (zt −Htµt−1) (3)

where Ht is the 1×N matrix of the observation model. In our
problem, this matrix has a special configuration which will lead
to important simplifications:

Ht = (0 · · · 1 · · · 0) (4)

Ht[k] =

{
1 , k = c (the current cell)
0 , k ̸= c

that is, all entries but one are zero due to the simple sensor
model in Eq. (1) which states that the sensor measures the
gas concentration at the current cell c. It follows then that the
Kalman gain, Kt in Eq. (3), becomes:
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Kt = Σt−1H
⊤
t

(
HtΣt−1H

⊤
t + σ2

n

)−1

(5)

= Σt−1H
⊤
t

(
σ2
c + σ2

n

)−1

=

 σ1,c

...
σN,c

(
σ2
c + σ2

n

)−1

which leads to the following update rules for each i’th cell’s mean
and cross-covariances:

µ′
i = µi + (zt − µc)

σi,c

σ2
c + σ2

n

(6)

σ′
i,j = σi,j −

σi,c σc,j

σ2
c + σ2

n

(7)

where for clarity prime variables refer to time t and unprimed
variables to time t−1. This formulation provides us with an exact
solution to gas mapping given our sensor model. However, its
computation demands O(N) and O(N2) operations for the mean
and the covariance matrix, respectively, being N the number of
cells. This computational burden is better revealed by noting
that the number of cells N grows linearly with the mapped
area, thus the method has an overall complexity of O(A2) for
A being the mapped area. Storage is another drawback since
keeping all the covariances also demands quadratic space with
respect to the map area. Therefore, the method above can be
directly applied only to small maps. We develop in the following
an optimized version of the algorithm which dramatically reduces
the computational and storage complexities.

B. Sparse implementation
While in landmark-based SLAM sparse filters are well-known

and exploit real independencies between far-off landmarks [19],
in a gas grid any cell has some degree of correlation with
its neighbor, vanishing quickly with distance as illustrated in
Fig. 2(b).

Our proposed implementation of Kalman filtering for GDM
hence relies on the truncation of covariances between any cell
and those ones out of a window centered at the current cell, as
depicted in Fig. 3. The window size, W , determines the range of
cells affected by a gas reading at some given location. Thus, for
each new measurement, the mean of all cells is updated using
(6) and only some covariances are updated through (7).

The advantages of this sparse representation are twofold.
Firstly, the complexity of each update is reduced from O(N2)
(determined by the update of covariances) to O(W 4), which
represents a great improvement given that N is typically sev-
eral orders of magnitude larger than W . Note also that the
complexity becomes independent of the actual mapped area.
Secondly, storage requirements for the covariances also greatly
decrease from O(N2) to O(N ·W 2). One possible arrangement
is the “compressed” covariance layout pictured in Fig. 3. As an
example, a full covariance matrix for a real gas gridmap is shown
in Fig. 4(a). It can be clearly observed how all elements but those
in a diagonal band are zero, hence they do not contribute useful
information to the filter. In the compressed matrix in Fig. 4(b),
only the band diagonal elements are kept, thus all the information
is preserved while requiring a fraction of the memory. The exact
gain in memory depends on the map size and the value of W ,
but the improvement grows with the size of maps.

V. EXPERIMENTAL RESULTS

To validate our proposal, we have carried out the following
experiments1. A mobile robot equipped with an “electronic nose”

1A video is available at YouTube in www.hidden for blind revision
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Fig. 4. (a) A covariance matrix for a gas gridmap, where it becomes obvious
that most of the correlations occur between very close cells, thus virtually
all the information is kept in a band diagonal (darker colors mean stronger
correlations). (b) The compressed covariance matrix proposed in this work,
where one row exists for each cell and contains the relevant covariances only.

(e-nose) (see Fig. 1) was guided through an office room with an
alcohol source (a cup) placed on the floor in the middle of the
room. All doors and windows in the room were kept shut during
the experiment to prevent strong air flows. Inside the e-nose,
four different Figaro sensors [4] provide us in parallel the gas
concentration of different chemicals.

Both the robot path and the occupancy grid map obtained
as the robot performed SLAM to localize itself are represented
in Fig. 5(a). The gas readings collected as the robot moves are
plotted in Fig. 5(b). After applying the straighforward imple-
mentation of Kalman filtering (with the full N × N covariance
matrix), we obtain an estimated map where the peak roughly
coincides with the actual location of the gas source. The mean
and standard deviation of each cell in the gas grid can be seen in
Fig. 5(c)-(d), respectively. The level of uncertainty associated to
each cell quickly increases with the distance to the actual robot
path, as can be seen in Fig. 5(d).

As could be expected, the mean of cells is modified far beyond
the robot path, thus the approach is successful in interpolating the
gas readings to locations not visited by the robot. The parameter
σd, which controls the influence area of measurements, has been
set to 30cm in this experiment – a value comparable to those
in Kernel-based GDM. This value of σd has been determined
by optimizing the observations likelihood for the present dataset,
although values approximately in the range 25− 50cm leads to
sensible maps. It must be noted that the optimal parameters
are determined manually for each dataset, thus a more concise
analysis of optimal configurations across several environments
remains being a future work.

Regarding the sparse implementation described in section
IV-B, we have observed that there exists a minimum window
size (W ) which leads to an acceptable approximation of the
full covariance implementation, though for greater W values the
approximated maps converge very quickly to the exact one at a
fraction of the computational cost. To quantify the improvement
we have applied the sparse KF with a range of different W values.
The results are summarized in Fig. 5(e)-(f), where the average
errors in both the mean and the variance of cells, respectively,
are plotted against increasing sizes of the window for values in
the range 14 ≤ W ≤ 26. An accurate approximation is obtained
for values of W ≥ 20, approximately, while the time required
to build the entire map remains around 20 seconds – refer to
Fig. 5(g) – in contrast to the consideration of the full covariance
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matrix which requires more than 130 seconds. It must be noted
that the robot took an overall time of 768 seconds to collect the
dataset, thus both methods are capable of real-time mapping.

Naturally, these performance results are related to the cell
size, set in this experiment to c = 10cm. In general, a finer grid
will provide more accurate results, at the expense of a greater
computational time. This burden is derived from the need to
enlarge the window size W to compensate the smaller size of
cells. As a rule of thumb from the results in Fig. 5(e)-(f), the
window size should be K ' 7σd/c. Hence the convenience of
keeping the grid as coarse as possible. Typically, good results
can be obtained with cell sizes c in the range 5− 50cm.

VI. CONCLUSIONS

In this paper we have revisited the problem of map building for
the case of gas concentrations.We have approached the problem
from a Bayesian perspective and employed an optimized version
of Kalman filtering to generate a model of the gas distribution in
a planar environment. The main contribution of this work is the
introduction of a fast, probabilistic algorithm which considers
uncertainty in gas maps, and provides the mathematical back-
ground for integrating in the gas mapping process a transition
model that accounts for environmental information such as wind.
This transition model is not addressed here and remains as
future work. The method has been validated with a real dataset
and despite the noisy measurements, the obtained map correctly
reflects a peak in the concentration at the approximate location
of the source. Due to its probabilistic nature, the proposed
approach is compatible with localization and SLAM methods
relying, uniquely or partly, on gas sensors. Future works will
explore these possibilities.

VII. ACKNOWLEDGMENTS

This work was partly supported by the Regional Government
of Andalucia under research contract P08-TEP-4016.

REFERENCES

[1] DustBot - Networked and Cooperating Robots for Urban Hygiene.
http://www.dustbot.org.

[2] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo local-
ization for mobile robots. In Proceedings of the IEEE International
Conference on Robotics and Automation, volume 2, 1999.

[3] A. Elfes. Using occupancy grids for mobile robot perception and
navigation. Computer, 22(6):46–57, 1989.

[4] Figaro. Figaro corporate website: http://www.figarosensor.com/.
[5] J. Gonzalez-Jimenez, J. G. Monroy, and J. L. Blanco. The multi-

chamber electronic nose, an improved olfaction sensor for mobile
robotics. Sensors, 11(6):6145–6164, 2011.

[6] A. Hayes, A. Martinoli, and R. Goodman. Distributed Odor Source
Localization. IEEE Sensors Journal, Special Issue on Electronic
Nose Technologies, 2(3):260–273, 2002. June.

[7] H. Ishida, T. Nakamoto, and T. Moriizumi. Remote Sensing of
Gas/Odor Source Location and Concentration Distribution Using
Mobile System. Sensors and Actuators B, 49:52–57, 1998.

[8] R. Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82(1):35–45, 1960.

[9] A. Lilienthal and T. Duckett. Building Gas Concentration Gridmaps
with a Mobile Robot. Robotics and Autonomous Systems, 48(1):3–16,
August 2004.

[10] A. J. Lilienthal and T. Duckett. Building gas concentration gridmaps
with a mobile robot. Robotics and Autonomous Systems, 48(1):3–16,
August 31 2004.

[11] A. J. Lilienthal, A. Loutfi, J. L. Blanco, C. Galindo, and J. Gonzalez.
A rao-blackwellisation approach to gdm-slam. integrating slam
and gas distribution mapping. In Proceedings of the European
Conference on Mobile Robots (ECMR), pages 126–131, September
19–21 2007.

[12] A. J. Lilienthal, M. Reggente, M. Trincavelli, J. L. Blanco, and
J. Gonzalez. A statistical approach to gas distribution modelling
with mobile robots, the kernel dm+v algorithm. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 570–576, October 11 – October 15 2009.

[13] A. J. Lilienthal, F. Streichert, and A. Zell. Model-based Shape
Analysis of Gas Concentration Gridmaps for Improved Gas Source
Localisation. pages 3575 – 3580, Barcelona, Spain, 2005.

[14] A. Loutfi, S. Coradeschi, A. J. Lilienthal, and J. Gonzalez. Gas
Distribution Mapping of Multiple Odour Sources using a Mobile

-4 -2 0 2 4 6 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

14 15 16 17 18 19 20 21 22 23 24 25 0 

20 

40 

60 

80 

100 

120 

140 

W 

C
o

m
p

u
ta

ti
o

n
 t

im
e 

(s
) 

14 16 18 20 22 24 26
0 

0.2 

0.4 

0.6 

0.8 

1 

W 

A
v
er

ag
e 

ab
s.

 e
rr

o
r 

in
 σ

x
y

14 16 18 20 22 24 26
0 

1 

2 

3 

4 
× 10-3 

W 

A
v
er

ag
e 

ab
s.

 e
rr

o
r 

in
 µ

xy
 

0 100 200 300 400 500 600 700 800 
2 

2.5 

3 

3.5 

4 

4.5 

-4 -2 0 2 4 6 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

0.5 

1 

1.5 

2 

2.5 

3 

(a) (b) 

× 10-3 

Full KF 

Sparse KF 

(c) (d) 

(e) 

(f) 

(g) x (meters) 

y
(m

et
er

s)
 

y
(m

et
er

s)
 

x (meters) 

-2 0 2 4 6 

-1 

0 

1 

2 

3 

Robot path 

Gas source 

y
(m

et
er

s)
 

x (meters) x (seconds) 

y
(v

o
lt

s)
 

Fig. 5. Experimental results for gas readings gathered by a real mobile robot. (a) The robot path and the occupancy grid of the office where the experiment
took place. (b) The gas readings over time. (c)-(d) The mean and standard deviation, respectively, of each cell in the gas concentration grid built with our
method. (e)-(f) The errors between the exact KF solution and the sparse filter for increasing sizes of the window W , and (g) the corresponding computation
times.
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