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Abstract— This work addresses the fundamental problem of
Pose Graph Optimization (PGO), which is pervasive in the con-
text of SLAM, and widely known as SE(d)-Synchronization in
the mathematical community. Our contribution is twofold. First,
we provide a novel, elegant and compact matrix formulation of
the Maximum Likelihood Estimation (MLE) for this problem,
drawing interesting connections with the Connection Laplacian
of a graph object. Secondly, even though the MLE problem
is non-convex and computationally intractable in general, we
exploit recent advances in convex relaxations of PGO and
Riemannian techniques for low-rank optimization to yield an
a-posteriori certifiably globally optimal algorithm [1] that is also
fast and scalable.

This work builds upon a fairly demanding mathematical
machinery, but beyond the theoretical basis presented, we
demonstrate its performance through extensive experimenta-
tion in common large-scale SLAM datasets. The proposed
framework, Cartan-Sync, is up to one order of magnitude
faster that the state-of-the-art SE-Sync [2] in some important
scenarios (e.g. the KITTI dataset).

We make the code for Cartan-Sync available at
bitbucket.org/jesusbriales/cartan-sync, along with some exam-
ples and guides for a friendly use by researchers in the field,
hoping to promote further adoption and exploitation of these
techniques in the robotics community.

I. INTRODUCTION

Pose Graph Optimization (PGO) has become through time
an invaluable tool for Robotics, where it stands at the core
of Simultaneous Localization and Mapping (SLAM) and
multi-robot localization. The problem is also pervasive in
many other fields including structure-from-motion, camera
network calibration, sensor network localization and cryo-
electron microscopy, where it is also referred to as the pose
synchronization or SE(d)-synchronization problem.

From a formal standpoint, given a collection of unknown
poses and a set of measured relative transformations be-
tween them, both seen as orientation-position pairs in the
d-dimensional Euclidean space (elements of the special Eu-
clidean group SE(d) ≡ SO(d)nRd), SE(d)-synchronization
seeks to maximize the consistency of the model with the
available observations. The typical Maximum-Likelihood
Estimation (MLE) formulation of PGO leads to a high-
dimensional non-convex optimization problem, which is
computationally intractable in general. Because of this,
most approaches have traditionally resorted to local search
techniques (e.g. Gauss-Newton, gradient descent or trust
region methods [3]–[5]), which perform remarkably well
and efficiently given a sufficiently good initial estimate. The
local nature of these algorithms may result in convergence
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to (suboptimal) local minima though, which in practice
translates to arbitrarily wrong estimates [6], [7].

At this point, we feel obliged to quote the following
insightful lines by Rosen et al. [8]: “The increasingly
widespread adoption of robotic technology in areas such as
transportation, medicine, and disaster response has tremen-
dous potential to increase productivity, alleviate suffering,
and preserve life. At the same time, however, these high-
impact applications often place autonomous systems in
safety- and life-critical roles, where misbehavior or unde-
tected failures can carry dire consequences [9]”. Because
of this, the development of a-posteriori certifiably correct
methods [1] is an invaluable step towards the safe adoption
of robotic technologies in society.

This paper addresses the optimization of the PGO prob-
lem, commonly standing at the back-end of different applica-
tions, providing a-posteriori global optimality guarantees for
many practical problems. Note we intentionally leave out the
problem of data association, which is per se a challenging
task and should be considered elsewhere. Thus, we assume
the pose graph provided by the front-end is free of outliers.

Related work: In the context of SLAM, the reliability
issues resulting from typical local iterative solvers have been
traditionally addressed in a number of ways, mainly focused
either on the initialization problem to bootstrap the iterative
solver or on a better understanding of the global structure of
the problem. Recent findings have (empirically) shown that,
upon an appropriate MLE formulation of the problem, in
virtually all practical cases of interest the global solution of
the original hard non-convex pose synchronization problem is
closely related to that of a tight convex Semidefinite Program
(SDP) relaxation of the same problem [6], [10]–[13]. Thus,
when strong duality (tightness) holds, this connection has
been successfully exploited providing effective means of
certifying the global optimality of a given candidate solution
and also of recovering the optimal solution through the
resolution of the relaxed problem. This is a key feature
that enables the development of Probably Certifiably Correct
(PCC) algorithms [1] for PGO, that is, algorithms that with
a high probability are able both to efficiently find globally
optimal solutions within a restricted range of operation of
interest of the generally intractable PGO problem, and to
certify to have done so. The relaxed problem is a semidefinite
program (SDP) though, and while there are mature off-the-
shelf SDP solvers for it, in practice they can handle only
problems involving up to a few hundred poses.

A closely related and simpler (also fundamental) prob-
lem is rotation synchronization. This problem has inspired
its own extensive literature in many different fields, with
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similar results and findings to those mentioned above for
the pose synchronization case. As for our problem, the MLE
formulation of the rotation synchronization can be tightly
relaxed to a SDP problem in many cases of interest [14].

In order to overcome the scalability issues imposed by the
resolution of the SDP problem, recent works addressing the
rotation case have focused on the development of practical
algorithms which are able to solve this SDP problem fast
and with strong theoretical optimality guarantees [15].

In order to exploit the availability of this fast globally
optimal algorithmic approach for rotation synchronization in
the pose synchronization problem, recent work by Rosen et
al. [2], [8] proposes to reduce the SE(d)-synchronization
instance to a rotation one by marginalizing the transla-
tional components of the problem. They call their algorithm
SE-Sync, and prove experimentally that, for a wide range
of problems, this approach is able to recover globally optimal
solutions to pose synchronization and does so more than
an order of magnitude faster than the Gauss-Newton-based
approach at the basis of current state-of-the-art techniques.

Contribution: In the present work, we present a novel
fast and a-posteriori certifiably globally optimal procedure to
solve large-scale instances of SE(d)-synchronization. Unlike
prior work [2], [8], the optimization framework is entirely
developed within the natural domain of pose synchronization,
without relying on any auxiliary marginalization: Rotations
and translations are jointly optimized.

This work connects with some recent contributions re-
garding the Riemannian Staircase procedure [2], [16] and
verification and global optimality through the SDP relaxation
for SE(d)-synchronization [11], [13]. For questions referring
these topics, we strongly suggest reading those materials.
Overall, the current contribution provides the following nov-
elties:
• An elegant matrix formulation for the pose synchroniza-

tion problem (significantly simpler than previous ones
[2], [6], [8], [11]–[13]), which links to the Connection
Laplacian [17], is provided in Section II.

• The (empirically often) tight SDP relaxation, key to the
recovery of a global solution for the non-convex MLE,
which is adapted to the new formulation in Section III.

• Finally, in Section IV, we provide an extension of the
Riemannian Staircase approach [16] which allows us
to solve large-scale instances of the SDP relaxation
underpinning SE(d)-synchronization.

The crux of our framework is the reformulation of the SDP
problem as a Riemannian optimization problem on a very
specific Cartan motion group [18]. Because of this, we refer
to our SE(d)-synchronization method as Cartan-Sync.

Experimental evaluation on an extensive set of synthetic
and real-world pose-graph SLAM datasets, both for the 2D
and 3D case, shows that the computational efficiency of
Cartan-Sync meets that of SE-Sync and, in certain
common scenarios, it consistently outperforms SE-Sync.

A comprehensive overview of the notation, as well as ad-
ditional mathematical developments and proofs, are available
in the supplementary material [19, Sec. I]. Lastly, we make

the code available at bitbucket.org/jesusbriales/cartan-sync in
order to promote usability of the presented framework.

II. CONNECTION LAPLACIAN FORMULATION

In this section we present the MLE formulation of SE(d)-
synchronization and rewrite it in a compact form that em-
phasizes the inherent relation of the problem with a specific
graph-theoretic object, the Connection Laplacian [17], [20].
The formulation presented in [11], although similar, lacks
this straightforward relation with the Connection Laplacian.

The SE(d)-synchronization problem requires to estimate
a model consisting of n poses (Ri, ti) (the unknowns)
from m relative measurements (R̄ij , t̄ij) (the data), both
in the Special Euclidean group SE(d). The set of available
measurements can be identified with an undirected graph
G = (V,E), with V = {1, . . . , n} and E = {(ik, jk)}mk=1 ⊂
V ×V . Also, to make the formulation clearer, G is assumed
without loss of generality connected and simple. From here
on, we will represent poses through the usual matrix em-
bedding T =

[
R, t

]
⊂ Rd×(d+1), and use T̃ to refer to its

homogeneous matrix representation [19, Sec. I].
The best model maximizes the consistency with the ob-

servations, which yields the optimization problem

f?ML = min
{T i∈SE(d)}i∈V

1

2

∑
(i,j)∈E

ω2
R̄ij
‖Rj −RiR̄ij‖2F (1)

+ω2
t̄ij
‖tj − ti −Rit̄ij‖22.

This formulation is consistent with the Maximum-Likelihood
Estimation under the assumption of isotropic Langevin and
Gaussian distributions for R̄ij and t̄ij , with information ω2

R̄ij

and ω2
t̄ij

[2], [6], [8]. For non-isotropic distributions we must
approximate these by bounding isotropic distributions [7].

The MLE formulation (1) is equivalent to

f?ML = min
{T i∈SE(d)}i∈V

1

2

∑
(i,j)∈E

‖T j − T i
˜̄T ij‖2Ωij

, (2)

where we define the matrix norm ‖M‖2Ω = tr(MΩM>),
with matrix weights Ωij = blkdiag(ω2

R̄ij
Id, ω

2
t̄ij

).
Let us now define a convenient extension of the graph

G, the matrix weighted graph G [17], as the triplet G =
(V, E ,W) where V = {T i}i∈V is the set of node poses,
E = {T̄ ij}(i,j)∈E is the list of relative pose measurements
and W = {Ωij}(i,j)∈E is the set of corresponding matrix
weights. Then, after some linear algebra [19, Sec. II], we
write the MLE problem (2) as

f?ML = min
X

1

2
tr(X>QX), X ∈ stack({SE(d)}n)>, (3)

whereX is the transposed stacked representation of the node
set V , a column [(d+ 1)×d]-block-vector

X
[(d+1)×d]

(n×1)

= stack(V)> =
[
T 1 . . . T n

]> ⊂ Rn(d+1)×d.

The matrix Q in the compact objective form of (3)
is core to the synchronization problem as it condenses
all the information available in the problem. Interestingly,
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this matrix is not other than the Connection Laplacian
[17], [20] of the matrix graph G defined above. This is
a [(d+ 1)× (d+ 1)](n× n) block-matrix characterized by
the Connection Incidence matrix A and the Connection
Weight matrix Ω, a convenient generalization of the com-
mon incidence and weight matrices fulfilling the otherwise
classical relation Q(G) = A(~G)Ω(G)A(~G)>. We refer to
[19, Sec. II] for the proof.

Let us adopt an arbitrary orientation1 of the original scalar
graph G to obtain the oriented graph ~G. The Connection
Incidence matrix A of the corresponding oriented matrix
graph ~G is the [(d + 1)×(d + 1)](n×m) matrix whose k-th
block-column is defined by the measurement in the k-th edge
(ik, jk) as

A(~G)[r,k] =


− ˜̄T ikjk if r = ik,

+Id+1 if r = jk,

0d+1 otherwise.
(4)

The [(d+ 1)×(d+ 1)](m×m) block-diagonal Connection
Weight matrix is defined as

Ω(G) = blkdiag(Ω1, . . . ,Ωm). (5)

III. GLOBAL RESOLUTION THROUGH SDP RELAXATION

The hardness in solving the MLE problem arises from
the high non-convexity of the domain, which fills the op-
timization problem with local minima. In this section we
present a (convex) SDP relaxation, arising from Lagrangian
duality, that circumvents the challenge of local minima in
many practical problems. This relaxation, if tight, makes it
possible to recover and certify the globally optimal solution
of the MLE problem (3). Recent work proves that tightness is
guaranteed as long as the magnitude of the noise corrupting
the measurements T̄ ij remains below a certain theoretical
bound [2], [8]. The empirical evidence though is that the SDP
relaxation remains tight with high probability for noise up
to an order of magnitude greater2 than what is encountered
in typical robotics and computer vision applications [2], [6],
[8], [12], [13], [21].

In this work the SDP relaxation is tailored to the specific
formulation proposed in Section II. The usual algorithmic
approach exploiting the relaxation is depicted in Alg. 1 [13].

A. Forming the SDP relaxation

1) Orthogonal relaxation: To begin with, we relax the
condition that T i ∈ SE(d) by the looser condition T i ∈
E(d), with E(d) ≡ O(d) n Rd the Euclidean group. The
orthogonal relaxation of the MLE problem (3) is then

f?ort = min
X

1

2
tr(X>QX), X ∈ stack({E(d)}n)>. (6)

There exists both empirical [21] and theoretical [2, App. C]
evidence supporting that, in practical applications, we can
expect this relaxation to be tight so that f?ort = f?ML. This

1We take edge orientation from left (-) to right (+) index in the pair (i, j).
2No simple condition exists here, but rotation noise seems the principal

factor and tightness holds in practice as long as it is below 10 degrees.

Algorithm 1: Solving MLE via SDP relaxation
Input: Data matrix Q (Connection Laplacian)
Output: X , suboptimality bound
/* solve SDP relaxation */

1 Λ?, f?SDP ← SolveSDP(Q); . Problem (9)
/* recover X via duality theory */

2 N ← Get nullspace basis for null(Q−Λ?);
3 X ← MetricUpgrade(N); . See [13]

/* check optimality a-posteriori */
4 f?ML − f?SDP ≤ f(X)− f?SDP

relaxation defines the equivalent Quadratically Constrained
Quadratic Program (QCQP):

f?ort = min
X

1

2
tr(X>QX) (7)

s.t. R>i Ri = Id, ∀i = 1, . . . , n. (8)

2) Lagrangian relaxation: As a QCQP, the Lagrangian
dual of the problem (7) is straightforward to obtain as a
semidefinite program (SDP) [11], [22] in its dual form

f?SDP = max
Λ

1

2
tr(Λ), s.t. Λi ∈ Sd, Q−Λ < 0 (9)

Λ = blkdiag(Λ1, 0, . . . ,Λn, 0), (10)

where the dual SDP variables Λi ∈ Sd,∀i ∈ V (with
Sd standing for d × d symmetric matrices) correspond to
Lagrange multipliers for the orthogonality constraints. See
the supplementary material for more details [19, Sec.III].

B. Undoing the relaxation: MLE solution

The crux for recovering the global solution of the original
MLE resides in the fact that, if the relaxations above are
tight, the optimal solution X? must lie in the nullspace N
of Q−Λ? (see [11], [13]), with Λ? the optimal solution to
the dual SDP problem (9). Even if tightness does not hold, a
good heuristic is that the optimal MLE solution X? should
still be close to that nullspace [13].

In any case, once we get a basis for null(Q − Λ?) the
recovery of the globally optimal solution X? (or a remark-
ably good initialization X0, if non-tight) is straightforward
by applying the metric upgrade approach presented in [13].

IV. FAST SDP RESOLUTION

The global resolution of the MLE problem through the
SDP relaxation as proposed in the previous section (and
depicted in Alg. 1) looks algorithmically clear and simple.
However, it has an important caveat: The resolution of the
SDP problem (9) by traditional off-the-shelf interior-point
solvers scales poorly as they imply working with full ma-
trices whose dimension grows with the problem size3. This
rendered the application of Alg. 1 in previous works [10],
[11], [13] unpractical for large-scale pose synchronization
problems.

3 A conservative estimate of the complexity for interior point methods
solving the SDP (9) is O(n4.5log(1/ε)) [23].



This same fact promoted the development of specialized
scalable solvers for the SDP relaxation appearing in the
related (but simpler) case of rotation synchronization [16].
Thus, Rosen et al. [8] built an efficient and scalable approach
for pose synchronization by marginalizing this to an equiva-
lent rotation synchronization instance, and then falling back
to the corresponding solver in [16].

In this section, we provide and justify an algorithmic
approach to directly solve large-scale instances of the SDP
relaxation (15) in a global, fast, scalable way. This makes it
possible to efficiently handle pose synchronization without
resorting to any kind of marginalization. For that purpose,
we first show in Section IV-A that there exists a com-
plete hierarchy of partial (low-rank) relaxations between the
original MLE problem (3) and the primal version of the
SDP relaxation (15). Then, we will exploit the existence of
such partial relaxations within an algorithmic approach, the
Riemannian Staircase in Alg. 2, as explained in Section IV-B.

The resulting method we propose in the present work
for solving the MLE problem (1) in SE(d)-synchronization,
Cartan-Sync, can be found in Alg. 3.

A. Low-rank SDP relaxation

1) Lifting relaxation: Whereas the dual SDP problem
(9) stems from the Lagrangian dual problem definition ap-
plied on the orthogonal relaxation (7), the corresponding
primal SDP problem (dual of the dual SDP relaxation) is
closely related in turn to the lifted formulation of the same
explicitly constrained problem (7). Exploiting the fact that
tr(X>QX) = tr(QXX>):

f?ort = min
X

1

2
tr(QZ), X ∈ Rn(d+1)×d (11)

s.t. Z [i,i](1:d,1:d) = Id, ∀i = 1, . . . , n, (12)

Z = XX>, (13)

where the lifted variable Z is a [(d+ 1)× (d+ 1)](n× n)
block-matrix (the same dimensions as the data matrix Q).
The lifting constraint (13) making this formulation equivalent
to the original (non-lifted) problem (7) can be written as

Z = XX> ⇐⇒


Z < 0,

Z ∈ Sn(d+1),

rank(Z) = d.

(14)

We can see that if we relax the non-convex rank constraint
above, the remaining problem is the primal SDP, dual of the
dual SDP (9),

f?SDP = min
Z

1

2
tr(QZ), Z ∈ Sn(d+1) (15)

s.t. Z [i,i](1:d,1:d) = Id, ∀i = 1, . . . , n, (16)
Z < 0. (17)

and the lifted unknownZ is actually the primal SDP variable.

2) Partial lifting relaxation: It is clear from the results
above that the rank constraint rank(Z) = d in the lift
constraint is fully responsible for the non-convexity of the
synchronization problem and dropping it yields the usual
primal SDP relaxation (15). However, in practice, the so-
lution Z to the primal SDP (15) turns to be low-rank.
In fact, in the common circumstance that the relaxation is
tight, rank(Z) = d. Because of this, similarly to recent
works [8], [16] addressing the SDP relaxation of rotation
synchronization, we propose to use the aproach by Burer and
Monteiro [24], [25]: We relax the rank constraint in (14) to
a softer constraint rank(Z) ≤ p, where d≤p�n(d+ 1). In
that case it follows that Z = X̂X̂

>
, where X̂ ∈ Rn(d+1)×p.

This partially-lifted relaxation closely resembles the original
lifted formulation (11),

f?SDPLR = min
X̂

1

2
tr(QZ), X̂ ∈ Rn(d+1)×p (18)

s.t. Z [i,i](1:d,1:d) = Id, ∀i = 1, . . . , n, (19)

Z = X̂X̂
>
. (20)

Note this relaxation remains non-convex.
3) Unconstrained Riemannian optimization: Consider the

block structure that X̂ inherits from X through the lifting
process (see details in [19, Fig. 1]),

X̂
[(d+1)×p]

(n×1)

=
[
T̂ 1 . . . T̂ n

]>
= stack({T̂ i}i∈V )>, (21)

where each lifted pose T̂ i =
[
R̂i, t̂i

]
⊂ Rp×(d+1) involves

the lifting of its components R̂i ⊂ Rp×d, t̂i ∈ Rp.
The block diagonal constraints in (19) lead then to the

equivalent constraint R̂
>
i R̂i = Id on each R̂i. This implies

that the columns of R̂i are orthonormal or, otherwise stated,
R̂i belongs to a Stiefel manifold, R̂i ∈ St(p, d) [26]. It
follows that the lifted pose T̂ i lies in another manifold, the
Cartan motion group St(p, d) nRp [18].

Let us define the manifold

Mp ≡ stack({St(p, d) nRp}n)>, (22)

where p ≥ d parameterizes the inner partial lift dimension
of the Burer-Monteiro relaxation. Then the partially lifted
problem (18) is equivalent to the unconstrained Riemannian
optimization problem

f?SDPLR = min
X̂∈Mp

1

2
tr(X̂

>
QX̂). (23)

B. The Riemannian Staircase

Akin to the rotation synchronization case [15], [16], we
exploit the availability of the Riemannian formulation (23)
to provide a Riemannian Staircase procedure that solves the
primal SDP relaxation (15) in a fast and scalable way.



Optimality guarantees: Before introducing the ap-
proach, let us show the following results (adapted from
Boumal et al. [15]) which justify the theoretical basis for
the procedure:

Proposition 1 (Global optima of Riemannian lift (23)).
Provided that the primal SDP problem (15) has a compact
search space and the manifold Mp in (23) is smooth:

1) If X̂ ∈ Mp is a rank-deficient second-order critical
point4 of the Riemannian problem (23), then X̂ is
a global minimizer of (23) and Z? = X̂X̂

>
is a

solution of the primal SDP problem (15).
2) If p ≥

⌈√
(d+ 1)(d+ 2)n

⌉
, then with probability 1

every first-order critical point of the Riemannian prob-
lem (23) is rank-deficient.

Further details regarding Proposition 1 may be found
in [15]. Note that, even though the search space of the
SDP problem (15) is not compact, the behavior described
above is consistent with that empirically observed for the
pose synchronization case. A complete theoretical proof that
justifies Proposition 1 for the non-compact domain of SE(d)-
synchronization seems plausible, but is left for future work.

The algorithm: Proposition 1 supports the Riemannian
Staircase procedure [8], [16]. To reach the optimal solution
of the SDP problem (15), we solve successively higher partial
liftings (with increasing p) in the Riemannian formulation
(23) until a globally optimal solution is found. This should
happen for p ≤

⌈√
(d+ 1)(d+ 2)n

⌉
, according to Prop.

1.2 and, in fact, the actual number of steps required in the
Riemannian staircase is much lower in practice, usually just
one or two. Intuitively, the good behavior of the approach
hints that the relatively few extra d.o.f. gained in the partially
lifted relaxation (18) are enough to circumvent local minima
in the higher dimensional search space of Mp.

The remainder of this section will be devoted then to
provide a detailed exposition of the steps involved in the
Riemannian staircase procedure. These appear also summa-
rized in Alg. 2.

1) Solving the Riemannian problem (23): Similarly to
previous works [8], [16], we will use the truncated-Newton
Riemannian trust-region (RTR) algorithm [27], [28] as im-
plemented in the Manopt toolbox [29]. This solver offers
superlinear convergence and is appropriate for large-scale
optimization problems, allowing for the scalability of the
method with the size of the synchronization problem.

In order to apply RTR we need to define several operations
related to the Riemannian geometry of the problem (23).
Current state-of-the-art Riemannian optimization suites such
as Manopt abstract most of this complexity allowing to setup
the optimization with a minimum amount of mathematical
effort. Because of this, we will show here the minimal

4A second-order critical point satifies the Riemannian gradient is zero
and the Riemannian Hessian is positive-semidefinite [27].

5 Please, notice that the initialization does not compromise the global
convergence, but it may improve substantially the convergence speed of the
iterative method.

Algorithm 2: Riemannian Staircase Algorithm

Input: Initial estimate5X̂0 ∈ {SE(d)}n, p0

Input: Problem data Q, chol(Q)

Output: Optimal SDP solution (X̂
?
, f?SDP)

1 M← Setup manifold {St(p0, d) nRp0}n;
2 X̂, f ← RTR(M,X̂0);
3 (λmin,v)← Get optimality certificate [19, Sec. VIII];
4 if λmin < 0 then

/* suboptimal point [19, Sec. IX] */

5 p = p+ 1 ; . Increase partial lifting

6 M← Setup manifold {St(p, d) nRp}n;
7 X̂0 ← EscapeSaddle(M, X̂ , v); . See [16]

8 go to line 2; . Repeat algorithm

9 end
/* reached global solution */

10 return X̂
?
← X̂ , f?SDP ← f

amount of information regarding the use of Manopt. A more
comprehensive description of the Riemannian geometry of
the problem and related operators may be found in the
supplementary material [19, Sec.V].

That said, for the resolution in Manopt we identify the
appropriate manifold structure in the toolbox, which in
our case is the n-power manifold of the product manifold
St(p, d) × Rp. Secondly, we provide the cost function
f(X̂) = 1

2 tr(X̂
>
QX̂) and its (Euclidean) derivatives (in

the ambient space)

∇f(X̂) = QX̂, ∇2f(X̂)[U ] = QU . (24)

Finally, we pass this information to the builtin RTR solver.
Even though the information above is in principle enough

to apply RTR, and it is the way RTR is applied in the
recent SE-Sync method [2], it is insufficient for the ef-
ficient resolution of the Riemannian problem (23) in the
Cartan-Sync framework. As we will see in the exper-
iments of Section V, this naïve version of RTR is not
practical as it is too slow to converge. To understand this,
note that a key step in the employed RTR algorithm is the
resolution of the inner Trust Region (TR) subproblem by
the truncated Conjugate Gradient (tCG) method [30]. As
for classical Conjugate Gradient, the performance of tCG
is strongly connected to the conditioning of the problem at
hand. This motivates the search for an appropriate Hessian
preconditioner.

Riemannian Hessian preconditioner: The Riemannian
preconditioner at a specific point X̂ must be a linear, sym-
metric, positive definite operator from TX̂Mp to TX̂Mp,
where TX̂Mp denotes the tangent space of the manifold
at point X̂ [27]. Ideally, it should approximate the inverse
of the Riemannian Hessian well while being also fast to
compute. That is, given a vector H in TX̂Mp, the re-
turned tangent vector U = Precon(X̂)[H] should fulfill
Hess(X̂)[U ] ≈ H . The Riemannian Hessian involves both



the Euclidean Hessian and the Euclidean gradient6

Hess f(X̂)[U ] = projTX̂Mp
(∇2f(X̂)[U ]) +O(∇f(X̂)),

where projTX̂Mp
(U) is the orthogonal projection operator

from the ambient Euclidean space onto TX̂Mp [27],

projTX̂Mp
: Rn(d+1)×p → TX̂Mp. (25)

We assume the second term is relatively small near crit-
ical points to get an approximate Riemannian Hessian
projX̂(∇2f(X̂)[U ]). However, applying the inverse of this
approximate Hessian as a preconditioner amounts to solve
U ∈ TX̂Mp in the linear problem defined by

projX̂(QU) = H, H ∈ TX̂Mp, (26)

which is not straightforward or cheap to solve either. Instead,

U = Precon(X̂)[H] = projX̂(Q−1H) (27)

is used. This heuristic alternative fulfills all the necessary
conditions for a preconditioner as shown in the supplemen-
tary material [19, Sec.VI] and, despite its heuristic nature,
performs quite well in practice as we will see in the experi-
ments.

In the current implementation of Cartan-Sync, we
cache a Cholesky factorization of Q with approximate
minimum degree permutation (that promotes sparsity in the
Cholesky factor) at the beginning of the optimization to
speed up the recurrent computation of Q−1H . Check the
supplementary material [19, Sec.VII] for details.

2) Testing global optimality: Due to the local nature of the
algorithms employed to solve the Riemannian problem (23),
the prior resolution step may still converge to a suboptimal
point. This unwanted situation can be detected testing the
global optimality of the critical point X̂ using a similar
verification procedure to that in [11]. A detailed overview
is provided in the supplementary material [19, Sec. VIII].

3) Escaping suboptimal minima: If the critical point X̂
turns to be suboptimal, we increase the rank p of the partial
lift (Sec. IV-A) and keep on optimizing on the extended
search space. The specific procedure is provided in the
supplementary material [19, Sec. IX].

4) Recovery of feasible estimate: The global solution X̂
?

of the Riemannian problem (23) must fulfill the complemen-
tary slackness condition

(Q−Λ?)X̂
?

= 0⇒ span(X̂
?
) ≡ null(Q−Λ?). (28)

As a result, we can directly apply the MLE recovery method
of Section III-B on X̂

?
as a basis for null(Q−Λ?).

V. EXPERIMENTAL RESULTS

In order to evaluate the goodness of the approach proposed
in this work we use an extensive list of large-scale problems,
both in 2D and 3D, drawn from the motivating application
of pose-graph SLAM. We thoroughly compare our approach
to the state-of-the-art RTR-based method SE-Sync [2]. The

6Check the supplementary material [19, Sec.V] for a full characterization
of the Riemannian Hessian.

Algorithm 3: The Cartan-Sync Algorithm

Input: Initial estimate5 X0 ∈ {SE(d)}n, p0 ≥ d
Output: Estimate X ∈ {SE(d)}n, bound f?SDP ≤ f?ML

1 Q, chol(Q)← Build Conn. Laplacian and Cholesky;
2 X̂

?
, f?SDP ← RiemannStaircase(. . .); . Alg. 2

3 X ← MetricUpgrade(X̂
?
); . See [13]

4 return X, d?SDP

traditional Gauss-Newton-based approach, GN, is included in
the comparative for completeness as well. For all methods
we use the state-of-the-art chordal initialization [31].

Note that the main focus of the performed experimentation
is on measuring computational performance when solving the
MLE problem (1). All experiments have been conducted on
an Intel Core i5-6600 3.30GHz CPU. On the other hand,
we skip here an extensive analysis on tightness for the SDP
relaxation, which is already provided elsewhere [2], [6], [8],
[10], [11], [13]. Specifically, we refer to [13] for a deeper
examination of the effectiveness of the SDP relaxation for
specially challenging problem regimes where tightness does
not hold in general.

A comprehensive summary of the experimental results is
contained in Tab. I: For each dataset, the number of poses
(n) and relative measurements (m) as well as dimensionality
(d) are provided. A simple measure of connectivity is given
as the ratio of loop closures (rLC = (m − modom)/

(
n
2

)
),

followed by the optimal objective value f?ML according to the
MLE formulation (1), which is attained by all the methods
in the given datasets. For all the evaluated datasets the SDP
relaxation is tight, so we can certify global optimality a-
posteriori. For each method we show the convergence time
from chordal initialization, as well as the required number of
steps. For the RTR-based methods both the number of outer
(TR) and total inner (tCG) steps are displayed [28].

Datasets: The 3D datasets employed are the same
as in [31], of which sphere, torus and grid are
synthetic whereas garage, cubicle and rim are real-
world examples. The 2D datasets comprise customary eval-
uation datasets, such as CSAIL, manhattan, intel and
ais2klinik as well as a subset of the KITTI datasets with
loop closures, as provided in [32]. For those datasets which
were not originally isotropic we applied the same bounding
approximation with isotropic covariances employed in pre-
vious works [2], [7].

Computational performance: As discussed in Section
IV, the numerical resolution of the Riemannian problem (23)
within Cartan-Sync requires a preconditioner to converge
fast. This is evidenced by Fig. 1(b), as in most cases RTR
with no preconditioning provides the slowest convergence.

The reference method SE-Sync does not apply any
preconditioner either, yet it provides in general faster conver-
gence than the naive Cartan-Sync w/o preconditioning.
The potential explanation for this lies at the marginalization
step at the core of SE-Sync, as this entails some kind of
data normalization and makes the condition number of the

https://es.mathworks.com/help/matlab/ref/amd.html
https://es.mathworks.com/help/matlab/ref/amd.html


Chordal+GN SE-Sync [2] Cartan-Sync [ours]
Dataset d n m rLC f?ML Time [s] #iter Time [s] #outer (#inner) Time [s] #outer (#inner)
sphere 3 2500 4949 7.8×10−4 8.435×102 17.04 8 0.54 4 (64) 1.60 4 (69)

sphere-a 3 2200 8647 2.7×10−3 1.481×106 67.13 13 0.66 4 (92) 0.79 8 (19)
torus 3 5000 9048 3.2×10−4 1.211×104 37.95 6 1.64 3 (84) 0.81 3 (15)
cube 3 8000 22236 4.4×10−4 4.216×104 146.80 4 5.26 4 (98) 6.68 4 (32)

garage 3 1661 6275 3.3×10−3 6.313×10−1 20.31 7 4.03 4 (383) 10.41 5 (750)
cubicle 3 5750 16869 6.7×10−4 3.586×102 163.73 9 12.81 4 (312) 6.28 4 (154)

rim 3 10195 29743 3.8×10−4 2.730×103 716.51 13 31.25 5 (434) 26.81 5 (365)
CSAIL 2 1045 1172 2.3×10−4 1.585×101 0.21 2 1.20 3 (382) 0.23 3 (26)

manhattan 2 3500 5453 3.2×10−4 3.216×103 1.88 3 3.73 3 (365) 0.60 3 (30)
city10000 2 10000 20687 2.1×10−4 3.193×102 23.26 4 21.49 4 (84) 4.95 3 (110)

intel 2 1728 2512 5.3×10−4 2.617×101 1.03 5 2.47 4 (360) 0.71 3 (66)
ais2klinik 2 15115 16727 1.4×10−5 9.426×101 33.87 9 131.11 16 (2287) 53.65 10 (1259)
KITTI_00 2 4541 4677 1.3×10−5 6.285×101 1.98 4 18.03 12 (1800) 1.34 3 (63)
KITTI_02 2 4661 4703 4.0×10−6 5.418×101 1.99 4 20.77 21 (3150) 1.29 3 (72)
KITTI_05 2 2761 2826 1.7×10−5 1.383×102 0.83 3 4.09 6 (900) 0.44 3 (29)
KITTI_06 2 1101 1150 8.3×10−5 1.766×101 0.17 2 1.79 4 (600) 0.14 2 (14)
KITTI_07 2 1101 1106 9.9×10−6 1.197×101 0.24 3 3.16 7 (1050) 0.26 3 (28)
KITTI_09 2 1591 1592 1.6×10−6 3.065×101 0.49 4 6.62 15 (2250) 0.43 4 (39)

TABLE I
RESULTS FOR THE PGO (SLAM) BENCHMARK DATASETS

underlying data matrix Q significantly smaller, as shown in
Fig. 1(a). This is consistent with the fundamental fact that ro-
tations and translations belong to a compact and non-compact
group, respectively, leading to poor conditioning [18]. As
a downside, the marginalization step in SE-Sync hinders
the simplicity of the optimization objective, introducing the
inverse of a matrix and thus the necessity to solve a linear
system each time the cost, gradient or Hessian are computed.

In Cartan-Sync we exploit instead the simplicity of
the objective to directly head for the ill-conditioning of
the problem applying an appropriate preconditioner. The
results displayed both in Tab. I and Fig. 1(b) show that the
simple heuristic proposed preconditioner (27) corrects much
of the ill-conditioning in the problem. As a result, the actual
Cartan-Sync approach (with preconditioning) meets the
performance of SE-Sync in the 3D datasets resulting in
optimization times of similar order and clearly overperforms
SE-Sync for the 2D datasets. Note specially how the PGO
in the KITTI datasets turns specially hard to deal with
for the SE-Sync approach, whereas our preconditioned
Cartan-Sync presents a remarkably good behavior. This
is relevant as the graph topology stemming from the KITTI
datasets is representative of an important problem, that of
driving through a city. An important trait characterizing these
datasets is the extreme sparseness of the underlying graph,
as loop closure occurs only at very particular points (cross-
sections). This reflects in the low value of rLC in Tab. I.

Further insight on how convergence differs between
SE-Sync and Cartan-Sync is gained from the number
of outer and inner iterations in Tab. I. When the conditioning
is not good, the number of outer and inner iterations grows
remarkably, resulting in slower convergence.

Regarding the more traditional Gauss-Newton approach,
our results are consistent with those in [2] for the 3D
datasets: Both SE-Sync and Cartan-Sync are notably

faster than traditional Gauss-Newton. Interestingly though,
for the 2D datasets GN was always faster than SE-Sync,
but still slower than Cartan-Sync for most datasets.

Global convergence: In all the evaluated cases the
SE-Sync and Cartan-Sync algorithms attained a cer-
tified globally optimal solution. The optimal value f?ML ob-
tained for the MLE objective (3), shown in Table I, was
the same for both approaches7. The maximum suboptimality
bound provided by both algorithms was of the same order
(10−11), near numerical precision.

As argued in Section IV-B, we expect Cartan-Sync
to offer global convergence regardless of the initialization.
To check this feature we solved the datasets under random
initialization. In this case both approaches (SE-Sync and
Cartan-Sync) still converged to a certified global op-
timum (logically with the same f?ML), although at a much
higher computational cost as shown in Fig. 1(c), proving the
effectiveness of a good initialization for fast convergence.

VI. CONCLUSION

We have formulated the MLE problem for SE(d)-
synchronization in a novel way that provides an explicit re-
lation to the Connection Laplacian of a special graph object.
Then, we have shown how to exploit the SDP relaxation of
this problem in conjunction with Riemannian optimization
to provide a fast solver that certifies global optimality a-
posteriori for all the evaluated practical instances. The crux
of the approach lies on the partial lifting of the search space
characterized as a Cartan motion group which, to the best of
our knowledge, has not been explored before in the literature.

Beyond the immediate improvement in performance
obtained w.r.t. to the related state-of-the-art approach
SE-Sync, we think our approach, Cartan-Sync, has

7Note the half factor introduced in our formulation when comparing to
results in [2].
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Fig. 1. Please note the logarithmic scale in the X axis. (a) Condition number of the data matrix Q in SE-Sync and Cartan-Sync. For Cartan-Sync
we anchored Q to remove the trivial zero eigenvalue [19, Sec. VII]. (b) Optimization times from chordal initialization [31]. (c) Optimization times from
random initialization.

great potential for further enhancement. Namely, the design
of better preconditioning approaches is a promising venue
for future research.
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I. NOTATION

The main matrices involved in the SDP relaxation, namely Q, Z and Λ, are thought of as block-matrices with blocks of
size (d+ 1)× (d+ 1). Therefore, the block-vectors (thought of as column vectors with block-elements), such as X or X̂
in the paper, have block-sizes of the form (d+ 1)× (∗). Subscript indexing between brackets, such as M [i,j], refers then to
the block in i-th row and j-th column of blocks. If further indexing within the block is required we concatenate it between
parentheses as M [i,j](a,b), which refers to the element in position (a, b) in the referenced block. This notation extends to
block-vectors as well.

Matlab-like notation is chosen for list of consecutive indeces: (a : b) ≡ {a, a+ 1, . . . , b− 1, b}, a < b.
In the context of poses, the convention we choose for representation is T =

[
R, t

]
, that is, horizontal concatenation of

rotation and translation. Becase of this, we will often refer to the rotation block inside a pose as T (R). Similarly, for the
translation block we use T (t). This convention may appear mixed with that of block-indexing, e.g. X [i](R) stands for the
rotation block in the i-th block of a block-vector X of poses.

The matrix norm ‖M‖F stands for the Frobenius norm, which fulfills ‖M‖2F = tr(MM>). Because of this we define
the more general matrix norm ‖M‖2Ω as

‖M‖2Ω = tr(MΩM>). (1)

The set of n× n symmetric matrices is Sn, and M < 0 means M is positive semidefinite. The operator sym(·) returns
the symmetric part of a matrix:

sym(M) =
1

2
(M +M>). (2)

At certain points we will use the Kronecker product, denoted by ⊗.

https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm
https://en.wikipedia.org/wiki/Kronecker_product


Fig. 1. The geometry of the problem: Original (top, d-dim) and partially lifted (bottom, p-dim).

A. Group realizations

Several mathematical groups arise along the paper. We enumerate and define the employed (matrix) characterization in
each case.
• The Euclidean (linear) matrix space Rn×m

• Orthogonal group O(d) ≡ {R ∈ Rd×d : R>R = Id}
• Rotation group SO(d) ≡ {R ∈ Rd×d : R>R = Id,det(R) = +1}. Note this is a special case of O(d) with fixed

positive orientation.
• Cartan motion group: K n V , the semidirect product of a compact group K and a linear (non-compact) space V .
• Euclidean or isometry group, E(d) ≡ O(d) nRd.
• Special Euclidean group, SE(d) ≡ SO(d) n Rd ⊂ Rd×(d+1). The group operation is T 1 ⊕ T 2 = T 1 · T̃ 2 =[
R1R2, t1 +R1t2

]
. The group operation can be expressed in a compact matrix form if the second matrix is augmented

with a row of zeros with a final 1 (homogeneous version): T̃ =

[
T

01×d 1

]
=

[
R t

01×d 1

]
.

• Stiefel manifold St(p, d), the set of p× d matrices which are orthonormal: St(p, d) ≡ {Y ∈ Rp×d : Y >Y = Id}.
• The Cartan motion group of the Stiefel manifold, St(p, d) n Rp ⊂ Rp×(d+1), with p ≥ d. This is the essential atom

group in the present work. Note that this group is equivalent to E(d) for p = d.
Other useful concepts: product manifold and power manifold, as presented in Manopt tutorial.

II. CONNECTION LAPLACIAN FORMULATION

This section addresses the supplementary material referenced in the homonym section of the main document.
The compact formulation of the MLE objective in sum form is

fML =
1

2

∑
(i,j)∈E

‖T j − T i
˜̄T ij‖2Ωij

=
1

2

∑
(i,j)∈E

‖T jId+1 − T i
˜̄T ij‖2Ωij

(3)

To write the compact matrix form, we first define a convenient organization of the matrices {T i}ni=1 into the stacked
structure X:

X
[(d+1)×d]

(n×1)

= stack({T i}ni=1)> =
[
T 1 . . . T n

]> ∈ Rn(d+1)×d.

The d× (d+ 1) matrices T i are stacked horizontally first, and then transposed, so X is a column block-vector with block
size (d+ 1)×d. Note any particular block T i can be recovered from X through block indexing, which can be turned to an
algebraic expression as

T i = (X [i])
> = X>(ei ⊗ Id+1). (4)

http://www.manopt.org/tutorial.html


Fig. 2. The hierarchy of lifted relaxations exploited by the presented approach: The original variable has rank(X) = d (top), whereas a partial relaxation
uses X̂ with rank(X̂) = p ≥ d (middle). In both cases the variable provides a decomposition of the lifted variable Z in the usual SDP relaxation (bottom).
Note the linear (X̂) vs. quadratic (Z) growth of the problem dimension with n.

Let us take a single term in the sum (3) and rewrite it in a more convenient form:

T jId+1 − T i
˜̄T ij = X>

(
(ej ⊗ Id+1)Id+1 − (ei ⊗ Id+1) ˜̄T ij

)
︸ ︷︷ ︸

V ij

. (5)

Note that the expression V ij appearing above is a block-vector of dimensions consistent with X populated as

V [r] =


−T̃ ij if r = i,

+Id+1 if r = j,

0d+1 otherwise.
(6)

Then, the matrix norm of the sum terms reduces to

‖T jId+1 − T i
˜̄T ij‖2Ωij

= ‖(X>V ij)‖2Ωij
(7)

= tr((X>V ij)Ωij(X
>V ij)

>)) (8)

= tr(X>(V ijΩijV
>
ij)X). (9)



The sum along all observations in the sum yields
1

2

∑
(i,j)∈E

‖T jId+1 − T i
˜̄T ij‖2Ωij

=
1

2

∑
(i,j)∈E

tr(X>(V ijΩijV
>
ij)X) (10)

=
1

2
tr

X>
 ∑

(i,j)∈E

V ijΩijV
>
ij


︸ ︷︷ ︸

Q

X

 (11)

The matrix sum above can be written in a more compact form if we concatenate the block-column vectors V ij horizontally
as

A
[(d+1)×(d+1)]

(n×m)

= stack({V ij}(i,j)∈E) =
[
V e1 . . . V em

]
, (12)

and the weight matrices are put in a block-diagonal matrix as

Ω
[(d+1)×(d+1)]

(m×m)

= blkdiag({Ωij}(i,j)∈E) = blkdiag(Ωe1 , . . . ,Ωem). (13)

With these definitions, it is easy to see that

Q
[(d+1)×(d+1)]

(n×n)

=
∑

(i,j)∈E

V ijΩijV
>
ij = A

[(d+1)×(d+1)]
(n×m)

Ω
[(d+1)×(d+1)]

(m×m)

A>

[(d+1)×(d+1)]
(m×n)

. (14)

III. LAGRANGIAN RELAXATION: DUAL SDP PROBLEM

This section addresses the supplementary material referenced in Section III.A) Forming the SDP relaxation in the main
document.

The orthogonal relaxation of the MLE problem is written with explicit constraints as

f?O = min
X

1

2
tr(X>QX) (15)

s.t. R>i Ri = Id, ∀i = 1, . . . , n. (16)

The Lagrangian function corresponding to (15) is created by adding a penalization term for each (symmetric) orthonor-
mality constraint (16),

penalization(R>i Ri = Id) ≡ 1

2
tr(Λi(Id −R>i Ri)) =

1

2
tr(Λi)−

1

2
tr(RiΛiR

>
i ), (17)

where Λi ∈ Sd is a symmetric matrix of Lagrange multipliers. We add the 1
2 factor for conveniency regarding the ultimate

expression. This penalization term can be equivalently written in term of the matrices T i as

tr(Λi)− tr(RiΛiR
>
i ) = tr(Λ̃i)− tr(T iΛ̃iT

>
i ) (18)

if we define the homogeneous version of Λ as

Λ̃i =

[
Λi 0d×1

01×d 01×1

]
. (19)

Finally, using again the relation (4) the sum of all the penalization terms for each i yields

1

2

n∑
i=1

tr(Λ̃i)− tr(T iΛ̃iT
>
i ) =

1

2
tr(Λ)− 1

2
tr(X>ΛX), (20)

where we define the convenient direct sum matrix Λ as

Λ = blkdiag(Λ̃1, . . . , Λ̃n) = blkdiag(Λ1, 0, . . . ,Λn, 0). (21)

With the penalization above, the Lagrangian function corresponding to (15) is written in compact form as

L(X,Λ) =
1

2
tr(X>QX) +

1

2
tr(Λ)− 1

2
tr(X>ΛX) (22)

=
1

2
tr(Λ) +

1

2
tr(X>(Q−Λ)X), (23)



The Lagrangian provides an unconstrained relaxation of the original problem

d(Λ) = min
X

L(X,Λ) (24)

whose optimal value d(Λ) ≤ f? is called the dual function. Since the term tr(X>(Q−Λ)X) is a homogeneous quadratic
form (wrt X), its minimum value 0 is attained for

X?(Λ) = {X : tr(X>(Q−Λ)X) = 0}
= {X : (Q−Λ)X = 0n(d+1)×d}, (25)

if the penalized matrix is semidefinite positive, Q −Λ < 0. Otherwise this term is unbounded below (its minimum value
is −∞). Thus, the optimum value of the Lagrangian (24) is

d(Λ) =

{
1
2 tr(Λ) if Q−Λ < 0,

−∞ otherwise.
(26)

The dual problem seeks the tightest relaxation by maximizing the lower bound d(Λ) wrt Λ as d? = maxΛ d(Λ). In view
of the expression for the dual objective (26), the search for the maximum can be safely restricted to values of Λ for which
Q−Λ < 0, so the dual problem is a Semidefinite Program (SDP):

d? = max
Λ

1

2
tr(Λ), s.t. Q−Λ < 0. (27)

In the context of duality theory [1], it is straightforward to obtain the primal version of this same SDP problem as

p? = min
Z∈Sn(d+1)

1

2
tr(QZ) (28)

s.t. Z =


Id,∗ ∗ · · · ∗
∗ Id,∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · Id,∗

 < 0, (29)

where ∗ stands for unconstrained values and

Id,∗ ≡
[
Id ∗d×1
∗1×d ∗1×1

]
. (30)

Equivalently, the constraint on the primal SDP variable Z can be seen as n linear constraints of the form

Z [i,i](1:d,1:d) = Id, ∀i = 1, . . . , n. (31)

IV. GLOBAL OPTIMALITY TEST IN SDP RELAXATION

This section addresses the supplementary material associated to Footnote #13 in the main document.
Using the results in (25) characterizing the optimal solution X̂

?
in terms of a given dual variable Λ it is easy to see that

there is a linear relation between X̂
?

and Λ? for the case with tight relaxation:

(Q−Λ?)X̂
?

= 0n(d+1)×d. (32)

For a known X̂
?
, this provides a quick way to compute the potential dual solution Λ? and then check the feasibility of

this in the dual problem as a way to assert global optimality of the primal-dual pair (X̂
?
,Λ?).

The linear equation on Λ following from (32) reads

ΛX̂
?

= QX̂
?
. (33)

Because of the special block-diagonal structure of Λ, each R̂-block in the i-th block-row of the equation reads

ΛiR̂
>
i =

(
QX̂

?
)>
[i](R̂)

. (34)

That is, in the right hand side of the equation, following our indexing convention, we grab the i-th (d + 1) × p-block in
QX̂

?
, then keep only the transpose of the (p×d)-subblock corresponding to the R̂ part. Then exploiting the orthonormality

of the rows of R̂i ∈ St(p, d), we obtain the solution Λi as

Λi =
(
QX̂

?
)>
[i](R̂)

R̂i. (35)



Note that as further developed in previous work [2], the global optimality of the estimated Λ requires:
• The computed solution fulfills the complete linear system ΛX̂

?
= QX̂

?
.

• All the blocks Λi are symmetric.
• The PSD constraint of the SDP relaxation stands: Q−Λ? < 0.

V. RIEMANNIAN GEOMETRY

This section addresses the supplementary material referenced in Section IV.B.1) Solving the Riemannian problem in the
main document.

Consider the Riemannian optimization problem

f? = min
X̂∈stack(Mn

p )
>

1

2
tr(X̂

>
QX̂), Mp ≡ St(p, d) nRp ⊂ Rp×(d+1). (36)

Note the manifold considered as the optimization domain is the stacking of the product of n instances of the Mp manifold
(also sometimes referred to as a power manifold).

The objective f(X̂) is a simple positive semidefinite quadratic function if considered as a function on the ambient
Euclidean space Rn(d+1)×p:

f : Rn(d+1)×p 7→ R+, (37)

f(X̂) =
1

2
tr(X̂

>
QX̂). (38)

The Euclidean gradient and Hessian-vector product of this function, using the concept of Fréchet derivative presented in
Appendix I, are identified from a Taylor expansion1 of the objective:

f(X̂ + tU) =
1

2
tr((X̂ + tU)>Q(X̂ + tU)) (39)

=
1

2
tr(X̂

>
QX̂) + t tr(X̂

>
QU) +

1

2
t2 tr(U>QU) (40)

= f(X̂) + t〈QX̂,U〉+
1

2
t2〈QU ,U〉 (41)

= f(X̂) + t〈∇f(X̂),U〉+
1

2
t2〈∇f(X̂)[U ],U〉 (42)

It follows then that the Euclidean operators are

∇f(X̂) = QX̂, (43)

∇2f(X̂)[U ] = QU . (44)

A fundamental tool to connect the Euclidean calculus with its Riemannian counterpart for the more restricted function

f : stack(Mn
p )> 7→ R+, (45)

f(X̂) =
1

2
tr(X̂

>
QX̂). (46)

is the availability of an orthogonal projection operator from the ambient space Rn(d+1)×p to the tangent space TX̂(stack(Mn
p )>)

at a point X̂ ∈ stack(Mn
p )>,

projX̂ : Rn(d+1)×p 7→ TX̂M
n
p . (47)

Because of the particular product-like structure of the manifold, this projection is readily expressed in terms of the projection
operators of its inner components:

projX̂ : Rn(d+1)×p 7→ TX̂(stack(Mn
p )>) (48)

projX̂(U) =
[

projT̂ 1
(U [1]) . . . projT̂n

(U [n])
]>

(49)

projT̂ i
: Rp×(d+1) 7→ TT̂ i

(Mp) (50)

projT̂ i
(U [i]) =

[
projR̂i

(U [i](R)),projt̂i(U [i](t))
]

(51)

projR̂i
: Rp×d 7→ TR̂i

(St(p, d)) (52)

projR̂i
(∗) = Id(∗)− R̂i sym(R̂

>
i ∗) (53)

projt̂i : Rp 7→ Tt̂i(R
p) (54)

projt̂i(∗) = Id(∗). (55)

1See the same trick employed here.

http://thousandfold.net/cz/2013/11/12/a-useful-trick-for-computing-gradients-w-r-t-matrix-arguments-with-some-examples/


Note that the only non-trivial projection is that for the Stiefel manifold, for which extensive insight is available in [3].
Using the operators above, it is straightforward to obtain the Riemannian gradient and Hessian operators (from Riemannian

geometry theory [4]) as

grad f(·) : stack(Mn
p )> 7→ TX̂(stack(Mn

p )>), (56)

grad f(X̂) = projX̂(∇f(X̂)), (57)

Hess f(·)[·] : stack(Mn
p )> × TX̂(stack(Mn

p )>) 7→ TX̂(stack(Mn
p )>), (58)

Hess f(X̂)[U ] = projX̂(D[grad f(X̂)][U ]). (59)

The value of the Riemannian gradient follows immediately by application of the projection operator, whereas for the
Riemannian Hessian we need to compute the directional (Fréchet) derivative of the Riemannian gradient. The (block-wise)
expression for this derivative is:

D[grad f(X̂)][·] : TX̂(stack(Mn
p )>) 7→ Rp×(d+1), (60)(

D[grad f(X̂)][U ]
)
[i](R)

=
(
∇2f(X̂)[U ]

)
[i](R)

− (U)[i](R) sym

(
R̂
> (
∇f(X̂)

)
[i](R)

)
, (61)(

D[grad f(X̂)][U ]
)
[i](t)

=
(
∇2f(X̂)[U ]

)
[i](t)

. (62)

Again, the only non-trivial results stem from the Stiefel component [3], [5], [6].

VI. PROOFS ON PROPOSED RIEMANNIAN PRECONDITIONER

This section addresses the supplementary material associated to Footnote #10 in the main document.
The Riemannian preconditioner at a specific point X̂ should be a linear, symmetric, positive definite operator defined

from and onto the tangent space of the manifold,

Precon : TX̂(stack(Mn
p )>) 7→ TX̂(stack(Mn

p )>). (63)

We prove next that these conditions stand for the proposed Riemannian Preconditioner

Precon(X̂)[U ] = projX̂(Q−1U). (64)

a) Domain and range: It is clear that the domain constraint is fulfilled by definition, as long as the provided U belongs
to the tangent space U ∈ TX̂(stack(Mn

p )>). In practice this is sometimes assured by simply composing with the projection
at the input, U ← projX̂(U).

The range condition is also assured by the projection operator, so Precon(X̂)[U ] ∈ TX̂(stack(Mn
p )>) as expected.

b) Linearity, symmetry and positive semidefiniteness: In order to prove these conditions, it is best to turn the precon-
ditioner into its equivalent matrix formulation. This is given by the matrix form of the projection:

projX̂(U) = P X̂ vec(U>), (65)

vec(Precon(X̂)[U ]>) = P X̂(Q−1 ⊗ Ip)P X̂ vec(U>). (66)

The linearity of the operator follows from its matrix formulation. The orthogonal projector is self-adjoint and, as such, it is
also symmetric. As a result, P X̂ = P>

X̂
. Since Q is also symmetric, the matrix operator above is clearly symmetric. It can

be shown that the orthogonal projector projX̂(·) is positive semidefinite. As a result, so is its matrix representation P X̂
and since Q was also positive semidefinite, so must be the product of all the matrices above.

VII. CHOLESKY DECOMPOSITION OF THE CONNECTION LAPLACIAN

This section addresses the supplementary material associated to Footnote #11 in the main document.
As the usual Laplacian matrix, the Connection Laplacian defined in the paper is degenerate. Its nullspace is defined by

the vector

n = 1n×1 ⊗
[
0d×1

1

]
. (67)

This fact is tightly related to the observability issue stemming from relative observations only, which makes the translation
observable only up to a global offset t0. As a result, any solution X? to the SE(d)-synchronization problem stands for a
family of solutions

X? + nc>, c ∈ Rd. (68)



In the context of solving our Riemannian problem, this fact becomes an issue only when solving the linear system for
the preconditioner:

QU = B. (69)

Note that due to the concrete degeneracy of Q, the solution to this underdetermined system is

U = U0 + nc>, (70)

where U0 is any solution to the linear system (69) and the second component parameterizes the family of infinite solutions.
Since from the point of view of our preconditioner we are interested in any solution (the RTR solver is agnostic to which

one) we can apply the usual anchoring operation: We impose Un(d+1),: = 0 (which is always possible in view of the family
of solutions (70)) and drop the last equation. This is equivalent to dropping the last column and row in the system matrix
Q, yielding the anchored matrix Q̆ which is positive definite. The remaining linear system

Q̆Ŭ = B̆ (71)

has a unique solution Ŭ . Padding this solution Ŭ with the fixed last row of zeros yields the desired solution to the original
system.

As we point in the paper, in order to save an important amount of computational effort we will exploit a Cholesky
decomposition to solve the multiple instances of the linear system (69). Since Cholesky decomposition only exists for non-
degenerate, positive definite matrices, we will compute the Cholesky decomposition of the anchored matrix, Q̆ = LL>,
and use this in the resolution of the anchored linear system (71).

VIII. TESTING GLOBAL OPTIMALITY

This section reviews the necessary steps to verify global optimality of a given candidate solution for the Riemannian
optimization problem.

In order to test the global optimality of the critical point X̂ found by RTR in (36), we follow the same steps as in [2].
Namely, we exploit complementary slackness to obtain the potential dual solution Λ from the computed X̂ , which results
in a simple closed-form expression

Λi

d×d
= (QX̂)[i](1:d,1:p)R̂i. (72)

Then, the global optimality of the critical point X̂ depends on whether the computed Λ is a feasible point of the dual
SDP problem or not. Since the candidate is a critical point, it must automatically fulfill Λi ∈ Sd. To check the Positive
Semidefiniteness (PSD) constraint, that is, that Q−Λ < 0, we compute the most negative eigenvalue and its eigenvector:

(λmin,v)← minλ(Q−Λ). (73)

If λmin ≈ 0, we can certify we found the solution to the convex SDP problem. Otherwise, the Riemannian optimization
converged into a suboptimal point and we need to increase the rank p of the partially lifted search space.

IX. ESCAPING SUBOPTIMAL MINIMA

If a step in the Riemannian staircase converged to a suboptimal point, we apply the same trick as Boumal in [5] to escape
from it: We lift the current estimate X̂ ∈Mp to X̂+ ∈Mp+1 by filling the extra terms with zeros, and perform line search
along a escape direction UEsc. As in [5], a escape direction is provided by the eigenvector v corresponding to a negative
eigenvalue in Q−Λ, which is already available from the optimality test (73):

UEsc =
[
0n(d+1)×p v

]
. (74)

X. SOME EXTRA EXPERIMENTAL RESULTS

Due to lack of space, we moved some experimental results from the main document to here. Concretely, Fig. 3 compares
convergence of the absolute objective error w.r.t. time in two exemplary cases (rim and kitti_02).
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Fig. 3. Convergence of SE-Sync and Cartan-Sync (with preconditioning) in (a) case of similar performance, (b) case where preconditioning clearly
excels.

APPENDIX I
SOME CALCULUS NOTIONS AND THE FRÉCHET DERIVATIVE

The most fundamental concept in multivariable calculus for a function f : U ⊂ V 7→ W between Banach spaces2 is the
directional derivative or Fréchet derivative D f(x)[u] of a function f(x) at the point x ∈ U along a direction u ∈ V :

D f(x)[·] : V 7→W. (75)

This can be seen as the rate of change of the function f(x) when moving from the point x with a velocity specified by u.
The directional derivative is tightly related to the gradient ∇f of the function f(x), since it is defined as the unique

vector field whose inner product with any vector u at each point x is the directional derivative of f(x) at x along u:

〈∇f(x),u〉 = D f(x)[u]. (76)

Thus, the directional derivative at a fixed point x can be seen as a linear operator on the direction u:

D f(x)[·] : Rn 7→ R (77)
D f(x)[u] = 〈∇f(x),u〉 (78)

The second directional derivative of f(x) measures, at a point x, how the rate of change along a direction u is itself
changing in direction v:

D2 f(x)[u][v] : V × V 7→W. (79)

This is connected to the curvature of the function. Similarly to the gradient, the Hessian can be seen as a linear operator
that encodes the gradient of the directional derivative at a point and direction, so that it becomes the unique operator so
that its inner product with any direction v provides the second directional derivative of f(x) at x along u and v:

〈Hf(x)[u],v〉 = D2 f(x)[u][v]. (80)

Under this perspective, the Hessian must be defined as a function of two parameters x and u.
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