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A minimal closed-form solution for the Perspective Three
orthogonal Angles (P3oA) problem. Application to visual
odometry
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Abstract We provide a simple closed-form solution to
the Perspective Three orthogonal Angles (P3oA) prob-
lem: given the projection of three orthogonal lines in a
calibrated camera, find their 3D directions. Upon this
solution, an algorithm for the estimation of the camera
relative rotation between two frames is proposed. The
key idea is to detect triplets of orthogonal lines in a
hypothesize-and-test framework and use all of them to
compute the camera rotation in a robust way. This ap-
proach is suitable for human-made environments where
numerous groups of orthogonal lines exist. We evaluate
the numerical stability of the P3oA solution and the
estimation of the relative rotation with synthetic and
real data, comparing our results to other state-of-the-
art approaches.

Keywords 2D-3D registration · Minimal solution ·
Rotation estimation · Visual gyroscope

1 Introduction

The estimation of camera’s position and orientation
(pose) plays a fundamental role in many applications
related to Computer Vision, Robotics, Augmented Re-
ality or Photogrammetry. A great deal of research has
been done on 2D-3D registration problems, which con-
sist in finding the relative pose for which 3D geomet-
ric features of certain type match their 2D counter-
parts in image. Several distinct problems exist depend-
ing on the nature of the considered features. Some well-
known examples are the inverse perspective problems:
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(a) 3D scene (b) Camera image

Fig. 1 Examples of P3oA problem in real world. We solve line
directions νk for both intersecting (l1, l2, l3) and non intersecting
(l′1, l

′
2, l
′
3) cases

Perspective-n-Points (PnP), Perspective-n-Lines (PnL)
and Perspective-n-Angles (PnA) problems, where the
features involved are points, lines and angles, respec-
tively. Even though some of these problems have been
thoroughly studied and numerous solutions proposed
(as early as in 1841 for P3P problem [1]) much progress
is still being done for PnP [2,3,4], PnL [5,6], or even
mixtures of both points and lines [7]. A remarkable as-
pect of all these problems is that positional data comes
into play, so coordinates or distances in the 3D model
to register must be known. The PnA problem, how-
ever, works on a slightly different basis because the
only knowledge required for the model is a set of angles
(scalar values). As a consequence, no positional data
appear and the PnA problem can be seen as purely
directional.

On the other hand, human-made environments not
only are abundant in lines (fact already exploited in
some works, e.g. for Structure from Motion (SfM) [8,



9]), but quite often these lines also present structural
constraints such as parallelism or orthogonality. There
are numerous works which exploit the structural char-
acteristics of this kind of scenes (referred to as Man-
hattan world), specially in urban environments where
clear dominant orthogonal directions are usually avail-
able and vanishing points can be robustly extracted [10,
11,12,13,14]. Other applications (like in [15]) use cer-
tain reduced configurations of parallel and orthogonal
lines, which are particularly suitable for indoor envi-
ronments where dominant directions are not always so
readily available. Likewise, the solution to the P3oA
problem can be exploited both in indoor and urban
scenes since the orthogonality assumption of the prob-
lem holds also for human-made environments.

In this paper, we make two main contributions:

– First, we propose an algebraic general solution to
the P3oA problem for a calibrated camera. Unlike
previous proposals, this solution applies to any con-
figuration of orthogonal 3D lines (even if they do
not intersect) as depicted in Figure 1.

– Secondly, upon this P3oA solution we establish a
new approach for the direct computation of the cam-
era relative orientation. We apply RANSAC to find
all the triplets of orthogonal lines and use them to
compute a single rotation in closed form.

Therefore, the presented method allows for the esti-
mation of the camera rotation, which is, per se, an es-
sential step in a variety of applications. Methods which
focus on the estimation of the rotation of the camera
only are usually exploited as visual gyroscopes, and are
useful for many tasks including humanoid stabilization
[16] and ground/aerial vehicle control [17], among oth-
ers. Furthermore, it is common to decouple the esti-
mation of relative motion into two separates problems
for the independent computation of rotation and trans-
lation. Therefore, our proposal can be also exploited
as a partial solution to visual odometry, that may be
complemented by any method for estimating the trans-
lational part.

2 Related work

Our first goal in this work is to develop an efficient solu-
tion to the P3oA problem. In a comprehensive analysis
of how human vision naturally tends to perceive and
interpret some patterns of lines as orthogonal in space,
Barnard [18] points out the interest in somehow emu-
lating this natural approach in automated vision. The
solution he provides can tackle any triplet of orthogonal
lines, its main limitation being its iterative nature.

Kanatani [19] finds a closed form solution for or-
thogonal three-line junctions prior transformation of
the image to a canonical position, so that the com-
mon vertex is displaced to the camera principal axis. In
[20], Wu et al. expand Kanatani’s approach to the more
general case of three lines meeting at arbitrary angles.
Nevertheless, none of these closed-form solutions ad-
dresses the case of non intersecting lines. Furthermore,
the fact that directions are parameterized with angular
values may cause numerical instability as a consequence
of non-linearities in trigonometric functions.

To the best of our knowledge, the only closed-form
minimal solution able to solve the general P3oA prob-
lem is proposed by Mirzaei and Roumeliotis [13]. How-
ever, the operations involved in their minimal solution
(e.g. computing the eigenvalue decomposition of a 8×8

matrix) make their approach more computationally ex-
pensive than necessary for this problem.

The P3oA problem could be also solved through an
indirect approach by transforming it into an equivalent
P3L problem, for which thorough studies have been re-
ported [6,21]. One major limitation of this approach is
that, unlike for P3L problems, P3oA lacks of any posi-
tional data. As a result only those P3L solutions which
completely decouple the orientation computation from
the positional data are usable. This fact is addressed
in [20] where further analysis is done on the nature of
different inverse perspective problems (PnP, PnL and
PnA) and on which restatements are possible. In this
sense, any P3L problem can be converted to P3A by
computing the angles defined by the lines, but the op-
posite conversion is not always possible. Another draw-
back in coping with P3oA as a general P3L problem is
that the more general the solution gets, the more com-
plex it becomes too. Consequently, lighter and more ef-
ficient algorithms can be achieved for the P3oA problem
if its inherent characteristics are fully exploited rather
than considering it as a special case of a more complex
problem.

On a different basis, much research has been done
towards exploiting structural information of the scene.
As a general rule, methods exploiting the assumption
of structured world face a chicken-and-egg problem:
If the searched configurations are known, the interest
variable (e.g. vanishing points or camera rotation) can
be computed. Reciprocally, if the interest variable is
known, checking configurations can be readily done. A
great deal of previous research in this area [22,23,24,
10,25,12] has focused mainly on the computation of
Vanishing Points (VP) in the scene. Once the VPs are
known, the camera orientation or other variables of in-
terest are computed. Furthermore, some recent works
[13,14] force the Manhattan world assumption during



the computation of the VPs, increasing the efficiency
and precision of the estimation. We denominate the
group of methods following this kind of approach Van-
ishing Point-based (VP-based) methods. A general lim-
itation of these methods is that they strongly rely on the
detection of Vanishing Points, thereby they fail when
these are not found in the images.

A recent alternative which does not rely on the prior
classification of all the lines in the scene into a set of
Vanishing Points is proposed by Elqursh and Elgam-
mal [15]. They use a primitive configuration, consist-
ing of two parallel lines and a third line orthogonal to
them, to compute the relative rotation between images.
This configuration originates one of the two minimal
problems encountered when solving the orientation in
a Manhattan world from line observations [13], and a
closed form solution for this is proposed (intrinsically
equivalent to that appearing in [26]). Finally, all the
valid primitive configurations in the image are found in
a hypothesize-and-test framework and used to produce
a more precise estimate of the relative rotation.

Our proposal for the computation of relative orien-
tation is similar to Elqursh-Elgammal’s, but a primi-
tive configuration formed by three orthogonal lines is
exploited instead. Using this configuration originates
a P3oA problem, which is the other minimal problem
encountered when solving orientation in a Manhattan
world from line observations [13]. Because of this char-
acteristic, we refer to our approach and Elqursh-Elgammal’s
as Minimal Solution-based methods.

3 Solution to the P3oA problem

In this section we will first formally state the P3oA
problem and define some preliminary concepts and tools.
Then, the particular case of P3oA with lines intersect-
ing in a single point is solved under a novel approach
(depicted in Algorithm 1). Afterwards, a more general
solution for the case of non-intersecting orthogonal lines
is presented.

3.1 Problem statement

Given the angles θij formed by any pair of 3D lines
(Li, Lj) from a triplet {L1, L2, L3} and the image pro-
jection {l1, l2, l3} of this triplet, the general P3A prob-
lem (non orthogonal angles) is that of finding the 3D
direction νk corresponding to each line, expressed in
the camera reference frame (see Figure 1).

The vector νk standing for each line direction is
forced to lie on the unit 2-sphere S2, so that ‖νk‖ = 1.

With this parameterization the angular constraint can
be written

ν>i · νj = cos(θij) (1)

where the possible pairs are (i, j) = {(1, 2), (2, 3), (3, 1)}.
The P3oA problem is then defined as the special

case in which all 3D lines are orthogonal, so that (1)
reduces to

ν>i · νj = 0 (2)

3.2 Lines and interpretation planes

Let us consider an image line l ∈ P2, characterized by
a 3-vector in the projective space P2. This line corre-
sponds to the projection of a 3D line L. The perspec-
tive projection model constrains the line L to lie in a
particular plane passing through the origin of the cam-
era’s coordinate system and containing the image line l
(see Figure 2). This plane Π is called the interpretation
plane of line L. Since this plane contains the origin it
can be fully characterized by its normal direction n. For

Fig. 2 The interpretation plane of a line L is defined as the
plane which contains the camera origin and the line image l

a projective camera with intrinsic calibration matrixK
this normal is computed as [27]

n =
K>l∥∥∥K>l∥∥∥ ,

where normalization is applied to assure that the nor-
mal vector is unitary (n ∈ S2).

3.3 Parameterization of line directions

The problem unknowns, νk ∈ S2, have 2 degrees of
freedom each, summing up 6 unknowns.

Since each direction νk is constrained to lie on the
interpretation plane Πk, a parameterization of νk via
a basis Ωk for Πk is possible, that is,

νk

3×1

= Ωk

3×2

ρk

2×1

, Ωk = Null
(
n>k
)
. (3)



The square of the norm of the expression above is

‖νk‖2 = ν>k νk = ρ>k (Ω>kΩk)ρk,

so the normality condition ‖νk‖ = 1 is automatically
fulfilled if the basis Ωk is taken orthonormal (Ω>kΩk =

I2) and ρk is constrained to lie in the unit 1-sphere S1

(ρ>k ρk = 1).
Thus, after applying the information encoded by

each interpretation plane only 1 unknown is left for each
3D direction νk. The three remaning unknowns can be
finally solved by imposing the angular constraints (2)
of the P3oA problem, which applying the new parame-
terization in (3) reads

ρ>i

(
Ω>i Ωj

)
ρj = 0 (4)

where each matrix Ω>i Ωj can be considered to stand
for a non-symmetric bilinear map

Bij = Ω>i Ωj . (5)

3.4 Revisiting the case of orthogonal meeting lines.

Firstly, we revisit the resolution of the special case in
which all three image lines meet in a single point. In
such cases the interpretation planes form a pencil of
three planes (see Figure 3).

The pencil direction t is defined as the normalized
direction of the pencil axis, which can be computed
from the intersection of any two planes in the pencil

t =
ni × nj

‖ni × nj‖
(6)

A feasible basis for each interpretation plane Πk in
the pencil is

Ωk =
[
t t×nk

]
(7)

This special basis will be referred to as the pencil basis
for the intepretation plane Πk. It can be seen from the
definition of t in (6) that t ⊥ nk, so ‖t× nk‖ = 1 and
the pencil basis is orthonormal.

Under the parameterization of pencil bases, the bi-
linear forms in (5) becomes diagonal in an elegant and
seamless way (see Appendix A):

Bij =

[
1 0

0 −αij

]
(8)

with

αij = − (t× ni)
>

(t× nj) = −n>i nj (9)

As a consequence, using pencil bases permits us to ex-
press each bilinear form Bij through a single scalar

Fig. 3 P3oA problem for meeting lines: The intepretation planes
form a pencil of planes. Both +ν1 and −ν1 represent the same
direction

value which equals, up to sign, the cosine of the angle
between the interpretation planes Πi and Πj . The in-
herent duality when computing the angle between two
planes disappears when a fixed representation nk is
taken for every plane normal.

Under the pencil parameterization the condition (4)
can be written as

ρi,1 ρj,1 − αij ρi,2 ρj,2 = 0 (10)

with ρk,· the components of the vector ρk:

ρk =

[
ρk,1
ρk,2

]
Assuming that the second component of any ρk vec-

tor is non zero (which is always true for non degenerate
cases, as discussed in Section 3.4.2), let us define the
new unknowns

rk =
ρk,1
ρk,2

(11)

The problem in (10) can be rewritten then as a simpler
system of quadratic equations

r1r2 = α12

r2r3 = α23 (12)
r3r1 = α31

and taking into account the product of the three equa-
tions

(r1r2r3)
2

= α12α23α31 ⇒ r1r2r3 = ±
√
α12α23α31

the unknowns can be cleared as

rk =
ᾱ

αij



with ᾱ = ±√α12α23α31.
Therefore, each vector ρk can be solved from the

calculated rk by applying the condition ‖ρk‖ = 1

ρk,1
ρk,2

=
ᾱ

αij

ρ2k,1 + ρ2k,2 = 1

and the reduced solution to the P3oA problem takes a
closed form expression

ρk = ± 1√
ᾱ2 + α2

ij

[
ᾱ

αij

]
(13)

Once the reduced vector ρk is known, the corresponding
3D direction νk can be recovered from (3) as

νk =
[
t t×nk

]
ρk.

Hence, the resolution for the case of intersecting
lines reduces to the steps given in Algorithm 1.

Algorithm 1 P3oA solution for intersecting lines
Data:
n1, n2, n3 . interpr. planes normals
s . Necker’s sign

Require: det(
[
n1 n2 n3)

]
) = 0

1: function P3oA_meeting(n1, n2, n3, s)
2: α12 ← −n>1 n2, α23 ← −n>2 n3, α31 ← −n>3 n1

3: ᾱ← s · √α12α23α31

4: for k ← 1, 3 do
5: ρk ← 1√

ᾱ2+α2
ij

[
ᾱ, αij

]>
. get reduced solution

6: Ωk ←
[
t t× nk

]
. build k-th pencil basis

7: νk ← Ωk ρk . undo pencil parameterization
8: end for
9: end function

3.4.1 Analysis of multiple solutions

The expression (13) leads to a total of 16 solutions due
to 4 sign ambiguities. However, the 3 outer signs affect-
ing each ρk vector are due to the inherent ambiguity in
line direction since, given a point, the lines with direc-
tions +νk and −νk represent exactly the same entity
(see Figure 3).

Therefore, only the sign of the parameter ᾱ requires
our attention. This sign is linked to the existence of two
distinct sets of directions which are solution to the same
P3oA problem. This duality, which has been known for
a long time, is named the Necker’s cube illusion and has
been already pointed out by other authors when solving
the P3A problem [20]. This illusion is displayed in Fig-
ure 4, where we can notice that exactly the same three
segments may be perceived as a concave or a convex
trihedron of two different cubes.

(a) Natural perception (b) Unusual perception

Fig. 4 Necker’s cube illusion: For the same image two inter-
pretations are possible for both meeting (blue) and non-meeting
(green) cases

3.4.2 Analysis of degenerate cases

A P3oA problem is degenerate if two lines have the
same projection in the image. In such a case, the two
interpretation planes corresponding to the coincident
lines become the same, and the remaining interpreta-
tion plane is orthogonal to the other two (see Appendix
B for a complete proof). Note that the orthogonality be-
tween interpretation planes does not involve that lines
in the image are orthogonal to each other, since

n>i nj ∝ l>i (KK>)lj = 0 ; l>i lj = 0.

Fig. 5 Degenerate case: lX and lY are degenerate, so the rela-
tion ni ‖ nj ⊥ nk stands. Note that the orthogonality condition
is between interpretation planes, not image lines. There exist in-
finite other pairs of lines X′ and Y ′ contained in the plane XY
which would produce the same image

Let us assume, without loss of generality, that the
lines Li and Lj are the source of the degeneracy (see
Figure 5 above). Then, according to the results in Ap-
pendix B, the interpretation planes’ normals fulfill

ni ‖ nj , nk ⊥ ni, nk ⊥ nj

and according to (9) the pencil basis parameters be-
come

αij = 1

αjk = αki = 0

For this particular configuration, the system of quadratic
equations (12) reads

rirj = 1

rjrk = 0

rkri = 0



from which it is easy to conclude that rk = 0. As a
result

rk = ρk,1/ρk,2 = 0

‖ρk‖
2

= ρ2k,1 + ρ2k,2 = 1

}
⇒ ρk =

[
0

1

]
This allows us to fully recover the direction of Lk from
(3) as

νk = t× nk.

The pencil direction t can be computed as

t =
nk × ni

‖nk × ni‖
,

and, since nk⊥ni, we have ‖nk × ni‖ = 1 and the final
result is

νk = (nk × ni)× nk

= −(n>i nk)nk + (n>k nk)ni = ni.

However, the unknowns ri and rj cannot be computed
with the remaining data. Instead, only the constraint
that the corresponding directions νi and νj are orthog-
onal is kept. As a result, the direction corresponding
to the non-degenerate line Lk can be fully recovered,
whereas those of the degenerate lines Li and Lj are
only constrained to be a pair of orthogonal directions
inside the degenerate interpretation plane:

νk = ni = nj

νi ⊥ νj ,
[
νi,νj

]
= Null

(
ν>k
)
∈ Πi = Πj

A second special degenerate configuration would hap-
pen when the assumption ρk,2 6= 0, made when defining
rk in (11), does not hold. This however would mean that
for the line Lk the direction is

νk =
[
t t×nk

] [1
0

]
= t (14)

but the pencil direction t and the line direction νk can
only be the same if the camera center lies in Lk and, in
such a case, the line projects into the image as a point.
This case lacks interest for us since we expect lines to
be segments in the image, not points.

3.5 Extension to the case of non-meeting orthogonal
lines

The solution to the P3oA problem with three meeting
lines can be taken as the starting point to solve the
P3oA general case, that is, when the lines in image do
not intersect at a single point.

Let us assume that the image projections lk of three
generic orthogonal 3D lines {L1, L2, L3} are given. Their

corresponding interpretation planes {Π1, Π2, Π3} no longer
intersect at a single line, so there exists no set of bases
Ωk for which three diagonal bilinear forms, as those of
(8), arise simultaneously. It is possible to build, how-
ever, an equivalent problem replacing Lk by an auxil-
iary line L∗ with its same direction, whose image pro-
jection intersects with those of Li and Lj at a single
point (see Figure 6). That is equivalent to impose that
the interpretation planes form a pencil of planes, which
in terms of the plane normals is fulfilled when

det(
[
ni nj n∗

]
) = 0. (15)

From now on, this equivalent problem will be referred

Fig. 6 General P3oA problem: It is always possible to create a
equivalent virtual problem with lines meeting at the same point.
Here l∗ replaces l2

to as the virtual problem, and the auxiliary line L∗
and all related variables will be also tagged as virtual,
with the symbol ∗. The solution to the virtual problem
would be the one already presented for the special case
of meeting lines (13).

Although the image l∗ for the virtual line is not
known, by definition it must fulfill the meeting condi-
tion in (15), so the corresponding normal n∗ can be ex-
pressed as a linear combination of ni and nj , or equiv-
alently, n∗ must be orthogonal to the pencil direction
t, so it can be expressed as

n∗ = Ωt δ (16)

withΩt being an orthonormal basis for t> right nullspace
and δ a reduced representation for n∗, so that δ ∈ S1.

Using the parameterization given in (3)

νk = ν∗ = Ω∗ ρ∗



and substituting the expressions for the pencil basis (7)
and the meeting-case solution (13), the direction for line
L∗ (and so for Lk) is

νk = ν∗ =
±1√

ᾱ2 + α2
ij

[
t [t]×n∗

]
3×2

[
ᾱ

αij

]
2×1

, (17)

where all the parameters are relative to the virtual
problem (so they depend on the unknown δ too). Since
we do know the interpretation plane for the original Lk,
the extra condition

n>k νk = 0

can be applied to solve δ. Replacing νk with (17) in the
condition above, the equation to solve reads

ᾱ · n>k t+ αij · n>k [t]×n∗ = 0 (18)

with

ᾱ = ±√α∗iαijαj∗ (19)

α∗i = −n>∗ ni, αij = −n>i nj , αj∗ = −n>j n∗

The two solutions of equation (18) are contained in the
set of 4 solutions of an equivalent quadratic equation

n>∗ Qn∗ = 0 (20)

with

Q =
1

2

(n>k t)
2

αij

(
nin

>
j + njn

>
i

)
+ [t]×

(
nkn

>
k

)
[t]×

(21)

as deducted in Appendix C.
We substitute in the equivalent equation (20) the

parameterization given in (16) so that the final problem
to solve becomes

δ>Qt δ = 0 (22)

defined by the equivalent quadratic

Qt = Ω>t QΩt (23)

The symmetric matrix above can be diagonalized, e.g.
via SVD or eigendecomposition, into

Qt = U

[
d1 0

0 d2

]
U> (24)

with U a 2 × 2 orthonormal basis. From this decom-
position it can be concluded that the solutions to (22)
fulfilling δ ∈ S1 are

δ =
1√

|d1|+ |d2|
U

[
+
√
|d2|

±
√
|d1|

]
(25)

as long as sign(d1) 6= sign(d2). As a result, it is a nec-
essary condition that the 2 × 2 quadratic form Qt is
non-definite for a solution to the P3oA problem to ex-
ist. The case in which Qt is semidefinite (non full-rank)
corresponds to the previous case of meeting lines. Thus,
from now on we consider the cases for which Qt is in-
definite.

Once δ is solved, the seeked virtual normal n∗ can
be recovered from (16). Two possible n∗ are obtained
due to the sign indeterminacy in (25), each correspond-
ing to a mathematically feasible world model. Further-
more, each of them outcomes two possible solutions be-
cause of the duality in the P3oA problem. So, the num-
ber of reachable solutions adds up to 4, from which 2
are false solutions that appear when squaring the radi-
cal equation. However, for a given n∗ solution, the value
|ᾱ| is completely defined by (19) and the correct sign
for ᾱ = s |ᾱ| can be extracted from the original radical
equation (18)

s = − sign(
αij · n>k [t]× n∗

|ᾱ| · n>k t
) (26)

Once both n∗ and the correct sign(ᾱ) are known for
each case, the simple solution depicted in Algorithm 1
can be applied to solve each virtual problem, thereby
obtaining two possible solutions to the original problem.

The general P3oA procedure described above is de-
picted in Algorithm 2.

4 Application of the P3oA solution to visual
odometry

In this section the P3oA problem is exploited to ob-
tain a minimal solution for the camera relative rotation
based on the observation of a single triplet of orthog-
onal lines in two different frames. We propose, then,
a robust framework which employs all the orthogonal
configurations available to estimate the camera relative
(incremental) rotation. Therefore, the presented algo-
rithm can be used as a visual gyroscope.

Furthermore, since the estimation of relative motion
is often decoupled in estimation of rotation and transla-
tion, our solution can be used to address visual odome-
try if it is complemented by any method for estimating
the translational part (e.g. the proposal in [15]).

4.1 Minimal solution for the relative rotation

Let {νk}3k=1 be a set of three orthogonal directions com-
ing from the minimal solution of a P3oA problem (see



Algorithm 2 General P3oA algorithm
Data:
K . camera intrisic calibration
l1, l2, l3 . homogeneous image lines

Result:
ν1,ν2,ν3 . 3D directions in camera frame

Initialization:
1: for k ← 1, 3 do
2: nk ← NS(K>lk) . get interpr. plane normal
3: end for
General P3oA resolution:
4: if det(

[
n1 n2 n3)

]
) = 0 then . if intersecting lines

5: for m← 1, 2 do
6: {ν(m)

k }3k=1 ← P3oA_meet(n1,n2,n3, (−1)m)
7: end for
8: else . if non-intersecting lines
9: take two normals (e.g. n1 and n2)
10: t← NS(n1 × n2) . pencil direction
11: Ωt ← Null

(
t>
)

. pencil nullspace
12: build equivalent quadratic Qt . see (21) and (23)
13: solve δ(m) from SVD(Qt) . see (25)
14: for m← 1, 2 do
15: n∗ ← Ωt δ

(m) . compute virtual normals
16: compute s sign for n∗ . see (26)
17: {ν(m)

k }3k=1 ← P3oA_meet(n1,n2,n∗, s)
18: end for
19: end if

* NS(·) ≡ ·
‖·‖ . Abbreviation for normalization

Section 3). We stack them as the columns of an or-
thogonal direction matrix V ∈ O(3). As shown in Sec-
tion 3.4.1, there are 16 valid solutions for a minimal
P3oA problem: Due to Necker’s duality the solution
produces two geometrically distinct sets of directions
V (m), where we use the upper index m={1, 2} to dis-
tinguish both Necker alternatives. On the other hand,
each direction is recovered up to sign. The sign ambi-
guities can be gathered into a diagonal sign matrix, so
that the whole set of 16 solutions for a minimal P3oA
problem is represented by the single expression V (m)S,
where

S =

s1 0 0

0 s2 0

0 0 s3

 , si = ±1. (27)

Let Rrel and trel be the relative rotation and trans-
lation, respectively, of the camera in the second frame
with respect to (wrt) the camera coordinate system in
the first frame. The relative rotation between the frames
can be solved from the directions of the triplet of or-
thogonal lines observed in both frames. The 3D direc-
tions coming from the solution of the P3oA problem in
each frame are

V
(m1)
1 S1, V

(m2)
2 S2, (28)

so one could think that the combination of both would
produce 256 different solutions for Rrel. This is not

so, though. All the possible solutions for Rrel can be
condensed into the expression

Rrel = V
(m1)
1 S1S

>
2 V

(m2)
2

>
, (29)

and this simplified into

Rrel = V
(m1)
1 S V

(m2)
2

>
, (30)

where

S = S1S
>
2 =

s1,1s2,1 0 0

0 s1,2s2,2 0

0 0 s1,3s2,3

 =

s1 0 0

0 s2 0

0 0 s3

 .
We also impose the constraint det(Rrel) = +1 to assure
that Rrel is a valid rotation:

det(Rrel) = det(V
(m1)
1 S V

(m2)
2

>
)

= det(V
(m1)
1 ) det(S) det(V

(m2)
2 )

= s1s2s3 det(V
(m1)
1 ) det(V

(m2)
2 ) = +1.

As a result, the condensed expression for all the possible
solutions can be finally reduced to

Rrel = V
(m1)
1 S V

(m2)
2

>
(31)

s1, s2 = ±1, s3 = s1s2 det(V
(m1)
1 ) det(V

(m2)
2 ).

The conclusion is that 4 degrees of freedom (2 for Necker
duality and 2 for direction signs) are retained and there
are 24 = 16 solutions for the relative rotation. However,
when working with keyframes in a video sequence as in
visual odometry [28], it makes sense to assume that
the relative rotation between any two frames is well
below 90 degrees. We will show next how this small
rotation assumption allows us to further reduce the so-
lution multiplicity to only two potential solutions. If it
were not the case that rotation angle was small, but big
changes of view could occur, other approaches could be
adopted such as examining the gradient at the segments
to determine if they are flipped between the two images
[15].

4.1.1 Sign ambiguity

Under the small rotation assumption, the sign matrix
S in (31) is taken so that the rotation Rrel is closest to
identity, that is:

S = diag(sign(diag(V
(m1)
1

>
I3V

(m2)
2 ))).

As a result, the multiplicity coming from the sign
ambiguities (two degrees of freedom) is removed and
only 4 solutions remain due to Necker’s duality.



4.1.2 Necker ambiguity

Let V i and V ∗i stand for the true and dual (false) so-
lution, respectively, for a certain instance of the P3oA
problem due to Necker duality. From (31), the four pos-
sible combinations of Necker modalities are

(V 1,V 2), (V ∗1,V 2), (V 1,V
∗
2), (V ∗1,V

∗
2).

Under the small rotation assumption, half of the combi-
nations can be ruled out through a simple heuristic rule:
corresponding Necker configurations are closer than non
corresponding ones. Different metrics can be applied to
measure this distance, e.g. the angular distance defined
in equation (34).

Once this distinction is applied, only the two combi-
nations {(V 1,V 2), (V ∗1,V

∗
2)} remain. When more so-

lutions are available, the selection between these two
options can be performed within the RANSAC step, as
described in the next section. However, if no parallax
exists between frames both pairs provide exactly the
same solution, as explained in Appendix D.

4.2 Robust estimation from multiple configurations

The robust estimation of the relative rotation using all
the triplets of orthogonal lines available in the scene
comprises a series of steps: Firstly, all possible triplets
of segment matches among the images are considered,
and this set is reduced by pruning non feasible combina-
tions. The remaining triplets are classified in a RANSAC
framework and finally a global estimation of the rota-
tion is performed from all the inlier triplets.

4.2.1 Filtering feasible candidate triplets

In the proposed approach (Algorithm 3) it is first nec-
essary to generate all possible 3-combinations from, say,
N∗ segment matches among images, whose number adds
up to(
N∗

3

)
=

N∗!

3!(N∗ − 3)!
=

1

6
N∗(N∗ − 1)(N∗ − 2),

so the number of candidates grows with the cube of N∗.
However, many of these generated combinations are not
feasible candidates. Therefore, it is most interesting to
prune the large list of candidates in advance, which can
be done by checking the solvability of the arising nu-
merical problem. This simple test allows us to rule out
many of the generated candidate triplets, so that only
N of the original N∗ remain.

Depending on the case to be solved, a different con-
dition stands for a given configuration of normals to

be solvable. For meeting lines (Section 3.4), since the
solution depends on the parameter

ᾱ =
√
α12α23α31

it is clear that the product inside the square root should
be positive and the condition becomes

α12α23α31 > 0 (32)

As for non meeting lines (Section 3.5), the equivalent
quadratic Qt must be indefinite, which in the 2×2 case
reduces to

det(Qt) < 0 (33)

Each triplet of matches comprises two triplets of nor-
mals, one per image, and the conditions above must be
fulfilled by both.

4.2.2 Finding true configurations

From now on, R will stand for the relative rotation
between the two camera frames. The direction matri-
ces for the k-th triplet of lines in the first and second
image are, respectively, V (m)

1,k and V (m)
2,k , and the corre-

sponding rotation candidate computed by the minimal
solution (in Section 4.1) is denoted as R(m)

k .
From the pruned list of N triplets, 2N candidates

R
(m)
k are computed for the relative rotation R, many

of which may be outliers generated due to non orthog-
onal combinations, false Necker configurations, wrong
matchings, bad segment detections, etc. Thus, RANSAC
is applied to find the relative rotation with maximum
support among all the available candidates. The good-
ness of this approach bases on the sensible assumption
that triplets which are not orthogonal will vote for ran-
dom rotations and will not support a concrete solution.
Since only one sample is necessary for each RANSAC
step, the number of iterations and the computational
cost is relatively low.

A metric is needed in the RANSAC framework to
check if the hypothesis is fullfilled, for which the angular
distance for rotations [29] has been chosen

d(Ra,Rb) ≡ d∠(Ra,Rb) = θ

= 2 arcsin(
‖Ra −Rb‖F

2
√

2
). (34)

Here ‖·‖F stands for the Frobenius norm defined as

‖A‖F =

√
trace(A>A). (35)

The necessary threshold θ̃ to decide if two rotations
stand for the same solution is set to θ̃ ≈ 1.5◦, since the
variance of the solutions due to noise tends to be of that
order.



Algorithm 3 Incremental rotation computation
Data:
K . camera intrisic calibration
{l1,k} . lines in image #1
{l2,k} . lines in image #2
M . 2×N∗ matches matrix

Result:
R . Rotation of the camera between frames

Compute rotation candidates:
1: generate all triplets of matches
{Γ }N∗

k=1 ← nchoosek(M , 3)
2: filter non-solvable triplets: . see Section 4.2.1
{Γ }Nk=1 ← {Γ }

N∗
k=1

3: for k ← 1, N do . for each triplet
4: for i← 1, 2 do . for each image
5: V i ← P3oA(l1, l2, l3) . see Algorithm 2
6: end for
7: Rk ← V 1 S V

>
2 . see Section 4.1

8: end for
RANSAC filtering:
9: find candidate with maximum support and inliers I:
I ← argmax(#{R : d(Rk,R) < θ̃, R ∈ {Rk}})

Global optimization:
10: Υ1 ←

[
V 1,I

]
, Υ2 ←

[
V 2,I

]
. stack 3D directions

11: URΣR V R = Υ1Υ>2 . compute SVD
12: R = URV

>
R . Procrustes resolution

4.2.3 Global refinement

To increase the precision of the method, the final es-
timate of the camera rotation R is computed through
the optimization of a cost function which involves all
the valid candidates obtained from the prior step.

Formally, we address the task as a least squares op-
timization problem in which we minimize the sum of
the squared distances between corresponding direction
matrices after transformation by R, that is

R̂ = argmin
R

(
∑

k∈inliers

dist2(V 1,k,RV 2,k)). (36)

When working with rotations, there are several com-
mon alternatives to measure distances [29]. The angular
distance defined in (34) is usually considered the most
natural metric for rotations in SO(3). However, we pre-
fer here the chordal distance [29] defined as

dchord(Ra,Rb) = ‖Ra −Rb‖F (37)

because due to its quadratic nature it yields simpler
expressions than the angular distance. For the same
reasons, this metric has been used before in [30]. In-
terestingly, when the residuals are small (as one would
expect in the global optimum) both metrics are equiv-
alent up to a first-order approximation [29,30]:

d2
chord = 8 sin2(θ/2) ≈ 8(θ/2)2 = 2 d∠

2 (38)

The substitution of the chosen metric (37) into the
least squares problem (36) yields the optimization prob-
lem

R̂ = argmin
R

(
∑

k∈inliers

‖V 1,k −RV 2,k‖2F) (39)

This is equivalent to the orthogonal Procrustes problem
[31] defined as

R̂ = argmin
R

(‖Υ1 −RΥ2‖2F), (40)

where Υ1 and Υ2 are the concatenation of the inlier di-
rection matrices V 1,k and V 2,k, respectively. This prob-
lem admits a closed-form solution [32] and the global
minimum is attained for R = URV

>
R, where UR SRV

>
R

is the Singular Value Decomposition of Υ1Υ>2 .

5 Experimental Results

In this section we evaluate and analyze the performance
of our two main contributions: A minimal solution to
the P3oA problem and a visual gyroscope based on the
use of this minimal solution. Thus, the experiments
are divided into two main groups. First we focus on
the comparison of the proposed minimal solution with
other existing alternatives, and then we present an ex-
tensive set of experiments in which its application to
a visual gyroscope is tested and compared to state-of-
the-art methods.

5.1 Minimal solutions

A minimal solution provides the exact solution (or mul-
tiple mathematically feasible solutions) from a minimal
set of input data. However, even though a minimal solu-
tion took ideal data unaffected by noise, working under
finite precision arithmetic could still provoke numerical
issues that can deteriorate the performance introducing
some degree of error.

For this reason, we use here ideal data to test our
proposed minimal solution and other related minimal
alternatives using ideal, error-free data as input in or-
der to extract meaningful conclusions on the numerical
behaviour and stability of the solutions.

As already shown in some previous work [13], there
are two distinct minimal configurations of lines in a
Manhattan world from which the Manhattan directions
can be recovered:

1. The three lines are orthogonal to each other (see
Figure 1(a) or Figure 7(a) in blue): This is the case
of the P3oA problem addressed in this work, also
considered by Mirzaei and Roumeliotis in [13].



(a) Minimal cases: 3 orthogonal
lines (blue), 2 par. lines + 1 ort.
line (orange)
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Fig. 7 Numerical evaluation of minimal solutions. (a) Synthetic data: A P3oA minimal configuration (3 orthogonal lines, in blue)
and a triplet formed by 2 parallel lines and 1 orthogonal line (orange) (b)(c) The histogram (for 106 samples) of the numerical errors
shows higher numerical stability for our approach compared to the solution of P3oa with the alternative solver [13] (green) or the
solution of the 2 par. + 1 ort. minimal problem with [15] (orange)

2. Two lines are parallel, and the third line is orthogo-
nal to them (see Figure 7(a) in orange): This is the
case exploited by Elqursh and Elgammal in [15].

To obtain the necessary evaluation data we assume
a ideal camera with a horizontal Field of View (FOV)
of 50◦ and a 4:3 aspect ratio. We generated then 106

random triplets of lines (asserting they lie inside the
camera’s field of view) for both of the minimal problems
mentioned above. Since multiple solutions arise for the
minimal cases only the one corresponding to the ground
truth is kept for evaluation.

In this section we are going to show:

– The differences betweenminimal solvers for the P3oA
problem. This minimal problem can be solved more
accurately and faster using our proposed solution
than with the alternative solution presented in [13].

– The differences between the two minimal problems
connected to the Manhattan world, using our solver
for the P3oA problem and the simple minimal solu-
tion in [15] for the 2 parallels + 1 orthogonal con-
figuration.

5.1.1 Comparison of the P3oA solvers

For the same set of 106 random P3oA problems, we
compare the performance of our proposed minimal so-
lution in Algorithm 2 to the minimal solution provided
by Mirzaei and Roumeliotis [13].

The evaluation results depicted in Figure 7(b) show
that our minimal solution is more accurate and nu-
merically stable than the Mirzaei-Roumeliotis’ alterna-
tive, with a difference of several orders of magnitude in
the numerical error. Furthermore, our approach is also
more computationally efficient: The average run time
for our Matlab implementation is 0.9 ms whereas the

mean time for Mirzaei-Roumeliotis’ is of 8.2 ms, that
is, almost an order of magnitude lower.

This could be expected for two main reasons. On the
one hand, our solution directly addresses the particu-
lar case of the P3oA problem, exploiting the intrinsic
characteristics of the configuration. On the other hand,
the minimal solution in [13] stems from the particular-
ization of a closed-form solution to the estimation of
Manhattan world directions from an arbitrary number
of observed lines. This is a more complex problem, and
so is also its solver. As a result, the particularization
for the minimal problem, although simpler, still keeps
part of such complexity. This behaviour can be also
explained from a more practical point of view looking
at the operations involved: our minimal solution relies
solely on dot and vector products, and at some point
the eigenvalue decomposition of a 2×2 matrix. Mirzaei-
Roumeliotis’s method, however, needs to perform the
eigenvalue decomposition of a 8×8 matrix, among other
operations. Since the decomposition of the matrix be-
comes worse conditioned for bigger matrices, this may
also explain the observed numerical behaviour.

5.1.2 Comparison of the minimal problems

We assess the numerical behaviour of the solutions to
the minimal problem of orientation from lines in a Man-
hattan world in its two possible forms. For that, we
solved 106 random minimal cases of orthogonal lines
with our approach (in Algorithm 2) and other 106 ran-
dom cases of 2 parallel + 1 orthogonal lines with the
minimal solution proposed by Elqursh and Elgammal
[15].

We observe from the results in Figure 7(b) that,
although Elqursh-Elgammal’s solution performs well,
ours does better with a typical numerical error one or-
der of magnitude lower.



The numerical complexity of Elqursh-Elgammal’s
minimal solution is similar, or even lower, than our al-
gorithm: Just linear operations, mainly dot and vec-
tor products. Hence, we guess that the lower numerical
stability of Elqursh-Elgammal’s solution stems from a
higher occurrence rate of near-degenerate cases in the
2 parallels + orthogonal minimal problem than in the
3 orthogonals case. This suggests, at least qualitatively,
that the exploitation of the P3oA problem may provide
higher robustness.

5.2 Visual gyroscope

The proposed approach for the estimation of relative ro-
tation between frames (Algorithm 3) can be used as a
visual gyroscope. A commonly used approach for a line-
based visual gyroscope resorts on the extraction of the
Vanishing Points (VP) in each image and the compu-
tation of a rotation from those VPs. An alternative to
these Vanishing Point-based (VP-based) methods are
the Minimal Solution-based (MS-based) methods, such
as ours or Elqursh-Elgammal’s in [15]. These do not
rely on the computation of the scene VPs but on ex-
ploiting the existence of any minimal Manhattan con-
figuration. The pipelines of our proposal and that of
Elqursh-Elgammal are very similar, being the main dif-
ference the particular minimal solution upon which the
method is built. This is more in-depth analyzed next.

5.2.1 Comparison of the Minimal Solution-based
methods

Here, we show a series of experiments aimed at assess-
ing the performance of our method against the one re-
ported by Elqursh and Elgammal in [15] under different
conditions and variables.

To make the analysis and conclusions clearer, we
choose a very simple testing scenario, consisting of a
scene containing just one cube, which provides a con-
trolled amount of lines in Manhattan directions only,
so configurations for both algorithms are available.

In order to have perfect, reliable groundtruth of the
rotation we generate the described cube scenario syn-
thetically. The metric chosen for error computation is
again the rotation angle defined in (34).

To generate the synthetic data we simulate a 1m×
1m× 1m cube (see Figure 8(a)) and the camera is ran-
domly placed at distances below 9 m. We assert that
the entire cube is projected onto the image and that, for
each pair of images, the same lines are simultaneously
observed.

The simulated camera (with no distortion) is char-
acterized by the calibration matrix

K =

700 0 320

0 700 240

0 0 1

 (41)

which provides a horizontal field of view (FOV) of 49◦.
The results, derived from a population of 104 sam-

ples, are depicted graphically by means of boxplot dia-
grams: the central line is the median and the lower and
upper borders of the box represent the 25th and 75th
percentiles, respectively.

Image noise resilience This error is due to camera noise
and image-related artifacts that affect the precision of
the input line data. We simplify all the factors affecting
the data quality into a single random noise added to
the image coordinates of the segment end-points. The
noise is modeled by a Gaussian distribution with zero
mean and an increasing standard deviation σc.

The results depicted in Figure 8(b) exhibit a linear
trend between the order of noise in the image and the
order of the rotation error. For the whole range of noise
levels considered, our method proves to be more precise.

Manhattan assumption The set of lines in real struc-
tured scenes are not exactly parallel or orthogonal, so
the Manhattan assumption is violated. Therefore, we
also test the influence of deviations from the Manhat-
tan assumption in the scene model.

In this experiment images are noise-free, but an in-
creasing level of Gaussian noise σ⊥ is applied to the 3D
points of the cube (before projection). The immediate
effect is that the orthogonality or parallelism among 3D
segments is no longer fulfilled. Values for σ⊥ spanning
from 1 mm up to 1 cm were used and it can be seen
in Figure 8(c) that both methods still yield good re-
sults. So it can be concluded that both methods stand
bounded deviations from the Manhattan assumption
although, once again, our approach produces slightly
better results for all the considered noise range.

Perspective distortion effect One important character-
istic of the minimal solution exploited by Elqursh and
Elgammal is that it internally depends on the computa-
tion of a Vanishing Point from two lines. The precision
achievable when computing vanishing points strongly
depends on the distortion arising from the scene per-
spective projection, which maps points lying at infin-
ity (namely the vanishing points) to finite points. The
weaker the perspective effect gets the farther the van-
ishing points lie, becoming more sensitive to image noise
[27]. This simple effect is depicted in Figure 9(a) for our
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Fig. 8 Synthetic experiments on the noise resilience of our approach and Elqursh-Elgammal’s [15]. (a) The setup for the test. The
cube is observed from two poses and the relative transformation is solved. (b)(c) Our method outperforms Elqursh-Elgammal’s for all
noise levels (104 samples)
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Fig. 9 The perspective distortion effect greatly depends on the
FOV of the camera. (a) Perspective distortion in large FOV (left)
and reduced FOV (right) camera. (b) Our approach is noticeably
more robust that Elqursh-Elgammal’s [15] under weak perspec-
tive

testing environment. On the other hand, the solution to
the P3oA problem used in our approach does not rely
on vanishing points at all.

As a result the performance of both approaches should
vary with the degree of perspective distortion intro-
duced by the projective camera. In order to assess this
effect we deploy an experiment in which focal distance
and camera zoom vary accordingly to modify perspec-
tive deformation of the observed cube while keeping
the object size in the image constant. Figure 9(b) shows
how as the perspective deformation becomes weaker for
increasing focal length the results provided by Elqursh-
Elgammal’s algorithm get worse while ours even im-
prove. However, for very small focal distances corre-
sponding to wide FOV cameras Elqursh’s approach can
be slightly more precise than ours. This hints that it
could be fruitful to address a simultaneous exploita-
tion of both approaches in order to get a more robust
method for any kind of situation.

Verification of conclusions with real data Finally, to
contrast the results and conclusions obtained from the
synthetic experiments, we tested the same methods in
the cabinet dataset of the TUM Benchmark [33]. The
scene used for this dataset is very similar to that of

our previous synthetic framework. Namely, the dataset
consists of a continous video sequence of a plain cab-
inet which is recorded with a Kinect device from dif-
ferent viewpoints. The absolute pose groundtruth of
the Kinect device for each frame is provided with the
dataset, so that we can still evaluate the rotation error
quantitatively.

The borders of the cabinet have been detected and
matched for all the images of the sequence. Some of
the pairs used in this experiment are shown in Figures
10(a) and 10(b). We use superposition with false color
to visualize the pair of images simultaneously.

The statistics of the committed error, plotted in Fig-
ures 10(c) and 10(d) and detailed in Table 1, confirm
the conclusion also reached from the synthetic results:
Our algorithm tends to perform better than Elqursh-
Elgammal’s, with higher precision and robustness.

Table 1 Statistics of error in the cabinet dataset [33]

Algorithm R estimation error (deg)
Mean q1 Median q3

Ours 0.655 0.466 0.623 0.846
Elqursh [15] 0.789 0.503 0.715 0.960

5.2.2 Real data evaluation

Finally, we analyze the performance of the Minimal So-
lution-based (MS-based) algorithms and a more tra-
ditional Vanishing Point-based (VP-based) algorithm
built upon the solution provided by Mirzaei and Roume-
liotis in [13].

The methods are evaluated with the ICL-NUIM datasets
[34], which provide video sequences recorded in a typical
structured office environment. Lines were automatically
detected using the LSD detector [35] and the match-
ing between frames was performed using the LBD de-
scriptor [36]. Then, the relative rotation was computed
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Fig. 10 Evaluation on real data. (a)(b) Two of the evaluated
pairs of frames (one example of available intersecting and non
intersecting orthogonal triplets marked in blue) (c)(d) Boxplot
and histogram of the rotation error

between consecutive frames of the sequences and com-
pared to the accompanying groundtruth. We calculate
two different error metrics from each sequence:

– The root-mean-square error (RMSE), which due to
its quadratic nature gives a good measure of the
robustness. That is, if any of the committed errors
becomes notably high, the RMSE grows accordingly.

– The median of the error, which is a good statistic
for the general precision of the method. Since the
median is much less affected by outliers, it captures
the main trend of the error better than the RMSE.

The results in Tables 2(a) and 2(b) show that our
proposal outperforms the compared methods, achieving
higher precision and robustness than Elqursh-Elgammal’s
[15], which agrees with the conclusions reached in all the
previous experiments.

As for the VP-based methods, they are expected
to perform well if the lines supporting the three or-
thogonal vanishing points linked to a Manhattan world
framework can be clearly clustered (see Figure 11(a)).
This explains why, in some cases, the median of the
error is lower for Mirzaei-Roumeliotis’s method (see
Table 2(b)). However, when there is no set of Man-
hattan directions with a clear set of lines supporting
it, the performance of this approach deteriorates and
the classification of the lines into Manhattan directions
tends to fail (see Figures 11(b) and 11(c)). This case
is likely to happen when the number of lines lowers,
when there are many more lines outside the Manhattan
framework than inside, or the environment, although

structured, is not well modeled by the Manhattan as-
sumption (see Atlanta world [37] or the mixture of Man-
hattan frames [38]). This trait of the VP-based meth-
ods makes them more prone to fail catastrophically,
driving them to higher estimation errors. This justifies
the significantly high RMSE in Table 2(a) obtained for
Mirzaei-Roumeliotis’ approach in the tested sequences.

Table 2 Metrics of the estimation error in ICL-NUIM datasets
[34]

(a) RMSE of the rotation error

of kt0 of kt1 of kt2 of kt3
Ours 0.557 0.447 1.151 0.416
Elqursh-Elgammal [15] 0.585 0.719 1.505 0.420
Mirzaei-Roumeliotis [13] 2.740 5.959 4.598 3.549

(b) Median of the rotation error

of kt0 of kt1 of kt2 of kt3
Ours 0.317 0.231 0.459 0.232
Elqursh-Elgammal [15] 0.365 0.292 1.071 0.232
Mirzaei-Roumeliotis [13] 0.320 0.323 0.416 0.357

6 Conclusions

In this paper it has been presented a new closed-form
solution for the Perspective-3-Angles (P3A) problem in
the particular case that all angles are orthogonal (P3oA
problem). This solution can solve any configuration of
3D orthogonal directions, both intersecting and non-
intersecting lines. A purelly algebraic approach is de-
rived to solve the most simple situation of meeting lines
and then the solution is expanded to solve the most gen-
eral case of non-meeting lines. The resulting solution is
both efficient and numerically stable, as validated ex-
perimentally.

Secondly, a minimal solution has been presented for
the estimation of the relative rotation between two cam-
eras based on the solution to the P3oA problem. This
minimal solution has proven exploitable in a RANSAC
framework to classify triplets of lines fulfilling the or-
thogonality constraint and a robust global solution us-
ing all available triplets has been also proposed. The
performance of this approach has been evaluated with
both synthetic and real data.



(a) Rich: VP Success (b) Poor: VP Success (c) Poor: VP Fail

Fig. 11 Examples of rich and poor Manhattan scenarios in the sequences of [34]. (a) The VP-based methods perform well in clearly
structured environments where the Manhattan directions are well supported. (b)(c) However, they easily fail when there is no clear
support for the Manhattan directions.

A Reduction of pencil basis parameter

The bilinear map Bij is greatly simplified when pencil bases are
used. The substitution of Ωk defined in (7) into (5) gives

Bij =
[
t t×ni

]>
2×3

[
t t×nj

]
3×2

=

[
t>t t>(t×nj)

(t×ni)>t (t×ni)>(t×nj)

]
=

[
1 0
0 −αij

]
since ‖t‖ = 1 ⇒ t>t = 1 and by definition of the cross product
t> (t× n) = 0 for any vector n.

The remaining parameter

αij = − (t× ni)> (t× nj)

can be further simplified to a single scalar product by applying
some properties of the cross product. Firstly, the skew matrix
representation for the cross product as well as the property [t]>× =
− [t]× allows us to write

αij = n>i [t]× [t]× nj

and then rewriting the product of skew matrices in the equivalent
form

[a]× [b]× = ba> − (a · b)I3

the expression finally reduces to

αij = n>i
(
tt> − (t>t) · I3

)
nj = −n>i nj

where it is used that t ⊥ nk by the definition in (6).

B Relations between interpretation planes for
the degenerate P3oA problem

Given a trihedron formed by three intersecting orthogonal lines, if
the projection of two lines li and lj become the same, the normals
of the interpretation planes of the lines fulfill ni ‖ nj ⊥ nk.

The corresponding proof is developed in a sequence of minor
steps:
– If the lines li and lj are parallel, so are the corresponding

normals ni and nj : li ‖ lj ⇒ ni ‖ nj .
– If the normals ni and nj are parallel, the camera center must

lie in the IJ plane defined by the lines Li and Lj .
– If the camera center lies in the IJ plane, the normal nk is

orthogonal to ni = nj .

B.1 Parallelism of ni and nj

Let li and lj be the homogeneous vectors corresponding to the
projection of the lines into the camera image. Since the projective
entities li, lj ∈ P2 are defined up to scale, we use the similarity
operator li ∼ lj to represent the equality of both variables in the
projective space P2. Two vectors are then equivalent if they are
parallel, or stated otherwise,

li × lj = 0.

The homogeneous lines in the image are related to the normal
of the corresponding interpretation plane through the intrinsic
calibration matrix K [27]

n ∼K>l,

so the equivalency relation is transmitted to the normals:

ni × nj = (K>li)× (K>lj)

= det(K)K−>(li × lj) = 0⇒ ni ∼ nj

B.2 Position of the camera to fulfill ni ‖ nj

Let us assume, without loss of generality, that the three inter-
secting lines fit the axes of the canonical coordinate system. As a
result, the direction of the lines in this particular case are given
by the canonical vectors {ek}3k=1. Denote the position and ori-
entation of the camera as seen from this coordinate system as
t and R, respectively. The normal to the intepretation plane of
each line Lk, as seen from the camera, is then equal (up to scale)
to

nk ∼ R>(ek × t). (42)

From the equivalency of the lines i and j it follows then that

ni ∼ nj ⇒ (R>(ei × t))× (R>(ej × t))

= R> ((ei × t)× (ej × t))
= 0⇒ (ei × t)× (ej × t) = 0

and this expression is symbolically equivalent to

(ei × t)× (ej × t) = [ei × t]× [ej ]× t

= (te>i − eit>) [ej ]× t

= (e>k t) t



So, it is concluded that the equivalency ni ∼ nj is only possible
if t = 0 or e>k t = 0. The first solution forces the camera to be
in the point of intersection of the three lines, but this makes no
sense. The second solution implies that, for Li and Lj to project
into the same image line li ∼ lj , the camera center must lie in
the plane defined by lines Li and Lj .

B.3 Orthogonality of normals when the camera lies in
the IJ plane

Now, we will prove that if the camera center lies in the IJ plane,
the normal of the interpretation plane for the remaining line Lk
is orthogonal to both ni ∼ nj . Say nk and ni are orthogonal,
which is equivalent to state n>k ni = 0. Using the relation in (42)

n>k ni = (ek × t)RR>(ei × t)

= t> [ek]>× [ei]× t

= −t>(eie
>
k − (e>k ei)I3)t

= −(t>ei)(e
>
k t)

= −(e>i t)(e
>
k t) = 0

and the condition above is then fulfilled only if the camera center
lies in the JK plane, the IJ plane, or both. Similarly, if nk and
nj are orthogonal (necessary from ni ∼ nj) the camera center
lies in the IJ plane, the IK plane, or both. As a result, we see that
if the camera lies in the IJ plane as assumed, the orthogonality
constraints are fulfilled.

In conclusion we see that if the projection of two lines, li and
lj , are coincident then the camera center lies in the plane formed
by Li and Lj . This, at the same time, provokes that nk ⊥ ni, or
equivalently, nk ⊥ nj .

C Reparameterization of radical equation as a
quadratic form

The equation

n>k t · ᾱ+ αij · n>k [t]× n∗ = 0

defined in (18) is non-linear wrt n∗ due to the square root oper-
ation in

ᾱ = ±√α∗iαijαj∗

= ±
√
− (n>∗ ni)

(
n>i nj

) (
n>j n∗

)
which makes the equation radical. As usual for these equations,
we separate both terms in the sum and square them to get an
almost-equivalent quadratic equation(
n>k t

)2 · (±√α∗iαijαj∗)2 = α2
ij · (n>k [t]× n∗)

2(
n>k t

)2
αij

· α∗iαj∗ = (n>k [t]× n∗)
2

Then, we substitute α∗i and αj∗ and arrange the matrix opera-
tions

(n>k t)
2

αij
· n>∗

(
nin

>
j

)
n∗ = (n>k [t]× n∗)

>n>k [t]× n∗

= n>∗ [t]>×
(
nkn

>
k

)
[t]× n∗

so that the condition above can be encoded by a quadratic form

n>∗

(
(n>k t)

2

αij
· nin>j − [t]>× nkn

>
k [t]×

)
n∗ = 0

From all infinite matrix representations available for the quadratic
form given above we choose the symmetric one

Q =
1

2

(n>k t)
2

αij

(
nin

>
j + njn

>
i

)
+ [t]×

(
nkn

>
k

)
[t]×

which permits us to readily diagonalize the quadratic form by
eigenvalue decomposition in a unique way.

Then, the original problem in (18) is equivalent to solving

n>∗ Qn∗ = 0

for the defined Q.

D Necker duality and parallax effect

The two distinct solutions of the P3oA problem for the case of
meeting lines are mirrored wrt the plane whose normal is the
back-projection direction t through the intersection point. This
relation can be easily expressed through a reflection or House-
holder matrix [27]. Let V be the real solution and V ∗ the mir-
rored one. The following relation stands:

V = Ht V
∗ (43)

with Ht = I3 − 2 t t>/t>t. This relation only stands when the
three lines meet in a single point, otherwise there exists no re-
flection fulfilling the relation (43), even though this duality still
exists (see green configuration in Figure 4).

Without loss of generality, we will use the case of meeting
lines to prove that both dual solutions provide the same rotation
in the case of zero baseline (pure rotation). In such cases, taking
the pair of false configurations will produce the relative rotation

R∗ = V ∗1 (V ∗2)>

= Hp1V 1 V
>
2 H

>
p2

= Hp1 RH
>
p2

(44)

where pi stands for the 3D coordinates of intersection point in
i-th image wrt the camera frame. A rigid transformation exists
between p1 and p2

p1 = R p2 + trel

so that, in the case of zero baseline we have

Hp1 = I− 2
Rp2p>2 R

>

p>2 p2
= RHp2R

>

and substituting in expression (44) reveals that

R∗ = RHp2R
>RH>p2

= R

As a conclusion, in the case of pure rotation the true and
false solutions are the same. So, the greater the parallax effect
due to non zero baseline ‖trel‖, the bigger the difference between
both possible solutions.
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