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Abstract— Graph-based SLAM has proved to be one of
the most effective solutions to the Simultaneous Localization
and Mapping problem. This approach relies on nonlinear
iterative optimization methods that in practice perform both
accurately and efficiently. However, due to the non-convexity
of the problem, the obtained solutions come with no guarantee
of global optimality and may get stuck in local minima. The
application of SLAM to many real-world applications cannot be
conceived without additional control tools that detect possible
suboptimalities as soon as possible in order to take corrective
action and avoid catastrophic failure of the entire system.

This paper builds upon the state-of-the-art framework [1] in
verification for this problem and introduces a novel superior
formulation that leads to a much higher efficiency. While
retaining the same high effectiveness, the verification times of
our proposal reduce up to >50x, paving the way for faster ver-
ification in critical real applications or in embedded low-power
systems. We support our claims with extensive experiments with
real and simulated data.

I. INTRODUCTION

The Simultaneous Localization and Mapping (SLAM)
problem consists of the estimation of both the unknown
environment and the trajectory followed by an exteroceptive
sensory system from the data it provides. SLAM is at the core
of many emerging applications that require to interact with an
unknown environment. These include autonomous navigation
in any of its modalities (self-driving cars, unmanned aerial
vehicles, autonomous underwater devices or even planetary
exploration), service, domestic and industrial robotics or
augmented reality.

The problem is commonly tackled by two layers: front-
end in charge of constructing a graph where nodes represent
the poses and the arcs encode the relative approximate poses
between nodes, and a back-end which works towards the
coherence of the whole graph through the optimization of
a high-dimensional, non-convex, non-linear problem. State-
of-the-art approaches for solving this problem are based on
iterative optimization techniques that exploits the sparsity of
the problem [2]–[4].

However, even though empirically these techniques per-
form remarkably well, they all share a common limitation:
Due to its iterative nature and the non-convexity of the
optimization problem, there is no guarantee about the cor-
rectness (global optimality) of the obtained solution. Getting
stucked in local minima (in general in any stationary point
which is not optimal) may lead to estimated solutions that
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Fig. 1. Example of a Pose Graph Optimization (PGO) problem. The
synthetic scenario (a) is used to produce noisy odometry and loop closures.
The corresponding Maximum Likelihood Estimator (MLE) produces ap-
pealing results (b), but poor initialization may lead to wrong suboptimal
solutions (c). This work boosts verification techniques for checking the
global optimality of a given result.

are arbitrarily far from the real optimal point (see Fig. 1).
This has inspired different research lines that address the
issue of improving convergence from different perspectives:
initialization techniques for bootstrapping the iterative op-
timization [5]–[7], increasing the basin of convergence [4],
[8], [9], analysis of the local convergence, problem structure,
and influencing factors [10]–[15] or different relaxations
of the problem [16] aimed at getting near-optimal global
solutions. All these works provide valuable contributions for
the aforementioned problem, yet none of them produce any
guarantee about the global optimality.

We see how the increasing success of SLAM techniques
is pushing the interest of many technological companies in
a range of fields, including autonomous drones and cars,
augmented reality, video games, etc. Many of these appli-
cations, however, demand a guaranteed performance: As the
level of responsibility involved by the automated task grows
(e.g. the safety of passengers in the case of self-driving
vehicles) techniques that provide awareness on possible
suboptimalities of the map or the trajectory estimated by
the SLAM pipeline become essential. This way corrective
actions could be taken before these errors propagate into
the rest of the system (e.g. path planning) and drive this to
catastrophic failure.

Very recently, some important progress has been made in
this direction by Carlone and collaborators [1], [17], [18],
by developing techniques for the SLAM problem of Pose
Graph Optimization (PGO) that are able to certify the global
optimality of a candidate solution obtained by other means.
One of their fundamental contribution is a formulation of
the Maximum Likelihood Estimator (MLE) for PGO that
turns it into a quadratically constrained optimization problem
with quadratic objective. Their second great idea is to apply
duality theory to yield non-trivial results about the global
optimum of the problem.



Our main contribution upon the work [1] for global
optimality in 3D PGO is the introduction of a simple yet very
effective reformulation of the optimization problem that leads
to a smaller matrix formulation of the problem and more
insightful results. Section II reviews the original formulation
in [1] and then elaborates the new trace-based formulation.
Similar benefits of a good formulation for PGO have been
also shown for the planar 2D case [18] although their trick
there (namely to exploit the natural bijection between the 2D
space and the complex domain) does not seem applicable for
the 3D case.

The development of the Lagrangian dual problem is a
core tool for the subsequent use of duality theory. In Section
III we provide a detailed derivation of the dual problem
corresponding to our new formulation. As for [1], it is
a (convex) semidefinite program (SDP). Unlike previous
works, we avoid anchoring1 the problem. This way we obtain
a simpler dual problem and, most importantly, the results
remain fully general, no matter which particular reference
frame is chosen for the PGO.

Duality theory can be used to certify the global optimality
of a candidate solution for PGO. In Section IV verification
techniques are obtained as a straightforward application of
the verification pipelines proposed in [1], [18] to our new
formulation. Again, the steps in the pipeline get simpler
under our reformulation.

To prove the benefits of our contribution beyond the formal
aspects we conducted experiments on real and simulated data
in Section V. Overall, our framework provides a significant
boost in computational performance with respect to the state-
of-the-art reference [1]. With time improvements of several
orders of magnitude, we show that the application of these
techniques may not be out of reach for large-scale real
problems.

Finally, further insight into this work can be gained from
the supplementary video or from the experimental implemen-
tation, both available at https://mapir.isa.uma.es.

II. QUADRATIC POSE GRAPH OPTIMIZATION PROBLEM

The Pose Graph Optimization (PGO) formulation of the
3D SLAM problem consists of the estimation of a set of
n unknown poses (Ri, ti) from m relative measurements
(R̄ij , t̄ij) between pairs of poses i and j. These observations
may originate from different sources, typically, odometry and
common observations.

This problem can be visualized as a directed graph
G(V, E), so that each node i ∈ V = {1, . . . , n} stands for an
unknown pose and each of the m relative measurements is
represented by an edge (i, j) ∈ E in the graph. The unknown
poses are estimated as those that maximize the consistency
of the model with the observations, yielding an optimization

1Absolute poses are not observable in PGO. Anchoring fixes the pose of
some node to remove this observability issue. See [1, Sec. III].

problem of the form

f?ML = min
{Ri∈SO(3)}
{ti∈R3}

∑
(i,j)∈E

ω2
t‖tj − ti −Rit̄ij‖22 (1)

+
ω2

R

2 ‖Rj −RiR̄ij‖2F .

Note the chordal distance [19] is chosen for the rotation error.
According to [1, Sec. II], the problem (1) is the Maximum
Likelihood Estimator (MLE) for Pose Graph Optimization
under the assumption of Gaussian noise on translation mea-
surements and von Mises noise [20] on rotations.

As a positively weighted sum of distances, the optimiza-
tion cost f in (1) is a convex function. Furthermore, f is
quadratic on the unknown variables, so it can be conve-
niently expressed in a matrix form to take full advantage
of algebra tools. For example, the reference work [1], [17]
fiddles with the terms in (1) to get the equivalent quadratic
formulation f(x) = ‖Ax‖22. Here the rotation matrices Ri

are vectorized as 9 × 1 vectors ri and stacked into the
unknown vector x =

[
r1, . . . , rn, t1, . . . , tn

]
∈ R12n. This

formulation makes heavy use of vectorization and Kronecker
products. As a consequence, the representation dimensions
grow unnecessarily (see Fig. 2), as shown by our novel
equivalent trace-based formulation.

A. Trace-based formulation

It is a well known fact that inner products naturally induce
associated norms. That is the case of the dot product and
Euclidean 2-norm for vectors and the trace (tr) product and
Frobenius norm for n×m matrices (Tab. I). Inspired by the
fact that the tr product is a generalization of the dot product
to matrices, we decide to work backwards and reformulate
the Euclidean norm in terms of the tr product. We will see
that this allows us to reach a much more compact formulation
of f with fewer terms.

First, the translation term ‖(tj−ti)−Rit̄ij‖22 is rewritten
as

(tj − ti)
>(tj − ti)− 2(tj − ti)

>(Rit̄ij) + t̄
>
ijR
>
i Rit̄ij

= tr((tj − ti)(tj − ti)
>)− 2 tr(Rit̄ij(tj − ti)

>) + t̄
>
ij t̄ij︸ ︷︷ ︸
const.

,

where we used the property a>b = tr(ab>) together with
the implicit constraint R>i Ri = I3.

For the rotation term, we apply that ‖A‖2F = tr(A>A)
to expand the chordal distance ‖Rj −RiR̄ij‖2F as

−2 tr(R̄ijR
>
j Ri) + tr(

I3︷ ︸︸ ︷
R>j Rj) + tr(

I3︷ ︸︸ ︷
R̄
>
ijR
>
i RiR̄ij)︸ ︷︷ ︸

const.

.

Space Inner product Induced norm

Rn [dot product] a>b ‖a‖2
Rn×m [tr product] tr(A>B) ‖A‖F

TABLE I
THE TRACE PRODUCT EXTENDS THE DOT PRODUCT TO MATRIX SPACES

https://mapir.isa.uma.es


We see how in both transformations constant terms appear
that may be dropped from the optimization. In doing so we
are intrinsically increasing the sparsity of the final quadratic
matrix that will define the objective cost, as exemplified in
Figure 2.

Let us define now the block-vectors of stacked unknowns

Q
3n×3

=
[
R1 . . . Rn

]>
, T
n×3

=
[
t1 . . . tn

]>
, X
4n×3

=

[
Q
T

]
.

Let ei stand for the i-th canonical vector and be ⊗ the usual
Kronecker product of two matrices. Using the relations

tj − ti = T>(ej − ei), Ri = Q> (ei ⊗ I3)︸ ︷︷ ︸
Ei

the overall translation cost term in f is written as

tr(T>MTTT ) + 2 tr(Q>MQTT ),

MTT

n×n
= +

∑
(i,j)∈E

ωtij (ej − ei)(ej − ei)
>,

MQT

3n×n
= −

∑
(i,j)∈E

ωtijEit̄ij(ej − ei)
>,

whereas the rotation part of the cost function becomes

tr(Q>MQQQ), MQQ

3n×3n
= − sym(

∑
(i,j)∈E

ωRijEiR̄ijE
>
j ).

Here sym(M) ≡ M+M>

2 stands for the symmetric part of
a matrix.

We see from these expressions that the coefficient matrices
MQQ, MQT and MTT are simple block-matrices obtained
by adding the data (weighted relative measurements) into the
block pointed by the edge’s start and end indices.

Adding both terms, the simplified cost function is

f(X) = const.+ tr(X>MX), (2)

where all the data in the original problem have been con-
densed into an appropiate constant and the cost matrix

M
4n×4n

=

[
MQQ MQT

M>
QT MTT

]
. (3)

III. RELAXATIONS AND LAGRANGIAN DUAL PROBLEM

The pursued task in this paper, checking the optimality of a
point X for the PGO problem (1), would be straightforward
if we knew f?ML, but this is unknown. However, it was shown
in [1] that duality theory, which by definition produces lower
bounds on the optimum of an optimization problem, can
be effectively exploited for this task. Thus, it follows the
derivation of the Lagrangian dual problem, which becomes
a fundamental result for the verification tools that will be
presented in Section IV.

First, let us consider the implicit constraints Ri ∈ SO(3)
in (1) or, equivalently, Qi ∈ SO(3) where Qi = R>i
are the blocks in our stacked unknown Q. These make
the optimization problem non-convex and difficult to solve

(a) Graph matrix [1] (b) Our graph matrix

(c) Matrix blocks [1]

(d) Our matrix blocks

Fig. 2. Quadratic matrix of the PGO problem corresponding to the garage
dataset for (a) the formulation in [1] and (b) our formulation. Every rotation
observation produces a 9 × 9 block (c), but our formulation reduces it to
3 × 3 (d). The diagonal blocks (in red) are dropped in our formulation
as constant terms. Similar reductions are applied to the MTT and MQT

blocks. As a result we get a matrix (b) that is smaller and sparser than (a):
(a) 20K×20K, nz = 570K, (b) 6.6K×6.6K, nz = 175K. (K - thousands,
nz - nonzero elements)

globally. Each of these can be written for the rotation matrix
representation as

Qi ∈ SO(3) ⇐⇒

{
Q>i Qi = I3,

det(Qi) = +1.
(4)

The determinant constraint is usually dropped, which
amounts to performing estimation in O(3) rather than SO(3)
and checking the determinant value a posteriori. For com-
mon PGO instances empirical results have shown that this
constraint tends to be redundant [21], however, the remain-
ing non-convex equality quadratic constraints produce local
minima in which iterative methods may get stuck, making it
non-trivial to find the global optimum.

Let us write the relaxed version of the MLE (1) that drops
the determinant constraint using our trace-based formulation:

f? = min
X

tr(X>MX) (5)

s.t. I3 −QiQ
>
i︸ ︷︷ ︸

Ci(Q)

= 0, i = 1, . . . , n.

As a relaxation of the original problem, the condition

f? ≤ f?ML (6)

stands between the optimal costs of both problems. If the
equality is fulfilled, the determinant constraints are inactive.

Since the main obstacle in this problem arises because of
the constraints, these can be introduced in the objective cost
as penalty terms:

L(X, {Λi}) = f(X) +

n∑
i=1

tr(ΛiCi(Q))

= tr(X>MX) +

n∑
i=1

tr(Λi(I3 −QiQ
>
i ))

= tr(X>M(Λ)X) + tr(Λ)

https://en.wikipedia.org/wiki/Relaxation_(approximation)


where we define Λ = blkdiag({Λi}) as a block-diagonal
matrix with blocks Λi and the penalized cost matrix as

M(Λ) = M(Λ)> =

[
MQQ−Λ MQT

MTQ MTT

]
. (7)

The cost function L(·) defined above is the well-known
Lagrangian of the constrained optimization problem and
the variables Λi are the matrix version of the Lagrange
multipliers. Note that these penalty terms are consistent with
the usual Lagrangian definition since they fulfill that

∂ L(X, {Λi})
∂Λi

= Ci(Q) = 0.

Furthermore, since the constraint matrices Ci(Q) are all
symmetric, so must be the Lagrange multipliers:

Ci(Q) = Ci(Q)> ⇒ Λi ∈ S3.

The Lagrangian provides an unconstrained relaxation of
the original problem

d(Λ) = min
X

L(X,Λ) (8)

whose optimal value d(Λ) ≤ f? is called the dual function.
Since the term tr(X>M(Λ)X) is a homogeneous quadratic
form (wrt X), its minimum value 0 is attained for

X?(Λ) = {X : tr(X>M(Λ?)X) = 0}
= {X : M(Λ)X = 04n×3}, (9)

if the penalized matrix is semidefinite positive (M(Λ) < 0).
Otherwise this term is unbounded below (its minimum value
is −∞). Thus, the optimum value of the Lagrangian (8) is

d(Λ) =

{
tr(Λ) if M(Λ) < 0,

−∞ otherwise.
(10)

The dual problem seeks the tightest relaxation by maxi-
mizing the lower bound d(Λ) wrt Λ as d? = maxΛ d(Λ). In
view of the expression for the dual objective (10), the search
for the maximum can be safely restricted to values of Λ for
which M(Λ) < 0, so the dual problem is a Semidefinite
Program (SDP):

d? = max
Λ

tr(Λ), s.t. M(Λ) < 0. (11)

This convex problem appears in many practical optimization
applications and specialized solvers exist for it.

IV. OPTIMALITY CONDITIONS AND VERIFICATION

This section provides a tuning under our novel formulation
of the verification techniques proposed in [1], [18], exploit-
ing similar duality theory concepts. For a more theoretical
background on the topic of duality theory and the properties
exploited here we recommend consulting [22, Sec. 5].

From now on, we will refer to the original MLE (1) as our
primal problem, whereas the SDP (11) is the dual problem.
A solution is primal (resp. dual) feasible if it fulfills the
constraints defined by the primal (resp. dual) problem.

Input: Cost matrix M , feasible solution X̂ML
Output: Optimality certificate isOpt
solve the SDP problem (11) to get d?;
if f(X̂ML) == d? then

set isOpt = true;
else

set isOpt = unknown;
end
return isOpt

Algorithm V1: Optimality verification via SDP

A first important relation for the subsequent analysis is the
chain of inequalities

d(Λ̂) ≤ d? ≤ f? ≤ f?ML ≤ f(X̂ML), (12)

where X̂ML and Λ̂ are primal and dual feasible points, re-
spectively. The inequalities d(Λ̂) ≤ d? and f?ML ≤ f(X̂ML)
stem from the definition of the (dual) maximization and
(primal) minimization problems (1) and (11), respectively.
The relaxation relationship (6) justifies f? ≤ f?ML. Finally,
d? ≤ f? states the well-known weak duality principle, and
the difference f? − d? ≥ 0 is called the duality gap. If
f? = d? we say there is strong duality.

SDP-based optimality verification: As noted in [1], [18], if
we know the optimum objective d? for the dual problem, the
inequality chain (12) provides a straightforward approach for
checking the optimality of a primal-feasible candidate X̂ML.
Namely, if d? = f(X̂ML), the inequality chain (12) forces
f? = f(X̂ML). This implies that X̂ML attains the optimal
objective f? and it globally optimum X?

ML = X̂ML.
This simple argument inspires the verification approach

V1 in Algorithm 1. Note that the test condition d? =
f(X̂ML) requires that there is strong duality for d? = f?

and that the determinant constraints (4) are inactive for
f? = f?ML, two conditions that appear to hold in practice.

Also this verification approach requires solving the SDP
problem (11) to get d?. Even though this is a convex
problem, in practice the bad scalability of current SDP
solvers with increasing problem sizes limit the usability of
Algorithm 1. Therefore, as in [1], [18], we present next an
alternative verification technique V2 that avoids solving the
SDP problem (11).

Faster optimality verification: A second important result
is due to duality theory [22, Sec. 5] and states that, if there is
strong duality, a primal optimal point X? is also a minimizer
of the Lagrangian evaluated at the dual optimal point Λ?:

d? = f?ML ⇒X? = arg min
X

L(X,Λ?) (13)

(9)
={X : M(Λ?)X = 04n×3}. (14)

Therefore, in our problem, if there is strong duality, the
columns of any primal optimal solution X? must lie in the
null space of the matrix M(Λ?):

M(Λ?)X? = 04n×3. (15)



Input: Cost matrix M , feasible solution X̂ML
Output: Optimality certificate isOpt
compute Λ̂ (17);
if all(‖Λ̂‖A/n ≤ τA, µmin ≥ τµ, (f̂ − d̂)/f̂ ≤ εrel) then

set isOpt = true;
else

set isOpt = unknown;
end
return isOpt
Algorithm V2: Optimality verification without SDP

This relation provides the following verification approach,
analogous to the one proposed in [1]. Given a primal-feasible
candidate X̂ML, we make two assumptions:

1) Our candidate is globally optimal: X̂ML = X?
ML

2) There is strong duality: d? = f?

Under these assumptions, the linear relation (15) character-
izes a dual candidate Λ̂ that is globally optimal (Λ̂ = Λ?).
Thus, for our original two assumptions to hold we have two
necessary conditions:

1) The dual candidate Λ̂ is dual-feasible, so Λ̂ = (Λ̂)>

and M(Λ̂) < 0.
2) The duality gap is zero, f(X̂ML)− d(Λ̂) = 0.

But if these necessary conditions hold, we already have
primal and dual feasible points Λ̂ and X̂ML that make
the inequality chain (12) tight, forcing d(Λ̂) = d? and
f? = f(X̂ML) so that these points must be globally optimal.

If the necessary conditions do not hold, either the primal
candidate is not optimal (X̂ML 6= X?

ML), or there is no strong
duality, or the MLE relaxation is not tight (f? ≤ f?ML). In
that case we cannot state anything about the optimality of
the candidate.

The reasoning above provides the verification pipeline
summarized in Algorithm 2. In the algorithm the strict
optimality conditions presented above are relaxed to the
verification of certain thresholded parameters, in order to
accommodate the presence of numerical errors. Namely, a
candidate Λ̂ is considered dual feasible if

‖Λ̂‖A/n ≤ τA, τA > 0

µmin ≥ τµ, τµ < 0

where ‖Λ̂‖A = ‖Λ̂ − Λ̂
>
‖F measures the antisymmetric

component of the matrix and µmin ≡ µmin(M(sym(Λ̂))) is
the smallest eigenvalue of M(sym(Λ̂)). The zero duality gap
condition for optimality of the candidates has been rewritten
in terms of the relative accuracy [22, Sec. 5.5.1.]:

f̂ − d̂
f̂
≤ εrel, εrel > 0.

Closed-form expression for dual candidate: Using the
definition of M(Λ) the linear system (15) can be written[

Λ̂Q̂
0

]
= MX̂ =

[
MQ,:

MT ,:

]
X̂. (16)

where MQ,: =

[
MQQ MQT

]
and MT ,: =

[
MTQ MTT

]
.

Thanks to the block-diagonal structure of Λ̂ each single
Lagrange multiplier takes the simple expression

Λ̂i = (ei ⊗ I3)>MX̂Q>i , i = 1, . . . , n, (17)

in which matrix inversion is not required at any time, so the
problem (15) in terms of Λ can be solved very efficiently.

V. EXPERIMENTS

This section discusses the effectiveness and the perfor-
mance of the proposed verification algorithms 1 and 2 to
check the optimality of a given candidate solution.

We employ the same experimental framework as in the
state-of-the-art reference [1] to assess the improvement of
our formulation. We strongly encourage the reader to read
[1, Sec. V] for a proper understanding of the evaluation
framework.

Practical issues: The computation of the most negative
eigenvalue for very large-scale problems is far from trivial.
The usual numerical methods for this task are of iterative
nature, and care must be taken in convergence issues. We
used the function eigs in Matlab with seed −100, although
multiple seeds could be tried for increased robustness. We
also limited the numerical tolerance to 10−5 to reduce the
computational burden.

A. Monte Carlo Analysis

We use the same simulation setup as in [1, Sec. V], namely
a variable-size synthetic 3D grid as that in Fig. 1, which
is traversed producing an odometric trajectory while loop
closures are added with certain probability between nearby
nodes. For a comprehensive description of this setup and its
parameters, please see [1, Sec. V].

Using the same evaluation metrics as in [1], the obtained
statistics where identical to those in [1, Fig. 2] (we skip
its representation here for the sake of space). We con-
firmed again that the new reformulation does not affect the
effectiveness of the verification techniques. and the same
conclusions as in [1] stand for our framework: The strong
duality assumption necessary for the proposed tools to work
holds independently of the translational noise level or the
problem size, although above certain rotation noise threshold
this breaks and the duality gap gradually increases with the
noise level.

We rather focus then on the comparison of our formulation
and the reference one [1] in terms of performance. Recall the
computational cost of the algorithm V1 is that of solving
the SDP problem (11), whereas for V2 the heaviest step
is that computing the most negative eigenvalue of M(Λ̂).
This justifies the results in Fig. 3 where, regardless of the
formulation (ours or [1]), V1 is outperformed by V2 in terms
of computational efficiency and scalability (with a difference
of more than 4 orders of magnitude in time). Besides, the
memory usage for SDP solvers scales bad with size as well.

On the other side, Fig. 3 also proves that our formula-
tion excels in both cases (V1 and V2) wrt the reference
alternatives [1]. This is clearly supported by the highly
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Fig. 3. Mean verification times for problems of increasing size using
different approaches. The approach V1 involves solving a Semidefinite
Program, whereas V2 reduces to the computation of an eigenvalue. In both
cases the smaller size and higher sparsity of our trace-based formulation
leads to a significant boost on performance over the reference work [1].
Please note the logarithmic scale.

beneficial effect that a smaller problem size and higher
sparsity have in both the resolution of the SDP (11) (for V1)
and the computation of µmin(M(Λ̂)) (for V2), reaching a
performance improvement of up to 2 orders of magnitude
for large-scale problems.

B. Large scale datasets

For the rest of this section we focus on the analysis of
the performance in more challenging scenarios. Concretely,
we will use the same datasets as [1], [7]. These comprise
the sphere, sphere-a, torus and cube simulated datasets, as
well as the garage, cubicle and rim real datasets. All these
datasets consist of large scale scenarios, and we use the more
scalable Algorithm 2 only. Since our PGO formulation is
for isotropic noise, the covariances in some of the datasets
were substituted by isotropic ones, following the indications
provided by the authors in [1].

Table II presents the obtained results. Each row of the
table corresponds to a different candidate solution we would
like to verify. The “Sol” column points how we obtained
the candidate. Both Init. and Odom. perform 10 Gauss-
Newton (GN) iterations from the chordal [7] and odometric
initialization, respectively. We also computed a groundtruth
(Gt.) estimate for which we used chordal initialization and
then applied a large number of GN iterations (1000) to
force numerical convergence. Although this solution is not
necessarily globally optimal, in practice it is [7], as proved
here by the application of our verification approach.

Let us move to the analyzed parameters. The column
“f̂” shows the optimization objective value evaluated at
the candidate, whereas the column “d̂” corresponds to the
candidate dual objective returned by Algorithm 2. These
parameters are numerically identical to their counterparts in
[1, Tab. I], proving again the theoretical equivalence of both
formulations.

Next we have the verification parameters used for Algo-
rithm 2. We set εrel = 10−2, τA = 10−2 and τµ = −10−4 as

the corresponding verification thresholds. For each row, we
show in red the parameters that exceed the thresholds.

The column V2 shows the optimality certificate returned
by Algorithm 2 according to the previous parameters. We
see that most of the Init. estimates successfully converge
to the global optimum after 10 GN iterations. We show
in yellow those negative certificates where the minimum
eigenvalue µmin was valid but either the relative duality gap
or the symmetry condition failed. Our empirical observation
is that those cases often correspond to suboptimal states
due to insufficient GN iterations, since iterating further
they converged to the global optimal. We also observe that
estimates that converge to wrong minima usually produce
negative certificates with very negative µmin, e.g. the sphere-
a or torus datasets initialized from odometry.

To get a more intuitive sense of the meaning of the veri-
fications parameters, we added a column with the Absolute
Trajectory Error (ATE) [23] of the candidate solution with
respect to the corresponding gt estimate. We find that the
ATE for all those estimates accepted as optimal by our
verification approach are of the order of milimeters, which is
consistent with what we would expect for a global optimum.
On the other side, the ATE is clearly high for wrong minima
(as expected) and moderate for those suboptimal estimates
(in yellow) that will converge given enough extra GN it-
erations. The ATE value of the sphere-a chordal estimate
proves that even though the duality gap is near zero and
M(Λ) is positive semidefinite, the symmetry condition is
still necessary for the candidate to be optimal.

Comparison with [1]: We applied the reference fast
verification method in [1] to each estimate as well. The
columns “t [ours]” and “t [1]” show the verification times
(in seconds) for each approach. The conclusion is consistent
with that obtained in the Monte Carlo simulation: Our
formulation of the verification method yields a remarkable
boost in performance, by more than one order of magnitude
in most cases2.

We also observed that, for the cases with zero duality gap,
the minimum eigenvalue computed by our technique shows
better numerical behavior. Namely, the computed eigenvalues
for our approach converged to zero (within the specified
tolerance 10−5). However, in [1] these converged only to
the range (10−4, 10−1).

As for the optimality certificate “V2”, the use of more
restrictive tests (e.g. εrel = 1% vs. εrel = 20% in [1], or
the addition of the symmetry threshold τA) provokes that
some cases classified as optimal in [1] are detected here as
suboptimal. Another interesting case is the solution to the
challenging rim dataset with chordal initialization, which is
classified here as globally optimal in contrast to [1]. Our
intuition is that the specially large dimensions of the matrix
involved in this dataset make the eigenvalue computation
more numerically unstable in [1], driving this to a wrong
value that causes the optimality test to fail in their case.

2Some times obtained for [1] were unusually high, probably due to
numerical issues with the function eigs and its use of random initialization.



Dataset Sol. f̂ d̂
Verification parameters

V2 ATE (m)
t (s)

|f̂ − d̂|/f̂ ‖Λ̂‖A/n µmin(Λ̂) [ours] [1]

sphere
n = 2500

m = 4949

Gt. 5.7594·102 5.7594·102 7.7·10−12 7.5·10−9 2.7·10−6 3 - 1.2 2309.1

Init. 5.7595·102 5.7528·102 1.2·10−3 2.5·10−4 2.7·10−6 3 2.1·10−3 1.2 2285.4

Odom. 5.8019·102 4.3785·102 2.5·10−1 4·10−3 2.7·10−6 7 6.2·10−2 1.3 2280.6

sphere-a
n = 2200

m = 8647

Gt. 1.2485·106 1.2485·106 1.5·10−11 3.2·10−3 1.2·10−7 3 - 1.1 397.9

Init. 1.2486·106 1.2486·106 8.8·10−7 5.4·10−2 1.3·10−7 7 7.4·10−1 1.1 413.4

Odom. 3.0413·106 3.04·106 4.3·10−4 5 −9.6·101 7 7.4·101 0.5 4.0

torus
n = 5000

m = 9048

Gt. 1.2114·104 1.2114·104 2.4·10−12 9.7·10−8 1.1·10−8 3 - 1.0 49.5

Init. 1.2114·104 1.2114·104 9.1·10−6 2·10−3 −4.7·10−6 3 4.9·10−3 0.9 49.5

Odom. 2.7666·104 2.7588·104 2.8·10−3 2.4·10−2 −1.2·102 7 3.8 0.6 4.6

cube
n = 8000

m = 22236

Gt. 4.216·104 4.216·104 7.8·10−13 2.9·10−7 6.8·10−8 3 - 7.6 2071.3

Init. 4.216·104 4.216·104 3.9·10−6 1.6·10−3 4.1·10−8 3 1.6·10−3 7.5 2017.8

Odom. 2.7465·105 2.7372·105 3.4·10−3 1.3·10−1 −1·102 7 1.5 6.2 92.5

garage
n = 1661

m = 6275

Gt. 6.2994·10−1 6.2994·10−1 4.1·10−10 9.3·10−11 2·10−5 3 - 0.7 14.0

Init. 6.2994·10−1 6.0426·10−1 4.1·10−2 1.2·10−6 2·10−5 7 4.4·10−2 0.9 14.4

Odom. 6.2997·10−1 3.5291·10−1 4.4·10−1 3.8·10−6 2·10−5 7 1.4·10−1 1.3 14.6

cubicle
n = 5750

m = 16869

Gt. 6.2481·102 6.2481·102 8.3·10−11 2.3·10−9 7.5·10−7 3 - 1.5 20.0

Init. 6.2481·102 6.2481·102 4.7·10−7 2.9·10−6 7.5·10−7 3 1.1·10−5 1.5 28.8

Odom. 6.2484·102 6.1625·102 1.4·10−2 4.9·10−4 7.6·10−7 7 1.9·10−3 1.7 20.2

rim
n = 10195

m = 29743

Gt. 1.235·104 1.235·104 1.6·10−12 4·10−8 1.4·10−6 3 - 3.0 10.8

Init. 1.235·104 1.235·104 4.2·10−5 3.9·10−4 1.4·10−6 3 2·10−3 4.2 11.0

Odom. 1.6985·104 −2.7965·104 2.6 1.3·10−1 −9.3·101 7 1 1.3 11.4

TABLE II
VERIFICATION WITH ALGORITHM 2 ON LARGE-SCALE SLAM DATASETS.

VI. CONCLUSION

Inspired by the state-of-the-art work [1] on global optimal-
ity verification for 3D Pose Graph Optimization problems,
we propose a novel formulation that substantially reduces the
computational burden of the framework. The resulting tech-
niques prove much faster while remaining equally effective.

These verification techniques are a great complement to
standard SLAM iterative solvers and, with this improvement
in efficiency, we expect to promote its usability in a broader
range of applications and systems.
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