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Abstract— Robots are often equipped with 2D laser-
rangefinders (LRFs) and cameras since they complement well
to each other. In order to correctly combine the measurements
from both sensors, it is required to know their relative pose, that
is, to solve their extrinsic calibration. In this paper we present
a simple, quick and effective minimal solution for the extrinsic
calibration problem. Our approach does not require any on-
purpose calibration pattern: it bases on the observation of an
orthogonal trihedron, which is profusely found as corners in
human-made scenarios. The proposal is validated with synthetic
and real experiments, showing better performance than existing
alternatives. An implementation of our approach is made
available as open-source software1.

I. INTRODUCTION

The combination of a laser-rangefinder (LRF) and a cam-
era is a common practice in mobile robotics. Some examples
are the acquisition of urban models [1], the detection of
pedestrians [2], or the construction of semantic maps [3].
Important advances are also being done towards the improve-
ment of visual odometry with additional depth information
which can be provided by a LRF as well [4], [5]. In order
to effectively exploit the measurements from both types of
sensors, a precise estimation of their relative pose, that is,
their extrinsic calibration, is required.

The most usual strategy to perform the calibration is to
establish some kind of data association between the measure-
ments of both sensors. This, however, is not straightforward
owing to the distinctive nature of both sensors: cameras are
projective devices which measure angles, whereas 2D LRFs
provide range measurements in a single plane. Hence, their
calibration is usually posed as a registration problem be-
tween different geometric entities coming from the sensors’
measurements. On the other hand, to cope with the noise
present in the sensors, large sets of data are usually required
and the calibration is solved through optimization of some
meaningful cost function. Because of the non linear nature of
the problem, a variety of methods have been proposed which
address such optimization in an iterative manner [6]–[9].
Thus, a good initialization is a key factor for the optimization
step in order to assure convergence to the best solution and
avoid getting stuck in local minima. Some works propose
getting an initial estimate by visual inspection but this,
besides limiting accuracy, can be a non trivial task for general
users.

The authors are with the Mapir Group —http://mapir.isa.uma.es
—of the Department of Systems Engineering and Automation, University
of Malaga, Spain. E-mail: jesusbriales@gmail.com

This work has been funded by the Spanish Government under project
DPI1011-25483 and the EU FP7 Programme under the GiraffPlus Project.

1Code available at http://mapir.isa.uma.es/jbriales

Fig. 1. From the observation of a trihedron structure formed by
three orthogonal planes { Πτ

1, Πτ
2, Πτ

3} and three orthogonal lines
{L1, L2, L3}, three points Qk in the 2D LRF plane and three lines lk
in the camera image can be obtained.

Currently, some alternatives have been reported to au-
tomatize the obtention of an initial guess for the extrinsic
calibration [7], [10]–[12]. However, the potential degenera-
cies in the underlying registration problem make grabbing
the calibration data a key factor in the performance of the
method: The stability of the results can be strongly affected
by the configuration of recorded data. As a consequence,
when the data is adquired in an arbitrary manner, existent
methods tend to perform poorly and the chances of getting
a wrong estimate increase drastically. In fact, although some
guidance may be given to the users on the procedure to
follow, the overall process still constitutes an acute challenge
to those fresh users, or for end-users from dramatically dif-
ferent fields, who are not aware of the underlying geometrical
problem which the calibration relies on.

This paper presents a minimal solution for the described
extrinsic calibration that estimates the rotation between the
camera and the LRF from one single observation of an
orthogonal trihedron. The translation, on the other hand, can
be fully recovered from the additional observation of a single
line (intersection of two scene planes). The only auxiliary
element needed, an orthogonal trihedron, can be easily found
in any structured scene, e.g. buildings, as the intersection of
three perpendicular planes (Fig. 1). This minimal solution is
more user-friendly than previous procedures since:

• Fewer observations (only two) are required.
• The results obtained are more robust and stable.
• There is no need to do measurements on the calibration

pattern as for checkerboard-based methods.

Experiments conducted using both synthetic and real data
support our claim that the proposed calibration method
outperforms other existing approaches in terms of reliability
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and robustness.
Software and videos derived from this work are available

online at: http://mapir.isa.uma.es/jbriales . The code
includes the minimal solution as well as a GUI for conduct-
ing the calibration process.

II. RELATED WORK

Several approaches have been proposed to date which
allow us to solve the extrinsic calibration of a camera and
a 2D LRF in a closed form. Most of them have based on
the method proposed by Zhang and Pless, which in turn
relies on the simultaneous observation by both sensors of
a checkerboard pattern. In their seminar paper [7], they
presented a direct linear solution which requires at least 5
observations. However, this direct solution does not enforce
the rotation to fulfill the orthonormality constraint, often
leading to a poor initialization for the iterative estimation.

The solution by Zhang and Pless is not minimal, since the
extrinsic parameters can be estimated from only three corre-
spondences in generic configuration. This fact is pointed out
by Vasconcelos et al. in [11], where the authors exploit the
existent duality between points and planes in the projective
space P3 to reformulate the geometrical registration problem
as a Perspective-3-Point (P3P) problem whose solution has
been thoroughly studied over the years [13].

Zhou [12] proposes another minimal solution to the Zhang
and Pless’ problem which directly exploits the algebraic
structure of the corresponding polynomial system in terms
of rotation matrix elements, yielding more numerically stable
results than Vasconcelos et al.

Another distinct minimal solution is proposed for the
extrinsic calibration in [10] based on the laser reflectivity
information to establish data association between image lines
and LRF points. Six of these correspondences compound the
minimal problem. Their algorithm, as Zhou’s, employs an
algebraic approach to solve a set of polynomial equations.
However, the reflectivity information is not always available
for the LRF (depending on the device), which reduces the
generality of this approach.

Other approaches exist already which exploit an structured
ambient to perform the extrinsic calibration of different
sensors. In [14], scene planes are used to generate geo-
metric constraints which allow for the calibration of non-
overlapping camera and LRF devices. In our previous work
[15] the observations of an orthogonal trihedron were used
to produce constraints and optimize the extrinsic calibration
of camera and LRF in an iterative approach. Other methods
have also benefitted of structured scenes to set geometric
constraints for the calibration of different sensor rigs, e.g.
for several LRFs [16].

To the best of our knowledge, ours is the first approach
which proposes a minimal solution directly exploiting the
scene structure. Namely, this constitutes the counterpart
minimal solution to the approach in [15] based on scene
corners, so both could be readily fused to improve the overall
performance.

III. TRIHEDRON REGISTRATION

The observation of an orthogonal trihedron from a camera
or a LRF has some unique traits unseen in other usual
calibration patterns. Next, we present the data which can
be extracted from the observation of the trihedron, either by
a camera or by a LRF device.

First of all, let us introduce a mathematical characteriza-
tion of the orthogonal trihedron that will be fully exploited in
next sections. The orthogonal trihedron τ can be mathemat-
ically defined as a structure formed by three perpendicular
planes, denoted by { Πτ 1, Πτ 2, Πτ 3}, which intersect in a
single vertex C (see Fig. 1). On the other hand, the trihedron
can be alternatively seen as three orthogonal lines, { L1, L2,
L3 }, also meeting in the vertex C. Both characterizations
are tightly connected since each line is produced by the
intersection of two planes and each plane is defined by
a pair of lines. It is this duality that allows us to exploit
the observation of the trihedron by both sensors, since the
camera can easily observe 3D lines but not planes and, on
the contrary, the LRF can sample planes but not lines.

A. Camera Observation

Each line Lk in the trihedron projects to the camera image
as lk. Let us define the interpretation plane of the line l
as the plane which passes through the camera origin and
the image line l (Fig. 2). Due to the projective nature of

Fig. 2. For a calibrated camera, the image line l defines, together with
camera center, the interpretation plane in which L must lie.

the camera the original 3D line Lk can not be recovered
from lk, but it must lie in its corresponding interpretation
plane. Let l stand for the homogeneous representation in P2

of the corresponding 3D line. We assume the camera has
been previously calibrated, so that K stands for the intrinsic
calibration matrix of the pinhole camera model. Then, the
homogeneous P3 representation of the interpretation plane
for l is

Ππ =

[
nπ

0

]
, nπ =

K>l

‖K>l‖
(1)

In a similar fashion, the vertex image c back-projects to a
ray whose unitary direction ĉ is defined by

ĉ =
K−1c̃

‖K−1c̃‖
, c̃ =

[
c
1

]
(2)

Overall, the orthogonal trihedron projects onto the image
as a set of three intersecting half-lines {lk}3k=1 (see Fig. 4(a))
which can be manually hinted and then accurately adjusted
with the approach proposed in [15]. Let us define Nτ as
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Fig. 3. Solving the LRF pose from the intersection of its plane with an
orthogonal trihedron is equivalent to a P3P problem with orthogonal angles.

the orientation of the 3D lines in the orthogonal trihedron
with respect to (wrt) the camera coordinate system. The
orientation Nτ can be solved from the lines {lk}3k=1 up
to a mirror transformation [17]. If we set an orientation for
each line, so that det(Nτ ) = +1, the solution is unique.

As a conclusion, one single image of the orthogonal
trihedron permits us to recover its pose wrt the camera up
to a scale factor λ in the translation, due to the projective
nature of the camera:

RC τ = Nτ , tC τ = λ ĉ (3)

B. LRF Observation

Each plane Πτ k in the trihedron is sampled by the LRF
as a set of collinear points {pik}

Nk
i=1 which can be used to fit

the 2D line mk corresponding to the intersection of the LRF
plane with Πτ k. As can be noted from Figs. 1 and 4(b), the
intersection of each pair of lines mi and mj provides the
2D point qk corresponding to the intersection of the LRF
plane with Lk. As a result, when all the three planes of the
trihedron are sampled by the LRF, all the intersection points
{qk}3k=1 can be computed.

Let us consider, for the rest of this section, the system
defined for the trihedron as the reference coordinate system.
The points Qk, 3D counterparts of the 2D intersection points
qk, have a simple parameterization wrt the trihedron basis
given by

Qk = δkek, (4)

with ek the k-th canonical vector and δk an unknown signed
distance. On the other hand, the distance dij between each
pair of points Qi and Qj can be recovered from the LRF
measurements as

dij =
∥∥qi − qj∥∥ . (5)

Hence, the information available defines a classical
Perspective-3-Points (P3P) problem (see Fig. 3): Given the
distances between points Q1, Q2 and Q3 and the 3D rays
in which these points lie, determine the unknown depths
δ1, δ2 and δ3. This problem has been thoroughly studied
in the computer vision literature [13]. Nevertheless, the
orthogonal nature of the rays in this case greatly simplifies

the complexity of the problem, which reduces to0 1 1
1 0 1
1 1 0

δ21δ22
δ23

 =

d223d231
d212

 (6)

Only |δk| can be recovered from the information available,
so eight possible solutions exist because of the different
permutations of signs. However, the user can easily set the
correct sign for each δk through visual inspection of the
scene and the LRF pose. The set then reduces to one feasible
solution {δ1, δ2, δ3}.

Let us assume, without loss of generality, that the LRF
plane is defined by z = 0 in LRF coordinate system, with X
direction pointing forwards. The relation between trihedron
points Q and the LRF 2D points then reduces to

Q =
[
rx ry tτ S

] [q
1

]
(7)

Once both {Q1,Q2,Q3} and {q1, q2, q3} have been recov-
ered, the components of the LRF pose wrt trihedron are
easily determined as[

rx ry tτ S

]
=
[
Q1 Q2 Q3

] [q1 q2 q3
1 1 1

]−1
(8)

Rτ S =
[
rx ry rx × ry

]
In conclusion, one single observation of all the trihedron

planes allows us to fully recover the pose of the LRF wrt
the trihedron.

IV. THE CALIBRATION PROBLEM

The extrinsic calibration of a camera and a LRF consists
in finding the 3D rigid transformation between the LRF
coordinate system and the camera coordinate system. Let
pC and pS be the coordinates of a 3D point as seen from the

camera and the LRF references, respectively. Once extrinsic
calibration is performed the relation

pC = R pS + t (9)

stands, where R denotes the orientation of the LRF relative
to the camera, and t the translation vector between both
sensors, with the z component of the scan points pS con-
ventionally set to zero.

As shown in Section III, the unique characteristics of a
single trihedron observation from camera and LRF devices
allows us to almost fully recover the relative pose between
the trihedron and the devices. Consequently, solving the
extrinsic calibration of the LRF and the camera once the
registration of the trihedron wrt to each device is performed
becomes as simple as composing the poses:

R = RC τ · R
τ

S, t = λĉ+ RC τ · tτ S (10)

The expressions above is based on the results (3) and (8)
and completely define the rotation between both sensors.
However, an unknown scale factor λ remains for tC τ = λĉ.
This can be solved by the observation of an additional line
L∗. This provides an additional point q∗ in the LRF plane
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Maximize distance
to avoid degeneracy

Scan lines must
define a triangle

Fig. 4. Flow chart of the proposed minimal solution: The camera pose (up to scale) and the LRF pose wrt trihedron are recovered from a single trihedron
observation (a,b) and enables us to fully recover the rotation part of the calibration. The unknown scale factor is solved with an additional line observation
(c,d) to get the translation component of the calibration. See the supplementary video for best visualization of the algorithm pipeline and its real use.

and a new interpretation plane Ππ ∗ for the camera (see Figs.
4(c) and 4(d)). For a point lying in a line that is in turn
contained in a plane, the point also belongs to the plane:

q∗ ∈ L∗
L∗ ∈ Ππ ∗

}
⇒ q∗ ∈ Ππ ∗ (11)

This defines the point-to-plane constraint which, after trans-
formation of q∗ into camera coordinates (9), reads

( nπ ∗)
> (Rq∗ + t) = 0. (12)

The substitution of (10) into (12) allows us to solve the
unknown scale parameter:

λ = − ( nπ ∗)
> (Rq∗ + RC τ tτ S)

( nπ ∗)>ĉ
. (13)

The solution of λ becomes degenerate when the denominator
in (13) is zero. This situation, however, can be easily avoided
by taking the additional line far from the previously observed
trihedron vertex, as pointed in Fig. 4(c).

V. EXPERIMENTAL RESULTS

In this section the proposed minimal solution is validated
through a number of experiments with both synthetic and
real data. Our results are compared to those obtained by the
state-of-the-art alternative minimal solution by Vasconcelos
et al. [11] which bases on the use of a checkerboard pattern.

A. Simulation environment

In the first set of experiments a simulation environment is
used to assess the proposed solution in terms of numerical
precision and robustness. A rig formed by a LRF and a
camera is randomly generated with extrinsic calibration in
the range of ±45o and ±50 cm for the rotation and transla-
tion respectively. The intrinsic parameters for the simulated
sensors are taken from the Hokuyo UTM-30LX LRF and
the Point Grey Bumblebeer2 stereo camera employed in
the subsequent real experiments.

Two different targets are used to simulate the observations
necessary for our method and [11]: a flat orthogonal trihedron
formed by three L × L squares, and a L × L checkerboard
with 8×8 squares, respectively, with L = 1.5 m. Notice that,

whereas a similar size has been taken for both targets, the
trihedron structures present in most structured scenes have
bigger dimensions, thus providing extra robustness in the
extraction of scan features.

The rig is randomly placed in a predefined region accord-
ing to a uniform distribution, and the poses are checked to
guarantee the correctness of all the simulated observations.
The observations are affected by variable levels of unbiased
and uncorrelated Gaussian noise, σS and σC , for both scan
range measurements and image points, respectively. In order
to assess the accuracy of the results, the common error
metrics

eR = 2 arcsin(

∥∥∥R− R̂∥∥∥
F

2
√

2
), et =

∥∥t− t̂∥∥ ,
are employed, where [R|t] is the estimated transformation
and [R̂|̂t] is the ground truth. The metric eR stands for the
lowest angular distance, in radians, between two rotations
in SO(3). Translation metric et is the Euclidean distance
between two R3 vectors.

The level of noise in the measurements has been modeled
by a variable factor of proportionality kσ which multiplies
the most usual standard deviation of measurements for each
sensor, i.e. σC = 1 pixel for image points and σS = 30 mm
for range measurements in the LRF. A statistical analysis of
the errors is shown in Figs. 5(a) and 5(c) for an increasing
level of noise kσ . We observe that our solution clearly
outperforms that of Vasconcelos et al. in precision by almost
an order of magnitude in the case of rotation and more than a
decade for translation. Our solution, however, introduces the
assumption that the trihedron observed is orthogonal, thus a
new source of error appears whose effect is evaluated too.
For that purpose, each trihedron line is perturbed by certain
angle in a random direction in its corresponding orthogonal
plane. In order to quantify the introduced perturbation we
propose the following intuitive metric: For a given set of
non-orthogonal 3D directions stacked as columns in V ,
compute its closest rotation matrix V̄ by Singular Value
Decomposition, then sum the angular distances for each
direction in the trihedron wrt the corresponding rotation

1894



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−1

10
0

10
1

10
2

R
o
ta

ti
o
n
 e

rr
o
r 

(d
e
g
)

(a) Rotation error under sensor noise
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(b) Rotation error under structural noise
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(c) Translation error under sensor noise
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(d) Translation error under structural noise

Trihedron Vasconcelos et al.

Fig. 5. Simulated calibration results (each step comprises 5000 samples). The trend line of 90th percentile is shown as a measure of robustness. (a)(c)
Comparison with [11] for increasing level of sensor noise. (b)(d) Assessment of performance when orthogonal assumption does not hold, for increasing
levels of maximum perturbation angle.

direction to get the perturbation measure

θΣ =

3∑
k=1

arccos(V >k V̄ k)

The effect of this perturbation on both the rotation and the
translation is shown in Figs. 5(b) and 5(d) for an increasing
maximum perturbation angle θΣ which is equally divided
among three directions, being the sensor noise fixed to their
base values (kσ = 1). The simulation results evidence that
even if the orthogonality condition is not completely fulfilled
the results obtained outperform those of Vasconcelos et al.

If the minimal solution is seen as a means of initialization
for iterative approaches, robustness is a highly desirable
characteristic: A lower precision can be saved by a few
additional steps in the iterative stage, whereas a initial state
based on a bad estimate could drive to false minima. For
this reason, even though outliers are not plotted for the sake
of better visualization, the 90th percentile is also plotted in
the boxplots in Fig. 5 as a measure of robustness. The 90th
percentile of the commited error shows that the improvement
of our approach in terms of robustness is even greater than
it is for precision (please note the logarithmic scale of the
boxplot), with a difference of more than two orders of mag-
nitude under usual noise conditions. This improvement keeps
even for usual disturbances in the orthogonal assumption.

B. Real data

The rig employed in our experiments is composed of a
Hokuyo UTM-30LX LRF and a Point Grey Bumblebeer2
stereo camera (see Fig. 6). Using these sensors, an overall

Fig. 6. Rig employed in the real simulations formed by a Point Grey
Bumblebeer2 camera (left) and a Hokuyo UTM-30LX LRF (right).

of 500 trihedron observations were taken from various poses
and in different scenes. On the other hand, 16 checkerboard
observations were taken from different poses too for testing
the approach by Vasconcelos et al. [11].

Due to the lack of precise ground truth data for the extrin-
sic calibration of the sensor rig, various approaches were ex-
ploited to prove the robustness and accuracy of our minimal
solution. First, the extrinsic calibration of the left sensor in
the stereo camera and the LRF was performed applying our
minimal solution to each of the 500 trihedron observations
gathered together with an additional line observation. On the
other hand, 500 independent calibrations were performed

1895



with the method in [11] using minimal combinations of 3
checkerboard observations plus an additional one for solution
disambiguation. Then, a visual validation on the robustness
of both methods was performed in which the LRF points
lying in the surface of a white planar board were projected
to image using every available calibration result. The points
projected with our calibration results fit well within the
board limits (Fig. 7). Furthermore, the greater constancy and
robustness of our solutions (green) can be checked against
those of Vasconcelos et al. for which reprojection on the
image varies considerably producing many clearly invalid
reprojections. A second approach to measure the robustness

Fig. 7. Projection of the LRF points on a white planar board into its
image using several calibration results obtained from minimal sets of data
with our method (green) and [11] (red). Best seen in color.

of the methods relies on the calibration of the stereo camera,
which is provided by the manufacturer and can be considered
as a reliable ground truth. Then, similarly to [15] and [10],
the relative transformation between left and right cameras is
computed indirectly through the extrinsic calibration wrt the
LRF of each camera. The stereo evaluation for the set of 500
calibrations, depicted in Fig. 8, supports the conclusions from
the visual test: our solution shows more robustness, with
typically lower loop closure errors and the error associated
to outliers remarkably lower than for the solution provided
by [11].
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(a) Rotation error (deg)

10
1

10
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10
3

(b) Translation error (mm)

Trihedron Vasconcelos et al.

Fig. 8. Statistic of the stereo loop closure error from 500 indivuals
calibrations. Please be aware of the logarithmic scale in the error axis.

VI. CONCLUSIONS

In this paper, a new minimal solution has been presented
for the extrinsic calibration of a rig formed by a 2D LRF
and a camera. It relies on the observation of an orthogonal
trihedron, which is typically encountered as scene corners in
buildings and human-made structures. Namely, our approach

treats the resolution of each sensor pose wrt the trihedron
as an independent registration problem, and then fuses this
information to solve the extrinsic calibration of the rig.
Our calibration technique reduces the number of necessary
observations and, at the same time, avoids the need of a
calibration pattern built on purpose for the task. The method
has been extensively tested in simulation and in real case
experiments, where it achieves both increased robustness and
repeatability wrt the state-of-the-art minimal solution.
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