
A Certifiably Globally Optimal Solution

to the Non-Minimal Relative Pose Problem

Jesus Briales

MAPIR-UMA Group

University of Malaga, Spain

jesusbriales@uma.es

Laurent Kneip

Mobile Perception Lab

SIST ShanghaiTech

lkneip@shanghaitech.edu.cn

Javier Gonzalez-Jimenez

MAPIR-UMA Group

University of Malaga, Spain

javiergonzalez@uma.es

Abstract

Finding the relative pose between two calibrated views

ranks among the most fundamental geometric vision prob-

lems. It therefore appears as somewhat a surprise that a

globally optimal solver that minimizes a properly defined

energy over non-minimal correspondence sets and in the

original space of relative transformations has yet to be dis-

covered. This, notably, is the contribution of the present

paper. We formulate the problem as a Quadratically Con-

strained Quadratic Program (QCQP), which can be con-

verted into a Semidefinite Program (SDP) using Shor’s con-

vex relaxation. While a theoretical proof for the tightness of

this relaxation remains open, we prove through exhaustive

validation on both simulated and real experiments that our

approach always finds and certifies (a-posteriori) the global

optimum of the cost function.

1. Introduction

Relative pose estimation from corresponding point pairs

between two calibrated views constitutes a fundamental

geometric building block in most sparse structure-from-

motion and visual SLAM algorithms. In structure from mo-

tion, it helps to initialize both topology and initial values of

the view-graph, which will then be used in transformation

averaging schemes [15] as well as bundle adjustment [42]

to obtain the joint solution over all poses and points. More

specifically, using an image matching technique [29], we es-

tablish a hypothetical covisibility graph between neighbour-

ing pairs of views, which are then verified geometrically us-

ing robust relative pose computation. In visual SLAM [26],

the algorithm is used to bootstrap the computation and thus

solve the chicken-and-egg problem behind the mutually de-

pending tracking and mapping modules.

The relative pose problem is constrained by the epipo-

lar geometry [17]. The correspondence condition between

two views can notably be translated into a linear constraint

by employing the well-known essential matrix. Due to scale

invariance, the essential matrix has only five degrees of free-

dom. Five point correspondences are hence enough to con-

strain the relative pose [23]. The solution to the linear prob-

lem given by stacking five correspondence conditions first

results in a four-dimensional nullspace. The true solution

can then be recovered by applying the additional non-linear

constraints that exist on the coefficients of a proper essen-

tial matrix. It can be solved using polynomial elimination

techniques [28], or—more generally—the Groebner basis

method [38].

The above solution is the so-called minimal solution to

the problem as—ignoring special cases like degenerate 3D

point configurations or zero parallax—it always leads to an

exact solution for the considered correspondences (up to

numerical inaccuracies). The minimal solver can be used

within Ransac in order to gain robustness against outlier

correspondences. An important observation in this regard

is that—depending on the noise inside the data—using only

five points for each hypothesis instantiation may not nec-

essarily lead to a minimum number of Ransac iterations,

as those hypotheses may be hard to bring in agreement with

other points. For moderate effective outlier ratios, increased

noise in the data means that sampling more points will lead

to noise-cancellation effects and thus quicker convergence

and better identified inlier ratios [21]. In short, a complete

theory of epipolar geometry requires a non-minimal solver

to the relative pose problem.

What comes as a surprise is that, despite the maturity of

the field and the age of the problem, a good non-minimal

solver for the calibrated relative pose problem has never

been discovered. This stands in harsh contrast with the

absolute pose problem, where recent solvers even achieve

global and geometric optimality in closed form for an arbi-

trary number of 2D-to-3D correspondences [20]. The expert

reader may ask why we can not use the 7 or 8-point algo-

rithm [24, 13] to solve this problem. The reason is again

explained by the noise in the data. Noise notably causes

the rank-defficiency of our essential matrix constraints to

145

vanish. The solution is henceforth found in a smaller-

dimensional nullspace. However, what we are in fact do-

ing here is hoping that the additional non-linear constraints

on our essential matrix are implicitly enforced by the noisy

data. To give a more concrete example, when solving the

calibrated relative pose problem with the 8-point algorithm,

we are in fact solving for a fundamental matrix. We just

hope that our data is strong enough to implicitly enforce the

solution to also be a proper essential matrix. This, of course,

is only true in the noise-free case.

It is much better to find the solution to the non-minimal

problem by directly minimizing an energy defined in the

5-dimensional space of scale invariant relative poses. This

is an inherently difficult problem, and an elegant globally

optimal solution remains an open problem. The present pa-

per draws inspiration from [21] who presented a cost func-

tion for the relative pose problem that is parametrized in the

space of relative rotations, and can be constructed for an

arbitrary number of correspondences. However, while [21]

failed to solve this problem with optimality guarantees, the

present paper leverages convex optimization theory to—for

the first time—come up with a fast1 probably globally opti-

mal solution to this problem, whose optimality gets certified

a-posteriori.

We warn the reader, this paper does not deal with outlier

observations. However, we observe that even without out-

liers this problem is challenging enough to make traditional

solvers fail in certain scenarios.

2. Further related work on global optimization

In general, finding a guaranteed globally optimal solu-

tion for non-convex optimization problems is a hard task,

most often computationally intensive [14].

One natural approach consists of characterizing the glob-

ally optimal solution as one of the stationary points in the

energy functional. This can be cast as a polynomial problem

and solved with similar techniques than minimal problems.

However, for general non-minimal problems, the number

of stationary points and the size of the polynomial elimi-

nation template may explode as the order of the equations

increases, often rendering the application of this procedure

infeasible.

Another powerful and generic tool for NP-hard opti-

mization problems is Branch and Bound (BnB). This pro-

ceeds by cleverly exploring (branching) the whole opti-

mization space while exploiting some relaxations on the

problem to skip certain regions (bounding). Whereas this

approach has been successfully used in various geometric

computer vision problems [31, 18, 21, 46], its exploratory

nature often leads to slow performance (exponential time in

worst-case scenario).

1At least faster than other globally optimal alternatives with guarantees

such as Branch-and-Bound for the non-convex problem.

For the rest of this document we will focus instead on re-

laxation techniques that consider approximate, simpler ver-

sions of the optimization problem whose global optimum is

easier to reach. This general idea does not necessarily lead

us to the original, optimal solution. In fact, an inferior relax-

ation may not provide any useful information at all. On the

opposite side, a tight relaxation is one that features the same

optimal objective as the original optimization problem. A

tight relaxation may provide us with the necessary informa-

tion to recover the optimal solution to the original problem.

If a relaxation that is tight is also convex by construction,

this provides us with an appealing way to solve the original

hard problem globally, as solving a convex problem glob-

ally is a much more tractable problem (typically of polyno-

mial complexity).

Finding a good relaxation for a certain problem is not

an exact science. Even though various recurrent tools ex-

ist, such as relaxing non-convex constraints to its convex

hull [36, 34, 19] or applying Lagrangian duality [5], there

remains much engineering involved in the combination of

these tools to come up with a good relaxation.

In this work we leverage two fundamental ideas as guid-

ing design principles: Firstly, many polynomial optimiza-

tion problem can be reformulated as a Quadratically Con-

strained Quadratic Program (QCQP), which in turn may

be relaxed onto a Semidefinite Program (SDP) via Shor’s

relaxation [5, 11]. This observation alone has allowed

for great progress in global optimization for some prob-

lems whose SDP relaxation turns out to be tight, e.g.

Rotation Synchronization [4, 3] or Pose Synchronization

[10, 9, 6, 33, 8]. Secondly, relaxations can be strength-

ened (improved) by introducing redundant constraints [27,

Chap. 13]. This trick has found applicability in the op-

timization literature [32, 35], e.g. in QCQP problems in-

volving orthonormal constraints [1]. Briales and Gonzalez-

Jimenez show in [7] that properly applying this trick is

highly beneficial when working with rotation constraints in

the context of the Absolute Pose problem.

3. Preliminaries

In this work we will follow similar notation and assump-

tions to those used by Kneip and Lynen in [21]. Specifically,

we consider the central calibrated relative pose case, where

each image feature can be translated into a unique unit bear-

ing vector. Pair-wise correspondences thus consist of pairs

of bearing vectors (f i,f
′

i) pointing to the same 3D world

point pi from the first and second camera centers.

The variables of interest in the problem are the transla-

tion t and relative orientation R of the second camera frame

w.r.t. that of the first camera. All the variables involved

are illustrated in Fig. 1. The normalized direction t will

be identified with points in the 2-sphere S2. The 3D rota-

tion will be featured as 3 × 3 orthogonal matrix with posi-

146

Figure 1. The relative pose problem. The measurements are given

by correspondence pairs of unit bearing vectors {fi, f
′

i}, and the

unknown variables are given by the relative orientation R and the

direction of the relative translation t.

tive determinant belonging to the Special Orthogonal group

SO(3). Symmetric n × n matrices are denoted by Symn,

the subindex + standing for positive semidefiniteness.

Lastly, for convenience we will often refer to the list of

elements in a matrix as a vector (lowercase) stacking the

columns into a vector, e.g. r = vec(R) or x = vec(X).

4. An eigenvalue based formulation

Given the bearing vectors f i and f ′

i corresponding to

each feature i in the two (calibrated) camera projections,

Kneip and Lynen proposed in [21] to address the relative

pose problem by enforcing the coplanarity of the moment

vectors mi = f i × Rf ′

i for all the epipolar planes. This

would lead to a decoupled formulation where the optimal

rotation is recovered from

R⋆ = argmin
R∈SO(3)

λmin(M(R)), (1)

with M(R) =
∑N

i=1 mim
⊤
i standing for the covariance

matrix of all (in general non-unitary) epipolar plane nor-

mals. The translation direction is recovered as the eigenvec-

tor corresponding to the smallest eigenvalue of M(R⋆):

t⋆ = argmin
t∈S2

t⊤(M(R⋆))t. (2)

Whereas this decoupled approach may be compact and ap-

pealing, dealing with the non-linearity and non-convexity of

the rotation suproblem (1) is far from trivial.

In this work, we take a different approach and consider

instead the equivalent joint optimization problem

f⋆ = min
R,t

t⊤M(R)t, s.t. R ∈ SO(3), t ∈ S2. (3)

The elements of the covariance matrix of normals M(R) =
[

mij(R)
]3

i,j=1
are quadratic on the elements of the rotation

matrix r = vec(R) [21]. This allows us to rewrite each

component of M(R) as a quadratic function mij(R) =
r⊤Cijr

⊤ with Cij ∈ Sym9,+ a data matrix that depends

only on the problem data (see supplementary material for

details). Using this characterization, the objective to opti-

mize in (3) may be written as

f(R, t) = t⊤M(R)t =
n
∑

i,j=1

ti(r
⊤Cijr)tj , (4)

which is a quartic function of the unknowns (R, t).
A fundamental step towards our solution is the reformu-

lation of this quartic objective into a quadratic one by intro-

ducing the convenient auxiliary variable

X = rt⊤ =
[

t1r | t2r | t3r
]

=
[

ritj
]

i=1,..,9
j=1,2,3

(5)

and its vectorized form

x = vec(X) = vec(rt⊤). (6)

With this definition of X in mind, the optimization objec-

tive (4) may be equivalently written in terms of x, and be-

comes

f(R, t) =

n
∑

i,j=1

(tir)
⊤Cij(tjr) = x⊤Cx, (7)

where the data matrix C ∈ Sym27 gathers all the data (ma-

trices Cij) in the problem (3). Interested readers are in-

vited to check the supplementary material for further de-

tails. With this reformulation in mind, the joint optimization

problem (3) can be rewritten as

f⋆ = min
R∈SO(3)

t∈S2,X

x⊤Cx, s.t. X = rv⊤, (8)

where we assume the already presented notations for vec-

torized counterparts.

So far we have just rewritten the original problem in dif-

ferent forms, all of which are equivalent and inherently hard

to solve. In particular, the last proposed formulation (8) can

be seen as a Quadratically Constrained Quadratic Program

(QCQP): The objective f(X) is quadratic; the unitary con-

straint on the translation direction, Ct ≡ {t⊤t = 1}, is also

quadratic; a rotation matrix R can be fully defined solely

by a set of quadratic constraints CR [22, 43, 7]; and, lastly,

the auxiliary constraint CX on X (5) is also quadratic. The

corresponding QCQP may be represented then as

min
X,R,t

x⊤Cx, s.t. {CR, Ct, CX}(X,R, t). (9)

Having formulated the problem as a QCQP does not

make it any easier to solve. In fact, a QCQP is a very gen-

eral kind of problem that comprises many NP-hard prob-

lems. However, the interest in reaching this particular for-

mulation lies in the existence of a well-known Semidefinite

Program (SDP) relaxation for QCQPs.

147

Next section will provide a thorough overview of a SDP

relaxation for problem (8) that, as far as we empirically ob-

served, is always tight and allows us to recover and certify

the globally optimal solution (R⋆, t⋆). An overview of the

complete algorithmic approach is given in Alg. 1.

5. Global resolution through SDP relaxation

Any Quadratically Constrained Quadratic Programming

(QCQP) problem instance, and in particular the introduced

relative pose problem (9), may be written in the following

generic form2.

Problem QCQP (General).

min
z̃

= z̃⊤Q̃0z̃, z̃ =
[

z⊤, 1
]⊤

, (10)

s.t. z̃⊤Q̃iz̃ = 0, i = 1, . . . ,m, (11)

where z is a vector stacking all unknowns involved in the

problem and z̃ its homogeneization.

Note we homogeneize the variables and data matrices,

which is a common trick to get more compact quadratic ex-

pressions [43, 7]. In our problem, z stacks the elements

of our unknowns (R, t,X). For further details on homo-

geneization as well as the matrices Q̃i corresponding to the

QCQP formulation of the relative pose problem we refer the

interested reader to the supplementary material.

As previously stated, the problem (QCQP) is in general

an NP-hard problem. However, it is well-known that this

kind of problems can be relaxed to a convex Semidefinite

Program (SDP), also known as Shor’s relaxation [37, 11]. It

is tightly connected to Lagrangian duality [44, 5]. The pri-

mal version of the SDP relaxation for the problem (QCQP)

reads:

Problem SDP (Primal SDP).

d⋆ = f⋆
SDP

= min
Z̃

tr(Q̃0Z̃) (12)

s.t. tr(Q̃iZ̃) = 0, i = 1, . . . ,K, (13)

Z̃yy = 1, Z̃ < 0, (14)

where Z̃ is the lifted unknown matrix and the y-subindex

refers to the homogeneous component in the matrix.

As a relaxation, the problem above fulfills3

d⋆ = f⋆
SDP
≤ f⋆. (15)

Our interest in this relaxation resides in the well-known fact

[44] that if the relaxation (SDP) is tight (d⋆ = f⋆
SDP

= f⋆)

2Note that QCQPs can in general also feature inequality constraints.
3We borrow the notation d⋆ for the optimal relaxation objective, more

common for the dual of (SDP). In our context the SDP problem fulfills

Slater’s condition so we can safely state d⋆ = f⋆
SDP.

and the original problem (QCQP) features a unique global

minimum, we can easily obtain the guaranteed optimal so-

lution z̃⋆ to the original problem from the optimal solution

Z̃
⋆

to the SDP relaxation. Thus, if we are able to ensure

(either theoretically or empirically) that the SDP relaxation

for a given QCQP problem is tight in some scenario, this

provides a highly appealing way to approach the global res-

olution of the original hard QCQP problem.

Unfortunately, the SDP relaxation arising from the

QCQP problem corresponding to the proposed formulation

(8) for the relative pose problem is in general not tight, so

we may not benefit of the corresponding SDP relaxation as

it is. Thus, our next goal will be to explore how we may at-

tain this desired tight behavior in the context of the relative

pose problem at hand.

5.1. Making SDP tight: Redundant constraints

In this section we are going to investigate the application

of a well-known trick to our problem to improve the quality

of the relaxation: The introduction of additional redundant

constraints.

There are some interesting examples in the literature

[45, 7] on how introducing additional redundant constraints

into a QCQP problem may significantly improve the sub-

sequent SDP relaxation (in terms of tightness). In partic-

ular, Briales and Gonzalez-Jimenez show in [7] that for a

QCQP problem affected solely by a (non-convex) 3D ro-

tation constraint, it is possible to produce an SDP relax-

ation that remains (empirically) tight at all times by clev-

erly exploiting complementary descriptions of the rotation

constraints. Since our problem also features a 3D rotation

constraint R ∈ SO(3), it makes sense to apply this trick

here as well.

5.1.1 Redundant rotation constraints

Briales and Gonzalez-Jimenez argue in [7] that the full fam-

ily of independent rotation constraints for R ∈ SO(3) that

may be written as quadratic expressions is given by

CR ≡











R⊤R = I3, RR⊤ = I3,

(Rei)× (Rej) = (Rek),

∀(i, j, k)={(1, 2, 3), (2, 3, 1), (3, 1, 2)}.
(16)

The set CR amounts to 20 independent quadratic con-

straints, which may be written in the form r̃⊤Q̃ir̃ = 0.

Unfortunately, whereas in the case explored in [7] the

simple introduction of these additional constraints into the

problem (QCQP) would suffice to turn the corresponding

relaxation (SDP) tight in practice, we found out that this is

not yet enough in the present problem.

148

5.1.2 More redundant quadratic constraints

A convenient trick to obtain additional redundant con-

straints in the context of our relative pose problem (8) is

to produce higher order versions of the existing constraints

(R ∈ SO(3),t ∈ S2) that may be still rewritten as quadratic

exploiting the available auxiliary variable X (5).

Lifted sphere constraints: Ĉt We saw the translation fea-

tures a single quadratic constraint t⊤t = 1. We may build

redundant constraints by multiplying this constraint by ri
for i = 1, . . . , 9. Even though this new constraint is im-

plicitly cubic, we may refactor products of the form ritj via

the auxiliary variable X =
[

ritj
]

i=1,...,9
j=1,2,3

, which features

all second-order combinations of this kind. As a result we

obtain 9 new constraints which are implicitly cubic but ex-

pressed as quadratic constraints again.

From here on, most new constraints are built in a similar

way. We multiply the quadratic constraint t⊤t = 1 by the

quadratic factor rirj for i, j = 1, . . . , 9. This time, it re-

sults in an implicitly quartic constraint that may be rewrit-

ten though via the auxiliary mapping Xij = ritj into a

quadratic constraint again. In this case, due to symmetry,

we introduce
(

9
2

)

= 45 additional redundant constraints.

Lifted rotation constraints: ĈR The case for rotation

constraints is pretty much analogue to that of the sphere

constraint. For any of the quadratic constraints previously

considered for the rotation set, we may multiply this con-

straint by ti for i = 1, 2, 3, and again rewrite pairs of the

form ritj as Xij to obtain a quadratic expression that is

implicitly cubic. Similarly, if we multiply in the quadratic

term titj for i, j = 1, 2, 3 and rewrite in terms of Xij where

possible, we will be featuring quartic constraints written in

quadratic form.

If there are 20 independent constraints in the rotation

constraint set, the cubic lift produces 3 new constraints for

each one, while the quartic lift results in
(

3
2

)

= 6 additional

redundant constraints per rotation constraint. Overall, this

results in 20 · 9 = 180 additional quadratic constraints.

Additional constraints on auxiliary variable: ĈX For

the auxiliary variable X it is also possible to feature addi-

tional independent constraints. In this case, it is not through

a lifting procedure but simply by observing that, through its

definition in (5), rank(X) = 1. While the rank constraint is

a complex one that we do not want to directly employ here,

it features though a wide set of quadratic constraints as any

2×2 minor inside the matrix X needs to be zero (otherwise

rank(X) > 1, which contradicts its definition).

These constraints are of the form

XabXij −XibXaj = 0, (17)

a = 1, . . . , 9; b = 1, 2, 3; (18)

a < i ≤ 9; b < j ≤ 3, (19)

which finally results in 108 additional linearly independent

constraints that depend solely on X .

Surprisingly, after including this whole redundant set of

underlying quadratic constraints, the SDP relaxation for the

corresponding enriched QCQP problem turns out to be em-

pirically tight in all tested circumstances, and we are ready

to proceed further in our way towards the global resolution

of the original problem.

5.2. Solving from the tight SDP solution: Recovery

Now that we have featured a QCQP formulation for the

relative pose problem (8) whose convex SDP relaxation is

empirically tight, we should be ready to proceed and solve

the problem (QCQP) with global optimality guarantees.

However, we still encounter another difficulty: It is a

classical result related to Shor’s relaxation that if there is

a unique global solution in the problem (QCQP), the tight

SDP solution Z̃
⋆

fulfills rank(Z̃
⋆
) = 1 and we may re-

cover z̃⋆ from the low-rank decomposition Z̃
⋆
= z̃⋆(z̃⋆)⊤

[44, 25]. As we show next, the condition that the original

problem has a unique global minimum is not fulfilled here

though. Nevertheless, we will show how we can adapt the

classical low-rank decomposition trick [25] and still obtain

the solution to the original problem (8) from a solution Z̃
⋆

to the relaxation (SDP).

5.2.1 The relative pose problem has 4 solutions

An important characteristic of original formulation (3) of

the relative pose problem is that there exist symmetries in

the objective. In particular,

f(R,−t) = f(R, t), f(P tR, t) = f(R, t), (20)

where P t = 2tt⊤−I3 is the reflection matrix w.r.t. the axis

of direction t. These symmetries are illustrated and proven

in the supplementary material.

The symmetries are also consistent with the well-known

fact that the estimation of the relative pose from the essen-

tial matrix also leads to 4 different solutions [24]. Indeed,

our algebraic error is exactly equivalent to that minimized

by classical solvers, e.g. the 8-point algorithm by Longuet-

Higgins [24, 16].

As a consequence of the equivalences above, even in the

well constrained, non-minimal situation, there exist 4 glob-

ally optimal solutions to the formulated problem (3):

{(R⋆, t⋆), (R⋆,−t⋆), (P t⋆R
⋆, t⋆), (P t⋆R

⋆,−t⋆)}.
(21)

149

Of these solutions, only one is physically realizable as the

rest lead to geometries where the reconstructed 3D points

lie behind the cameras rather than in front of them [24].

5.2.2 The tight primal SDP solution has rank-4

Still under the assumption that the SDP relaxation is tight,

a feasible (and optimal) rank-1 solution Z̃
⋆

k for the problem

(SDP) can be built from any of the 4 solutions (21) to our

original problem (8):

(R⋆
k, t

⋆
k)→ z̃⋆

k = stack(x⋆, r⋆, t⋆, 1) (22)

→ Z̃
⋆

k = z̃⋆
k(z̃

⋆
k)

⊤. (23)

All of these lifted solutions are globally optimal as they ful-

fill tr(Q̃0Z̃
⋆

k) = f⋆ = d⋆ (with our tightness assumption).

By linearity of the SDP objective (12), it is easy to prove

(see supplementary material) that any convex combination

Z̃
⋆
=

4
∑

k=1

akZ̃
⋆

k =
4

∑

k=1

akz̃
⋆
k(z̃

⋆
k)

⊤ (24)

of the rank-1 solutions Z̃
⋆

k, with ak ≥ 0 and
∑4

k=1 ak = 1,

is also an optimal solution to the problem (SDP). The non-

negativity of ak is required to fulfill the Positive Semidefi-

nite constraint (14) on Z̃. These coefficients a may be re-

garded as barycentric coordinates that parameterize the set

of all possible optimal solutions for problem (SDP).

In conclusion, the existence of 4 globally optimal solu-

tions in the original problem results in the existence of in-

finitely many rank-4 solutions to the SDP relaxation (SDP).

These solutions coincide with the convex hull of the rank-1

lifted versions of the solutions to the problem (QCQP).

5.2.3 Practical recovery of original solution

At this point, we have fully characterized the optimal so-

lutions of the original problem (3) as well as their connec-

tion to the infinitely many solutions of the relaxation (SDP)

when this is tight. In practice, we will solve the relaxation

(SDP) with some off-the-shelf Primal-Dual Interior Point

Method (IPM) solver (e.g. SeDuMi [40] or SDPT3 [41]).

But these IPM approaches return one optimal solution Z̃
⋆

0

of the infinitely many available ones in the convex set Z̃
⋆
.

Now, the question of main practical interest is: Given a par-

ticular optimal solution Z̃
⋆

0 to the SDP problem (SDP), are

we able to recover the optimal solution (R⋆, t⋆) (and cor-

responding symmetries) to the original problem (3)? The

answer to this question is yes.

In practice, a fundamental observation is that the solution

provided by an IPM solver always fulfilled rank(Z̃
⋆

0) = 4,

with an eigenvalue decomposition of the form

Z̃
⋆

0 = λ1U1U
⊤

1 + λ2U2U
⊤

2 , U⊤

k Uk = I2, (25)

that is, there exist two numerically distinct eigenvalues

λ1, λ2 with multiplicity 2. From (24) we know both U1

and U2 together must span the same range space as all the

global solutions to the (QCQP). In fact, another important

(still empirical) observation is that each pair of eigenvec-

tors Uk span the same range as the solutions with common

rotation value:

span(U1) = span(
[

z̃⋆
1, z̃

⋆
2

]

)← {(R⋆, t⋆), (R⋆,−t⋆)},
span(U2) = span(

[

z̃⋆
3, z̃

⋆
4

]

)← {(P t⋆R
⋆, t⋆), (P t⋆R

⋆,−t⋆)}.
This relation allows us to recover the optimal solutions from

the range space of the appropriate sub-blocks in the com-

puted eigenvectors: Considering the case of U1, since4

z̃⋆
1(r, :) = z̃⋆

2(r, :) = r⋆ and z̃⋆
1(t, :) = z̃⋆

2(t, :) = t⋆,

span(U1(r, :)) = span(r⋆), span(U1(t, :)) = span(t⋆).

As a result, if V r ∈ R
9 and V t ∈ R

3 are basis vectors for

the rank-1 subspaces span(U1(r, :)) and span(U1(t, :))
respectively, the optimal solutions within the range of U1

can be obtained by simple normalization:

vec(R⋆) =
√
3

V r

‖V r‖
, t⋆ =

V t

‖V t‖
. (26)

Similar relations hold for the solutions contained in U2.

Further discussions on these empirical observations can

be found in Section 8 of the supplementary material.

5.2.4 A-posteriori global optimality guarantees

Throughout the previous subsections we have extensively

built upon the assumption that the relaxation (SDP) is tight.

This, however, is not known a-priori for a given problem.

Thus, the way we proceed in practice is as follows: First,

we proceed with the described approach as if the relaxation

(SDP) was indeed tight, obtaining a set of (symmetric) can-

didate solutions (R̂k, t̂k). Then, we check the primal fea-

sibility (R̂k ∈ SO(3), t̂k ∈ S2) of these candidates. If

the relaxation was tight, these candidates should be indeed

feasible. Just for numerical stability, we may project these

candidates into their closest point in their manifold (by clas-

sical means), and check that d⋆ = f(R̂k, t̂k) as a certificate

of optimality. If this property is fulfilled, this proves our

tightness assumption and these feasible candidate points are

indeed the global solutions of the original problem (3).

The complete algorithm is characterized in Alg. 1.

6. Experiments

The main goal of this section will be to empirically prove

the surprising and desirable fact that the proposed SDP re-

laxation always turns out to be tight in practice, providing a

(a-posteriori) guaranteed optimal solution.

4We use (r, :) and (t, :) as Matlab-like notation to refer to the set of

indexes corresponding to r and t within z by convention (see Sec. 5).

150

Algorithm 1: Solving relative pose via SDP relaxation

Input: List of correspondences {(f i,f
′

i)}Ni=1

Output: Probably certifiable global solution (R⋆, t⋆)
/* build (QCQP) constr. mat. (full set) */

1 {Q̃i}Ki=1 ← {ĈR, Ĉt, ĈX}(X,R, t);
/* build (QCQP) objective data matrix */

2 Q̃0 ← C ← {Cij}i,j=1,2,3 ← {(f i,f
′

i)}Ni=1

/* solve relaxation (SDP) */

3 (Z̃
⋆

0, d
⋆)← SDP(Q̃0, {Q̃i}Ki=1) ; // IPM [41, 40]

/* compute low-rank eig-decomposition */

4
∑

k λkuku
⊤
k ← Z̃

⋆

0, λk ≥ λk+1 ∀k;

5 ASSERT((λ1=λ2) ∧ (λ3=λ4) ∧ (λk=0, ∀k > 4));

/* recover candidate sol. (Sec. 5.2.3) */

6 (R̂k, t̂k)k=1,2 ← {u1,u2}
7 (R̂k, t̂k)k=3,4 ← {u3,u4}
/* project candidates to feasible set */

8 R̂k ← projSO(3)(R̂k), t̂k ← projS2(t̂k), ∀k = 1, .., 4;

/* check optim. gap, certify optimality */

9 ∆k = f(R̂k, t̂k)− d⋆;

10 ASSERT(∆k < tol, ∀k = 1, .., 4), tol ∼ 10−9;

/* disambiguate realizable solution [24] */

11 return (R⋆, t⋆)← {(R̂k, t̂k)}

For this purpose, we evaluated the proposed approach,

SDP, in an extensive batch of experiments that span a wide

set of problem configurations, both on synthetic and real

data. The problem (SDP) was modeled with CVX [12] and

the IPM solver used in practice was SDPT3 [41], which

takes around 1 second to solve on a common consumer-

grade computer. We compared our performance to that of

the state-of-the-art (local) eigensolver proposed by Kneip

and Lynen [21], which we initialized using the classical

8-point algorithm by Longuet-Higgins [24]. The linear

closed-form estimator is referred to as 8pt, and its refined

version through the eigensolver as 8pt+eig. Note that all

of these methods feature exactly the same equivalent opti-

mization objective, so it is fair to compare all of them in

terms of the attained objective value.

In the subsequent evaluation, we will rely on two differ-

ent metrics. First, since the SDP relaxation (SDP) provides

a lower bound d⋆ on the optimal objective f⋆, we define

the optimality gap for a candidate solution ∆ = f̂ − d⋆.

If this optimality gap is numerically zero, we can assert the

candidate is globally optimal (check Section 5). Despite its

theoretical soundness, the optimality gap measure may be

little intuitive. Thus, we also provide the more intuitive ori-

entation error measure of a given candidate w.r.t. a known-

optimal solution5. For space’s sake, we skip here the er-

5Since the duality gap always vanishes numerically for the solution of

SDP, this will be our optimal reference.

ror measure on the translation direction component, which

leads to similar conclusions to those from orientation error.

6.1. Synthetic data

We generate random problems by the following proce-

dure: We fix the first camera at the origin (orientation is

identity). Then, we generate a set of 3D world points ran-

domly distributed within a bounded region of the space that

lies fully inside the Field of View (FOV) of the first cam-

era, and at least one meter away from the camera. Next, we

generate a random pose for the second camera with bounded

translation parallax and constrained so that the world points

also lie within its FOV. This way we obtain random relative

poses that are consistent with the physical constraints that

would exist in practical situations. From this point, we pro-

ceed as in Kneip and Lynen [21]: bearing vectors for each

3D point are computed and corrupted with some pixel noise

assuming a focal length of 800 pixels for the camera.

The synthetic world allows us to tune at will several rel-

evant parameters of the problem: The noise level in the

image features (σ, in pix), the number of observed fea-

tures (N), the FOV of the camera (θ, in deg), and the par-

allax magnitude (‖t‖, in m). For the evaluation, we as-

sumed a reference set of parameters σ = 0.5pix, N = 10,

θ = 100 deg, and ‖t‖ ≤ 2m, and then proceed to analyze

the behavior of the evaluated methods by modifying one

single parameter. The results of the synthetic evaluation

are collected in Fig. 2. We display the evaluation met-

rics both with a boxplot and a superimposed histogram of

concrete values. A shallow boxplot collapsed in 0 points

to a frequent global convergence, whereas outliers (when

existent) clearly reveal failure cases with wrong converge.

In the evaluation, we generated 200 different instances for

each problem configuration.

In these results we see the proposed approach SDP al-

ways attained a zero optimality gap (∆SDP ∼ o(10−10) in

practice), whereas the optimality gap for the other methods

rose up to ∆8pt,∆8pt+eig ∼ o(10−3) in some cases. In-

terestingly, even though these optimality gaps do not seem

too large, the analysis of the corresponding rotation error

reveals this gap is actually important, as it incurs in large

errors in the estimated orientation parameter. This is con-

sistent with the fact that the squared error terms minimized

in the objective are bounded by 1, and in general, even if

erroneous, are not too high. This seems to result in sub-

optimal local minima having objective values dangerously

close to those of the global solution [21], which may lead to

missing the true global solution.

A close analysis on how often the alternative solver

8pt+eig fails to converge provides valuable feedback

about the inherent difficulty of the problem. The obtained

results suggest that difficulty increases with high level of

noise in observations and low numbers of observations,

151

0.1 0.5 1 2
0

0.002

0.004

0.006

0.008

0.01

0.012

o
p
ti
m

a
lit

y
 g

a
p
 (

f-
d
)

SDP

8pt

8pt+eig

(a)

8 10 20 50
0

0.05

0.1

0.15

0.2

0.25

o
p
ti
m

a
lit

y
 g

a
p
 (

f-
d
)

SDP

8pt

8pt+eig

(b)

50 90 120 150
0

0.002

0.004

0.006

0.008

0.01

0.012

o
p
ti
m

a
lit

y
 g

a
p
 (

f-
d
)

SDP

8pt

8pt+eig

(c)

0.001 0.5 1 2
0

0.2

0.4

0.6

0.8

1

1.2

o
p
ti
m

a
lit

y
 g

a
p
 (

f-
d
)

10 -3

SDP

8pt

8pt+eig

(d)

0.1 0.5 1 2
0

20

40

60

80

ro
ta

ti
o
n
 e

rr
o
r

[d
e
g
]

SDP

8pt

8pt+eig

(e)

8 10 20 50
0

50

100

150

200

ro
ta

ti
o
n
 e

rr
o
r

[d
e
g
]

SDP

8pt

8pt+eig

(f)

50 90 120 150
0

5

10

15

20

25

30

35

ro
ta

ti
o
n
 e

rr
o
r

[d
e
g
]

SDP

8pt

8pt+eig

(g)

0.001 0.5 1 2
0

0.5

1

1.5

2

2.5

ro
ta

ti
o
n
 e

rr
o
r

[d
e
g
]

SDP

8pt

8pt+eig

(h)

Figure 2. Optimality gap and rotation error vs. all tunable parameters. Default values: σ=0.5pix, N=10, FOV=100 deg, and ‖t‖≤2m.

Note that despite choosing σ≤ 2pix for visualization, experiments were performed with virtually unbounded noise (σ ∼ 103pix), still

leading to tight relaxations in all cases, thus supporting the generality of tightness for this relaxation.

which is an expectable behavior [30, 7]. Also, an increas-

ing FOV makes the problem easier, as this results in a better

constraining of the optimization objective [21]. A larger

parallax hindered the performance of 8pt and 8pt+eig.

We also evaluated our approach in the pure rotation sce-

nario. Interestingly, whereas the relaxation in this case also

remains tight, some additional challenges appear when re-

covering the optimal solutions from the SDP solution, spe-

cially in the noiseless case where the number of solutions

doubles. This is an interesting case that we keep however

for further analysis in future work, due to its extension.

6.2. Real data

For the evaluation on real data, we took pairs of over-

lapping images from the TUM benchmark sequence [39],

which provides both accurate ground-truth camera poses as

well as the intrinsic camera calibration. We extract and

match SURF features in the images, filtering outliers by

thresholding on the reprojection error of triangulated cor-

respondences. Finally, we run the same algorithms as in the

previous section. The results, which are displayed in the

supplementary material due to space limitations, are con-

sistent with the conclusions reached in the synthetic case.

In particular, our proposed approach continued to find and

certify the globally optimal solution.

The general conclusion in view of our experimental re-

sults is that the concrete configuration of a relative pose

problem may have a great impact in the hardness of con-

verging to the global solution by traditional means. Yet,

our proposed SDP relaxation-based approach always suc-

ceeded, providing the optimal solution together with a cer-

tificate of optimality based on duality theory.

7. Conclusions

This work solves a previously unsatisfyingly solved ge-

ometric problem of fundamental interest: Direct and op-

timal computation of the relative pose between two cali-

brated images over an arbitrary number of correspondences.

Previous solvers either solve only for sub-optimal lineariza-

tions, or proceed by computationally less attractive exhaus-

tive search strategies such as branch-and-bound. We have

proposed a tailored (non-trivial) formulation of the prob-

lem as a Quadratically Constrained Quadratic Program for

which Shor’s relaxation is tight in 100% of the experimen-

tally evaluated problems, allowing us to recover and certify

the globally optimal solution.

We find these results very exciting, and we think there

is still significant space for improvement, both in solving

the underlying SDP relaxation with specialized solvers that

exploit the low-rank structure of the problem as well as in

leveraging these results in different scenarios, such as the

development of computationally attractive Probably Certi-

fiably Correct algorithms [2] for the problem at hand.

References

[1] K. Anstreicher and H. Wolkowicz. On Lagrangian relax-

ation of quadratic matrix constraints. SIAM Journal on Ma-

trix Analysis and Applications, 22(1):41–55, 2000.

152

[2] A. Bandeira. A note on probably certifiably correct algo-

rithms. Comptes Rendus Mathematique, 2016.

[3] A. Bandeira, N. Boumal, and A. Singer. Tightness of the

maximum likelihood semidefinite relaxation for angular syn-

chronization. Mathematical Programming, 2016.

[4] N. Boumal. A Riemannian low-rank method for optimization

over semidefinite matrices with block-diagonal constraints.

arXiv preprint arXiv:1506.00575, 2015.

[5] S. Boyd and L. Vandenberghe. Convex optimization. Cam-

bridge University Press, 2004.

[6] J. Briales and J. González-Jiménez. Fast Global Optimality

Verification in 3D SLAM. In Proc. Int. Conf. Intell. Robots

Syst. (IROS), Daejeon, 2016. IEEE/RSJ.

[7] J. Briales and J. González-Jiménez. Convex Global 3D Reg-

istration with Lagrangian Duality. In International Confer-

ence on Computer Vision and Pattern Recognition, jul 2017.

[8] J. Briales and J. González-Jiménez. Initialization of 3D Pose

Graph Optimization using Lagrangian duality. In Int. Conf.

on Robotics and Automation (ICRA). IEEE, 2017.

[9] L. Carlone, G. C. Calafiore, C. Tommolillo, and F. Del-

laert. Planar Pose Graph Optimization: Duality, Optimal

Solutions, and Verification. IEEE Transactions on Robotics,

32(3):545–565, 2016.

[10] L. Carlone, D. M. Rosen, G. Calafiore, J. J. Leonard, and

F. Dellaert. Lagrangian duality in 3D SLAM: Verification

techniques and optimal solutions. In Proc. Int. Conf. Intell.

Robots Syst. (IROS), pages 125–132, Hamburg, sep 2015.

[11] Y. Ding. On efficient semidefinite relaxations for quadrati-

cally constrained quadratic programming. 2007.

[12] M. Grant and S. Boyd. {CVX}: Matlab Soft-

ware for Disciplined Convex Programming, version 2.1.

\url{http://cvxr.com/cvx}, 2014.

[13] R. Hartley. In Defense of the Eight-Point Algorithm.

19(6):580–593, 1997.

[14] R. Hartley and F. Kahl. Optimal Algorithms in Multiview

Geometry. In Computer Vision ACCV 2007, pages 13–34.

Springer Berlin Heidelberg, Berlin, Heidelberg.

[15] R. Hartley, J. Trumpf, Y. Dai, and H. Li. Rotation Averaging.

International Journal of Computer Vision, 103(3):267–305,

jan 2013.

[16] R. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, New York,

NY, USA, 2 edition, 2003.

[17] R. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, New York,

NY, USA, second edition, 2004.

[18] R. I. Hartley and F. Kahl. Global optimization through rota-

tion space search. International Journal of Computer Vision,

82(1):64–79, 2009.

[19] Y. Khoo and A. Kapoor. Non-iterative rigid 2D/3D point-set

registration using semidefinite programming. IEEE Transac-

tions on Image Processing, 25(7):2956–2970, 2016.

[20] L. Kneip, H. Li, and Y. Seo. Upnp: An optimal o (n) solution

to the absolute pose problem with universal applicability.

In Computer Vision–ECCV 2014, pages 127–142. Springer,

2014.

[21] L. Kneip and S. Lynen. Direct optimization of frame-to-

frame rotation. In Computer Vision (ICCV), 2013 IEEE In-

ternational Conference on, pages 2352–2359. IEEE, 2013.

[22] L. Kneip, R. Siegwart, and M. Pollefeys. Finding the exact

rotation between two images independently of the transla-

tion. Springer, 2012.

[23] E. Kruppa. Zur Ermittlung eines Objektes aus zwei Perspek-

tiven mit innerer Orientierung. Sitzgsber. Akad. Wien, Math.

Naturw. Abt., IIa., 122:1939–1948, 1913.

[24] H. C. Longuet-Higgins. A computer algorithm for re-

constructing a scene from two projections. Nature,

293(5828):133–135, 1981.

[25] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang.

Semidefinite relaxation of quadratic optimization problems.

IEEE Signal Processing Magazine, 27(3):20–34, 2010.

[26] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-

SLAM: A Versatile and Accurate Monocular SLAM Sys-

tem. IEEE Transactions on Robotics (T-RO), 31(5):1147–

1163, 2015.

[27] Y. Nesterov, H. Wolkowicz, and Y. Ye. Semidefinite pro-

gramming relaxations of nonconvex quadratic optimization.

In Handbook of semidefinite programming, pages 361–419.

Springer, 2000.

[28] D. Nistér. An efficient solution to the five-point relative pose

problem. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (PAMI), 26(6):756–777, 2004.

[29] D. Nistér and H. Stewénius. Scalable recognition with a vo-

cabulary tree. 2006.

[30] C. Olsson and A. Eriksson. Solving quadratically con-

strained geometrical problems using lagrangian duality. In

Pattern Recognition, 2008. ICPR 2008. 19th International

Conference on, pages 1–5. IEEE, 2008.

[31] C. Olsson, F. Kahl, and M. Oskarsson. Branch-and-Bound

Methods for Euclidean Registration Problems. IEEE Trans.

Pattern Anal. Mach. Intell., 31(5):783–794, 2009.

[32] P. A. Parrilo and S. Lall. Semidefinite programming relax-

ations and algebraic optimization in control. European Jour-

nal of Control, 9(2):307–321, 2003.

[33] D. M. Rosen, L. Carlone, A. S. Bandeira, and J. J. Leonard.

SE-Sync: A Certifiably Correct Algorithm for Synchro-

nization over the Special Euclidean Group. arXiv preprint

arXiv:1612.07386, pages 1–49, 2016.

[34] D. M. Rosen, C. DuHadway, and J. J. Leonard. A convex

relaxation for approximate global optimization in simultane-

ous localization and mapping. In Proc. Int. Conf. Robot. and

Autom. (ICRA), pages 5822–5829, Seattle, 2015. IEEE.

[35] J. P. Ruiz and I. E. Grossmann. Using redundancy to

strengthen the relaxation for the global optimization of

MINLP problems. Computers & Chemical Engineering,

35(12):2729–2740, 2011.

[36] J. Saunderson, P. A. Parrilo, and A. S. Willsky. Semidefinite

descriptions of the convex hull of rotation matrices. arXiv

preprint arXiv:1403.4914, 2014.

[37] N. Z. Shor. Quadratic optimization problems. Sov. J. Com-

put. Syst. Sci., 25(6):1–11, 1987.

[38] H. D. Stewénius, C. Engels, and D. Nistér. Recent develop-

ments on direct relative orientation. ISPRS Journal of Pho-

togrammetry and Remote Sensing, 60(4):284–294, 2006.

153

[39] J. Sturm and N. Engelhard. A benchmark for the evaluation

of RGB-D SLAM systems. Intelligent Robots and Systems

(IROS), 2012 IEEE/RSJ International Conference on, 2012.

[40] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for

optimization over symmetric cones. Optimization methods

and software, 11(1-4):625–653, 1999.

[41] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3a MAT-

LAB software package for semidefinite programming, ver-

sion 1.3. Optim. methods Softw., 11(1-4):545–581, 1999.

[42] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.

Bundle adjustment - a modern synthesis. In Proceedings of

the International Workshop on Vision Algorithms: Theory

and Practice (ICCV), pages 298–372, Corfu, Greece, 1999.

[43] R. Tron, D. M. Rosen, and L. Carlone. On the Inclusion

of Determinant Constraints in Lagrangian Duality for 3D

SLAM. In Proc. Robotics: Science and Systems (RSS),

Workshop The Problem of Mobile Sensors, 2015.

[44] L. Vandenberghe and S. Boyd. Semidefinite programming.

SIAM review, 38(1):49–95, 1996.

[45] H. Wolkowicz. A note on lack of strong duality for quadratic

problems with orthogonal constraints. European Journal of

Operational Research, 143(2):356–364, 2002.

[46] J. Yang, H. Li, and Y. Jia. Optimal essential matrix esti-

mation via inlier-set maximisation. In Proceedings of the

European Conference on Computer Vision (ECCV), 2014.

154

Supplementary material for
A Certifiably Globally Optimal Solution to the Non-Minimal Relative Pose Problem

Jesus Briales
MAPIR-UMA Group

University of Malaga, Spain
jesusbriales@uma.es

Laurent Kneip
Mobile Perception Lab

SIST ShanghaiTech
lkneip@shanghaitech.edu.cn

Javier Gonzalez-Jimenez
MAPIR-UMA Group

University of Malaga, Spain
javiergonzalez@uma.es

Contents

1. Brief summary 1

2. Compact formulation of the covariance matrix of normals M(R) 2

3. Data matrix for the quadratic objective in terms of vec(X) 3

4. Details on the standard QCQP formulation 3
4.1. Objective matrix: Q̃0 . 4
4.2. Constraint matrices for all sphere constraints: Ĉt . 4
4.3. Constraint matrices for all rotation constraints: ĈR . 5
4.4. Constraint matrices for all constraints on auxiliary variable: ĈX . 8
4.5. Summary . 9

5. Symmetries in the algebraic error 9

6. Equivalence to algebraic objective of 8-point algorithm 10

7. Convex set of optimal SDP solutions 10

8. Practical recovery of original solution from SDP solution 11

9. Experimental results on real data 12

A. Vector spaces, canonical vectors and basis 13

B. Vectorization 15

C. Optimal QCQP solutions in the relative pose problem are orthogonal 15

1. Brief summary
This supplementary material contains several proofs related to the claims and content in the main document. We also

included some technical results in Section 4 which are necessary for the actual implementation of the approach. Finally, we
show in Section 9 additional experimental results obtained on real data that were omitted in the main document due to space
limitations.

1

2. Compact formulation of the covariance matrix of normals M (R)

The covariance matrix of all the epipolar normals

M(R) =

N∑
i=1

(f i ×Rf ′i)(f i ×Rf ′i)
>, (1)

where ni = f i ×Rf ′i, is clearly a quadratic expression on the rotation R. Thus, each element mij of this matrix M(R)
can be written as a quadratic function of the elements r in the rotation matrix R:

mij
1
= e>i M(R)ej (2)

2
=

n∑
k=1

e>i (fk ×Rf ′k)(fk ×Rf ′k)
>ej (3)

3
=

n∑
k=1

e>i [fk]×Rf ′k(f
′
k)
>R> [fk]

>
× ej (4)

4
=

n∑
k=1

tr(e>i [fk]×Rf ′k(f
′
k)
>R> [fk]

>
× ej) (5)

5
=

n∑
k=1

tr(f ′k(f
′
k)
>R> [fk]

>
× eje

>
i [fk]×R) (6)

6
=

n∑
k=1

tr(f ′k(f
′
k)
>R>(fk × ej)(fk × ei)

>R) (7)

7
=

n∑
k=1

r>(f ′k(f
′
k)
> ⊗ (fk × ej)(fk × ei)

>)r (8)

8
= r>

(
n∑
k=1

(f ′k ⊗ (fk × ej))(f
′
k ⊗ (fk × ei))

>

)
r. (9)

A brief summary of the steps performed here follows:

1. Write the (i, j)-th element in terms of the complete matrix, multiplied by canonical vectors.

2. Substitute the definition of the covariance matrix (1).

3. Rewrite the cross product as fk ×Rf ′k = [fk]×Rf ′k, in terms of the corresponding skew-matrix.

4. The trace of a scalar quantity is the identity function.

5. Use the cyclic properties of the trace to rotate the terms.

6. Rewrite the cross-products back to its explicit form.

7. Apply vectorization, according to (123), to extract r = vec(R) from the expression.

8. The sum of quadratic functions is a single quadratic function.

Thus, in view of the result above, given a list of feature correspondences {(fk,f
′
k)}Nk=1, each element in the covariance

matrix M(R) can be seen then as a a quadratic function mij(R) = r>Cijr, where

Cij =

n∑
k=1

(f ′k ⊗ (fk × ej))(f
′
k ⊗ (fk × ei))

>. (10)

This expression is beneficial, as it means that all the data in the problem can be condensed into a fixed number of matrices of
small dimension, in linear time w.r.t. the numberN of feature correspondences. The complexity of any subsequent operations
should then be independent of N .

3. Data matrix for the quadratic objective in terms of vec(X)

In the main document we claim that the joint optimization objective

f(R, t) = t>M(R)t =

n∑
i,j=1

ti(r
>Cijr)tj , (11)

may be written as

f(R, t) =

n∑
i,j=1

(tir)
>Cij(tjr) = x>Cx, s.t. x = vec(X), X = rt>, (12)

where all the data in the problem has been collected into a single matrix C. A proof follows:

f(R, t)
1
= t>M(R)t (13)

2
=

n∑
i,j=1

tir
>Cijrtj (14)

3
=

n∑
i,j=1

e>i (tr
>)Cij(rt

>)ej (15)

4
=

n∑
i,j=1

tr(e>ijX
>CijX) (16)

5
= x>

 n∑
i,j=1

eij ⊗Cij


︸ ︷︷ ︸

C

x (17)

The performed steps in the proof are:

1. This is the joint objective, corresponding to the Rayleigh quotient of matrix M(R).

2. Simply write the sum form of the quadratic form, substituting mij(R) = r>Cijr as argued in Section 2.

3. Write elements tk = e>k t and regroup.

4. Identify X = rt>, introduce trace and apply cyclic property. Also we make use of the definition eij = eie
>
j .

5. Vectorize the trace of a product using (123).

The data matrix C in the last expression gathers the 9 × 9 data matrices Cij standing for every component mij into a
single 27× 27 matrix

C =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 ∈ Sym27. (18)

4. Details on the standard QCQP formulation
As stated in the main document, any Quadratically Constrained Quadratic Programming (QCQP) problem instance (with

equality constraints only), and in particular any QCQP characterization of our relative pose problem, may be written in the
following generic form:

min
z̃

= z̃>Q̃0z̃, z̃ =
[
1, z>

]>
, (19)

s.t. z̃>Q̃iz̃ = 0, i = 1, . . . ,m, (20)

where z is a vector stacking all unknowns involved in the problem, Q̃0 is the homogeneized data matrix and Q̃i, i = 1, . . . ,m,
are the homogeneized constraint matrices. Homogeneization here refers to the common trick of putting together all the terms
in a quadratic function by homogeneizing the variable vector z with an additional unit element1, so that at the end we can

1Common conventions are either to append [1] or prepend [3] the unit element. For convenience in the expressions we are prepending here.

regard it as if it was a plain quadratic form qQ̃i
(z̃):

z>Qiz + 2b>i z + ci =
[
1 z>

] [ci b>i
bi Qi

] [
1
z

]
= z̃>Q̃iz̃ ≡ qQ̃i

(z̃). (21)

Since z stacks all the unknowns in the quadratic formulation, R ∈ SO(3), t ∈ S2, and X = rt>, with the chosen
representations this vector will have #(z) = #(R) + #(t) + #(X) = 9 + 3 + 27 = 39 elements, and thus #(z̃) = 40
elements. The corresponding 40 × 40 homogeneized matrices in the QCQP formulation may be regarded as divided into
blocks. We will refer to the (a, b)-block of a matrix Q̃, noted as Q̃ab or Q̃[a, b], as the submatrix formed by the elements
indexed by a and b (not necessarily contiguous):

Q̃ab = Q̃[a, b] =
[
Qij
]
i∈a,j∈b . (22)

If we consider e.g. the variable ordering z =
[
1,x>, t>, r>

]>
(the concrete chosen order is irrelevant, and it just results

in permutations on the Q̃i matrices), a particular matrix Q̃ can be seen then as


1 x t r

1 c b>x b>t b>r
x bx Qxx Qxt Qxr

t bt Qtx Qtt Qtr

r br Qrx Qrt Qrr

 ≡ Q̃. (23)

Next, we will obtain the concrete expression for the matrices Q̃i in the QCQP problem corresponding to the optimization
objective and the specific constraints considered in our problem, which in the most general, redundantly constrained case,
come from the extended sets {ĈR, Ĉt, ĈX} characterized in the main document.

For the subsequent steps, it will be particularly convenient to introduce the homogeneized auxiliary variable

X̃ = r̃t̃
>
=

[
1 t>

r rt>

]
=

[
1 t>

r X

]
, r̃ =

[
1

vec(R)

]
, t̃ =

[
1
t

]
, (24)

and choose the variable ordering z̃ induced by the vectorization of X̃ , so that

z̃ = vec(X̃) = t̃⊗ r̃. (25)

We will also make extensive use of some basic vector algebra, canonical vectors and vectorization that are documented in
Appendices A and B.

4.1. Objective matrix: Q̃0

This is straightforward, as the objective x>Cx = z̃>Q̃0z̃ clearly corresponds to a matrix Q̃0 which is zero everywhere
except for the (x,x)-block, whose value is Q̃0[x,x] = C.

4.2. Constraint matrices for all sphere constraints: Ĉt
Consider to begin with the simple quadratic constraint characterizing the sphere constraint

t>t = 1⇒ qP̃ (t̃) = t̃
>
[
−1 0>

0 I3

]
︸ ︷︷ ︸

P̃

t̃ = 0, (26)

where P̃ is the 4× 4 matrix corresponding to this constraint when seen as a quadratic form of t̃.
The lifting trick proposed in the main document is to multiply the original constraint qP̃ (t̃) = 0 by either linear factors ri

for i = 1, . . . , 9 or quadratic factors rirj for i, j = 1, . . . , 9 to obtain new valid redundant constraints. By using the convenient
homogeneized counterparts r̃, t̃ and X̃ proposed in (24), all of these constraints may be conveniently characterized as the set

r̃i · r̃j · qP̃ (t̃) = 0, ∀i, j = 1, . . . , 10. (27)

Note there are 10 indexes, as the homogeneous component of r̃ is also featured in the products above. Indeed, when i = j = 1
we get the original quadratic constraint qP̃ (t̃) = 0, if i = 1, j 6= 1 we get the cubic lifts r̃j · qP̃ (t̃) = 0, and finally i 6= 1,

j 6= 1 leads to the quartic lifts. Next we characterize the constraint matrices
S2

Q̃ij for all these possible variations of the
sphere constraint (27), under the QCQP formulation (20) and with the natural ordering z̃ = vec(X̃) (25):

r̃i · r̃j · qP̃ (t̃) = (r̃ir̃j)t̃
>
P̃ t̃ (28)

= (r̃it̃
>
)P̃ (t̃r̃j) (29)

= e>i (r̃t̃
>
)P̃ (t̃r̃>)ej (30)

= e>i X̃P̃ X̃
>
ej (31)

= tr(P̃ X̃
>
eje
>
i X̃) (32)

= vec(X̃)>(P̃ ⊗ eji) vec(X̃) (33)

= z̃> (P̃ ⊗ eji)︸ ︷︷ ︸
S2

Q̃ij

z̃ = 0. (34)

Note that since we are dealing with quadratic functions, there are infinitely many representations for the quadratic form.
In particular, we choose the usual symmetric one, and the extended set of all constraint matrices stemming from the sphere
constraint for the QCQP problem is given by the 40× 40 matrices

S2

Q̃ij =

[
−1 0>

0 I3

]
︸ ︷︷ ︸

4×4

⊗
(
eij + eji

2

)
︸ ︷︷ ︸

10×10

, ∀i = 1, . . . , 10, j = i, . . . , 10. (35)

Due to the symmetry above, this results overall in
(
10
2

)
= 55 independent constraints. Otherwise stated, the family of lifted

sphere constraints may be written in terms of the canonical vectors for the space Sym10 (see App. A):

S2

Q̃ij =

[
−1 0>

0 I3

]
⊗ (+

10eij), ∀(+
10eij) ∈ B(Sym10). (36)

4.3. Constraint matrices for all rotation constraints: ĈR
The set of redundant constraints chosen to represent SO(3) in this work is the same as for [1],

CR ≡


R>R = I3, RR> = I3,

(Rei)× (Rej) = (Rek),

∀(i, j, k)={(1, 2, 3), (2, 3, 1), (3, 1, 2)},
(37)

which features only quadratic constraints. Thus, every rotation constraint can be written as

qP̃ k
(r̃) = r̃>P̃ kr̃ = 0, k ∈ CR. (38)

The particular expression for each 10 × 10 constraint matrix P̃ k is featured in the supplementary material for [1], and we
revisit them next for completeness.

Orthonormality of rotation columns The common matrix constraint enforcing orthonormal columns,

R>R = I3 → R>R− I3 = 03,

may be seen as 9 scalar constraints indexed by (i, j) ∈ {1, 2, 3} × {1, 2, 3}:

qP̃ c
ij
(r̃) = e>i (R

>R− I3)ej (39)

= r̃>
[
−δij 0>

0 eij ⊗ I3

]
︸ ︷︷ ︸

P̃
c
ij

r̃ = 0. (40)

Here, δij stands for the Kronecker delta whose value is 1 only if i = j, and 0 otherwise.
Part of these constraints are actually equivalent, and after symmetrization of the corresponding quadratic forms we see the

set of matrix constraints can be characterized as

P̃
c

ij =

[
−δij 0>

0 (+3eij)⊗ I3

]
, ∀(+3eij) ∈ B(Sym3), (41)

which corresponds to
(
3
2

)
= 6 linearly independent matrices.

Orthonormality of rotation rows Akin to the rotation matrix columns, the rotation matrix rows must be orthonormal,

RR> = I3 → RR> − I3 = 03,

which again amounts to 9 scalar constraints

qP̃ r
ij
(r̃) = e>i (RR> − I3)ej (42)

= r̃>
[
−δij 0>

0 I3 ⊗ eij

]
︸ ︷︷ ︸

P̃
r
ij

r̃ = 0, (43)

of which, after symmetrization, only
(
3
2

)
= 6 linearly independent ones remain:

P̃
r

ij =

[
−δij 0>

0 I3 ⊗ (+3eij)

]
, ∀(+3eij) ∈ B(Sym3). (44)

Right-hand rule on rotation columns The well-known right-hand rule, which features the chirality constraint on the
rotation columns2

(Rei)× (Rej) = Rek, (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, (45)

provides 3 scalar constraints for each ijk triplet. This amounts to 3 ·3 = 9 scalar scalar constraints, each of which is writable
as an homogeneized quadratic form

q
P̃
d
ijkα

(r̃) = e>α (−(Rei)× (Rej) +Rek) (46)

= r̃>
[
0 (ek ⊗ eα)

>

0 eij ⊗ [eα]×

]
︸ ︷︷ ︸

P̃
d
ijkα

r̃ = 0, (47)

or, after symmetrization, the constraint matrices

P̃
d

ijkα =

[
0 1

2 (ek ⊗ eα)
>

1
2 (ek ⊗ eα) (−3eij)⊗ [eα]×

]
, (48)

∀(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, α = 1, 2, 3. (49)

Note that with the defined canonical basis elements for Skew3, −3eij =
1
2 (3eij − 3eji), we have the equivalence

Right-hand rule on rotation rows For rotation matrix rows, the right hand rule states

(R>ei)× (R>ej) = R>ek, (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, (50)

2It may be also applied to rotation rows, but the corresponding constraints are linearly related to those provided by column relations only [1].

and similarly we get the quadratic constraints

q
P̃
d
ijkα

(r̃) = e>α

(
−(R>ei)× (R>ej) +R>ek

)
(51)

= r̃>
[
0 (eα ⊗ ek)

>

0 [eα]× ⊗ eij

]
︸ ︷︷ ︸

P̃
d
ijkα

r̃ = 0, (52)

or, after symmetrization, the constraint matrices

P̃
d

ijkα =

[
0 1

2 (eα ⊗ ek)
>

1
2 (eα ⊗ ek) [eα]× ⊗ (−3eij)

]
, (53)

∀(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}, α = 1, 2, 3. (54)

Comparing this expression to that obtained for cross-product of rotation columns it may be shown both sets of constraints are
exactly the same, so we only keep e.g. those from rotation columns.

Lifted constraints Here, we proceed similarly to the sphere constraint case: For each constraint in (38), we may build
lifted versions by multiplying either by t̃i or t̃it̃j . Again, all the possible cases are characterized by

t̃i · t̃j · qP̃ k
(r̃) = 0, ∀i, j = 1, . . . , 4; k ∈ CR. (55)

The corresponding constraint matrices
SO(3)

Q̃ijk in our standard QCQP framework (20), with the natural ordering z̃ =

vec(X̃) (25), would read

t̃i · t̃j · qP̃ k
(r̃) = (t̃it̃j)r̃

>P̃ kr̃ (56)

= (t̃ir̃
>)P̃ k(r̃t̃j) (57)

= e>i (tr̃
>)P̃ k(r̃t̃

>
)ej (58)

= e>i X̃
>
P̃ kX̃ej (59)

= tr(e>ijX̃
>
P̃ kX̃) (60)

= vec(X̃)>(eij ⊗ P̃ k) vec(X̃) (61)

= z̃> (eij ⊗ P̃ k)︸ ︷︷ ︸
SO(3)

Q̃ijk

z̃ = 0. (62)

Again, after symmetrization, this results in the 40× 40 constraint matrices

SO(3)
Q̃ijk =

(
eij + eji

2

)
︸ ︷︷ ︸

4×4

⊗ P̃ k︸︷︷︸
10×10

, ∀i = 1, . . . , 4, j = i, . . . , 4, k ∈ CR, (63)

resulting in
(
4
2

)
= 10 independent constraints for each k ∈ CR. Otherwise stated, the family of lifted rotation constraints

may be written in terms of the canonical vectors for the space Sym4 (see App. A):

SO(3)
Q̃ijk = (+4eij)⊗ P̃ k, ∀(+4eij) ∈ B(Sym4). (64)

There are 20 independent constraints in the rotation constraint set proposed in [1], so this lifting leads to an overall of
10× 20 = 200 independent constraints.

4.4. Constraint matrices for all constraints on auxiliary variable: ĈX
Finally, in the main document it has been proposed that besides the quadratic definition constraint X = rt>, we also may

feature the constraint rank(X) = 1 through the condition that every 2× 2 minor in X has zero determinant:∣∣∣∣Xij Xij′

Xi′j Xi′j′

∣∣∣∣ = XijXi′j′ −Xij′Xi′j = 0, (65)

s.t. i = 1, . . . , 9; i′ = i, . . . , 9; (66)
j = 1, . . . , 3; j′ = j, . . . , 3. (67)

In fact, we may characterize the definition and rank(X) = 1 constraints jointly through the constraint rank(X̃) = 1. This
way, all the constraints in the set ĈX may be written as∣∣∣∣ X̃ij X̃ij′

X̃i′j X̃i′j′

∣∣∣∣ = X̃ijX̃i′j′ − X̃ij′X̃i′j = 0, (68)

s.t. i = 1, . . . , 10; i′ = i, . . . , 10; (69)
j = 1, . . . , 4; j′ = j, . . . , 4, (70)

and the constraint X = rt> corresponds to the particular 3 · 9 = 27 cases with i = j = 1.
Building upon this convenient general formulation we obtain the corresponding constraint matrices

X
Q̃jj′ii′ for our

general QCQP framework: ∣∣∣∣ X̃ij X̃ij′

X̃i′j X̃i′j′

∣∣∣∣ = X̃ijX̃i′j′ − X̃ij′X̃i′j (71)

= (e>i X̃ej)(e
>
i′ X̃ej′)− (e>i X̃ej′)(e

>
i′ X̃ej) (72)

= (e>j X̃
>
ei)(e

>
i′ X̃ej′)− (e>j′X̃

>
ei)(e

>
i′ X̃ej) (73)

= tr(e>jj′X̃
>
eii′X̃ − ejj′X̃

>
eii′X̃) (74)

= tr((e>jj′ − ejj′)X̃
>
eii′X̃) (75)

= tr((ejj′ − e>jj′)
>X̃

>
eii′X̃) (76)

= z̃>
(
(ejj′ − e>jj′)⊗ eii′

)︸ ︷︷ ︸
X
Q̃jj′ii′

z̃ = 0 (77)

Scaling the constraint matrix above we may write
X
Q̃jj′ii′ ∼ (−4ejj′) ⊗ (10eii′) (see App. A for notation), and this in turn

may be equivalently symmetrized into

X
Q̃jj′ii′ = sym(−4ejj′ ⊗ 10eii′) (78)

=
1

2

(−
4ejj′ ⊗ 10eii′ +

−
4e
>
jj′ ⊗ 10e

>
ii′
)

(79)

=
1

2

(−
4ejj′ ⊗ 10eii′ − −4ejj′ ⊗ 10e

>
ii′
)

(80)

=
1

2

(−
4ejj′ ⊗ (10eii′ − 10e

>
ii′)
)

(81)

= −4ejj′ ⊗
1

2
(10eii′ − 10e

>
ii′) (82)

= (−4ejj′)⊗ (−10eii′). (83)

The matrix above is clearly symmetric:

X
Q̃>jj′ii′ =

−
4e
>
jj′ ⊗ −10e>ii′ = (−−4ejj′)⊗ (− −10eii′) =

X
Q̃jj′ii′ . (84)

Once again, the whole family of lifted constraints may be written in terms of the canonical vectors of a suitable space, in
this case the Cartesian product Skew4 × Skew10 (see App. A for details):

X
Q̃jj′ii′ = (−4ejj′)⊗ (−10eii′), ∀(−4ejj′) ∈ B(Skew4), (

−
10eii′) ∈ B(Skew10). (85)

From this characterization in terms of the canonical vectors for Skew4 and Skew10, it becomes fairly clear that the number
of linearly independent constraints that get generated by these expressions is dim(Skew4) · dim(Skew10) = 6 · 45 = 270.

4.5. Summary

Collecting all results in the sections above, we conclude that the extended set of quadratic constraints corresponding to
{ĈR, Ĉt, ĈX} results in the following specific sets of quadratic matrices for the QCQP problem (20) in its standard form:

Ĉt ⇒
S2

Q̃ij =

[
−1 0>

0 I3

]
⊗ +

10eij , i = 1, . . . , 10; j = i, . . . , 10, (86)

ĈR ⇒
SO(3)

Q̃ijk = +
4eij ⊗ P̃ k, i = 1, . . . , 4; j = i, . . . , 4; P̃ k ∈ CR, (87)

ĈX ⇒
X
Q̃jj′ii′ =

−
4ejj′ ⊗

−
10eii′ , i = 1, . . . , 10; i′ = i, . . . , 10; (88)

j = 1, . . . , 4; j′ = j, . . . , 4.

5. Symmetries in the algebraic error
Consider the squared algebraic error used in our main document. In the objective to optimize (11), each pair (f i,f

′
i)

produces a squared algebraic error term given by

e2i = t>(nin
>
i)t = (t>ni)

2 = (t · (f i × (Rf ′i)))
2. (89)

This, in turn, is just the triple product of three vectors

e2i = det(
[
t | f i | Rf ′i

]
)2. (90)

The error term e2i = e2i (R, t) presents two symmetries w.r.t. the parameters t and R:

e2i (R,−t) = e2i (R, t), (91)

e2i (P tR, t) = e2i (R, t). (92)

The first symmetry (91) is straightforward as

e2i (R,−t) = det(
[
−t | f i | Rf ′i

]
)2 (93)

= (−1)2e2i (R, t) = e2i (R, t). (94)

For the second symmetry (92), substituting the reflection matrix P t = 2tt> − I3 we get

e2i (P tR, t) =det(
[
t | f i | P tRf ′i

]
)2 (95)

=det(
[
t | f i | (2tt> − I3)f

′
i

]
)2 (96)

=
(
det(

[
t | f i | (2(t · f

′
i)t
]
) + det(

[
t | f i | −Rf ′i

]
)
)2

(97)

=
(
0− det(

[
t | f i | Rf ′i

]
)
)2

= e2i (R, t), (98)

where the left determinant in (97) cancels because it has parallel columns.
These symmetries are illustrated in Fig. 1. In conclusion, the algebraic error is invariant to swaps of the translation

direction, as well as reflections of the vector Rf ′i w.r.t. the axis of direction t.

Figure 1. The unsquared algebraic error is the absolute value of the triple product of t, f i and Rf ′i, or equivalently, the unsigned volume
of a parallelepiped formed with the three vectors. The vectors t and Rf ′ in this figure lie in the paper plane. The symmetries are: (1)
In the horizontal axis, swapping the translation sign. (2) In the vertical axis, reflecting Rf ′i w.r.t. t. Both of these modifications keep the
parallelepiped’s volume the same.

6. Equivalence to algebraic objective of 8-point algorithm
The classical 8-point algorithm [2] models the epipolar constraint f>i Ef ′i = 0, where E = [t]×R is the essential matrix,

and proposes to minimize the sum of squared algebraic residues

f(E) =

N∑
i=1

(f>i Ef ′i)
2 =

N∑
i=1

e2i . (99)

We may well rewrite each squared algebraic error above as

e2i =
(
f>i Ef ′i

)2
(100)

=
(
f>i ([t]×R)f ′i)

)2
(101)

=
(
f>i [t]× (Rf ′i)

)2
(102)

=
(
f>i (t× (Rf ′i))

)2
(103)

=
(
det(

[
f i | t | Rf ′i

]
)
)2
. (104)

Using the properties of the determinant, we may simply swap the columns to certify this expression is exactly the same
squared algebraic error we optimize in the formulation presented in our main document.

7. Convex set of optimal SDP solutions
It is argued in the main document that in a well-defined instance of the relative pose problem there exist 4 possible solutions

{z̃k}4k=1, which in the tight case drive to 4 independent rank-1 solutions {Z̃k = z̃?k(z̃
?
k)
>}4k=1 in the SDP relaxed problem.

Let us consider the convex hull of these rank-1 solutions:

Z̃
?
=

4∑
k=1

akZ̃
?

k, s.t. ak ≥ 0,

4∑
k=1

ak = 1. (105)

The following theorem will be necessary for the subsequent results.

Theorem 1. The convex combination (105) is equivalent to an orthogonal eigenvalue decomposition

Z̃
?
=

4∑
k=1

akz̃
?
k(z̃

?
k)
> =

4∑
k=1

λkuku
>
k , (106)

where λk = 8ak and uk = z̃?k/
√
8 stand for the eigenvalues and (orthogonal) eigenvectors of Z̃

?
, respectively. Since Z̃

?
is

at most rank-4, we consider only the 4 leading eigenvalues, as the rest will be zero by definition.

Proof. The convex combination already has the same structure as the eigendecomposition. Besides, the different solutions z̃?k
to from the relative pose problem turn out to be orthogonal, so that z̃?i · z̃?j = 0 if i 6= j (the proof can be found in Appendix
C). So we identify each solution z̃?k with an eigenvector uk, and it only remains to rescale the solutions and barycentric
coefficients to fulfill the unitary constraint ‖uk‖2 = 1:

4∑
k=1

akz̃
?
k(z̃

?
k)
> =

4∑
k=1

(ak‖z̃?k‖22)(
z̃?k
‖z̃?k‖2

)(
z̃?k
‖z̃?k‖2

)>. (107)

From here, identifying terms and using that ‖z̃?k‖22 = 8 holds as shown in (130) the results of the theorem follow.

Now we are in a position to prove the core claim of this section.

Theorem 2 (Convex set of optimal SDP solutions). Given the finite set of SDP solutions {Z̃?

k}rk=1 with rank(Z̃
?

k) = 1, all
points contained in the convex hull of this set, defined by

Z̃
?
=

r∑
k=1

akZ̃
?

k, s.t. ak ≥ 0,

4∑
k=1

ak = 1, (108)

are also optimal SDP solutions.

Proof. By linearity of the SDP objective we have

tr(Q̃0Z̃
?
) = tr(Q̃0

r∑
k=1

akZ̃
?

k) =

r∑
k=1

ak tr(Q̃0Z̃
?

k)︸ ︷︷ ︸
f?

= f?(

r∑
k=1

ak) = f?, (109)

so the points in the convex set reach the same optimal objective. Given the close relationship between the barycentric
coordinates ak and the eigenvalues λk of a solution Z̃

?
, shown in Theorem 1, it is straightforward that the non-negativity of

ak is required to fulfill the Positive Semidefinite (PSD) constraint on Z̃
?
.

8. Practical recovery of original solution from SDP solution
This section provides further insight onto the practical recovery procedure referred in the main document. The question

that arises in practice is, given a particular optimal solution Z̃
?

0 to the SDP problem returned by a particular SDP solver, how
do we recover the optimal solutions (R?

k, t
?
k) to the original problem?

An appealing approach, considering the result presented in Theorem 1, is to perform an eigenvalue decomposition of the
IPM solution Z̃

?

0 =
∑4
k=1 λkuku

>
k , and identify the sought solutions z̃?k through proper scaling of the eigenvectors uk:

z̃?k ← 2
√
2uk. As appealing as this might appear, we will see next this approach breaks when we encounter eigenvalue

multiplicity though.
First, let us provide some insight on the behavior of the solution provided by off-the-shelf Primal-Dual Interior Point

Method (IPM) solvers, such as SeDuMi [6] or SDPT3 [7]. By the inherent way IPM solvers work, leveraging log-barrier
terms associated with the constraint cone, they return a solution which lies strictly inside the convex set of solutions Z?. So,
assuming the relaxation is tight and the problem is well-defined (no degeneracies or multiple physically feasible solutions),
a chosen IPM is expected to return a rank-4 solution Z̃

?

0, never one of the rank-1 solutions Z̃
?

k (vertices of the convex set)
we are actually interested in. In fact, the iterative solution of the IPM tends to the barycenter of the convex set of solutions,
leading to the solution Z̃

?

0 =
∑4
k=1

1
4 Z̃

?

k with ak = 1
4 , which has the single eigenvalue λ1 = 2 with multiplicity 4.

In the extreme case of eigenvalue multiplicity 4, we know the solutions {z̃?k}4k=1 form a basis
[
z̃?k
]

for the non-null
eigenspace of Z̃

?

0, but there are infinitely many possible bases U for this eigenspace that the eigenvalue decomposition might
return, related to our basis of interest by an unknown orthogonal transformation O ∈ O(4):

Z̃
?

0 =
1

4

[
z̃?
] [
z̃?
]>

= 2UU> = 2(UO)(UO)> (110)

Thus, finding the desired solutions
[
z̃?
]

given any eigenspace basis U may not be straightforward.
In practice, though, the limit situation with multiplicity 4 would happen only after infinite iterations. Instead, we observed

that the solution Z̃
?

0 returned by the IPM features two eigenvalues λ1, λ2 with multiplicity 2, which approach each other as
further iterations proceed, but numerically their associated eigenvectors remain well-differentiated. Despite this observation
being fully empirical so far, this property held for every evaluated case and we are confident this may be a consequence of
the underlying problem structure and the inner workings of the IPM solver.

This means that the convex (or eigenvalue) decomposition of the returned solution Z̃
?

0 may be regarded as

Z̃
?

0 = a1
[
z̃?
]
1

[
z̃?
]>
1
+ a2

[
z̃?
]
2

[
z̃?
]>
2

(111)

= λ1U1U
>
1 + λ2U2U

>
2 (112)

= λ1(U1O1)(U1O1)
> + λ2(U2O2)(U2O2)

>, (113)

where all matrices have width 2, in particular, O1,O2 ∈ O(2). Even more relevant to us, from empirical observation, the
pairs of solutions grouped under a common eigenvalue λk correspond to those with a common rotation value and swapped
translation signs.

Let us consider then, without loss of generality, that the pair of eigenvectors in U1 correspond to the pair of solutions
(R?,+t?)→ z̃?1 and (R?,−t?)→ z̃?2. We know by the arguments above that there exists an orthogonal transformation O1

so that

U1 ∝
[
z̃?
]
1
O1. (114)

Now let us consider a column u in U1 (an eigenvector) and the corresponding column o =
[
o1, o2

]>
in the orthogonal

transformation O1. In view of the expression (114), the blocks r and t in the eigenvector u fulfill the condition

ur = o1r
? + o2r

? = (o1 + o2)r
?, (115)

ut = o1(+t?) + o2(−t?) = (o1 − o2)t?. (116)

Since ‖o‖2 = 1, it is clear that the two blocks can never be simultaneously zero, that is, it cannot happen that (o1 + o2) = 0
and (o1 − o2) = 0 at the same time. As a result, we are always able to recover the optimal values r? and t? from one
eigenvector (or both eigenvectors) in U1, by simply scaling properly the corresponding r- or t-block in any eigenvector, as
long as this block is not zero.

The exact same procedure may be applied on the other pair of eigenvectors contained in U2 to obtain the remaining
two solutions (P t?R

?,+t?) → z̃?3 and (P t?R
?,−t?) → z̃?4, or we might simply build these solutions from the already

recovered solution by reflecting the rotation solution with P t? .

9. Experimental results on real data
In this section we provide some additional results obtained from the evaluation of the proposed method (and reference

ones) on relative pose problem instances that originate from real images in the TUM benchmark datasets [5]. Details on how
we generated the instances are provided in the main document.

Note the datasets in [5] feature a varied set of camera pair configurations, varying between o(100) and o(2000) pairs
depending on the dataset, and spanning from generic 3D hand-held trajectories (such as the desk and room sequences) to
specific near-degenerate configurations with almost-zero translation or almost-zero rotation, recorded with the main purpose
of debugging algorithms (that is the case of the xyz or rpy sequences). Despite this wide generality in the geometric
configurations of the problem, as well as some challenging factors such as the presence of real noise stemming from the
actual feature detection step, small FOV, or non-perfect calibration, the resulting optimality gaps depicted in Fig. 2 certify
that the proposed approach through the SDP relaxation is able to retrieve (and certify) the optimal solution to the formulated

problem in all cases. This is a remarkable result, that supports the promising claim that the proposed SDP relaxation remains
tight in relative pose problems encountered in practice.

The results observed on the real data reinforces the already mentioned aspect that even though the optimality gap corre-
sponding to other suboptimal methods, such as 8pt or 8pt+eig, may be deceptively small in many occasions (see Fig.
2), the corresponding error committed in the estimated orientation is much higher, as observed in Fig. 3. As we argued in
the main document, this fact may be justified both by the nature of the optimization objective, since even erroneous residues
tend not to have a very high value, and also by the existence of numerous suboptimal local minima whose objective value is
deceptively close to the optimal one, yet the local solution may be far from the optimum.

freiburg1_desk

freiburg1_desk2

freiburg1_floor

freiburg1_room

freiburg1_rpy

freiburg1_xyz

freiburg2_360_hem
isphere

freiburg2_desk

freiburg2_rpy

freiburg2_xyz

0

0.05

0.1

0.15

0.2

0.25

0.3

o
p
ti
m

a
lit

y
 g

a
p
 (

f-
d
)

SDP

8pt

8pt+eig

Figure 2. Optimality gap w.r.t. certified optimal objective f? for all tested relative pose instances. The instances consist of overlapping
image pairs extracted from each considered TUM dataset [5]. Our method recovered and certified the optimal solution in all cases featuring
an optimality gap that is numerically zero (o(10−10).

A. Vector spaces, canonical vectors and basis
Consider a usual vector space Rn. The canonical vector nei for this space is the n × 1 vector that has a 1-element at

position i and is zero everywhere else. The set of all canonical vectors {nei}ni=1 forms the canonical basis B(Rn) of Rn. We
will often drop the dimension value if this can be inferred from the context, writing only ei.

Similarly, for the space Rm×n of m × n matrices, the canonical matrix mneij = mei ne
>
j stands for a matrix that has

a 1-element at position (i, j) and is zero everywhere else. Once again, the set of all canonical matrices {mnei}i=1,...,m
j=1,...,n

freiburg1_desk

freiburg1_desk2

freiburg1_floor

freiburg1_room

freiburg1_rpy

freiburg1_xyz

freiburg2_360_hem
isphere

freiburg2_desk

freiburg2_rpy

freiburg2_xyz

0

20

40

60

80

100

120

140

160

180

ro
ta

ti
o

n
 e

rr
o

r
[d

e
g

]

SDP

8pt

8pt+eig

Figure 3. Rotation error w.r.t. the certified optimal rotation R? for all tested relative pose instances. The instances consist of overlapping
image pairs extracted from each considered TUM dataset [5]. Whereas the alternative (non-optimal) methods 8pt and 8pt+eig may
quite often return a good solution, it is also true that under the challenging conditions (noisy, small FOV, non-perfect calibration) of the
image pairs considered in these datasets these methods may also often fail to return the optimal solution, or even return a completely wrong
solution.

constitutes the canonical basis B(Rm×n) for the whole matrix space Rm×n. We will often write just neij if the matrix is
square (m = n), or again simply drop the dimension index, eij .

Other convenient spaces that will appear in the course of this supplementary material are the sets of n× n symmetric and
skew-symmetric matrices, denoted Symn and Skewn, respectively. Akin to the previous cases, we may define the canonical
elements of each space as

+
neij =

1

2
(eij + eji), (117)

−
neij =

1

2
(eij − eji). (118)

It is straightforward to observe that +
neij =

+
neji and −neij = −−neji. Thus, a canonical basis B(Symn) for Symn is given

by the
(
n
2

)
indexes 1 ≤ i ≤ n, i ≤ j ≤ n, whereas the canonical basis B(Skewn) for Skewn conforms the

(
n−1
2

)
indexes

1 ≤ i ≤ n, i < j ≤ n. It is a well-known result that the vector space of square matrices is the direct sum of the corresponding
symmetric and skew-symmetric matrices: Rn×n = Symn ⊕ Skewn. In particular, given any square matrix A ∈ Rn×n we

may decompose it as

A =
1

2
(A+A>)︸ ︷︷ ︸
sym(A)

+
1

2
(A−A>)︸ ︷︷ ︸
skew(A)

(119)

where sym(·) and skew(·) return the symmetric and skew-symmetric component of a matrix, respectively.

B. Vectorization
Along this work, we make heavy use of vectorization tricks that allows us to write the problem of interest in a more

convenient form. Some important relations follow [4]:

tr(A>B) = vec(A)> vec(B) (120)

vec(AXB) = (B> ⊗A) vec(X) (121)

vec(ab>) = b⊗ a (122)

tr(A>X>BY) = vec(X)>(A⊗B) vec(Y) (123)

C. Optimal QCQP solutions in the relative pose problem are orthogonal
In order to prove this claim, we are going to choose the following ordering of the QCQP variables:

z̃ = vec(r̃t̃
>
) = t̃⊗ r̃, (124)

where homogeneized variables are appended the unit element as usual:

t̃ =

[
t
1

]
, r̃ =

[
vec(R)

1

]
. (125)

With this ordering, it is almost straightforward to show that orthogonality holds between the 4 symmetric solutions of the
problem:

z̃?i · z̃?j = (t̃
?
i ⊗ r̃?i) · (t̃

?
j ⊗ r̃?j) (126)

= (t̃
?
i · t̃

?
j)(r̃

?
i · r̃?j) (127)

= (1 + t?i · t?j)(1 + r?i · r?j) (128)

= (1 + t?i · t?j)(1 + tr((R?
i)
>R?

j) (129)

In view of the result above, let us consider the potential scenarios:

• The solutions i and j are symmetric w.r.t. translation. In this case t?i · t?j = −1, so the first factor cancels.

• The solutions i and j are symmetric w.r.t. rotation. In this case (R?
i)
>R?

j = P t, and tr(P t) =
∑
λ(P t) = −1, so

the second factor cancels.

So, in conclusion, as long as i 6= j there exists at least one of these two symmetries and the corresponding dot product
between z̃?i and z̃?j cancels.

As a corollary of the relation above, each solution has a fixed squared norm

‖z̃?k‖22 = z̃?k · z̃?k = (1 + t?k · t?k)(1 + tr((R?
k)
>R?

k) = 2 · 4 = 8. (130)

References
[1] J. Briales and J. González-Jiménez. Convex Global 3D Registration with Lagrangian Duality. In International Conference on Computer

Vision and Pattern Recognition, jul 2017. 3, 5, 6, 7
[2] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, New York, NY, USA, 2

edition, 2003. 10

[3] D. Henrion, J.-B. Lasserre, and J. Löfberg. GloptiPoly 3: moments, optimization and semidefinite programming. Optimization
Methods & Software, 24(4-5):761–779, 2009. 3

[4] K. Schäcke. On the kronecker product, 2013. 15
[5] J. Sturm and N. Engelhard. A benchmark for the evaluation of RGB-D SLAM systems. Intelligent Robots and Systems (IROS), 2012

IEEE/RSJ International Conference on, 2012. 12, 13, 14
[6] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization methods and software,

11(1-4):625–653, 1999. 11
[7] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3a MATLAB software package for semidefinite programming, version 1.3. Optim.

methods Softw., 11(1-4):545–581, 1999. 11

