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Abstract
This work addresses the development and application of a novel approach, called sparser relative bundle adjustment
(SRBA), which exploits the inherent flexibility of the relative bundle adjustment (RBA) framework to devise a continuum of
strategies, ranging from RBA with linear graphs to classic bundle adjustment (BA) in global coordinates, where submap-
ping with local maps emerges as a natural intermediate solution. This method leads to graphs that can be optimized in
bounded time even at loop closures, regardless of the loop length. Furthermore, it is shown that the pattern in which rel-
ative coordinate variables are defined among keyframes has a significant impact on the graph optimization problem. By
using the proposed scheme, optimization can be done more efficiently than in standard RBA, allowing the optimization of
larger local maps for any given maximum computational cost. The main algorithms involved in the graph management,
along with their complexity analyses, are presented to prove their bounded-time nature. One key advance of the present
work is the demonstration that, under mild assumptions, the spanning trees for every single keyframe in the map can be
incrementally built by a constant-time algorithm, even for arbitrary graph topologies. We validate our proposal within the
scope of visual stereo simultaneous localization and mapping (SLAM) by developing a complete system that includes a
front-end that seamlessly integrates several state-of-the-art computer vision techniques such as ORB features and bag-of-
words, along with a decision scheme for keyframe insertion and a SRBA-based back-end that operates as graph optimizer.
Finally, a set of experiments in both indoor and outdoor conditions is presented to test the capabilities of this approach.
Open-source implementations of the SRBA back-end and the stereo front-end have been released online.
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1. Introduction

Bundle adjustment (BA) is a well-known problem in com-
puter vision (Triggs et al., 2000) that consists of finding an
optimal estimation to the positions of a set of visual land-
marks (LMs), the camera poses from where images were
captured and, typically, their calibration parameters too.
This problem, also known as full SLAM (Thrun et al., 2005)
or structure-from-motion, is typically addressed by mini-
mizing a single cost function that simultaneously reflects
the mismatch between the LMs observed in the complete
sequence of keyframes (KFs) and their predictions accord-
ing to the camera pose estimates. Traditionally avoided
in the mobile robotics community due to its high com-
putational cost, BA has recently gained an immense pop-
ularity (e.g. Kaess et al., 2012; Konolige and Agrawal,
2008), due to new advances in sparse algebra (e.g. sparse
Cholesky decomposition (Davis, 2006), inexact Newton-
type algorithms (Agarwal et al., 2010)), becoming a promis-
ing alternative to filtering methods employed extensively

for simultaneous localization and mapping (SLAM) during
previous years (Strasdat et al., 2012).

BA-based SLAM defines a graphical model where nodes
are the unknowns and edges represent constraints between
them. There are two kinds of unknowns: the location of
a set of discrete entities observed by the sensor, called
LMs, and a small fraction of all the poses (e.g. of a
vehicle, a camera or a hand-held sensor) along its tra-
jectory, called KFs. Assuming Gaussian errors for all of
the observations and undertaking a least-squares criterion
for the above-mentioned minimization, the process can be
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shown to become the maximum likelihood estimator for the
problem (Hartley and Kahl, 2007).

Under the general denomination of BA, different param-
eterizations have been proposed in the technical literature
leading to the so-called global and relative BA techniques
(Triggs et al., 2000). In short, global BA (GBA) selects a
single KF to be the origin or reference frame for the coordi-
nates of all subsequent KFs and LMs. As a consequence, a
global, self-consistent map is obtained at the cost of updat-
ing all variables at every time-step. On the other hand, in
relative BA (RBA), the problem unknowns are all relative
positions between KFs and LMs. Typically, LM coordinates
are defined with respect to the KF from where they were
observed for the first time, while the pose of each KF is
defined relative to its predecessor (Sibley, 2009). The lat-
ter feature leads to graphical models where KFs form a
(mostly) linear graph, hence the motivation of naming this
strategy linear RBA in the following. Very recently, this
paradigm of relative coordinates has also been extended to
work on continuous-time SLAM (Anderson et al., 2015),
with basis functions used as continuous approximations of
the estimated trajectory instead of relying on a sparse set of
KFs.

Despite some advances, such as incremental Smoothing
And Mapping (iSAM) (Kaess et al., 2008), any approach to
SLAM relying on global coordinates, such as GBA, exhibits
an inherent unbounded growth of the matrices involved
in the graph optimization as the explored area becomes
larger and longer loops are closed. Therefore, in principle,
none of those SLAM methods could be practical for any
robot aimed at life-long exploration. RBA approaches aim
at solving that scalability issue (Sibley et al., 2010a), since
they only optimize a local region of the graph around the
latest KF (i.e. the current camera pose), hence achieving
a bounded computational cost by definition. However, as
will be discussed later, the information matrices involved
in RBA formulation become less sparse than their GBA
counterparts, hence preventing it to fully exploit sparse
algebra techniques and, consequently, to achieve an optimal
performance.

The present work claims and shows that the sparsity level
in such matrices can be controlled by changing the way
in which relative coordinates are defined, which in turn
determines how nodes are linked to each other within the
graph. In particular, the creation of conveniently connected
submaps leads to sparser matrices than those in standard
RBA approaches, without compromising their scalability
advantages with respect to their global counterpart. This
flexibility allows us to derive a continuum of strategies from
linear RBA to submapping with local maps. This is the
essence of the so-called sparser relative bundle adjustment
(SRBA) method, preliminarily introduced by Blanco et al.
(2013), and now presented here in the context of a complete
SLAM framework, tested with real datasets.

SRBA advocates the creation, within the graph, of
relative submaps whose origin KFs are mostly linearly

connected, thus defining shortcuts between nodes. This
introduces zero blocks in the matrices involved in the opti-
mization (i.e. Jacobians and Hessians), hence becoming
sparser. By following the strategy of optimizing only the
graph around the current KF, also found in linear RBA,
SRBA ensures bounded-time graph optimization, even in
the event of closing loops of arbitrary length. However, we
claim that different connection patterns allow for the opti-
mization of larger map areas for any fixed maximum topo-
logical distance from the current KF. Finally, a shortest-path
spanning tree (required by graph search operations during
optimization) is incrementally maintained up to a certain
topological distance using the novel constant time algorithm
which was also introduced by Blanco et al. (2013).

In summary, the present work extends our preliminary
results on SRBA and presents the following contributions.

• The SRBA bounded-time nature is demonstrated by
providing detailed pseudo-code listings and thorough
complexity analyses for the most important algorithms
that are performed on the graph.

• We provide an experimental validation, with real
datasets in different conditions, of the SRBA back-end
as graph optimizer, applied to stereo visual SLAM.

• A front-end is developed that seamlessly integrates sev-
eral state-of-the-art computer vision techniques, along
with a decision scheme for KF insertion. This includes
all of the necessary elements to build, along with our
SRBA back-end, a complete stereo visual SLAM sys-
tem.

Regarding the latter point, the proposed front-end is
constructed upon the following building blocks. Keypoint
detection and description is accomplished through the
ORB method (Rublee et al., 2011), which provides fea-
tures invariant to scale and rotation with associated binary
descriptors. A binary bag-of-words (Galvez-Lopez and Tar-
dos, 2012) for ORB descriptors is employed to assist data
association by restricting the search area when looking
for loop closures, hence boosting the overall performance.
Ego-motion estimations between consecutive frames are
computed through our visual odometry method proposed
in Moreno et al. (2013), a fast and reliable outlier detec-
tor based on robust kernels, as an efficient alternative to
random sample consensus (RANSAC). Finally, we have
devised a decision scheme based on image similarity and
geometrical distance between KFs to decide when to add
new KFs to the graph, aiming to keep it as small as possible.

Our proposal is supported by a set of experimental results
with synthetic and real images recorded in both indoor and
outdoor conditions. A video of such experiments can be
watched at https://goo.gl/1Ap4p9 and the source
code is available on-line.1
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2. Related work

BA has undergone a rebirth as an attractive solution to
the SLAM problem, thanks to the incorporation of recent
sparse algebra techniques. This has turned it into a strong
alternative to probabilistic filtering, which had become the
standard for real-time vision-based SLAM and global local-
ization during the last decades, leading to a long list of
works which can be found elsewhere (e.g. Blanco et al.,
2010; Civera et al., 2007; Moreno et al., 2009; Wolf et al.,
2002). A thorough comparison between filtering and BA
solutions is presented in Strasdat et al. (2010) and Strasdat
et al. (2012), ultimately advocating for the application of
BA as it outperforms filtering methods in terms of accuracy
per unit of computation time.

Different techniques have been proposed to reduce the
computational burden of general BA solutions, which
quickly increases as the size of the map grows. For instance,
the well-known PTAM method (Klein and Murray, 2007)
separates camera tracking and mapping in two parallel
threads and performs KF-based global BA by optimizing
the graph over a subset of the N most recent camera poses,
in order to achieve real-time performance. However, its
effectiveness is limited to small indoor scenarios and does
not scale well with large environments.

Another notable approach to SLAM is iSAM (Kaess
et al., 2008), where a factored representation of the approx-
imate Hessian matrix is exploited to provide easy access to
the marginal covariances needed for data association. This
matrix is incrementally updated and maintained sparse by
reordering the involved variables.

On the other hand, there are several proposals that adopt a
relative formulation, often in combination with other tech-
niques such as submapping or data marginalization, in order
to reduce the problem complexity and to achieve a bounded-
cost performance that can lead to on-line, real-time opera-
tion, as claimed in several works (e.g. Eade and Drummond,
2008; Konolige and Agrawal, 2008; Lim et al., 2011; Sibley,
2009; Sibley et al., 2009, 2010a).

A hybrid metrical–topological world representation was
successfully proposed in Blanco et al. (2008) within a
Bayesian framework, as a natural mechanism to deal with
the map scalability issue. In the context of BA, the work
of Lim et al. (2011) proposes a hybrid metrical–topological
representation of the map which provides scalability to the
BA problem. This proposal benefits from the topological
map properties to allow for instant loop closures while met-
ric locally consistent maps are maintained by embedding
neighbor KFs and LMs into a single Euclidean space and
optimizing over the submap. The submaps are then treated
as rigid bodies in a global adjustment process that yields
a globally consistent map, although this last step is not
performed in real-time.

In Konolige and Agrawal (2008), a skeleton is built from
the camera and LM relative poses, in order to represent a
reduced system that approximates the full problem, leading

to feasible solutions when dealing with large loop clo-
sures. This skeleton is formed by marginalizing features
over camera poses and subsequently further reducing the
latter.

The work in Sibley (2009) and Sibley et al. (2009) consti-
tutes the basis of the RBA approach developed in this paper,
being further extended in Sibley et al. (2010a), where a slid-
ing window filter (SWF) based on a delayed state marginal-
ization is proposed. Its operation ranges from extended
Kalman filter (EKF) to full SLAM according to the window
size, while performing both LM and camera pose marginal-
ization to achieve constant time operation, demonstrating
similar convergence properties to the full batch solution and
outperforming those from standard visual odometry. Nev-
ertheless, it has been specifically devised for EDL (entry,
descent and landing) applications for autonomous landing
vehicles and there is not any validation in more general sit-
uations as typical indoor and outdoor urban environments.
These scenarios, though, have been addressed by Sibley
(2009) and especially by Sibley et al. (2010b), where a
large set of outdoor experiments have been conducted to
demonstrate the scalability potential of relative approaches.
Among them, it can be highlighted the estimation of a 121-
km outdoor path from Oxford to London that includes the
use of different forms of transport such as walking, bikes,
trains and some others.

Recently, Mur-Artal et al. (2015) presented a visual
SLAM system which has some similarities with the present
work. They also addressed BA by relying on ORB fea-
tures for tracking, mapping and performing place recogni-
tion based on bag-of-words. Since it operates on monocular
images, it is provided with an automatic procedure for map
initialization that includes the parallel computation of both
an essential matrix and a fundamental matrix to infer the
relative pose between two frames, regardless of the type of
scene. Once computed, one of them is heuristically selected
and the pose is derived from it. Our work does not need
such procedure as we employ stereo images that provide
immediate 3D information for the map initialization. Apart
from this, the main difference with our approach comes
from the fact that they optimize a reduced graph, denoted
by essential graph, which contains all of the problem KFs
but a reduced number of edges. Our work, in contrast,
relies on the optimization of the local area of the graph,
which includes the current and nearby submaps (up to a
certain topological distance) and all their associated edges,
building a locally consistent map.

In comparison with the above-mentioned methods, in
this paper we adopt an approach that, instead of being
attached to a single strategy, defines a continuum of solu-
tions that range from global BA to linear RBA (e.g. Sibley
et al., 2009). This flexibility is derived from a submap-
ping scheme that allows us to exploit more thoroughly the
inherent sparsity of the system matrices without perform-
ing data marginalization. The so-called sparser RBA will
be explained in Section 5.
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Fig. 1. Scheme of the proposed SRBA-based visual SLAM sys-
tem, with the focus on the front-end structure.

3. System overview

This section describes the proposed system built upon ORB
keypoints and SRBA to perform visual SLAM. It can be
split into a front-end, which is in charge of extracting and
matching features from the input stereo images, perform-
ing visual odometry between consecutive time-steps and, if
needed, finding correspondences between the current obser-
vation and the map, and a back-end that creates, manages
and performs inference on the graphical representation of
all of the unknown relative camera poses and LM positions
as the robot navigates.

At the core of our proposed front-end is the ORB fea-
ture detector (Rublee et al., 2011). Relying on the FAST and
BRIEF methods, ORB is not only a fast and reliable feature
detector but it also provides binary descriptors for the key-
points, which are efficiently matched by measuring Ham-
ming distances. Data association is aided by the manage-
ment of an image database based on a binary bag-of-words
(Galvez-Lopez and Tardos, 2012). When data association
is needed, the set of descriptors associated to the keypoints
extracted in an image is employed to query the database
looking for the most similar image stored in it, thus lead-
ing to the process of matching features between the current
observation and the stored map.

Regarding the back-end, the proposed SRBA method
models the entities in the SLAM problem as a graph, whose
nodes are KFs and LMs while the edges symbolize the rela-
tive constraints between them. In order to estimate both the
world structure and the KF poses, a nonlinear least-squares
optimization process is carried out, which minimizes the
mismatch between all of the observed image features and
their predicted positions in the image. In general, such an
error function is assumed to be quadratic in the image
feature projection errors, though non-quadratic error func-
tions, sometimes referred as robust kernels, can be chosen
to deal with the presence of outliers in the observations.
Huber kernels are typically used to this end, although recent
quantitative benchmarking has demonstrated that other ker-
nels achieve superior performance in photogrammetric and
computer vision applications (Concha and Civera, 2015).
It must be noted that, by disregarding the estimation of
LM positions, we can follow a simplified version of the

above optimization process to estimate the camera ego-
motion between consecutive time-steps, i.e. to perform
visual odometry.

Figure 1 shows the general scheme of the proposed sys-
tem, sketching all the stages from the acquisition of the
stereo images to the joint estimation of LM positions and
robot poses up to the current time-step, carried out by the
back-end. Note that the procedures included in our front-
end have been emphasized in this figure, since they will be
explained next. The back-end, represented here as a shaded
block, is addressed later in Section 5.

3.1. Notation

Formally, let us define the system state vector as

s = (p, x) (1)

which encompasses the problem unknowns, i.e. the collec-
tion p of P KFs and the set x of L 3D LM positions:

p = {
pj,b

}
j=1...P, b∈{1...P}|b�=j

x = {
xj,b

}
j=1...L, b∈{1...P} (2)

For the KFs, this notation defines j as an identifier for the
KF while b indicates the index of the reference frame which
it is referred to. Note that b cannot be the same as j since it
does not make sense to refer a KF to its own reference sys-
tem. Regarding LMs, j stands again for an identifier while b
specifies the so-called base KF, which is the reference frame
in which the jth LM coordinates are expressed. It is impor-
tant to remark that the choice of which KF will be the ref-
erence KF b represents the main difference between global
and relative approaches, i.e. in global SLAM there exists a
privileged coordinate frame that serves as a reference for
the entire map.

Let z be the set of N observations gathered at a cer-
tain time-step, each one assumed to be corrupted by zero-
mean Gaussian noise with information (inverse covariance)
matrix �j:

z =
{

zo
j

}
j=1,...,N ; o∈{1,...,P}

(3)

where j represents the index of the observed LM, and o
stands for the index of the current KF, which will be called
the observer KF.

In this paper, the observations are represented by 4D
vectors comprising the image coordinates of the 3D LM
projections in both the left and right images:

zo
j = (uL, vL, uR, vR)Tj (4)

Finally, let Tb,o ∈ SE( 3) denote a 4 × 4 transformation
matrix that represents the pose of the oth KF with respect to
the bth KF, its reference system. Thus, the conversion of the
jth LM coordinates, referred to its base KF b, to its coordi-
nates with respect to a certain observer KF o is performed
through

xo
j,b =

(
Tb,o

)−1
xj,b (5)
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In relative formulations, this matrix is built from a chain
of transformations, becoming the main responsible for the
loss of sparsity: we continue this discussion in Section 5.

For the sake of clarity, the subscript and superscript con-
cerning the base and/or the observer KFs for the KFs, the
LMs and/or the observations will be omitted whenever they
are unnecessary.

4. Front-end

This section describes the methods implemented within the
system front-end, from keypoint detection in a pair of stereo
images to the extraction of a set of associated visual features
between the current observation and the stored map.

4.1. ORB keypoints

Due to computational efficiency requirements, feature-
based visual SLAM frameworks tend to rely on efficient
methods to detect keypoints and extract descriptors that are
fast to both compute and match. As a result, binary detec-
tors and descriptors are becoming a standard. In this paper
we employ the OpenCV (Bradski, 2008) implementation
of the ORB (Rublee et al., 2011) keypoint detector and
descriptor.

Built upon the FAST detector (Rosten and Drummond,
2006) and the BRIEF descriptor (Calonder et al., 2010),
ORB enhances them by providing scale and rotation invari-
ance to the detected keypoints. Stereo matching is subse-
quently performed through the Hamming distance (Ham-
ming, 1950) between ORB descriptors, i.e. counting the
number of different bits between them. We also consider
epipolar restrictions which, in this case, reduce to corre-
sponding points lying on the same image row. The set of
stereo matches at tth time-step is denoted by ct.

Finally, in order to provide tracking information to later
stages in the system, a unique ID is assigned to every stereo
match in ct.

4.2. Visual odometry

Camera ego-motion between the previous time-step and
the current one is then estimated by the visual odometry
method we formerly presented in Moreno et al. (2013).

First, inter-frame keypoint correspondences are found
between the current stereo matches and the previous ones
(ct and ct−1 in Figure 1, respectively). Following a sim-
ilar approach than that for stereo matching, we look for
potential correspondences between the current left image
and the previous one, relying again on descriptor distances
and epipolar restrictions (which, in this case, involves the
computation of the fundamental matrix for the considered
images). For the sake of robustness, this process is repeated
for the right images so that only the matches consistent with
those found in the left ones are kept.

Visual odometry is then computed following the general
approach of iteratively minimizing a certain cost function

which measures at each iteration the mismatch between
the predicted and the observed image projections of cor-
responding keypoints at both time-steps:

F( p)=
∑

i

1

2
�zTi �i�zi (6)

where p stands for the estimation of the camera pose change
between time-steps t − 1 and t and represents the only
unknown within the system state in Equation (1) for visual
odometry. In this situation, therefore, the keypoints 3D
coordinates are considered to be fixed, and are computed
by back-projecting their image coordinates at time t − 1.

On the other hand, �zi = z̄i − zi stands for the error
between the prediction z̄i of the ith feature and its obser-
vation zi. The prediction function determines the coordi-
nates of a keypoint in the current image according to its
3D position x, and the estimation p at the current iteration:

h( p, x)= z̄ = {z̄i}i=1,...,N (7)

Finally, �i in Equation (6) is an appropriate weighting
matrix, proportional to the inverse covariance of the zero-
mean normally distributed noise (with a standard deviation
of σp) that affects keypoint locations. Assuming identical
error distributions for all detected features in both u and v
directions leads to the simplification �i =

(
1/σ 2

p

)
I, ∀i.

Typically, the cost function is minimized by comput-
ing small increments �p that are added to the current
estimation until convergence, yielding a final solution p∗.
These increments can be found by solving the well-known
Gauss–Newton equation:

H�p = −g(
JT�J

)
�p = −JT��z (8)

where J = ∂hz/∂p stands for the Jacobian matrix of
the prediction function, and �z is a block-column vector
containing the errors �zi of the individual observations.

However, the quadratic cost function in Equation (6) is
not robust against the presence of outliers, so that the mini-
mization process may converge to an invalid solution. Thus,
we follow the ERODE method presented in Moreno et al.
(2013) which, instead, proposes the use of a robust cost
model based on the pseudo-Huber function (Huber and
Ronchetti, 1981):

Fr( p)=
∑

i

1

2

[
2b2

(√
1+

( si

b2

)
− 1

)]
(9)

with b being a parameter which tunes the shape of the
function and si = �zTi �i�zi. Using this function also
implies a change in the Gauss–Newton expression shown
in Equation (8), which becomes

(
JT�J

)
�p = −ρ ′JT��z (10)
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Algorithm 1. New keyframe decision scheme.
Input:

IDs = {ID1, . . . , IDnt } � IDs of the nt tracked keypoints
p∗ � Estimated pose change from visual odometry
cp � Accumulated pose change, updated from the last call to this
algorithm

Output:
d � Decision about whether or not create a new keyframe
cp � New accumulated pose change

1: cp ← cp ⊕ p∗ � Update the current estimated pose change

2: if |cp| > th1 OR nt > th2 then
3: IDs← ∅ � Reset tracked IDs
4: cp ← O � Reset to a zero pose change
5: d← true � Create a new keyframe
6: else
7: d← false � Do not create a new keyframe
8: end if

return {d, cp}

where ρ ′ = {ρ ′i} is a block-column vector with the deriva-
tive of the pseudo-Huber function for each observation:

ρ ′i =
∂

∂si

[
2b2

(√
1+

( si

b2

)
− 1

)]
= 1√

1+ si
b2

(11)

Adopting this procedure, the contribution in the cost
function of the large errors introduced by the outliers is
significantly mitigated. This approach implies that all input
data are considered in the minimization process but, on the
other hand, there is no need to try different hypotheses of the
model (as with RANSAC). With this method, the estima-
tion process naturally converges towards the true solution
and, after a few iterations, the outliers appear clearly visi-
ble in the vector of residuals so that we can remove them
and, subsequently, refine the estimated solution to achieve
higher accuracy.

It is important to remark that, although visual odometry
is computed at every time-step, we follow the usual practice
in the computer vision and SLAM literature of not creating
KFs so often, but only when a set of conditions are fulfilled,
as explained next.

4.3. KF creation decision

Creating new KFs is a computationally expensive process.
It implies inserting new variables and constraints in the
graph, then optimizing the whole system or part of it. This is
specially noticeable when working with real data, since the
number of features detected in images may become consid-
erably large. However, in our previous work (Blanco et al.,
2013) little attention was paid to this issue, since we focused
on synthetic, sparse maps. In this work, on the contrary, a
set of heuristics has been defined to decide when to create
new KFs, following the common idea of inserting a new one
only when the explored area is becoming different enough
from the last stored KF.

Algorithm 1 summarizes our proposed scheme for decid-
ing when to create KFs. The process starts from the visual
odometry output, which consists of: (i) a list comprising the
IDs of the tracked keypoints (assigned during stereo match-
ing) and (ii) the estimation of the pose change between
consecutive time-steps p∗. The former is employed to keep
track of the IDs assigned to the keypoints that have been
correctly associated between consecutive time-steps. The
drop of the number nt of tracked keypoints below a cer-
tain threshold indicates that the observed scene is becoming
significantly different. The latter, in turn, is employed to
incrementally build a vector cp that stands for the transfor-
mation between a certain camera pose and the one at the
current time-step. Thus, as the camera moves, cp incremen-
tally grows in terms of translation and/or rotation. When
such translation or rotation grow above some pre-defined
thresholds, the camera is considered to have substantially
moved from the previous KF and, therefore, it might be
observing a significantly different area.

Any of these two indicators will trigger a data associ-
ation process that will ultimately confirm whether or not
the current observation has little in common with the sys-
tem knowledge of the environment. In any case, both the
monitored incremental pose cp and the IDs of the tracked
keypoints are reset, as the decision scheme will be started
again from the beginning. Data association is discussed in
Section 4.4.

In this paper, the number of associated visual features
yielded by data association is employed as a measure of the
similarity between the compared KFs. Thus, if such number
falls below a certain threshold (refer to Figure 1), a new KF
is created with the information extracted from the current
pair of images. Otherwise, the present observation is con-
sidered to still share sufficient information with the most
similar KF observed up to the current time-step, hence dis-
carding the addition of a new KF. Finally, the thresholds
employed in the preliminary tests are adjusted taking into
account the number of associated visual features. Hence,
the translation and rotation limits allowed before trigger-
ing a new data association process reduce as the measured
similarity decreases.

4.4. Data association

One of the key stages in the design of SLAM systems is
the so-called data association. This term stands for the
process of looking for correspondences between the cur-
rent observation and the knowledge that the system has
about the environment, i.e. the map. We refer interested
readers to a more in-depth discussion of the problem pre-
sented elsewhere (Blanco et al., 2012). A special situation
of paramount importance arises when the current observa-
tion matches to LMs stored some time ago, hence implying
a re-observation of an already explored area. This situation
is known as loop closure.

Authors' draft. Final version can be found at http://journals.sagepub.com/doi/full/10.1177/0278364915619238

http://ijr.sagepub.com/


Fig. 2. Scheme of our proposed data association procedure.
Matched ORB keypoints (kps) from the left image are converted
into a vocabulary word wi employed to query (and which is sub-
sequently inserted into) the image database (DB), retrieving a
list of similar images. Then, current left and right keypoints are
matched against those from the retrieved similar images by means
of the Hamming distance between their descriptors (H blocks).
Fundamental matrices F are finally employed to discard outliers.

In this work, data association follows the approach of the
above-explained inter-frame matching process and extends
it by introducing a previous stage that selects the most sim-
ilar KF to the current one among those already stored in the
graph. This stage aims at detecting loop closures and also
relies on the ORB descriptors computed during keypoint
detection to identify the corresponding observed LMs, as
depicted in Figure 2.

We adopt a bag-of-words approach based on such binary
descriptors to efficiently cope with this problem. The basic
technique underlying a bag-of-words approach consists of
building a database from the images recorded as the cam-
era moves, then finding the most similar one within the
database when a new image is captured. Specifically, we
employ the method presented in Galvez-Lopez and Tardos
(2012), which was initially developed for BRIEF descrip-
tors, but that has also proven to perform well with ORB
descriptors because of their similarity.

In short, the bag-of-words technique uses a previously
built visual vocabulary to transform an image to a numeri-
cal vector that is subsequently employed to look up among
the images stored in the database. Since the bag-of-words
presented in Galvez-Lopez and Tardos (2012) is hierarchi-
cal, the vocabulary structure becomes a tree.

A schematic view of the different stages carried out in
this paper to perform robust and reliable data association
is shown in Figure 2. There, it can be seen how, by using
the pre-built word vocabulary, all the ORB descriptors
extracted from an image (we only employ the left image)
are summarized into a single word wi that is subsequently
stored within the database. As new images are captured,
the so-obtained words are employed to query the database,
retrieving this way a small list containing the most simi-
lar images within it. Therefore, the query result restricts the
search for correspondences between individual LMs to only
those belonging to the most similar images instead of the
whole map.

Once the most similar stereo images are retrieved,
their keypoints and those from the current image pair
are matched following the inter-frame matching process
explained in Section 4.2, yielding a set of associated visual
features which will represent the input of the SRBA-based
back-end. Finally, in order to consider an association as
valid, all of the matched projections of the LM in the
four images must be consistent with the epipolar geom-
etry and the distance between their descriptors must fall
below a threshold. This methodology reduces the presence
of outliers in the data association output.

It is important to note that, as the camera explores
unknown areas, the most similar image will be the last
one inserted into the database, but, when visiting already
explored zones, older images will be also retrieved, hence
detecting loop closures.

5. Back-end

As already introduced in previous sections, one can estab-
lish two main variations of BA techniques, also known as
smoothing methods (Strasdat et al., 2010), according to the
representation chosen for KFs and LMs: GBA and RBA.
The principal differences between them is that GBA builds
a global map by imposing a privileged KF to be the origin of
coordinates, whilst RBA only estimates relative coordinates
between KFs and LMs.

The main drawback of GBA that motivates the use of
relative approaches to BA lies on the computational bur-
den that global formulations suffer when dealing with large
graphs, especially during loop closures. In theory, the num-
ber of unknowns that may need to be updated during a loop
closure in GBA is unbounded. Relative methods, on the
other hand, optimize only a small part of the graph, lead-
ing to smaller optimization problems which can be handled
efficiently in bounded time. However, the matrices associ-
ated with those smaller problems are significantly denser
than their global counterparts due to the need to perform
chains of pose compositions at each observation, since the
coordinates of the stored LMs (referred to their base KF)
have to be transformed to the current observer KF.

There exist two important concepts which are unique fea-
tures of RBA and do not have a counterpart in GBA or
global SLAM.

• Maximum topological distance (Dmax) for local map
optimization. This parameter defines how far from the
current KF should we optimize at each time-step, i.e.
it determines the extension of the “active part” of the
map. Implicitly, this parameter also sets the minimum
distance between the base KF of observed LMs and
its current observer KF for it to be considered a loop
closure.

• Shortest-path spanning trees (STs) for every KF. These
are data structures required to efficiently find the
shortest paths between any pair of KFs within a dis-
tance Dmax. These paths are needed to determine the
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Fig. 3. Example of a BA problem.

variables involved in the chains of pose composi-
tions employed to transform LM coordinates and to
determine what observations may be considered loop
closures. A constant-time algorithm for incrementally
updating STs over time was proposed in Blanco et al.
(2013) and will be summarized later.

As a consequence of optimizing only a part of the graph,
RBA approaches create maps that are only locally consis-
tent. Nevertheless, we claim that local maps of an environ-
ment, which include a correct representation of its global
topological structure, are perfectly suitable for most com-
mon mobile robot operations, such as autonomous naviga-
tion via path planning and obstacle avoidance. Regarding
the claims made elsewhere (Kaess et al., 2012) about the
unsuitability of relative graphs for finding potential short-
cuts during exploration, we believe that, provided that errors
in the estimated relative poses between local maps are rea-
sonably reduced, relative coordinates have enough accuracy
to perform such operations. Notice that relative coordinates
for KFs farther than Dmax can be obtained at any instant by
simply chaining the poses of edges along a ST rooted at
some KF in the area of interest. That is, any efficient global
SLAM method (such as iSAM2 in Kaess et al. (2012)) can
be used to retrieve the global map from the relative graph
built by RBA, although it would normally not be required
for any robot operation.

SRBA (Blanco et al., 2013) was proposed as a blended
solution in between GBA and the linearly connected imple-
mentation of RBA described above. By changing the policy
about how to create new edges, SRBA introduced the idea
of defining some KFs as origin KFs, dynamically selected
as local reference systems and effectively creating submaps.
Poses of all KFs within a submap are referred to its ori-
gin KF, whereas LM coordinates are referred to the KF
where they were observed for the first time, as usual in
RBA. The underlying idea of this submap-based represen-
tation is to generate edges between origin KFs so that paths
between KFs become shorter in average, thus reducing the
loss of sparsity that linear RBA incurs in, while keeping its
advantages over global mapping.

In order to illustrate the differences between the afore-
mentioned approaches, we refer to the example scenario
represented in Figure 3. There, a robot follows an arbitrary
path through an environment while gathering a total of 22
observations (shown as red-dashed arrows) of the 6 LMs
present in the scenario (displayed as numbered stars). In the
figure, the observations are labeled following the notation
introduced in Equation (2). During navigation, 15 KFs have
been defined among the whole set of captured frames.

In this situation, GBA defines all of the KF poses and
LM positions referred to the global reference system cen-
tered at KF#1, as shown in Figure 4 (top). Consequently, all
of the observations obtained from KFs different from KF#1
imply the transformation of the LM global coordinates to
the KF local reference system, hence inserting a non-zero
block into the Jacobian matrix corresponding to the pose
of the current observer KF. As a result of the global repre-
sentation of KFs, this implies that Tb,o in Equation (5) is
composed by only one transformation with b = 1 for all
of the observations gathered from KFs different to the first
one.

On the other hand, in linear RBA, the global poses of
the KFs are not the unknowns of the problem, but, instead,
the relative transformations between them are. Usually, the
defined edges link consecutive nodes creating linearly con-
nected graphs, while LMs are defined with their coordinates
referred to the KF where they were observed for the first
time, as shown in Figure 4 (middle). In addition to that,
another difference with GBA arises when the camera closes
the loop, so that the problem structure must be modified
due to the addition of a new unknown: the edge that joins
the current KF and the old, re-visited one (please, refer to
the green dotted edge in Figure 4 (middle) joining KF#15
and KF#1).

As a negative side effect, the sparsity level of both the
Jacobian and the Hessian matrices results in fact reduced,
degrading the efficacy of sparse algebra methodologies.
This relative formulation leads to Tb,o in Equation (5)
becoming a chain of pose compositions following the path
along the edges between the observer and the base KFs,
inserting dense blocks of size L × L in the matrices, with
L being the number of edges between both KFs along the
shortest path.

However, the potential of RBA lies on its flexibility, since
it allows the optimization of only a subset of the problem
unknowns, chosen according to the area affected by the cur-
rent observation. This area is often called the active region
and it is built through a breadth-first-search starting at cur-
rent KF where the re-projection errors are computed in each
KF, being added to the active region those with errors above
a defined threshold. Moreover, those LMs observed from
the current KF are also considered to be part of the active
region.

In addition, the active region is augmented by another
set of KFs called the static region, which is composed by
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Fig. 4. Graph representation under a GBA (top), linear RBA (middle) and SRBA (bottom) approaches. Blue dashed arrows represent
edges between KFs and their origins, while red solid arrows indicate LM positions with respect to their base KFs. For SRBA, the number
of KFs within each submap has been set to 5.

any non-active KFs that have measurements of the cur-
rently observed LMs. The measurements at the static KFs
are included in the least-squares minimization but their rel-
ative positions are not optimized in the process, hence the
term static.

Since only the unknowns involved in the active region
are optimized in RBA, the Jacobian and Hessian matri-
ces become significantly smaller and, more importantly, the
complexity burden of the solution remains bounded even in
the presence of large loop closures. Fixed and adaptive ver-
sions of the active region can be found in Sibley (2009) and
Sibley et al. (2009), respectively.

Regarding SRBA, a possible graph created under this
framework for such scenario is shown in Figure 4 (bottom).
Note how the graph has been divided in four submaps of
size 5 whose origin KFs are those numbered 1, 5, 9 and
13. All of the KFs within the submaps are referred to their

origin KF and, similarly to the RBA case, their pose trans-
formations with respect to it have been labeled by Tj,b, with
j standing for the KF index and b representing its reference
frame (or origin KF). On the other hand, LM positions xj,b

are represented following the same convention as for the
standard RBA approach, with their coordinates referred to
their base b KF. Both the poses of the KFs and the posi-
tions of the LMs define the system state (i.e. the problem
unknowns), to be determined from the observations, as in
any BA problem.

It can be seen in the figure that edges between origin KFs
have been created (e.g. from KF#1 to KF#5) so that when
the coordinates of a LM have to be transformed from its
base KF b (member of submap si) to the observer KF o
(member of submap sj), the corresponding chain of poses
only involves the existing edges between the origin KFs of
the traversed submaps (from si to sj) in addition to those
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between KFs b and o and their respective submap ori-
gins. Generally, such path across the graph will be shorter
than the chain of poses stated by standard linearly con-
nected RBA, being this effect more beneficial for larger
submaps. Thus, this approach may be intuitively understood
as a way of creating shortcuts in the pose graph to shorten
paths along KFs chains, therefore reducing L and leading to
sparser matrices, as shown later.

It is important to note that, by setting up submap sizes
from 1 to infinity, SRBA seamlessly integrates all of the
possible KFs configurations ranging from pure linear RBA
to GBA, proving the flexibility of this blended approach.

5.1. Back-end implementation

As explained in Section 4.3, once the decision to insert a
new KF has been taken, the set of visual features obtained
through data association are fed to the SLAM back-end to
maintain and optimize the graph that represents the relative
map of SRBA.

The entry point for the back-end, summarized as pseu-
docode in Algorithm 2, takes the set of observations (and
their data association) for the current KF, expands the graph
as needed to accommodate the new KF, determines whether
one or more KF-to-KF edges have to be created (the latter
case corresponds to a loop closure) and optimizes the so-
obtained nearby variables to ensure a consistent local map
around the current KF. Subsequent subsections address,
from a top–bottom perspective, each of the sub-algorithms
required to perform all of these tasks. Refer to Table 1 for
a summary of the notation employed in all of the algo-
rithms. Worst-case computational complexities are summa-
rized along with the pseudo-code, in order to provide a
validation of the bounded-time nature we claim for SRBA.
Please, refer to Blanco-Claraco (2013) for further low-
level details about the C++ structures mentioned in these
algorithms.

From the computational cost analysis of our method, we
can conclude that each time step has a typical cost that
grows with the cube of NR (the number of reachable KFs
from any other KF within a maximum topological range
of Dmax) and linearly with No (the number of observed
LMs). Note that NR is bounded, as long as it is the degree
of the graph. A key issue here is modeling the number of
edges (not nodes) within Dmax. Assuming a constant ratio
γ between edges and nodes, we have O (γ NR) edges to
optimize in each time-step (line 8 in Algorithm 2).

To achieve minimal computational cost, NR should be as
reduced as possible, which involves having a sparsely con-
nected graph. Nevertheless, the larger NR is, the larger the
number of KFs and LMs of the map that are kept locally
consistent. On the other hand, it is also desirable to decrease
L (topological path length between observer KF and base
KF) as much as possible, since it leads to smaller dense
blocks in the approximate Hessian matrix. However this

Table 1. Summary of notation employed in the algorithms.

Symbol Description

Dmax Maximum depth of maintained STs
NR The order of how many KFs are reachable

within a range of Dmax
No Number of observations in a timestep
NLC

obs Minimum number of shared observations
between two submaps to create a loop-closure
edge

γ Constant representing the expected “sparse-
ness” of local maps

B Set of base KFs for all the observations in a KF
C Set of origin KFs for all submaps of B
ST .D[i][j] Spanning tree: Topological distance between

KFs i and j. Symmetric table.
ST .N [i][j] Spanning tree: The next edge to follow to reach

j from i throughout the shortest path.
ST .Reach[i] Spanning tree: The set of reachable KFs from i

within Dmax
ST .Seq[i][j] Spanning tree: Sequence of all edges along the

shortest path from i to j

involves having a dense graph, which is in conflict with our
first desiredatum.

As a trade-off, SRBA proposes a submapping approach.
While linear RBA leads to linear graphs, ours generates
a hierarchical-like lay out. With this strategy we ensure
that most KFs in the graph have a degree of one, while a
large number of potential observations base KFs are still
available within a short topological distance.

5.2. Edge creation policy: submapping strategy

The edge creation policy (ECP) for the proposed SRBA
formulation establishes a fixed number of KFs within the
submaps so that when this limit is reached, a new submap
is started with the new KF acting as its origin KF.

Algorithm 3 shows the process of deciding which edges
must be created under such a fixed-size submapping
approach. It should be mentioned that our open-source
implementation allows users to redefine such an ECP to
ease further research.

In any case, a new edge e is always introduced between
the last origin KF olocal and any new KF n which is not to
become the origin of a new submap. Next, we search for
additional edges by checking whether the visual features
produced by the front-end contain a significant number of
associations with LMs whose base KFs are more distant to
the current KF than Dmax. In this case, the system deter-
mines that the camera is observing a far, already explored
area, thereby detecting a loop closure and adding new edges
elc to the graph (lines 25–27 of the pseudocode). We must
note that there are no differences in the way that edges e
and elc are inserted, no matter if they represent loop clo-
sure or simple constraints between origin KFs and submap
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Algorithm 2 srba_define_new_keyframe . Worst case: O( ( γ NR)3+No( Dmax + log NR) )
Input: (zn, αn) =

{(
z1

n, α1
n

)
, . . . ,

(
zNo

n , αNo
n

)} � Set of No new observations zi
n and their data association αi

n
Output: The updated, locally consistent map

// Update keyframes (KFs) data structures
1: n←number of KFs in the map � Assign a free ID to the new KF – O( 1)
2: KF[n]←empty KF data structure � Insertion at the end of std::map – O( 1)

// Apply edge-creation policy to decide how to handle loop closures, etc.

3: edge_creation_policy(αn, n) (See Algorithm 3) � O( |C|N2
R log NR)

// Update symbolic Jacobian structures � O (No( Dmax + log NR) )

4: for each
(
zi

n, αi
n

) ∈ (zn, αn) do � For each of the No new observations

5: add_observation( zi
n︸︷︷︸

obs. data

, n︸︷︷︸
observing KF

, αi
n︸︷︷︸

landmark ID

) (See Algorithm 6) � O( Dmax + log NR)

6: end for

// Update SLAM estimation
7: edges_to_optimize← all within a Dmax distance from n � O( NR)
8: non_linear_optimizer(edges_to_optimize) � O( ( γ NR)3 )

Algorithm 3 edge_creation_policy (Submapping strategy) Total: O( |C|N2
R log NR)

Input:
αn = {α1

n , . . . , αNo
n } � IDs of all No observed landmarks (Data association)

n � ID of the new KF
Output:

New edges added to the RBA graph

1: olocal ← submap_id[n] � Get ID of the current submap origin – O( 1)
2: DLC ← ( Dmax + 1)︸ ︷︷ ︸

Out of range

− 2︸︷︷︸
Extra edges: n↔ olocal , base KF to its origin

�Minimum distance between submap origins for loop closure – O( 1)

// Get ordered set of base KFs with observations in αn � Total: O( No log |B|)
3: B← ∅,

BM ← 0 � Initialize set of KF observation bases and their multiplicity – O( 1)
4: for each lm_id ∈ αn do � Total : O( No log |B|)
5: base_kf _id←get from all_lms[lm_id] � Random access to vector/deque container – O( 1)
6: B← B ∪ {base_kf _id} � Insert in ordered set – O( log |B|)
7: BM[base_kf _id]← BM[base_kf _id]+ 1 � Update KF multiplicity – O( log |B|)
8: end for

// Get ordered set of submaps with observations in αn � Total: O( |B| log |C|)
9: C← ∅,

CM ← 0 � Initialize set of KF submap origins and their multiplicity – O( 1)
10: for each base_kf _id ∈ B do � Total: O( |B| log |C|)
11: s_id← submap_id[base_kf _id] � O( 1)
12: C← C ∪ {s_id} � Insert in ordered set – O( log |C|)
13: CM[s_id]← CM[s_id]+ BM[base_kf _id] � Update multiplicity – O( log |C|)
14: end for
15: CS ← sort( C, CM) � Sort submaps by decreasing number of shared observations – O( |C| log |C|)

// Decide which KF-to-KF edges to create � Total: O( |C|N2
R log NR)

16: if n �= olocal then � If this KF is not the origin of the current submap
17: create_kf2kf_edge( n↔ olocal) (See Algorithm 4) � Always connect a KF to the origin KF of its submap – O( N2

R log NR)
18: end if
19: for each oremote ∈ CS such that CM[oremote] ≥ NLC

obs do � O( |C|) iterations. Total: O( |C|N2
R log NR)

20: if oremote ∈ ST .Reach[olocal] then � Find in a map container – O( log NR)
21: d← ST .D[olocal][oremote] � Find in a map container – O( log NR)
22: else
23: d←∞ � O( 1)
24: end if
25: if d ≥ DLC then
26: create_kf2kf_edge( olocal ↔ oremote) (See Algorithm 4) � Update KF-to-KF edge structures – O( N2

R log NR)
27: end if
28: end for
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Algorithm 4 create_kf2kf_edge Total: O( N2
R log NR)

Input:
f , t � IDs of the “from” and “to” KFs
pt

f (Optional; sensor model dependent) � Initial value of the edge inverse pose

// Allocate new kf-to-kf edge � Total: O( 1)
1: new_id← number of entries in kf 2kf _edges � Query size of a deque container – O( 1)

2: Append new data structure with
(

f , t, new_id, pt
f

)
at the end of kf 2kf _edges � Insert at end of deque container – O( 1)

3: Append a reference to the end of kf 2kf _edges to incidence lists for KFs f and t � push_back to two containers – O( 1)
4: Append new_idth column to sparse Jacobian ∂h/∂p � push_back to deque container of a symbolic CCS – O( 1)

// Update all nearby symbolic spanning trees

5: update_sym_spanning_trees( f ↔ t) (See Algorithm 5) � O( N2
R log NR)

members. With each sequential creation of new edges, the
associated shortest-path STs are updated to account for the
changes introduced in the graph. Therefore, the order in
which potential loop closure edges are considered (in the
loop spanning lines 19–28) is important since, once an
edge to a remote submap is added, other nearby submaps
which were initially too far from the current KF (and could
be interpreted also as loop closures), may fall within the
Dmax range, hence preventing the creation of additional
edges. Thus, those submaps with the highest number of
shared observations are considered first, since additional
edges to them minimize the length of the pose chains from
observer and base KFs, leading to more efficient nonlinear
optimization steps.

In the pseudocode, this involves determining the set of
base KFs associated to the current observations, as well
as their multiplicity (i.e. the number of observations that
belongs to each of them). Subsequently, these base KFs
are grouped according to the submaps they are part of,
with the aim of detecting the submaps that are affected by
the current observation. Finally, we measure the distance
between the origins of the involved submaps and the new
node n, creating a new edge between them if such dis-
tance is over a certain value Dmax, hence detecting the loop
closure scenario.

The overall computational cost for this routine is
O( |C|N2

R log NR), most of which emerges from the proce-
dure for creating new edges, in Algorithm 4, with a cost of
O( N2

R log NR). Given that both |C| and NR can be consid-
ered to be bounded under mild assumptions, it is clear that
so are these algorithms.

5.3. Shortest-path STs update

Regarding shortest-path STs, the SRBA approach presented
in Blanco et al. (2013) creates and maintains STs for the
graph up to a maximum topological distance of Dmax, coin-
ciding with the maximum map area that is also maintained
locally consistent. There, the set of STs is implemented by
means of two symbolic tables containing, for any two KFs
i and j, both the topological distance in the graph between
them, and the next node in the path from one to the other.

Fig. 5. Diagram illustrating all the elements considered in the pro-
posed algorithm for incremental update of STs. The creation of a
new edge between n and ik may become a shortcut that changes
the shortest paths between nodes at each side of the new edge.

Therefore, the shortest chain of poses between both KFs can
be built by traversing these STs.

Although a ST for all of the nodes in a graph could
be easily created through classic breadth-first-search algo-
rithms (Moore, 1959), SRBA pursues the incremental build
and update of both the graph and the STs as the environ-
ment is explored. Hence, the original paper proposed an
incremental update algorithm for STs which we summarize
next. When a new node, or KF, is added to the graph, a set of
N edges connecting it to other existing KFs must be defined
(although usually it will be only one). Let n be the new node
in the graph and ik the target node for one of the created
edges, as shown in Figure 5. The STs for all of the nodes
belonging to the STs of the involved n and ik nodes must
be checked for an update. This is performed by measuring
the topological distance between any node r within the ST
of n and any node s within the ST of ik , which is deter-
mined by summing the distance between r and n (already
stored in the ST of n), the edge n ↔ ik and the distance
between the s and ik (stored again in the ST of ik). If n
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Algorithm 5 update_sym_spanning_trees . Worst case: O( N2
R log NR)

Input:
( ik ↔ n) � A new edge
Dmax � The maximum desired depth of STs

1: ST
ik
Dmax−1 ← {∀v/d( v, ik )≤ Dmax − 1} � O( NR)

2: STn
Dmax
← {∀v/d( v, n)≤ Dmax} � O( NR)

3: for each r ∈ STn
Dmax

do � O( NR) iterations

4: for each s ∈ ST
ik
Dmax−1 do � O( NR) iterations

5: // New tentative distance between r and s
6: d← ST .D[n][r]+ ST .D[ik ][s]+ 1 � O( log NR)
7: if (s ∈ ST .Reach[r] and d < ST .D[r][s]) or (s /∈ ST .Reach[r] and d ≤ Dmax) then � O( log NR)
8: // Shorter or new path found. Update trees:
9: ST .D[r][s]← d

10: ST .N [r][s]←
{

ik r = n
ST .N [r][n] r �= n

11: ST .D[s][r]← d � O( log NR)

12: ST .N [s][r]←
{

n s = ik
ST .N [s][ik] s �= ik

13: end if
14: end for
15: end for

and ik were not already in each other’s ST and the resulting
distance is Dmax or less, both STs are updated to account
for this new relation. Otherwise, if there was already a path
between such nodes, their STs are only updated if the new
path is shorter than the existing one. This process has to
be repeated for all of the created new edges, and it is sum-
marized in Algorithm 5. A careful analysis of its computa-
tional cost, including access and creation of data structures,
reveals a worst-case complexity of O( N2

R log NR), with NR

being the maximum number of reachable KFs for a given
Dmax and which is reasonable to consider bounded for any
large and complex map, as long as redundant KFs are not
continuously added to the map for the same physical area.

5.4. Observation insertion

Finally, lines from 4 to 6 in Algorithm 2 refer to the inser-
tion of the current set of observations into the SRBA-based
SLAM system, a process summarized in Algorithm 6.

For each individual observation, the general procedure
involves creating and appending new structures to both the
system observations and LMs containers (the latter just in
case we are observing a new LM). This is performed in
O( 1).

Subsequently, we proceed to update the system sparse
Jacobian structure, which is stored in two separate parts: the
Jacobian with respect to the edges (∂h/∂p) and with respect
to the LMs (∂h/∂x). For the former, we need to update all
of the matrix columns associated to the edges in the chain
of poses between the current observer KF and the observa-
tion base KF, by appending a new block to each one of them
(refer to Figure 6 for an example of a Jacobian matrix). In
this situation, the strategy followed by SRBA reduces the
number of entries that must be updated since the traversed
paths involves fewer edges, hence keeping the Jacobian

sparser than standard RBA approaches. The complexity of
updating this part of the Jacobian is O( P + log M), with
P being the number of edges between the above-mentioned
KFs and M the number of nodes stored in the system ST. In
the worst case we have that M = NR and P = Dmax, i.e. the
number of reachable nodes in each ST and the maximum
topological distance allowed for the ST, respectively.

Updating the Jacobian with respect to the LMs is much
simpler and can be performed in O( 1).

5.5. Least-squares optimization

The graph optimization is performed by an iterative
Levenberg–Marquardt algorithm, which is a slight varia-
tion of the Gauss–Newton procedure that minimizes the re-
projection error of the observed LMs explained in Section
4.2 for the visual odometry method. In this case, though,
minimizing the cost function in Equation (6) achieves the
joint estimation of both the poses of the cameras p that
captured the images (i.e. the KFs) and the LM positions
x. This leads to the following linear equation, equivalent to
Equation (8) but taking into account the whole system:

(H+ λI)�s = −g (12)

where H and g stand for the approximate Hessian matrix
and the gradient of the prediction function, respectively,
�s standing for the incremental change in the system
unknowns s = (p, x) and λ a scalar parameter of the
Levenberg–Marquardt algorithm. Note that part of the state
vector, in particular, all of the relative poses, has the non-
Euclidean topology of SE(3). Therefore, we have followed
the common practice of formulating Equation (12) in the
error state formulation (see, e.g., Grisetti et al., 2010), such
that increments on se( 3) are obtained from the linear solver,
then added as corrections through the corresponding Lie
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Fig. 6. Sparsity pattern of Jacobian and Hessian matrices under the GBA, linear RBA and SRBA approaches for the scenario shown in
Figure 3. Gray squares represent dense blocks within the matrix.

Algorithm 6 add_observation Total: O( Dmax + log NR)
Input:

z � Observation data
kf _id � ID of the observing KF
lm_id � ID of the observed landmark

// Observation data housekeeping
1: obs_id← overall number of observations in all_obs � Query size of a vector/deque container – O( 1)
2: Append ( z, kf _id, lm_id) at the end of all_obs � push_back on vector/deque container – O( 1)

// Handle new landmarks
3: if lm_id /∈ all_lms then � Test for existence flag in a vector/deque container – O( 1)
4: all_lms[lm_id]← new kf 2lm edge data structure � Create new kf 2lm edge – Amortized O( 1)
5: Append column to sparse Jacobian ∂h/∂x � push_back to deque container of a symbolic CCS – O( 1)
6: Update bimap of column indices in ∂h/∂x↔ landmark indices �With map_as_vector can be done in O( 1)
7: end if

8: base_id←get from all_lms[lm_id] � Random access to vector/deque container – O( 1)
9: Append a reference to all_lms[lm_id] to the incidence list for kf _id � O( 1)

// Update symbolic linear system (∂h/∂p part) � Total: O( Dmax + log NR)
10: if base_id �= kf _id then � Observations from the base KF introduce no blocks to this Jacobian
11: obs_edges← ST .Seq [base_id]︸ ︷︷ ︸

Access in O( 1)

[kf _id]︸ ︷︷ ︸
Access in O( log NR)

� Retrieve list of ≤ Dmax observed kf2kf edges from spanning trees – O( log NR)

12: for each kf 2kf _edge_id ∈ obs_edges do � O( Dmax) iterations
13: col← [∂h/∂p] .cols [kf 2kf _edge_id]︸ ︷︷ ︸

Access to deque in O( 1)

� Retrieve symbolic sparse column – O( 1)

14: col [obs_id]︸ ︷︷ ︸
Insert into map

←reference to observation data and other symbolic data � Typically, an insertion at the end of map – Typ. O( 1)

15: end for
16: end if

// Update symbolic linear system (∂h/∂x part) � Total: O( 1)
17: kf 2lm_edge_id← bimap from lm_id �With map_as_vector can be done in O( 1)
18: col← [∂h/∂x] .cols [kf 2lm_edge_id]︸ ︷︷ ︸

Access to deque in O( 1)

� Retrieve symbolic sparse column – O( 1)

19: col [obs_id]︸ ︷︷ ︸
Insert into map

←reference to observation data and other symbolic data � Typically, an insertion at the end of map – Typ. O( 1)
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Fig. 7. (a) Plan and (b) example image of the synthetic dataset.

group exponential map. For further mathematical details,
the interested reader could refer to the technical report in
Blanco (2010).

The sparsity of the Jacobian matrices, and hence the
Hessian, plays here an important role in terms of compu-
tational burden, favoring SRBA by improving its perfor-
mance in comparison to the standard, linear RBA method.
Figure 6 represents the sparsity patterns of such matrices
for the example proposed in Figure 3 under the GBA, RBA
and SRBA formulations. In comparison to those for the
GBA and standard RBA approaches, it can be noted that
SRBA falls in between both formulations, yielding sparser
matrices than RBA but denser than GBA.

6. Experimental results

Experiments in both indoor and outdoor environments are
presented in this section in order to validate the proposed
system.

6.1. Synthetic images dataset

In our first experiment, we have moved a virtual stereo
camera through a synthetic office-like environment created
with the 3D design software Blender while capturing stereo
images to form a dataset of synthetic images. A represen-
tation of such environment and an example of the captured
images are shown in Figure 7. The use of a virtual environ-
ment to test our approach is motivated here by the fact that
the camera movement is known beforehand, hence making
a ground truth available for the camera path.

As presented previously, the main advantage of our rel-
ative representation is that the time spent in creating and
inserting new KFs (including the creation of the Hessian
matrix and the subsequent optimization process) remains
bounded, unlike the global approach. This is a consequence
of the smaller matrices employed in our method due to the
existence of submaps and a limit depth for graph optimiza-
tion. To test this, we have employed the same dataset as
input for both our SRBA-based approach and a pure global
one (GBA).

In this sense, a performance comparison can be seen in
Figure 8, where the KF creation time (including the graph
optimization step) is plotted for every KF defined during
the experiment under both approaches. Please, note that we

Fig. 8. Inserting new KF time (including graph optimization)
comparison for SRBA (blue solid line) and GBA (red dashed line)
for the synthetic dataset.

Fig. 9. Number of landmarks to optimize with SRBA for the
synthetic dataset.

have not performed any optimization in our code to pur-
sue efficient performance, hence the mentioned plot should
be understood as a mere relative comparison between both
techniques, disregarding the absolute time values. Figure 9
also presents the number of LM positions that are optimized
at each KF insertion for the SRBA method, showing that it
remains bounded over time, unlike global approaches.

Finally, we present in Figure 10 a comparison between
the estimated camera trajectory and the ground truth. The
path of the camera has been obtained through a final full
optimization of the graph built through our method in order
to determine both KF poses and LM positions within an
unique global reference system whose origin is set at the
first camera position. We also present in Figure 11 the errors
at the estimated camera positions associated to all the KFs.

It has to be noted that, although the creation of an unique
global map cannot be considered part of our SRBA formu-
lation, the presented path comparison and accuracy results
represent indicators about the suitability of our method to
store and manage enough information to create a global
map in case that the application demands it. At the same
time, it allows a more efficient way of estimating a camera
trajectory while creating a map of the environment which is
locally consistent and useful enough for many applications.
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Fig. 10. Estimated paths for the synthetic dataset with SRBA
(blue solid line) and GBA (red dashed line). Ground truth is also
represented (black dashed-dotted line).

Fig. 11. Absolute error and histogram of errors for our SRBA-
based method with respect to the ground truth for the synthetic
dataset.

Finally, aiming at comparing the performance of standard
RBA and our approach, we present another experiment
with a synthetic dataset generated with the freely available
Recursive World Toolkit (RWT; https://github.
com/jlblancoc/recursive-world-toolkit).
In this case, we simulate the observations of a stereo
camera moving along a corridor-like environment, which is
populated with randomly-distributed 3D LMs, and includes
several loops, as shown in Figure 12. We subsequently
compare the sparsity of the Hessian matrix sH at every
KF insertion (and graph optimization), defined, in this
experiment, as the ratio between the non-zero entries of the
matrix and the total number of elements. This comparison,
together with the time spent in the graph optimization for
both methods, can be seen in Figure 13. Note the higher
matrix sparsity in the SRBA approach, leading to smaller
computational times including at loop closures.

Fig. 12. Path followed by the robot in the synthetic dataset used
to compare SRBA with linear RBA. Observed visual LMs are
represented as blue dots.

Fig. 13. Performance comparison for classic (linear) RBA
(dashed red line) and SRBA (solid blue line). (Top) Hessian matrix
sparsity as the ratio of non-zero matrix blocks and (bottom) time
spent in optimizing the graph for each KF insertion (y-axis is
logarithmic). In both graphs, smaller is better.

Moreover, we present in Figure 14 the number of KFs
and LMs that are updated in each KF insertion for both
approaches, as a measure of the size of the local map
that is updated, and hence maintained consistent, after each
graph optimization. Notice that, overall, our proposal keeps
consistency for larger local maps than linear RBA.
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Fig. 14. Number of (top) KFs and (bottom) LMs that are updated
at each KF insertion (involving graph optimization) for standard
RBA (dashed red line) and SRBA (solid blue line). In both graphs,
larger is better.

6.2. Real indoors dataset

In this second experiment we have tested our method
against a real image dataset gathered with Sancho (Gonza-
lez et al., 2009), one of our mobile robots, while navigating
through our laboratory following a trajectory that includes
a loop. Unfortunately no ground truth could be provided
for this experiment since no other sensors where available
on the robot at that time. Therefore, both the obtained map
and the robot path can only be validated by means of visual
inspection.

Figure 15 presents the timing comparison when creating
new KFs under both our SRBA-based approach and a global
one. A spike can be noted in SRBA insertion time around
KF#360 due the detection of loop closure. At that time,
the number of KFs included into the graph optimization
increases significantly, since the old submaps involved in
the closure are also included together with the most recent
ones. Finally, regarding the time absolute values, similar
considerations to those mentioned in the previous experi-
ment must be taken into account here. An example of the
images employed in this experiment can be found in Fig-
ure 16 while Figure 17 shows the estimated trajectory of
the camera for both methods.

6.3. Real outdoors dataset

Finally, we have employed two outdoor datasets to test our
method under more challenging conditions. In concrete we
use one of our published stereo datasets (Blanco-Claraco
et al., 2014) (referred as MAPIR dataset from now on), and

Fig. 15. Inserting new KF time (including graph optimization)
comparison for SRBA (blue solid line) and GBA (red dashed line)
for the real indoors dataset.

Fig. 16. Example images for the real indoors dataset.

Fig. 17. Estimated paths for the real indoors dataset with SRBA
(blue solid line) and GBA (red dashed line).

one of the road datasets from the KITTI Vision Benchmark
Suite (Fritsch et al., 2013; Geiger et al., 2012).

First, we have chosen the fragment number 7 of the
MAPIR outdoors dataset, which contains a ∼0.7 km long
loop within an urban scenario gathered by an on-board
stereo camera placed on a standard car. The positioning
information provided by a standard differential GPS device
is considered the ground truth for this experiment.

The timing comparison when creating new KFs for this
experiment is shown in Figure 18. Note that due to the
size of the resulting map, with a total amount of more than
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Fig. 18. Inserting new KF time (including graph optimization)
comparison for SRBA (blue solid line) and GBA (red dashed line)
for the real outdoors dataset.

Fig. 19. Estimated paths for the real outdoors dataset with SRBA
(blue solid line) and GBA (red dashed line). Ground truth is also
represented (black dashed-dotted line).

110,000 LMs, the time spent when inserting KFs by our
GBA implementation rapidly becomes excessive. There-
fore, beyond the insertion of KF#250, GBA time values are
no longer shown in the plot. The small peak that appears
around the KF#630 for the SRBA-method is due to the loop
closure detection.

One of the main drawbacks of this dataset stands on
the relatively small baseline of the employed stereo camera
(∼12 cm), which makes difficult the estimation of distant
points’ 3D position. Still, the achieved results can be con-
sidered to be promising. A comparison between the esti-
mated camera paths and the GPS-based ground truth is
shown in Figure 19 while the errors between both trajecto-
ries are presented in Figure 20. The camera path estimated
by the GBA method is only depicted up to KF#250.

Moreover, it has to be noted that, in some areas of this
dataset, the environment is not static due to the presence
of moving cars and/or pedestrians. Since our system works

Fig. 20. Absolute error and histogram of errors for the SRBA
method with respect to the ground truth for the real outdoors
dataset.

Fig. 21. Example of problematic images for the real outdoors
dataset. (a) A car entering a roundabout and (b) image artifact and
moving cars at a roundabout.

under the assumption of a non-dynamic environment, this
leads to large inaccuracies in the camera path estimation.
Hence, manual assistance has been required in such areas.
In particular, a car approaching the roundabout marked as
“A” in Figure 19 and the presence of some cars entering and
leaving the roundabout marked as “B” in the same figure
(nearly the end of the trajectory) are the specific areas where
capturing keypoints on moving objects has been avoided.
Example images of these situations are shown in Figure 21.
Finally, the presence of image artifacts due to direct sunlight
(refer to Figure 21(b)) has also been managed in a similar
way at the very end of the dataset.

Finally, we have also taken segment 7 from the KITTI’s
road datasets to test our approach. This segment contains a
set of 1100 stereo images of size 1226 × 370 pixels (refer
to Figure 22 for an example image) captured by a car while
moving along a ∼0.7 km long trajectory and performing a
loop. In this case, the stereo camera baseline is significantly
wider than the dataset employed in the previous experiment
and, similarly to it, ground truth is available for this dataset.

Again, we have measured the insertion time for new KFs
(including graph optimization) for both the GBA and the
SRBA approaches, presenting the results in Figure 23. Note
that, similarly to the previous experiment, the high number
of LMs in the map prevent the process of inserting new KFs
for our GBA implementation to perform in reasonable time.
Loop closure detection is achieved near to KF#400 for the
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Fig. 22. Example image for the KITTI outdoors dataset.

Fig. 23. Inserting new KF time (including graph optimization)
comparison for SRBA (blue solid line) and GBA (red dashed line)
for the KITTI real outdoors dataset.

Fig. 24. Estimated paths for the KITTI real outdoors dataset with
SRBA (blue solid line) and GBA (red dashed line). Ground truth
is also represented (black dashed-dotted line).

SRBA approach, hence the small peak shown in the figure
at that point.

The paths estimated by both methods are compared
against the provided ground truth as shown in Figure 24.
The graph built contained ∼400 KFs for the whole trajec-
tory and the resulting map was composed by more than
36,000 LMs. Finally, the evolution and the histogram of
the errors committed by the SRBA method with respect to
the ground truth are presented in Figure 25. A video show-
ing SRBA operation for this experiment can be found at
https://goo.gl/1Ap4p9.

Fig. 25. Absolute error and histogram of errors for the SRBA
method with respect to the ground truth for the KITTI real
outdoors dataset.

7. Conclusion

This paper has addressed the development of a blended
relative–global approach to BA, coined SRBA, which
allows for a continuum of strategies ranging from clas-
sic linear RBA to hybrid submapping with local maps.
This flexibility leads to graphs than can be optimized more
efficiently than those built as previously reported in the
literature, ensuring a bounded-time operation even in the
presence of loop closures, regardless of their size.

In this work we have extended the preliminary descrip-
tion of SRBA in Blanco et al. (2013), proven its constant-
time nature by providing in-depth listings for the most
important algorithms, and validated its performance in the
context of stereo visual SLAM. For that, we have devel-
oped a complete system combining a front-end that inte-
grates several state-of-the-art computer vision techniques
and an SRBA-based back-end that operates as graph opti-
mizer. The presented front-end relies on ORB features as
image keypoints and computes camera ego-motion through
a visual odometry method which is robust against the pres-
ence of outliers. Data association, in turn, is assisted by
a bag-of-words built upon ORB binary descriptors that
restricts the search area when looking for loop closures.

A set of experiments in both indoor and outdoor con-
ditions is presented to demonstrate the capabilities of our
method when tackling with visual SLAM in comparison
with other BA approaches in terms of accuracy and effi-
ciency. Future works include introducing further optimiza-
tions in our SRBA implementation, as well as analyzing and
introducing more graph maintenance operations to improve
its suitability as a long-term SLAM solution.

Note

1. The C++ source code for the front-end and back-end
can be found at https://github.com/famoreno/
srba-stereo-slam and at https://github.com/
MRPT/srba, respectively.
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