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Semantic Norms for Mobile Robots:
When the end does not justify the means
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Abstract: This paper deals with the use of semantic knowledge to improve the intelligence and
autonomous behavior of a mobile robot. A robot can exploit the semantics of its environment to
infer new, implicit information. Another interesting possibility is to use semantics for detecting
deviations between the real world and what is supposed to be “normal”. For instance, normative
semantic knowledge may state that towels should stay in the bathroom. If a robot detects a
towel in the kitchen, it can react and decide to solve this inconsistency by bringing it to the
bathroom. However not all ways to solve an inconsistency are acceptable: for instance, if the
robot put the towel temporarily on a dirty sink in order to re-grasp it with the other arm, it
would violate another norm — namely, that towels should always stay on a clean surface. In this
work we present an algorithm that detects and recovers from norm violations, according to a
semantic representation of norms, and ensures the normative acceptability of the robot actions

throughout execution.

Keywords: Semantic maps, Mobile robotics, Goal autonomy, Normative constraints,
Knowledge representation, Description logic, Ontology, Planning.

1. INTRODUCTION

The use of semantic knowledge has emerged as a required
ingredient for successful mobile robotic applications. Con-
cretely, service robots are being increasingly endowed
with the ability to represent and use semantic knowledge
about the environment where they operate — see, e.g., J.
Hertzberg, A. Saffiotti (Eds.) (2008).

Semantic knowledge encodes general and commonsense
information about the elements of the world and their
relations. Semantic knowledge can tell, for example, that
a bathroom is a type of room which typically contains a
bathtub and a basin; that a towel is an element related to
the personal hygiene; and that this type of elements are
located in a bathroom. A mobile robot able to manage
such information will show improved autonomy and more
intelligent behavior. For example, the robot could classify
a room as being a bathroom if it perceives a bathtub in
it; it could infer the most likely location to find a towel;
and it could detect an abnormal situation, like observing
a bathtub in what is believed to be a living room, and
react accordingly. Several works have been reported in the
literature which have addressed these issues from different
perspectives, e.g., by Niichter et al. (2005); Meger et al.
(2007); Mozos et al. (2007); Ranganathan and Dellaert
(2007); Zender et al. (2008); Galindo et al. (2008, 2011);
Pronobis (2011).
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A somehow less studied facet of semantic knowledge is its
use as a source of normative information on how the world
should be. In this paper, we investigate this facet building
upon our previous work (Galindo et al., 2011), which
addresses goal autonomy through the proactive generation
of goals based on the robot’s internal semantic model. In
that work, we considered a robot with the innate objective
of keeping its environment in good order with respect to
a given set of norms. Norms were encoded in a declarative
way in a semantic representation, enabling the robot’s
reasoning systems to automatically detect violations of
a particular norm, by translating violations into logical
incoherences between the sensed facts and the model. For
example, if the robot finds a towel inside the kitchen, it
infers a violation of the commonsense piece of knowledge
that states that towels are elements related to the personal
hygiene and therefore they are located in a bathroom. The
output of the system consisted of the generation of a robot
goal that, when planned and executed, put the world in
a state consistent with the normative knowledge. In the
previous example, the robot would generate the goal to
bring the towel from the kitchen to the bathroom.

The above work provides, to the best of our knowledge, the
first example of a robot which uses semantic, ontological
knowledge to both describe and maintain the nominal
state of the world. That work has, however, an important
limitation: when generating a plan to recover from the
violation of a norm, the robot does not consider that the
execution of this plan may in turn result in the violation
of other norms. Simply put, the above approach adheres
to Macchiavelli’s principle the end justifies the means. To
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see why this can be a problem, consider the above norm
that towels should stay in the bathrooms, together with
the second norm that towels (being items of personal
hygiene) should be put on clean surfaces. Imagine that
the robot, who has inferred the goal to bring the towel to
the bathroom, generates a corresponding plan to grasp the
towel, move to the bathroom, and place to towel. Imagine
also that, as part of this plan, the robot places the towel
temporarily on the sink, turns, and re-grasps it with the
other arm — this may be needed because of the geometric
constraints of the environment. Putting the towel on the
sink, however, violates the norm that states that towels
should stay on clean surfaces. Thus, while the robot tries
to correct a norm violation, it is violating another one: in
some cases, the end does not justify the means.

In this paper we present a solution to the above problem.
We propose an algorithm that checks the normative ad-
missibility of the generated plans, and interacts with the
planner in order to discard inadmissible plans and generate
new ones. We also introduce the notion of transient norms,
i.e., norms which can be temporarily violated during the
execution of the plan, as opposed to permanent norms,
i.e., norms that must be obeyed at all times. In the above
example, the location of the towel is a transient norm, since
it is acceptable that the towel is temporarily in the corridor
during the motion; while the clean support requirement is
a permanent norm, since it is not acceptable to violate it
even in a transient way.

This manuscript is structured as follows. The next two
sections introduce the main ingredients for our approach:
our semantic maps, and our approach to detect and recover
from norm violations. Section 4 presents our new algorithm
to generate recovery plans that do not incur in norm
violations. An implementation and illustrative example of
this algorithm are described in section 5. Finally some
conclusions and future work are outlined.

2. A SEMANTIC MAP FOR MOBILE ROBOT
OPERATION

A mobile robot requires a proper representation of its
workspace, i.e., a map, in order to perform with a certain
autonomy. The characteristics of the data stored in such
a map will determine the robot abilities. Geometrical and
topological maps enable a mobile robot to perform local-
ization and navigation tasks; symbolic maps are needed for
task planning, i.e. search for a sequence of robot actions to
achieve a given goal. In order to improve the robot skills
with semantic information, more sophisticated maps are
required. The map we considered in this work is derived
from the world presented by Galindo et al. (2008). It
comprises two different but tightly interconnected parts: a
spatial box, or S-Box, and a terminological box, or T-Box.

Roughly speaking, the S-Box contains geometrical, topo-
logical and symbolic information about the current state
of the environment and of the objects inside it. On the
other hand, the T-Box contains general semantic knowl-
edge about the domain, giving meaning to the entities in
the spatial box in terms of concepts and relations. For
instance, the S-Box may represent that 0bj-3 is placed
at Area-2, while the T-Box may represent that 0bj-3is a
stove and that a stove is a type of appliance. By combining
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Fig. 1. An example of semantic map for a home-like
environment. S-Box is on the left and T-Box on the
right. See explanation in the text.

the two sides, the semantic map can infer, for instance,
that Area-2 is a kitchen, since it contains a stove.

This structure is reminiscent of hybrid knowledge repre-
sentation (KR) systems (Brachman and Levesque, 2004;
Baader et al., 2007), which are dominant in the KR
community. Our semantic map extends the assertional
component to be more than a list of facts about individ-
uals by also associating these individuals to sensor-level
information with a spatial structure — hence the name
S-Box. See Galindo et al. (2008) for more detail.

Figure 1 shows a simple example of a semantic map of
a home-like environment where both the S-Box and the
T-Box have a hierarchical structure. The hierarchy in
the T-Box is a direct consequence of the fact that the
represented semantic knowledge forms a taxonomy. For the
S-Box, the use of a hierarchical spatial representation is a
convenient and common choice in the robotic literature for
dealing efficiently with large-scale environments (Kuiper,
1990; Galindo et al., 2007). Of course one could also
consider a flat representation in the S-Box: in fact, in
our framework, the S-Box can be substituted by any other
spatial representation.

The semantic map enables a mobile robot to reason about
its environment through the T-box, linking conceptual,
inferred knowledge, to perceived world instances it the
S-Box, which hold the needed sensorial information for
planning and execution. This map can also be used to
endow the robot with the ability to detect incoherences
between both sides of the map and act accordingly. The
next two sections will show how to use this feature to (i)
detect and resolve norm violations, and (ii) anticipate the
effects of actions to avoid new violations.

3. DOMAIN CONSISTENCY

An interesting use of our semantic maps is to detect
contradictions between the general knowledge encoded in
the map, and the specific situations observed by the robot.
This use has been previously explored, e.g., by Bouguerra
et al. (2008); Galindo et al. (2008). The generic knowledge
represented in the semantic map can also be used to encode
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(defconcept bathroom
iis
(and room
(at-least 1 has-bathtub)
(at-least 1 has-towel)

(defrelation located
“is normative-relation
:domain normative

:range room)

(defconcept towel
s

(:.and normative household
(:the located bathroom)))

)
:in-partition SRoomsS$ )

(located t-1 b-1)

Fig. 2. Example of norm violation. Towels are supposed to
be at bathrooms. Asserting a different location for a
given towel makes the knowledge base inconsistent.

normative knowledge, which describes the proper and
valid relations between objects in the considered domain.
In this case, a contradiction in the map reflects an observed
violation of a norm, that is, a failure to comply with an
established regulation within the given domain.

Galindo et al. (2011) proposes an approach to represent
and resolve norm violations based on the above idea. In
order to make this paper self-contained, we provide here a
basic summary of this approach.

We represent normative knowledge by introducing two
special entities in the ontology defined in the T-Box: a
concept called Normative-concept, that subsumes all the
concepts that are involved in a norm; and a relation called
normative-relation, that subsumes all the norms that
have to be fulfilled.

We can use these entities to encode, for instance, the item
of normative knowledge that towels have to be located in a
bathroom as follows: we define the concept Towel as being
of type Normative-concept, and we state that towels
are related to the concept Bathroom through the relation
located, which is of type normative-relation.

More specifically, norms are represented in our system
as relations whose domains are normative concepts and
their ranges belong to a mutually disjoint set of concepts.
For the towel example, the relation located has the
normative concept Towel as domain and the set of rooms
as range, that is the set of possible locations for objects
in the considered scenario (see figure 2). Note that rooms
is defined to be a disjoint set, that is, its sub-concepts
Kitchen, Bathroom and Livingroom are disjoint.

The way in which normative information is encoded in the
T-Box permits its automatic detection by most of knowl-
edge representation and reasoning systems, including the
Pellet reasoner used in the experiments reported below.
The violation of a norm is automatically identified when
a given instance that belongs to a normative concept is
related, through a normative relation, to an instance of a

(defrelation Normative-relation
:domain normative-concept
range thing)

(defrelation located (defrelation robot_location
is transient-relati is pe Tati
-domain ot :domain t pt
range room) range room " office)

in-partition $Rooms$ )

(located t-1 b-1)

(defconcept robot
(robot_location robot-1 k-1) is
(:and normative artifact
(the robot_location room  office)))

Fig. 3. Normative relation taxonomy. Transient and per-
manent relations are normative relations involving
normative concepts.

not-allowed concept. Given that the range of the normative
relations is defined as a disjoint set, the inference system
concludes that there is an incoherence since an instance
belongs to two disjoint concepts.

For example, suppose that an instance of a towel, t-1,
is perceived in a room, k-1, which has been previously
asserted to be an instance of the concept Kitchen. Then,
the piece of knowledge (located t-1 k-1) is asserted
into semantic map. In this situation, the T-Box inference
system identifies k-1 as an instance of a Bathroom, since
this is the range of the normative relation located when
applied to towels. As a result, the instance k-1 is inferred
to belong to both the Kitchen and Bathroom concepts.
These two concepts, however, have been defined as being
mutually disjoint, which causes the system to be in a
state of logically inconsistence: this incoherence makes the
violation of the norm explicitly visible in the system.

In order to recover from the incoherence, and therefore
from the detected norm violation, the system by Galindo
et al. (2011) generates the goal to satisfy the violated
constraint, that is, to make the location of towel b-1
be an instance of the correct range, Bathroom, instead
of Kitchen. If the robot knows that, let say, b-1 is a
bathroom, then the system generates the goal to bring t-1
from k-1 to b-1. This goal is then passed to a planner,
which generates a suitable plan using the information
about the current state contained in the S-Box. When
executed, this plan will make the goal hold, thus solving
the detected violation.

4. NORMS VIOLATION DURING EXECUTION

The approach presented in the previous section ensures
that the norm violation that started the process is solved
at the end of the plan execution. However, it does not
ensure that the plan execution itself does not produce
new norm violations, either at the goal state or at some
intermediate state. In this section we define an algorithm
to detect, at the planning phase, plans whose executions
will result in norm violations, and to reject those plans.
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4.1 Permanent vs. Transient Norms

Recall the towel example given in the Introduction. When
executing the plan to bring the towel back to the bath-
room, the robot may cause two types of norm violations:
(i) the towel will temporarily be in the places traversed
by the robot (e.g., the corridor), which contradicts the
norm that towels should be in bathrooms; (ii) the towel
will temporarily be on the the sink, which contradicts the
norm that towels should be placed on clean surfaces. Both
these violations are temporary: at the end of the plan the
towel will be on its hanger in the bathroom, and no norm
is violated in the final state. However, while violation (i) is
intuitively acceptable (and inevitable), violation (ii) is not
since it concerns a norm which should never be violated,
even for a short moment.

In order to capture the distinction between the above two
cases, we distinguish two types of norms: permanent and
transient norms. We define transient norms, or T5,0ms, as
a type of norms that can be violated during the execution
of a robot plan, but should be met at the final state, i.e.,
when the plan terminates. Trying to solve the violation of
a transient norm during plan execution would be pointless,
since the norm will be met at the final state. On the
other hand, we define permanent norms, or P, orms, as
norms that must be abided to at any time — see figure 3.
Violations of permanent norms should be avoided rather
than repaired. Correspondingly, any plan whose execution
will predictably incur in the (temporary) violation of a
permanent norm must be rejected.

In the towel example above, the requirement that the towel
is in a bathroom should be treated as a transient norm,
while the requirement that the towel is on a clean surface
should be treated as a permanent one. As another example,
consider a permanent norm that forbids the robot to enter
into the office for any reason: then, no plan should include
a navigation action through the office, and alternative
plans should be sought.

4.2 Solving Norm Violations

We now show how to detect, at planning time, plans
that will result in norm violations. The general idea is to
analyze the plans proposed by the planner in order to check
the effects of individual actions, and to reject those plans,
or individual actions, which result in a violation. First
we define our planning problem, and then we present our
algorithm for anticipating and resolving norm violations.

Let p be a planning problem, defined as p = (s;, s4,0)
where s; is the initial state, s, is the goal state and O is a
set of operators which define the abstract actions available
to the robot. The aim of the planning system is to generate
a plan, i.e., a sequence of ordered instantiated operators, or
actions, (01,02,...,0y,), that transforms the initial state,
s;, in a final state s¢ such that s; C sy.

Each operator o; € O is a 3-tuple o; = (pre,add,del)
where pre is the set of preconditions that has to hold on
a given state s in order to apply o;, and add and del are
the postconditions for the operator, that is, the sets of
statements added or removed from the state s after the
application of o;. (We direct the reader unfamiliar with
planning to Ghallab et al. (2004).)

= InconsistencyDetection(SemanticMap) I

FOR each v; € Vpm,
g; = Goal Generator (SemanticMap, v,)

| {0y, 0:,-0,)=Planner (s;,g;,0)

I

I(—| Restore [SemanticMap)
l [ )
For =ach o,
Apply(o,, SemanticMap)

| Viarms_ox = InconsistencyDetection(SemanticMap) |

disable (o)

mark (o)

marked operators = @ ?

| ExscutePlan (o, 05, o) |

Fig. 4. Algorithm for the detection of norms violations.
The effect of each action is sequentially checked.
Only violation of transient norms are allowed at the
intermediate steps.

oy = oldest marked
disable (o;)

Our algorithm for maintaining norm consistency is shown
in figure 4. This extends the algorithm proposed by
Galindo et al. (2011), and accordingly the first three steps
are the same: the violated norms are detected, the corre-
sponding goals are generated, and a planner is invoked to
produce suitable plans.

The new part starts at step 4. Given a plan (01, 02, . . ., 0y),
we sequentially analyze each action og,k = 1,...,n, and
simulate the effect of executing this action. Simulation is
done by adding and removing to the semantic map the
operator’s add and del postconditions, respectively. Then,
the inconsistency detection mechanism is executed to
check the integrity of the knowledge base. If a permanent
norm is violated, then the plan is rejected and the planner
is asked to generate a new plan. Before the planner is
invoked, the semantic map is restored to its state before
the actions were simulated; also, action oy is disabled so
the planner will not include it in the new plan.

If a transient norm is violated after simulating the execu-
tion of oy, the algorithm continues with the next action in
the plan. However, o is marked as a possible culprit for a
violation in the final state: if any action is so marked after
the algorithm has analyzed all the actions, this means that
a transient norm is violated in the final state, which is not
acceptable. In this case, the planner is given the oldest
culprit, and is requested to find an alternative plan that
does not involve that action.

If no norms are violated after simulating the execution of
ok, then the list of possible culprit actions is cleared since
all transient norms are not violated any more.

If the algorithm passes the test &k = n and no action
is marked as possible culprit, this means that the plan
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Fig. 5. A test environment that violates the normative
constraints regarding the location of towels.

(01,02, ...,0,) does not violate any permanent norm, and
that the final state does not violate any transient norm:
hence, the plan is admissible and it can be executed by the
robot.

5. AN ILLUSTRATIVE EXAMPLE

The above framework has been been implemented using
the OWL-DL formalism (Dean et al., 2004) together with
Pellet reasoner (Sirin et al., 2007) to deal with semantic
knowledge in the T-Box, and traditional robot maps
(Galindo et al., 2007) for the S-Box. We have used the
Protegé ontology editor (Protégé Project, 2011) to create
the contents of the T-Box, and the HTN-based planner
JSHOP-2 (Ilghami and Nau, 2003) to generate plans.
While each of these tools is very common in its respective
domain, we emphasize that other tools could also be used
without major changes in our approach.

We show a simple experiment whose main purpose is
to clarify the working of our approach. Consider the
apartment-like environment depicted in figure 5, and a T-
box that represents two norms: a transient norm for the
location of towels, i.e., towels should be in the bathroom,
and a permanent norm related to the robot prohibition
to be inside the office. The factual information for this
example in the initial state is shown in figure 6.

Having this information stored at the T-box of the seman-
tic map, the DL reasoner (Pellet) detects the violation of
a normative relation, namely the position of the towel is
not a bathroom yielding this explanation:

[disjointWith(Kitchen, Bathroom),
subClass0f (Towel, all(located, Bathroom)),
prop(located, ti1, k1),

type(tl, Towel),

type(kl, Kitchen)]

In order to fix this norm violation, the goal generator pro-
vides an initial goal by selecting an instance of the range
of the given relation, i.e., an instance of the Bathroom
concept. Thus, the goal bring t1 bl is proposed and the
planning system produces the following solution:

s;={(Towel t1), (Robot r1l), (Kitchen k1),
(Bedroom bel), (Bathroom bal) (Livingroom 11),
(0ffice o1) (Corridor c1), (located t1 ki),
(robot-location r1l 11), (mav 11 c1), (nav 11
0l1), (nav ol cl1), (nav cl bal), (nav cl bel),
(nav c1 k1)}

Fig. 6. Initial state. The norm violation is caused by the
statement (located t1 k1).

Loading ontology file:owl/goalgeneration.owl
Loading problem from file src\domain\facts.txt
Goal proposed: bring t1 bl

Plan

('move 11 o1l)
(!'move ol c1)
('move c1 k1)
(!pickup t1 k1)
('move k1 c1)
('move c1 bl)
(!drop t1 bl)

This plan will re-establish the consistency of the robot
environment, i.e., at the end the towel (and also the robot)
will be located in the bathroom. However, this solution
is not admissible given that a permanent constraint is
violated during the execution: the robot enters the office,
which is not allowed by a permanent norm. Note that
the transient norm regarding the location of the towel is
violated too at intermediate states, but it is satisfied at
the goal state.

The algorithm in figure 4 detects the expected violation
of the permanent norm after analyzing the first action
of the plan, i.e., (!move 11 o1). Namely, the algorithm
simulates the execution of this action by considering the
definition of the move operator:

(:operator (!move ?7x 7y)
((robot-location rl 7x) (nav 7x ?7y))
((robot-location ri ?x))
((robot-location rl 7y)))

and then adding to the semantic map the fact
(robot-location rl ol)

obtained from the above operator binding ?x to 11 and
7y to ol. This fact violates the permanent norm about
the permitted locations for the robot. Therefore, the plan
is rejected, the action (!'move 11 ol) is disabled, and
the planner re-invoked.! The planner then generates the
alternative solution below:

Loading ontology file:owl/goalgeneration.owl
Loading problem from file src\domain\facts.txt
Goal proposed: bring t1 bl

Plan

('move 11 c1)
('move c1 k1)

1 In our implementation, disabling of an action is done by deleting
its preconditions from the initial state: in this case, (nav 11 ol).
This is an oversimplification, but it serves its purposes for this proof
of concept implementation.
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(!'pickup t1 k1)
('move k1 c1)
('move c1 bl)
('drop t1 bl)

This solution is admissible since the permanent norm is
met at every step in the plan and the transient one is met
at the goal state, and it can therefore be passed to the
robot for execution.

6. CONCLUSIONS AND FUTURE WORK

This paper extends our previous work on the utilization of
semantic knowledge to enable a mobile robot to recognize
and correct situations that do not comply with a given
semantic model of the environment. The main novelty
is a method that guarantees that the plans generated
to solve a violation will not create other (transient or
permanent) violations. Our development also revealed the
necessity to distinguish between transient and permanent
norms. The key message here is that “the end does not
justify the means” in the sense that the robot should not
keep the coherence between the perceived world and the
established norms at any price, disobeying other norms at
intermediate steps.

A distinctive feature of our approach to normative reason-
ing is that the normative model is provided in a declara-
tive way, rather than by exhaustive violation-action rules.
This allows the robot to resolve situations of conflict by
reasoning about the cause of the problem and its possible
solutions.

The work reported here addresses a complex problem,
and many extensions can be considered. For instance, in
our work we assume that the robot should always enforce
consistency with the semantic knowledge. However, there
are cases where norm violations might be allowed. For
example, going back to our example, the robot could ignore
the prohibition to enter the office if the user asks it to clean
it during his absence. We speculate that our scheme can
be extended to also cope with this and other exciting uses
of semantic knowledge in mobile robots.
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