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Abstract—A growing body of literature shows that endowing
a mobile robot with semantic knowledge, and with the ability to
reason from this knowledge, can greatly increase its capabilities.
In this paper, we explore a novel use of semantic knowledge:
to encode information about how things should be, or norms,
to allow the robot to infer deviations from these norms and to
generate goals to correct these deviations. For instance, if a robot
has semantic knowledge that perishable items must be kept in a
refrigerator, and it observes a bottle of milk on a table, this robot
will generate the goal to bring that bottle into a refrigerator. Our
approach provides a mobile robot with a limited form of goal
autonomy: the ability to derive its own goals to pursue generic
aims. We illustrate our approach in a full mobile robot system
that integrates a semantic map, a knowledge representation and
reasoning system, a task planner, as well as standard perception
and navigation routines.

Index Terms—Semantic Maps, Mobile Robotics, Goal Auton-
omy, Knowledge Representation, Proactivity

I. INTRODUCTION

Mobile robots intended for service and personal use are
being increasingly endowed with the ability to represent and
use semantic knowledge about the environment where they
operate [13]. This knowledge encodes general information
about the entities in the world and their relations, for instance:
that a kitchen is a type of room which typically contains a
refrigerator, a stove and a sink; that milk is a type of perishable
food; and that perishable food is stored in a refrigerator. Once
this knowledge is available to a robot, there are many ways in
which it can be exploited to better understand the environment
or plan actions [21], [18], [19], [10], [22], assuming of course
that this knowledge is a faithful representation of the properties
of the environment. There is, however, an interesting issue
which has received less attention so far: what happens if
this knowledge turns out to be in conflict with the robot’s
observations?

Suppose for concreteness that the robot observes a milk
bottle laying on a table. This observation conflicts with the
semantic knowledge that milk is stored in a refrigerator. The
robot has three options to resolve this contradiction: (a) to
update its semantic knowledge base, e.g., by creating a new
subsclass of milk that is not perishable; (b) to question the
validity of its perceptions, e.g., by looking for clues that may
indicate that the observed object is not a milk bottle; or (c)
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to modify the environment, e.g., by bringing the milk into a
refrigerator. While some work have addressed the first two
options, the last one has not received much attention so far.
Interestingly, the last option leverages an unique capability of
robots: the ability to modify the physical environment. The
goal of this paper is to investigate this option.

We propose a framework in which a mobile robot can ex-
ploit semantic knowledge to identify inconsistencies between
the observed state of the environment and a set of general,
declarative descriptions, or norms, and to generate goals to
modify the state of the environment in such a way that these
inconsistencies would disappear. When given to a planner,
these goals lead to action plans that can be executed by the
robot. This framework can be seen as a way to enable a
robot to proactively generate new goals, based on the overall
principle of maintaining the world consistent with the given
declarative knowledge. In this light, our framework contributes
to the robot’s goal autonomy. Although behavioral autonomy
has been widely addressed in the robotic arena by developing
deliberative architectures and robust algorithms for planning
and executing tasks under uncertainty, goal autonomy has
received less attention, being explored in the last years in
the theoretical field of multi-agents [8], [4] and implemented
through motivational architectures [1], [7].

Our framework relies on a hybrid semantic map, which
combines semantic knowledge based on description logics [2]
with traditional robot maps [11], [21], [18]. Semantic maps
have been already shown to increase the robot’s behavioral
autonomy, by improving their basic skills (planning, naviga-
tion, localization, etc.) with deduction abilities. For instance,
if a robot is commanded to “fetch a milk bottle” but it ignores
the target location, it can deduce that milk is supposed to be
in fridges which, in turn, are located at kitchens. We now
extend our previous works on these issues [11], [10] to also
include partial goal autonomy through the proactive generation
of goals based on the robot’s internal semantic model.

More specifically, we consider a robot with the innate
objective of keeping its environment in good order with respect
to a given set of norms, encoded in a declarative way in
its internal semantic representation. Incoherences between the
sensed reality and the model, i.e., the observation of facts
that violate a particular norm, will lead to the generation
of the corresponding goal that, when planned and executed,
will re-align the reality to the model, as in the milk bottle
example discussed above. It should be emphasized that in this
work we only focus on the goal inference mechanism: the
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development of the required sensorial system, and the possible
use of semantic knowledge in that context, are beyond the
scope of this paper.

Our approach to goal autonomy can be seen as a case of
normative goals applied to agents which act based on beliefs
and intentions [8], [4]. However, normative goals are often
considered as simple if-then rules triggered when particular
stimuli are given in the environment [20], [1]. Other works
have used the term maintenance goals to represent innate
goals that are aimed to satisfy a particular state of the world
over time, e.g., the battery level should be always over a
certain value [3], [12]. Our approach substantially diverges
from those works, since it is not based on procedural rules,
i.e., motivation-action pairs, nor if-then rules. Instead, we
rely on a declarative representation of the domain, using the
LOOM description logic language [17], from which the robot
infers what should be done according to the current factual
information in order to maintain the consistency between its
environment and its representation.

This manuscript is structured as follows. In the next section
we present our semantic map. Section III formalizes the use of
semantic knowledge for goal generation. In section IV a real
experiment is described. Finally some conclusions and future
work are outlined.

II. A SEMANTIC MAP FOR MOBILE ROBOT OPERATION

The semantic map considered in this work, derived from
[10], comprises two different but tightly interconnected parts:
a spatial box, or S-Box, and a terminological box, or T-
Box. Roughly speaking, the S-Box contains factual knowledge
about the state of the environment and of the objects inside it,
while the T-Box contains general semantic knowledge about
that domain, giving meaning to the entities in the spatial box
in terms of concepts and relations. For instance, the S-Box
may represent that Obj-3 is placed at Area-2, while the
T-Box may represent that Obj-3 is a stove which is a type of
appliance. By combining the two sides, the semantic map can
infer, for instance, that Area-2 is a kitchen, since it contains
a stove.

This structure is reminiscent of the structure of hybrid
knowledge representation (KR) systems [2], which are now
dominant in the KR community. Our semantic map extends
the assertional component to be more than a list of facts about
individuals by also associating these individuals to sensor-level
information with a spatial structure — hence the name S-Box.
Please refer to [10] for more detail.

Figure 1 shows a simple example of a semantic map of
a home-like environment where both the S-Box and the T-
Box have a hierarchical structure. The hierarchy in the T-
Box is a direct consequence of the fact that the represented
semantic knowledge forms a taxonomy. For the S-Box, the
use of a hierarchical spatial representation is a convenient and
common choice in the robotic literature [15], [9] for dealing
efficiently with large-scale environments. Of course one could
also consider a flat representation in the S-Box: in fact, in our
framework, the S-Box can be substituted by any other spatial
representation.

Fig. 1. An example of semantic map for a home-like environment. S-Box
is on the left and T-Box on the right. See explanation in the text.

In the next section we exploit this semantic map, and more
precisely the T-Box, for robot goal inference.

III. INFERRING GOALS FROM SEMANTICS

The semantic map described above provides two different
points of view of the robot workspace. On the one hand
the spatial part (S-box) enables the robot to generate plans
from basic skills, striving for behavioral autonomy. On the
other hand the terminological part (T-box) provides an ab-
stract model of the robot environment which includes general
knowledge, e.g., books are located on shelves, which can be
exploited for the automatic generation of robot goals.

First we give an informal description of the proposed
mechanism for goal generation. Then, section III-B formalizes
our approach under description logic. Finally, section III-C
illustrates the process with two intuitive examples.

A. Informal Description

In the field of knowledge representation, semantic knowl-
edge is usually interpreted as being descriptive of a specific
domain: for example, the item of knowledge “beds are located
in bedrooms” is used to partially describe beds. This knowl-
edge is most useful to infer implicit properties from a few
observed facts. For example, if the robot perceives a bed in
a room it can infer that the room is a bedroom; conversely,
if it is commanded to find a bed it can restrict its search to
bedrooms. Galindo et al. [10] offer examples of applications
of these inferences in the robotic domain.

Interestingly, semantic knowledge can also be interpreted as
being normative: under this interpretation, the above item of
knowledge is prescribing where a bed must be located. The
difference becomes apparent when considering how a robot
should react to an observation that contradicts this knowledge.
Consider again the milk box example in the Introduction,
and the three possible options to resolve the contradiction
discussed there. Options (a) (update the model) and (b) (update
the perceived state) correspond to modifying the robot’s beliefs
to recover from a contradiction, and are related to execution
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monitoring and uncertain state estimation. These options has
been explored previously [11], [6]. The third option (c) (update
the world) involves goal generation, and it is the one addressed
here.

Informally, our approach defines a subset of concepts and
relations stored in the T-Box as normative, i.e. they are
involved in norms that should be fulfilled, by defining a
special class normative-concept and a special relation
normative-relation. Items of knowledge to be treated
as normative will derive from them.

For instance, we can define that the normative concept
towel should be related to the concept bathroom through
the normative relation place — that is, towels should be
located in a bathroom.

When a given instance violates a norm in the T-Box, the
system derives the items of knowledge involved in the norm,
and hence the goal that should be posted in order to satisfy that
norm. In our example, suppose that an instance of a towel is
perceived in a room which is not a bathroom. Then the given
definition of a towel is violated — a circumstance that can be
detected by most knowledge representation systems, including
the LOOM [17] system used in our experiments. Since the
above definition of towel is normative, the system yields a
goal to satisfy the constraint, that is, to make the place of
this towel be an instance of a bathroom. If the robot knows
that, let say, room-3 is a bathroom, this means that the goal
“bring the towel to room-3” is generated.

B. Description Logic Representation for Inferring Normative
Goals

Let I be a description logic interpretation on a particular
domain D. Let ℘ define a set of disjoint concepts ℘ =
{P1, . . . Pn}, i.e., ∀a, a ⊑ Pi ⇒ @j, j ̸= i, a ⊑ Pj , where
x ⊑ y denotes that x is subsumed by concept y.

Let Nr be called a normative relation, a function defined
as:

Nr : NC → ℘

where NC represents the so-called normative concepts, that is,
concepts which ought to be properly related to those from ℘.
Nr actually defines the norms to be kept. Normative relations
are defined as one-to-one function as ∀b ⊑ NC ⇒ ∃̇Pj ∈
℘, b → [FILLS : Nr Pj ].

The NC set is further divided into two disjoint sets: the set
△ of all normative concepts that fulfill the imposed norms,
and the set △ of those that fail to fulfill some of the norms
(see figure 2).

Within this structure of the domain, constraint violations are
automatically inferred when instances of the defined partitions
are deduced to belong to a number of disjoint concepts. Let
see an example:

Let C a normative concept (and therefore C ⊑ △ by
definition) which is related to the Pi concept through the
normative relation Nr. That is,

∀c ⊑ C, c → [FILLS : Nr x], x ⊑ Pi

If in a given interpretation I, ∃k ⊑ C, k → [FILLS :
Nr y], y ⊑ Pj ∈ ℘, Pj ̸= Pi ⇒ I � y ⊑ Pj ∧ y ⊑ Pi ⇒

Normative 

Concepts

Normative 

Relations
 

! NrnNr1 PnPiP1
..! ..

x

C

(defconcept C

:is

(and !

(defrelation Nr1

:is normative-relation

:domain normative-concept

:range  )

c

(and !

(:the Nr1 Pi)))

Fig. 2. Knowledge representation for detecting inconsistencies. Boxes
represent concepts while instances are represented as circles. The concept
C is defined as a normative concept related to Pi through the normative
relation Nr1. See explanation in the text.

(Incoherent y). That is, if the normative relation is not met for
a particular instance of a normative concept, the filler of such
an instance, in this case y, becomes incoherent. Moreover,
since k is defined as k ⊑ C ⊑ △, it is also inferred that
k ⊑ △, which also makes k incoherent.

Goal Inference. Given an incoherent instance of a normative
concept, k ⊑ C and the normative relation Nr, Nr(k) =
x, x ⊑ Pi ∈ ℘, the inferred goal to recover the system from
the incoherence is:

(exists ?z (Pi z) (Nr k z))

That is, in the goal state, there should exist an instance of
Pi related to k through the normative relation Nr

1.

C. Sample Scenarios

In this section we describe two illustrative examples.
1) Milk should be inside fridges: Consider a home assistant

robot taking care of an apartment. Among other norms, the
robot might watch milk bottles so they are always kept inside
the fridge (see an implementation in section IV).

The semantic map for this scenario will entail information
about the different rooms, i.e. kitchen, livingroom, bathroom,
etc., the objects found inside, i.e. tables, chairs, fridges, books,
bottles, etc, and their relations. Following the formalization
given in III-B, part of the description of this scenario in-
cludes the partition of different places where bottles of milk
could be found, e.g. ℘ = {fridge, table, shelf}, being
milk-bottle a normative concept, i.e. milk− bottle ⊑ △,
(see figure 3).

Note that this definition implicitly provides certain re-
strictions that any bottle of milk should fulfill. Precisely,
milk-bottle is assumed to be a beverage which has to
meet at least one norm imposed by a normative relation, since
it is subsumed by the fulfilling-norm concept.

Through the definitions given in figure 3, the expres-
sion (:the place fridge) indicates that every bottle
of milk ought to be located in one location that must be

1It is not necessary to add the negation of (Nr k z) to the goal state, since
the Nr function is defined as one-to-one.
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(defconcept object-places

:is-primitive (and location

(at-least 1 has-object)

…

(defrelation normative-relation)

…

:partitions $ $))

(defconcept fridge

:is-primitive 

(and object-places 

(defconcept table

:is-primitive 

(and object-places 
(d f l i lappliance

(:the temp cold)

…

:in-partitions $ $))

furniture

(:exactly 4 legs)

…

:in-partitions $ $))

(defrelation place

:is (and normative-relation         

:domain object        

:range object-places))

(defconcept normative-concept

:partitions $Norms$))

(defconcept fulfilling-norm

:is (and normative-concept

(:not (:some normative-relation incoherent))

:in-parititions $Norms$) 

(defconcept non-fulfilling-norm

:is  (and normative-concept

(:some normative-relation

incoherent)

:in-parititions $Norms$)  

(defconcept milk-bottle

:is (and beverage 

fulfilling-norm

(:the place fridge)

(:the color white))

Fig. 3. Part of the domain definition for the “milk inside fridges” example.
For clarity sake, fulfilling-norm is used instead of △ and non-fulfilling-norm
instead of △.

a fridge. Notice that in this example, the other restriction
(:the color white) is not defined as normative rela-
tion, and thus, if it is not fulfilled in the scenario it will be
simply deduced that the object is not a bottle of milk and no
incoherences or robot goals will be generated.

Let us now consider the following situation in which the
information gathered by the robot contradicts the definitions
in the domain:

{(table t)(milk-bottle mb)(fridge f)
(place mb t)}

Under this interpretation, LOOM infers that the instance t
should be a fridge since there is a bottle of milk placed on it.
Such an inference produces an incoherence in the model given
that the instance t is deduced to belong to two concepts, i.e.
table and fridge, which have been defined as members
of a partition. In this situation t is marked by LOOM as
“incoherent”.

Moreover, it is also deduced that the instance mb, initially
defined as mb ⊑ △, also belongs to △ since the normative
relation (:the place fridge) is filled with an incoher-
ent instance. Again the system detect that mb belongs to two
concepts defined in a partition and thus, it is also marked
as “incoherent”. The result is that the instances involved in
the violated norm are detected and marked as incoherent.
By checking the domain definition of such an incoherent
instances, the follwoing goal is deduced: 2

(exist ?x (fridge ?x) (place mb ?x))

That is, the robot has to put the bottle of milk represented by
mb inside any object ?x which is known to be a fridge. Since
in the robot’s domain there is a single fridge f, the above goal

2This goal is expressed in the goal language of the planner used in our
experiment (see below), which is a subset of FOL.

(defrelation normative-relation)(defconcept normative-concept

:partitions $Norms$))

Normative Concepts Normative Relations

(defconcept plant

i   ( d  f lfilli

(defconcept

fulfilling-norm

..)

(defconcept 

non-ulfilling-norm

..)

(defrelation has-humidity

:is (and 

normative-relation                

:domain object        

:range humidity)..)

(defrelation place
:is  (and  fulfilling-norm

(:the place garden)

(:the has-humidity normal-hum) 

..)

Range Partitions

:is (and 

normative-relation             

:domain object        

:range location))

(defconcept room

:partitions $Rooms$))

(defconcept humidity

:partitions $H-levels$))

(defconcept bathroom

(defconcept kitchen

:in-partition $Rooms$))

(defconcept dry

:in-partition $H-levels$))

(defconcept normal-hum(defconcept bathroom

:in-partition $Rooms$))

(defconcept garden

:in-partition $Rooms$))

(defconcept normal-hum

:in-partition $H-levels$))

(defconcept wet

:in-partition $H-levels$))

Fig. 4. General scheme for representing multiple norms. A particular partition
has to be defined for each normative relation.

is instantiated as (place mb f).
2) Plant should be properly watered: We now describe a

more general example in which two norms are imposed on the
same normative concept.

Consider we impose that “plants should be placed at the
garden and have a normal humidity level”. In this case we need
two normative relations place and has-humidity and two
partitions of concepts representing the possible, disjoint values
for such relations. Figure 4 depicts part of the T-Box for this
example.

Let us consider the following situation:

{(kitchen k)(bathroom b)(garden g)
(plant p)(place p k)(humidity-value dry)
(has-humidity p dry)}

As in the previous example, the process for detecting norms
violation checks for incoherent instances. In this case instances
k and dry become incoherent since they are deduced to
belong to {kitchen,garden} and {dry,normal-hum}
respectively. Besides, the instance p is also incoherent and
therefore the following goal is generated:

(and
(exist ?x (garden ?x)(place p ?x))
(exist ?y (normal-hum ?y)(has-humidity p ?y)))

IV. AN ILLUSTRATIVE EXPERIMENT

We now illustrate the applicability of our goal generation
technique to a real robotic application by showing an illustra-
tive experiment run in a home environment. The experiment
is inspired by the “milk” scenario in Sec. III above. In this
experiment, a distributed network of sensors is used to update
the state of the environment stored in the semantic map.
Our algorithm is then run to detect violations of semantic
constraints, and to generate goals which are passed to a
planning and execution system in the robot.
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Fig. 5. The test environment. Left: layout. Right: the robot Astrid.

A. Physical setup

We have used a physical test-bed facility, called the PEIS-
Home [23], that looks like a bachelor apartment of about
25m2 and consists of a living-room, a bedroom and a small
kitchen — see Fig. 5. The PEIS-Home is equipped with a
communication infrastructure, and with a number of sensing
and actuating devices, including a few mobile robots. Relevant
to the experiments reported here are:

• a refrigerator equipped with a computer, some gas sen-
sors, a motorized door, and an RFID tag reader;

• an RFID tag reader mounted under the kitchen table;
• a set of RFID tagged objects, including a milk cartoon;
• a set of webcams mounted on the ceiling; and
• Astrid, a PeopleBot mobile robot equipped with a laser

scanner, a PTZ camera, and a simple gripper.
A few provisions have been introduced to simplify execu-

tion. In particular, since Astrid does not have a manipulator
able to pick-up an object and place it somewhere else, these
operations have been performed with the assistance of a human
who puts the object in and out from the Astrid’s gripper. These
simplifications are acceptable here, since the purpose of our
experiments is not to validate the execution system but to
illustrate our goal generation algorithm in the context of a
full robotic application.

B. Software setup

The software system used in our experiment is schematically
shown in Fig. 6. The block named “PEIS Ecology” contains all
the robotic components and devices distributed in the PEIS-
Home. These are integrated through a specific middleware,
called the PEIS-Middleware, that allows to dynamically acti-
vate and connect them in different ways in order to perform
different tasks [5]. A set of activations and connections is
called a configuration of the PEIS Ecology. For instance, the
configuration in which the ceiling cameras are connected via
an object recognition to the navigation controller onboard
Astrid can be used to let the robot reach a given object.

The semantic map is based on a simple metric-topological
map attached to the LOOM knowledge representation system
[17]. Newly observed facts are asserted in LOOM using the
tell primitive. The goal generation system interacts with
LOOM as described in Sec. III above. Newly generated goals
are passed to the planning system. This consists of three
parts: an action planner, called PTLplan [14], that generates a

Fig. 6. Sketch of the software architecture used in our experiments. Only
the modules and connections relevant to goal generation are shown.

sequence of actions to satisfy the goal; a sequencer, that selects
those actions one by one; and a configuration planner [16], that
generates the configuration needed to perform each action.
When the current plan is completed, the goal generation
system is re-activated.

C. Execution
Before the execution started, the semantic map contained a

metric-topological map of the PEIS-Home, and the considered
semantic knowledge in LOOM . In particular, the following
statement was included in the LOOM knowledge base

(defconcept MilkBox :is
(:and Container FulfillingNorm

(:the place Fridge) ))

This encodes the normative constraint that any instance of
the normative class MilkBox must have a single filler for
the place relation, and that this filler must be of the class
Fridge.

An RFID tag has been attached to a milk box, containing
an encoding of the following information:

id: mb-22
type: MilkBox
color: white-green
size: 1-liter

At start, the milk is put on the kitchen table, called
table-1 in the map. The RFID tag reader under the table
detects the new tag, and reports the information that mb-22
is a MilkBox and it is at table-1 — see Fig. 7. This
information is entered into LOOM by:

(tell (MilkBox mb-22))
(tell (place mb-22 table-1))

As discussed in Sec. III, this information renders both the
instances mb-22 and table-1 incoherent. The goal genera-
tion algorithm identifies mb-22 as the normative instance. The
algorithm then searches through all the relations that constrain
mb-22 to find a violated normative one, and it finds place.
Since this relation should be filled by an instance of Fridge,
it generates the following goal:

(exists ?x (and (Fridge ?x)(place mb-22 ?x)))

PTLplan uses the knowledge in the semantic map, together
with its domain knowledge about the available actions, to
generate the following action plan (simplified):

((MOVE astrid table-1) (PICKUP astrid mb-22)
(OPEN fridge-1) (MOVE astrid fridge-1)
(PLACE astrid mb-22) (CLOSE fridge-1))

where the variable ?x has been instantiated by fridge-1.
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Fig. 7. RFID tagged objects and RFID tag readers used in our experiments.
Left: in the fridge. Right: in the kitchen table.

The sequencer passes each action in turn to the configuration
planner, which connects and activates the devices in the PEIS
Ecology needed to execute it. For example, the first two actions
only require devices which are on-board Astrid, while the third
action requires the activation of the fridge door device. (The
details of this “ecological” execution are not relevant here: see
[16] for a comprehensive account.) As mentioned above, the
PICKUP and PLACE actions were performed with the help of
a human.

After the milk is removed from the table, the RFID tag
reader under the table detects its absence and it signals it to
the semantic map. When the milk is placed into the fridge, it
is detected by the reader in the fridge. Corresponding to these
two events, the following assertions are made in LOOM :

(forget (place mb-22 table-1))
(tell (place mb-22 fridge-1))

After execution is completed, the sequencer re-activates the
goal generator. Since the place of mb-22 is now an instance
of a fridge, no incoherence is detected and no new goal is
generated.

V. DISCUSSION AND CONCLUSIONS

One of the most promising uses of semantic knowledge
in a robotic system is to resolve situations of conflict of
ambiguity by reasoning about the cause of the problem and its
possible solutions. This paper has explored an often neglected
aspect of this use: recognizing and correcting situation in the
world that do not comply with the given semantic model,
by generating appropriate goals for the robot. A distinctive
feature of our approach is the normative model is provided
in a declarative way, rather than by exhaustive violation-
action rules. Experiments carried out on a real mobile robot
demonstrate the conceptual viability of this approach.

The work reported here is a first step in an interesting direc-
tion, and many extensions can and should be considered. For
instance, in our work we assume that the robot should always
enforce consistency with the semantic knowledge. However,
there are cases where norm violation might be allowed. Going
back to the milk example, it would be reasonable to allow
that the milk bottle stays out of the fridge for some amount
of time while the user is having breakfast. We speculate that
our scheme for automatic goal generation can be extended to
also cope with this and other issues.
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