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Abstract. Assistant robots like robotic wheelchairs can perform an effective and valuable 

work in our daily lives. However, they eventually may need external help from humans in 

the robot environment (particularly the driver in the case of a wheelchair) in order to 

accomplish safely and efficiently some tricky tasks for the current technology, i.e., open a 

locked door, traversing a crowded area, etc. This paper proposes a control architecture for 

assistant robots designed under a multi-agent perspective that facilitates the participation of 

humans into the robotic system and improves the overall performance of the robot as well 

as its dependability. Within our design, agents have their own intentions and beliefs, have 

different abilities (that include algorithmic behaviors and human skills), and also learn 

autonomously the most convenient method to carry out their actions, through reinforcement 

learning. The proposed architecture is illustrated with a real assistant robot: a robotic 

wheelchair that provides mobility to impaired or elderly people. 
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1   Introduction 

The assistant robotics field covers those applications where a mobile robot helps 

humans to perform certain tasks. Examples of robotic assistant applications are house 

cleaner and keeper robots, tour guiders, assistant robots for elderly people, etc., in 

which a robot must work within human environments interacting intelligently with 

people.  

 

The first consideration to be taken into account in assistant robots is that they are 

designed to serve non-expert people who usually prefer to communicate and to 

interact with machines in the same manner they do with other people. Moreover, the 

presence of a robot within human scenarios like houses, offices, public facilities, etc., 

imposes a high degree of operation robustness and physical safety for humans as well 

as a sophisticated set of robot capabilities like maneuvering within narrow and/or 

crowded spaces, avoiding mobile obstacles, docking, etc. Planning tasks in such  

complex and typically large environments also represents a tough problem due to the 

large number of elements involved. 

 

These issues are usually beyond the capabilities that the current technology offers, so 

the use of assistant robots operating autonomously within human environments is not 

yet extended. This lack of robot capabilities could be approached by considering the 

assisted person (or any other from the surroundings) as an additional component of an 

augmented robot. That is, humans can be integrated into the robotic system allowing it 
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to extend its abilities through skills either not supported by the robot (i.e. take an 

elevator) or supported by the robot but in a different and (maybe) more secure manner 

(i.e. maneuvering in a complex situation). These skills may range from complicated 

low-level motions to high-level decision-makings. Obviously, the robot control 

architecture must be specifically designed to take into account this degree of 

interaction.    

 

In the literature, mobile robotic architectures have considered the particular 

requirements of assistant applications from different perspectives. Some works 

([1],[7],[11]) ensure desirable properties as robustness and fault tolerance in the 

architecture components by providing automatic software design tools, mechanisms to 

deduce safe actions before they are executed, techniques to check resource 

availability, etc. In the teleoperation area, whose applications can be seen close to 

assistant applications, collaborative control [12] is used to develop robotic 

architectures that support a tight relation between humans (expert operators) and 

machines. Through collaborative control, robots accept advises from operators to 

decide its actions. Such relation between human and robot improves the robot 

operating capacity but it restricts the human to physically act when the robot is not 

capable to continue its plan, for example when it must pass through a locked door. 

Other works also consider human-machine integration or cooperation ([12], [24], 

[30]) in a way that it enables a human to provide robot capabilities enough to operate 

in human environments. In these cases, human only serves as a command input 

provider. 
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Elsewhere a hybrid robotic architecture, called ACHRIN, specifically designed for 

assistant robots has been presented ([16],[17]). ACHRIN facilitates a non-expert 

person to be involved in the robotics operation when needed, through a special 

human-robot integration. Such an integration allows the human to participate at all 

levels, from deliberating a plan, to executing it, or even acting as an extra sensor. But 

in spite of those remarkable features, ACHRIN exhibits some shortcomings: 

 

-Since ACHRIN is a tiered architecture, its components are communicated in a 

client/server fashion, and thus, communications should be built when designing the 

architecture. This characteristic prevents the system to be easily scaled up or 

dynamically modified, i.e., adding components. 

 

-Considering a number of components that perform the same task (redundancy) 

imposes the necessity of selecting the best one according, for instance, to the past 

experience. In ACHRIN this selection is carried out by a component that implements a 

simple and hand-coded policy based on the previous results of execution. However, it 

would be desirable a more effective and flexible policy that could provide components 

with a certain degree of autonomy. 

 

In this paper we propose a multi-agent re-design of ACHRIN to overcome the 

commented limitations. Multi-agent systems (MAS) is a subfield of AI that studies 

those complex systems formed by several agents that interact in some way. Although 
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MAS is a mature discipline, there is no general agreement on what an agent is, and 

several definitions can be found in the literature ([15],[28],[40]). However they all 

have a common aspect: autonomy, learning capabilities and rational behavior are 

essential aspects that agents must have. Following this, we have modified ACHRIN by 

turning all its components into autonomous agents. In our implementation, each agent 

possesses a mental state, that is, a set of intentions and beliefs, a group of abilities to 

perform a particular action, i.e., navigation, and a learning mechanism, Q-learning 

[22] in our case, to decide at each moment the best ability to accomplish the agent 

intentions. 

 

MAS becomes a robust and scalable option when managing different elements with 

different goals that own some kind of information. Moreover, the use of a multi-agent 

framework seems more appropriate for an assistant robot application than deliberative, 

reactive or hybrid robotic architectures, since it permits a more natural integration of 

the human into the robotic system. We refer the reader to [40] for a complete 

discussion of multi-agent systems. 

 

The rest of the paper is organized as follows. Section II gives an overview of the 

proposed multi-agent architecture. Section III details inter-agent communications. 

Section IV goes into the learning capabilities of agents to select autonomously the 

most appropriate abilities for performing their actions, and section V describes the 

application of the multi-agent architecture to a real assistant robot: a robotic 

wheelchair. Finally, some conclusions and future work are outlined.  
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2   Multi-Agent Control Architecture 

The main feature of the multi-agent architecture presented in this paper is the 

integration of human abilities into the agents that constitute the architecture, as 

commented further on. In this section, a top-bottom description of the proposed 

architecture is provided: first, we focus on its structure, that is, the type of agents that 

includes, highlighting the differences with a non-agent-based architecture. Then, we 

detail the internal structure of each agent, the so-called Common Agent Structure 

(CAS).  

 

2.1.- Structure of the Multi-Agent Architecture 

One of the main characteristics that makes a multi-agent architecture (as well as any 

other agent-based system) different from other approaches is the interconnection 

between their constituent elements. A non-agent-based architecture, as the one shown 

in figure 1-left, establishes a fixed and normally one-to-one or one-to-few-ones 

connection between their components. In contrast, in a multi-agent approach (figure 1-

right), the agents that make up the robotic architecture are fully interconnected and 

these connections are completely dynamic.  
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Figure 1. Left) A scheme of a hybrid robotic architecture (ACHRIN [16]). Right) Its 

evolution to a multi-agent system. Notice that in a client/server system (left) the 

addition of a component implies the modification of the components connected to it, 

which does not occur in a MAS. In our multi-agent re-design of ACHRIN we have 

considered navigation, manipulation and internet-based communication (access to 

email, for instance) as the functional tasks carried out by the combined human-robot 

system. 

 

In particular, our multi-agent architecture, which is an evolution of ACHRIN (fig. 1-

left), is called MARCA1, and it is composed of the following agents: 

 

-World Modeller Agent: This agent manages information stemmed from the 

environment in a human-like manner through the use of a mechanism called 

abstraction ([16],[17],[22]). It contains both geometric information, i.e. the position of 

a particular distinctive place, and symbolic information, i.e. a human-understandable 

label to refer to a room.  

                                                           
1 MARCA stands for Multi-Agent-based Robotic Control Architecture. 
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-Agenda Agent: It accepts and manages requests from different users. Usually people 

will request the robot to execute some task, although it is also useful to accept requests 

from other robots, applications, etc. This enhances the robotic architecture with a 

higher and more intelligent interaction within its environment. The Agenda broadcasts 

to the rest of agents the necessity of achieving a goal. 

 

 -Planner Agent: This agent is capable of generating a plan to achieve a certain goal 

taking into account information from the world model as well as the available 

human+robot abilities. The resultant sequence of abilities that achieves the goal will 

be taken on by the correspondent agents. For instance, navigation actions will be 

carried out by the Navigational Agent. In our current implementation the Planner 

Agent runs a hierarchical, independent-domain algorithm for planning a variety of 

tasks [18].   

 

-Sentry Agent. The Sentry Agent is responsible of checking unexpected dangerous 

situations in the system. It resembles human behavior since it reacts to external stimuli 

through both voluntary and reflex actions ([19],[16]). A reflex action is an automatic 

and involuntary movement, which is triggered by an external stimulus, i.e. the “shut 

the lids” reflex when an irritating substance enters the eye. On the other hand, a 

voluntary action is a conscious action, which is carried out in response to a stimulus, 

for example, we reduce the speed of our vehicle when approaching a red light. Notice 

that in human beings none of these actions are planned but instinctive. In fact, in 



 9

neural science the border between reflex and voluntary actions is not well defined 

[26]. Voluntary and some reflex actions can be learnt and sometimes even inhibited, 

that is, a person can voluntarily ignore certain stimuli. In this sense, the Sentry Agent 

can ignore certain stimuli as human do, in order to adequate its behavior to the human 

preferences. For example, a collision stimulus can trigger a stop reflex action during 

navigation, but maybe the robot is carrying out a short-distance approach to some 

object. In such case, the stop reflex can be inhibited to achieve the proposed goal. The 

major concern when accepting an inhibition is the physical safety of humans and the 

robot. Thus, such an inhibition relies on an ad-hoc function that takes into account the 

human preferences, the current action that the robot is executing, and the robot state. 

Other architectures (non-agent-based) also include alert mechanisms ([3],[10]) but 

none of them provide the capability of consciously ignoring certain alerts from the 

environment.  

 

-Plan Sequencer Agent. This agent sequences the actions that form a plan and 

manages the results of their execution. It is in charge of coordinating the different 

agents that have to perform the actions of the plan. It is also in charge of reacting 

properly to risky situations, for example stopping and blocking the vehicle when a 

collision or a critical battery level alert are reported. 

 

The architecture is completed by a set of agents that physically perform actions. Each 

agent carries out a particular one, i.e. navigation or manipulation, by possibly using 

different abilities. For instance, the Navigational Agent can perform navigation 
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through three abilities: a reactive algorithm, a path-planner algorithm, and a human 

manually guiding the vehicle. When an agent accounts for different abilities, it must 

decide at each moment which is the best one to accomplish its task. This decision 

process should be autonomous and independently carried out by agents, as we will 

show in section 4.  

 

In our work we have considered three agents that respectively perform navigation, 

manipulation, and internet-based communication (i.e., email access). Some results are 

presented in section 5. 

  

2.2.- Common Agent Structure 

As it was stated before, the main feature of MARCA is that it distributes some of the 

abilities of the human among all the agents of the robotic architecture, in order to 

augment or to improve the functionality of the system. Thus, a human can help the 

robot to capture world information (as we have demonstrated previously in [10]), or to 

provide a plan for achieving a goal (interacting with the planner agent, as we have 

shown in [18]), or even to physically perform actions like open a door or call an 

elevator.  

 

This human-robot integration is supported through the use of the Common Agent 

Structure (CAS) as a skeleton for designing every agent (see fig. 2). The CAS enables 

each agent to consider both human and robot capabilities to accomplish its work 

through the skill units, previously considered in ACHRIN. Robotic skill units 
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represent abilities of the robot implemented by software algorithms, while human skill 

units represent the connection of the agent to the human, enabling people to perform 

actions through appropriate interfaces (i.e., voice communication). An example of the 

inclusion of human abilities is the case of the Navigational Agent devoted to perform 

robot navigation: it contains a set of robotic skill units to navigate between two 

locations, i.e., a reactive navigator and a path-tracker algorithm, but it can also 

consider the human participation through a human skill unit that permits him/her to 

manually guide the robot. Thus, the agent accounts for three different ways of 

accomplishing actions like “go to place X”. 

 

M e s s a ge s  ne tw ork  

 

Figure 2. The common agent structure (CAS). All the agents in MARCA are designed using 

this structure. The number of skill units contained into each agent is variable and it depends on 

the agent’s functionality as well as on the human and robot capabilities provided by the CAS. 

 

One of the commonly accepted features that agents must possess –along with 

autonomy, proactiveness, or communications- is learning. So, among the different 

possibilities that an agent accounts for accomplishing its tasks, it should be able to 

learn over time the most convenient one, given its past experience and the current 
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conditions of the environment [31]. Within the CAS skeleton, the Smart Selector (SS) 

is in charge of the agent’s learning process, and it is always active in order to adapt the 

agent performance with respect to variable environmental conditions, as commented 

in more detail in section 4. 

 

All skill units considered by the SS to accomplish a requested action pursuit the same 

goal (i.e. to reach to a destination in the case of navigating), but they may exhibit 

differences in the way they are invoked, especially in the case of human units. For 

instance, the navigation action “go to p1”2 can be carried out by invoking a reactive 

navigation algorithm (a robotic skill unit) in the form “navigate to (x=0.2, y=12.3, 

phi=12)”, while the human skill unit would require a linguistic label that represents 

the destination in terms of the human knowledge, i.e. “go to Peter’s office”.  

 

The translation into the skill unit parameters from an action requested by any other 

agent in the architecture is carried out by the Semantic Bridge (SB). This component 

also permits the internals of the agent (Smart Selector and skill units) to 

request/provide data to other agents of the architecture (that is, it deals directly with 

the semantics explained in section 3). For instance, the previously commented human 

skill unit can request an external agent for the linguistic label of the destination p1.  

 

The Semantic Bridge is also in charge of maintaining the Semantic Knowledge Base 

(SKB) that represents the internal mental state of the agent in terms of intentions and 
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beliefs. Such an internal mental state is updated by the SB with incoming messages or 

requests from other agents. Communications between agents relies on the Inter-Agent 

Interface (IAI) that provides communication primitives to send/receive messages 

following a fixed semantic, as commented in more detail in section 3. 

3   Inter-Agent Communication 

In this section we focus on how agents communicate with each other. Since agents are 

autonomous entities with their own motivations, they cannot be forced by other agents 

to do some action; hence, communication is used to influence or persuade them to 

perform tasks. 

 

In contrast with traditional software architectures, in which communication between 

different pieces of software usually makes intensive use of the client-server paradigm 

(just using procedural calls, as in our previous architecture ACHRIN, RPC, or any 

other function invocation mechanism), MAS imposes a much richer set of interactions 

between agents. Thus, if communications are expected to affect the internal mental 

states of agents, they should not be mere raw data, but information about agent 

attitudes. 

  

In our approach, inter-agent communications are based on message passing, which is 

the most common scheme for MAS. In particular, we use the standardized message 

                                                                                                                                           
2 p1 is a symbol stored in the internal world model of the robot that represents a particular 
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format proposed by FIPA, namely ACL [14]. We have been highly inspired by the 

CAL specification [13] in order to define the underlying semantics of the 

communicative acts. 

Mental attitudes of agents in our architecture are defined using these operators:  

• Beliefs: the operator  Bi p means that agent i beliefs that fact p holds. 

• Desires: the operator Di a means that action a is a goal to be achieved by agent 

i. 

• Intentions: the operator Ii a means that agent i is intent on carry out the action 

a. The semantic meaning of intention differs from the concept of goal normally 

used in robotics; intentions are used in MAS for invoking the execution of 

actions.  

Moreover, to model actions we need the following additional operators: 

• Agent(i,a): Means that agent i is capable of performing the action a. 

• Done(a): Represents that action a has been carried out. 

• Feasible(a): This means that, for a given instant of time, preconditions for 

executing action a are met. 

 

The set of communicative acts or performatives that we use in MARCA and their 

associate preconditions, triggers, and effects are detailed in Table 1. There we have 

used the prefixes +/– to designate the insertion/removal of facts from the agents SKB. 

Since our agent execution model is event driven, these modifications in an agents’ 

                                                                                                                                           
location of its workspace. Symbols are managed by planner agents to plan robot tasks. 
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mental state trigger actions into the IAI and the semantic bridge, for instance, the 

execution of another communicative act or the initiation of a given skill unit.  

 

The meaning of the specified performatives is explained as follows: 

• Inform: Implies the intention of an agent i of letting another agent j to know 

something that i currently believes. We assume a sincere behaviour of agents, 

that is, the content communicated by an agent represents its current attitudes 

which are immediately incorporated to the beliefs of the receiver agent. 

• Request: Sender agent requests the receiver to execute a given action a. The 

target agent has to decide whether accept or refuse the proposal. As shown in 

table 1, the SKB of the target agent is consequently updated to reflect the new 

intention of performing the action (in case of acceptance), or the desire of 

communicating the rejection to the sender agent in other case. 
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Sender (Agent i) Receiver (Agent j) Performatives 

(sent from i to j) Trigger Preconditions Effects in SKB Effects in SKB 

inform(j,φ) +DiBj φ Bi φ –DiBjφ +Bj φ 

request(j,a) +Di Done(a) 

¬Bi Agent(i,a) ∧  

Bi Agent(j,a) ∧ 

Preconditions(a) ∧ 

¬BiBjDi Done(a) 

+BiBjDi Done(a) 

+BjDi Done(a) 

Accept: +Ij Done(a) 

Reject:  

+DjBi ¬ Ij Done(a) 

agree(j,a) +Ii Done(a) 
BiDj Done(a) ∧ 

¬BiBjIi Done(a) 
+BiBjIi Done(a) 

+BjIi Done(a) 

+Bj Feasible(a) 

refuse(j,a) +DiBj¬Ii Done(a) 
BiDj Done(a) ∧ 

¬Bi Bj¬Ii Done(a) 
+BiBj¬Ii Done(a) +Bj¬Ii Done(a) 

cancel(j,a) –Di Done(a) 
BiBjIi Done(a) ∧ 

¬Done(a) 
–BiBjIiDone(a) 

–BjDi Done(a) 

And probably: 

–Ij Done(a) 

failure(j,a) –Ii Done(a) 
BiBjIi Done(a) ∧ 

¬Done(a) 
–BiBjIi Done(a) 

+Bj¬Ii Done(a) 

+Bj¬Feasible(a) 

query(j, β) +Di Done(Eval(β)) 
¬BiAgent(i,Eval(β))∧  

BiAgent(j, Eval(β)) 

 

 
+DjBi Eval(β) 

Table 1: The communication acts that we use in our system to define the semantics of inter-agent 

communications. The nomenclature is explained in detail in the text. 

 

• Agree: The agreement of an agent i to perform a requested action for some 

other agent j. This communicative act is triggered on acceptation for a request. 

• Refuse: Agent i refuses the request of agent j for performing the action a. 

• Cancel: Informs to an agent j that agent i has no longer the intention of agent j 

of performing the action a. As a consequence, the receiver agent will leave its 
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intention of carrying out the action, if there is no other agent that still desires 

its execution. 

• Failure: Agent i aims to perform action a for another agent j, but it was not 

possible to complete the execution and currently the agent does not longer 

intent on trying it.  

• Query: This performative contains an expression β, whose meaning is not 

standardized, but it is assumed that the receiver agent should be able to 

evaluate it. In the preconditions of the performative, queries are sent only when 

the agent cannot solve the expression, thus communications are used only 

when the agent need external information. 

 

In order to pass messages between agents, the performatives are sent as formatted 

strings, which are coded as an ACL compliant plain text message. In section 5 we will 

show examples of such messages. 

 

4   Learning Capabilities of Agents 

One of the main characteristics that defines an agent is its capability for learning from 

its own experience. In MARCA, agents must learn how to select the appropriate skill 

unit (either human or robotic) when carrying out their actions. For that purpose we 

have chosen Reinforcement Learning (RL) to be implemented in our CAS Smart 

Selector, since RL has a thoroughly studied formal foundation and it also seems to 

obtain good results when applied to mobile robotics tasks ([27],[35]). 
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RL has been analysed widely elsewhere; the classical survey by Kaelbling, Littman 

and Moore [22] is a good starting point for a deeper research into the subject [36]. In 

short, RL is a machine learning paradigm where an agent in a state s executes some 

action a turning its state into s’ and getting a reinforcement signal or reward r. Those 

experience tuples (s,a,s’,r) are used for finding a policy π that maximizes some long-

run measure of reward. It is supposed that the environment where the agent evolves is 

a non-deterministic one, which means that taking the same action in the same state on 

different occasions may yield different next states and/or rewards. RL is graphically 

explained in figure 3: 

 

 
Agent

Environment 

Action a State s’ Reward  r

State s 

 

Figure 3. The Reinforcement Learning framework implemented in our CAS Smart Selector. 

Agents learn their skill unit selection policy from their interaction with the environment. The 

execution of a certain action (skill unit) produces a reward value that guides the learning 

process over time. 

There is a comprehensive bunch of methodologies for modeling and solving RL 

problems. A well-known solution are Markov Decision Processes (MDPs), that can be 

defined by: 

- a set of states S, 

- a set of actions A,  
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- a reward or reinforcement function R : S × A →ℜ meaning that if the agent is 

in state s and performs action a, it receives a r reinforcement signal. 

- a state transition function T : S × A → Π(s), where Π(s) is a probability 

distribution over the set S. So, probability of making a transition from current 

state s to next state s’ executing action a is written as T(s,a,s’). 

 

Upon these sets and functions, an optimal policy π that maximizes the obtained 

reward can be computed in this way: 

 

- The optimal value of a state V*(s) is the expected reward that the agent will 

gain if it starts in that state and executes the optimal policy. This optimal value 

is stated as the sum of the expected reward R plus the expected discounted 

value of the next state, using the best available action: 

SssVsasTasRsV
Ss

a
∈∀′′+= ∑

∈′
)),(),,(),((max)( ** γ . (1) 

where parameter γ is a discount factor that represents how much attention is 

paid to future rewards. 

 

-  The optimal policy then is specified by expression: 

))(),,(),((maxarg)( ** sVsasTasRs
Ssa

′′+= ∑
∈′

γπ . (2) 

Both reinforcement and state transition functions are named a model. However, such a 

model is not always known in advance; in fact, most of robotics applications cannot 
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provide that prior knowledge. In these situations, there is an approach that can be used 

for learning the optimal policy: Q-learning. Q-learning uses the following optimal 

value function Q*: 

),(max),,(),(),( ** asQsasTasRasQ
Ss

a
′′′+= ∑

∈′
′

γ  (3) 

Since the Q-function makes the action explicit, it can be recursively computed on line 

by means of: 

)),(),(max(),(),( asQasQrasQasQ
a

−′′++=
′

γα  (4) 

Parameter α is the learning rate, and it must slowly decrease in order to guarantee 

convergence of function Q [5]. Once the optimal Q-function Q* is obtained, the 

optimal policy can be fixed as it was stated in (2). 

 

For illustrating how Q-learning performs the learning proccess we focus our attention 

on the Navigational Agent. This agent is in charge of the mobility issues of the robot: 

it must provide a safe displacement of the vehicle in its environment as it reaches 

some given spatial references. As it was previously commented, there are three skill 

units available in the NA: a human skill unit that puts human in charge of movement 

through a joystick, a path tracker algorithm that follows a previously calculated path, 

and a robotic reactive skill unit that implements a reactive navigation algorithm [2]. 

The agent learns via Q-learning an optimal policy that states which skill unit is the 

best navigation option at every moment. 
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The mathematical formulation of the Q-learning technique for the NA is as follows: 

 

- Every state is built as the sum of five factors, namely: unexpected obstacles 

detection (O), local minimum detection (LM), critical obstacles detection - like 

doors, ramps, etc. that demand human intervention- (CO), available robot 

energy (RE), and human energy (HE). Boths obstacle detection (O and CO) 

can be implemented by means of laser range sensors. The presence of a local 

minimum (LM) is detected when the robot is not able to leave a section of the 

route for a certain time. This is a typical drawback of reactive navigation [39]. 

Finally, energy levels are measured in terms of battery levels (RE) and human 

fatigue (HE) respectively; human fatigue is due to the effort done by the human 

since he/she has to be alert during the navigation in order to avoid any 

hazardous unexpected situation. This fatigue can be measured through the 

frequency of actuations on the joystick and the frequency of alerts produced by 

the human within the Sentry Agent. The first three factors (O, LM, and CO) 

have been discretized into yes/no values, whereas energy factors (RE and HE) 

have been discretized into low/medium/high values.  The result of  this 

discretization is a set of 72 possible states in the evolution of the navigational 

system. 

 

- The set of actions A simply matches the set of skill units of the agent, since the 

policy to learn looks for the best sequence of skill units to apply. In this way, 
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the possible actions are HUMAN, DELIBERATIVE, and REACTIVE 

navigation. 

 

- The reinforcement function R favours states with a high level of available 

energy along with actions that can be applied with a low human-robot 

interaction effort. In this way, a HUMAN action requires a high interaction 

effort since it needs to activate the voice communication with the human; the 

REACTIVE action does not need any interaction; and the DELIBERATIVE 

action would be an in-between that just demands some kind of path/speed 

planification. The final goal of this definition of reward is to obtain policies 

with an energetic and interaction efforts as low as possible. 

 

In the following section, the results of some experiments conducted on the 

Navigational Agent for evaluating our RL approach are shown.  

5   A real robotic assistant application 

MARCA has been tested on an assistant robot called SENA (see fig. 4). It is a robotic 

wheelchair based on a commercial powered wheelchair that has been equipped with 

several sensors and an onboard computer to reliably perform high-level tasks in indoor 

environments. SENA accounts for Wi-Fi connection capabilities that improve to a 

great extend the possibilities of our robot, ranging from tele-operation of the vehicle 

to the human driver access to internet. 
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Figure 4. Two views of the SENA robotic wheelchair in which we have evaluated our human-

robot integration architecture.  

 

Our tests have been carried out within our lab and near corridors, in which the user 

can select a destination via voice. Since the main operation of SENA is navigation, we 

have focussed our experiences on the Navigational Agent; an example of a navigation 

task around our lab environment can be seen in figure 5.  

 

In a navigation task, the Planner Agent interacts with the user (as described in [18]) 

for constructing the best route to the goal, and then sends it to the NA via the 

Messages Network using the semantics described in section 3. When a navigation step 
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arrives at the agent, its Semantic Bridge translates it to the Smart Selector in order to 

perform the action. Then, the Smart Selector applies the Q-learning algorithm, and the 

best skill unit learnt until that moment will be activated.  

 

Figure 5. An example of SENA navigation in the surroundings of our laboratory. Rooms and 

corridors are depicted in thick lines, whereas the path followed by SENA is shown in thin lines. 

For illustrating the variety and difficulty of the paths performed by SENA in this environment, 

two interesting zones have been zoomed. 

Our results reveal that Q-learning is effectively working and provides an important 

degree of autonomy in the selection of each agent’s abilities, producing good policies 

for navigational issues. We have compared the reward obtained by Q-learning against 

the reward obtained by an intuitive algorithm that selects a supposed best skill unit, 
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implemented through a common-sense approach. Basically, the intuitive algorithm 

selects HUMAN action whenever a critical obstacle comes up; it selects 

DELIBERATIVE action if neither unexpected obstacles nor local minima are found; 

and finally, uses REACTIVE action in every other situation. The comparison is 

plotted in figure 6.  
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Figure 6. Q-learning (solid line) vs. Intuitive algorithm (dashed line) rewards. The policy found 

by Q-learning offers better results than using an intutive algorithm. 

 
As it can be seen, Q-learning finds a policy of actions that gets better rewards than the 

intuitive algorithm: average rewards are 3167 (Q) and 2812 (int), and standard 
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deviations are 29.4 and 37.9 respectively, which makes Q-learning an outstandingly 

better option. 

 
Furthermore, Q-function really converges to a certain value after a proper number of 

learning steps. Figure 7 shows, for two states (expressed as a combination of the five 

factors mentioned in section 4), how Q-function of every action (HUMAN, 

DELIBERATIVE and REACTIVE) finally converges. It can be seen that, though both 

states are similar in terms of unexpected obstacles, local minima and critical obstacles, 

their different energy levels lead to a different skill unit selection. 
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Figure 7. Q function values for two selected states. The selected best actions are 

DELIBERATIVE and HUMAN actions, respectively. 

 

Regarding the internal state of agents and how communicative acts are used between 

them, please refer to figure 8, where the main changes in agents’s mental state are 

shown to illustrate the evolution of their attitudes through an experiment with SENA. 

Some messages corresponding to key communicative acts are also sketched as arrows 
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between agents. We can interpret the semantic meaning of the agents attitudes as 

follows. At first, the user enters a navigation command to the robot via voice, which is 

captured by a SU inside the Agenda agent as a new desire: DAG Done((at robot “Ana’s 

Office”)). This complex task must be decomposed by the Planner agent, thus the user 

command is requested to this agent, which agrees and introduces into its mental state 

the intention of carrying out this action. This event triggers the execution of an 

internal SU which queries the World Modeller agent the abstract information needed 

to plan the complex action. Once that a plan consisting of elementary actions is 

available, a new desire in the planner agent’s SKB for executing the plan leads to a 

request to the Plan Sequencer agent, which also agrees and incorporates the plan to its 

intentions. This agent therefore sends subsequent requests to the Navigational Agent, 

whose SS will select the most promising SU for performing the demanded navigation 

at each instant of time through the previous Q-leaning approach. In this experiment the 

user asks the robot to abort the navigation while the second elementary action is being 

executed. As can be seen in figure 8, the user annulment of  the navigation task 

produces a chain of cancel messages between agents, as well as the retreat of 

intentions from their SKB. As a result, all the involved agents return to their previous 

states and the navigation action becomes definitively forgotten at all the abstraction 

levels, from high-level path-planning to low-level local navigation algorithms. Finally, 

we should highlight that messages between agents has been implemented as ACL 

plain-text messages, as can be seen with the messages denoted as (1)-(4) in figure 8. 

We use the standard fields and an additional timestamp field, which can be employed 

to measure communication delays, among other possible uses. 
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tim
e

Agenda agent (AG)

+DAG Done((at robot
“Ana’s Office”))

“Take me to 
Ana’s Office”

Planner 
agent (PL)

request(PL,(at robot 
“Ana’s Office”))

+IPL Done((at robot
“Ana’s Office”))

World modeler 
agent (WM)

query(WM,…)

……

……

+DWMBPL Eval(…)
...

–DWMBPL Eval(…)

“SENA, suspend
the navigation”

–DAG Done((at robot
“Ana’s Office”))

cancel(PL,(at robot 
“Ana’s Office”))

Plan sequencer 
agent (PS)+DPL Done(

(move-to p1)
(move-to p2)
(move-to p3))

request(PS,(…))

+IPS Done((move-to p1))

agree(PL,…)

Navigational
agent (NA)

request(NA,
(move-to p1))

agree(PS,
(move-to p1))

+INA Done((move-to p1))

-INA Done((move-to p1))
inform(PS,

Done(move-to p1))

-IPS Done((move-to p1))

+IPS Done((move-to p2))
request(NA,

(move-to p2))

agree(PS,
(move-to p2))

+INA Done((move-to p2))

-DPL Done(
(move-to p1)
(move-to p2)
(move-to p3))

cancel(PS,(…))

-IPL Done((at robot
“Ana’s Office”))

-IPS Done((move-to p2)) cancel(NA,
(move-to p2))

SU executes

SU executes

-INA Done((move-to p2))

+BNADone((move-to p1))

SU executes

agree(AG,(at robot 
“Ana’s Office”))

(request

:sender (agent-identifier PlanSequencerAgent)

:receiver (agent-identifier NavigationAgent)

:content "(move-to ((x -0.45)(y 10.34)))"

:reply-with req1

:X-Timestamp 2006/1/20,18:22:02.699

)

(agree

:sender (agent-identifier NavigationAgent)

:receiver (agent-identifier PlanSequencerAgent)

:content "(move-to ((x -0.45)(y 10.34)))"

:in-reply-to req1

:X-Timestamp 2006/1/20,18:22:03.234

)

(1)

(2)

(3)

(4)

(1) (2)

(inform

:sender (agent-identifier NavigationAgent)

:receiver (agent-identifier PlanSequencerAgent)

:content "Done(move-to ((x -0.45)(y 10.34)))"

:X-Timestamp 2006/1/20,18:23:25.509

)

(cancel

:sender (agent-identifier AgendaAgent)

:receiver (agent-identifier PlannerAgent)

:content "(at robot \”Ana’s Office\”)"

:X-Timestamp 2006/1/20,18:23:58.354

)

(3) (4)

 

Figure 8. The schematic representation of agents’ internal states and some messages 

sent during the experiment described in the text. 
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5   Conclusions and future work 

Robots that operate in human environments, especially assistant robotic applications, 

may allow the researches to relax somehow the typical autonomy requirements of a 

conventional robotic platform. However, this leads to a greater amount of work on 

human-robot interaction issues. Commonly, human-robot interaction is considered just 

as a simple communication between the robot architecture and the human. However, 

we believe that assistant robotics needs a much stronger interaction if the robot has to 

face successfully complex situations, especially those that it cannot solve by its own 

means. Thus, the human must be integrated into the robotic architecture as a part of an 

augmented system, in order to achieve the so-called human-robot integration that we 

claim in our work. 

 
We have presented in this paper MARCA, a multi-agent robotic architecture that 

enables such human-robot integration. We have chosen a multi-agent system approach 

rather than other conventional architectures because agents are closer to represent the 

human as a part of the system than other software constructions (modules, procedures, 

objects, etc.). Agents, as well as humans, have intentions, mental states, and use some 

semantics in their communications. In addition, they have some learning capabilities 

that allow them to adapt to environmental changes and to achieve good performances 

over time. Furthermore, MAS systems also offer another valuable benefits, like 

robustness or scalability. 
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We have defined the semantics for the agents to communicate and maintain their 

internal mental states, as well as how this semantics is translated into practical 

requests for the algorithms of the architecture. Besides, since any agent in MARCA is 

endowed with a set of robotic and/or human skill units for performing some action, it 

must decide which of them is the best in every situation. We have implemented a Q-

learning procedure that learns this association over time, trying to optimize the long-

term behavior of the system. 

 

MARCA has been applied to a real robotic wheelchair, and the suitability and 

effectiveness of the architecture to this kind of applications have been experimentally 

validated. 

 

This is not a finished work, and these preliminary results form the basis of an on-going 

work. In fact, this paper is a first step towards the inclusion of the human as an agent 

within the architecture, since at this stage the human is not yet an agent, but his/her 

capabilities are distributed inside any agent that needs them for augmenting its skills. 

Furthermore, we continue with our work with assistant robots (such as our robotic 

wheelchair SENA, or our recent tour guider robot SANCHO) in order to implement 

solutions for important requirements of assistant applications. 
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