
1

Abstract— Task planning in mobile robotics should be performed efficiently due to real time requirements of robot-environment

interaction. Its computational efficiency depends both on the number of operators (actions the robot can perform without planning) and

the size of the world states (descriptions of the world before and after the application of operators). Thus, in real robotic applications

where both components can be large, planning may turn inefficient and even unsolvable.

In the AI literature on planning, little attention has been put into efficient management of large-scale world descriptions. In real

large-scale situations, conventional AI planners (in spite of the most modern improvements) may consume intractable amounts of

storage and computing time due to the huge amount of information.

This paper proposes a new approach to task planning called Hierarchical Task Planning through World Abstraction (HPWA) that,

by arranging hierarchically the world representation, becomes a good complement of STRIPS-style planners, improving significantly

their computational efficiency. Broadly speaking, our approach works by firstly solving the task planning problem in a highly

abstracted model of the environment of the robot, and then refines the solution under more detailed models where irrelevant world

elements can be ignored due to the results previously obtained at abstracted levels.

Among the different implementations that can be made with our general strategy, we describe two that use a graph-based

hierarchical world representation named AH-graph. We show experiments as well as results of a mobile robot operating in a large-

scale environment that demonstrate an important improvement in efficiency of our algorithms with respect to conventional (both

hierarchical and non-hierarchical) planning, and also their nice integration with existing planners.

Index Terms—Intelligent robotics, hierarchical task planning, world abstraction, world modeling, mobile robotics.

This work was supported by the Spanish Government under research contract DPI2002-01319.
The authors are with the System Engineering and Automation Department, University of Málaga, Campus Teatinos – Complejo Tecnológico, 29071

Málaga, Spain. E-mail: {cipriano,jafma,jgonzalez}@ctima.uma.es

Improving Efficiency in Mobile Robot Task Planning

through World Abstraction
Cipriano Galindo, Juan-Antonio Fernandez-Madrigal, and Javier Gonzalez

cipriano
Final Version appears in IEEE Trans. on Robotics, Vol. 20, No. 4, 2004

2

I. INTRODUCTION

Intelligent mobile robotics relies on planning to carry out deliberative actions based on its knowledge

about the environment. Robotic task planning has its origins in the more general problem of planning,

which historically constitutes an important issue in Artificial Intelligence, being widely studied since the

1960’s. Besides robotic task planning, AI planning has been particularized to a variety of problems such as

path and motion planning ([[32], [37]), assembly sequence planning ([5], [11]), scheduling ([46], [53]),

production planning [47], etc. In general, the purpose of planning is to synthesize an abstract trajectory in

some search space (also named state space, since it consists of possible states of the world), predicting

outcomes, choosing and organizing actions of different types for reaching goals or for optimizing some

utility functions.

Maybe surprisingly, there are not many AI classical planners integrated into robotic architectures, mainly

due to difficulties in integrating symbolic treatment of information (planning) into non-symbolic sources of

data acquired from the real-world. Rather, most of planning in robotics uses specific algorithms intended to

guide the execution of particular robotic tasks (and not others) ([1], [42]), as it is the case of route planning

for navigation. Among the few generic (in the AI sense) planners implemented for robotic architectures,

some remarkable approaches are STRIPS [19], that was the first planner used for deliberation in a robot

(the Shakey robot [8]), and PRODIGY [49], the planner of the Xavier mobile robot.

None of the works where task planners are employed for mobile robots have addressed the problem of

computational efficiency, perhaps because they do not deal with a complex large-scale space with hundreds

of elements. However, this situation is easily encountered by a real mobile robot that moves within many

different places, or when the robot, for example equipped with a manipulator on-board, may interact with a

lot of world objects.

In general, the high computational cost of planning arises from the combinatorial search in the state

space. This cost depends both on the complexity of the description of the states, and on the number of

3

operators1 that can be applied to each state to obtain another. In the case of robotic task planning, the

former corresponds to the symbolic model of the world managed by the robot, while the latter refers to

actions that the robot can carry out without planning (for example, move forward, turn, grasp an object,

etc.). The lack of efficiency in planning may even lead to the intractability of the problem because one of

these two reasons (or both).

There has been great effort in AI literature devoted to improve the efficiency of planning, but the focus

has been mostly on managing the possibly large number of operators involved in a complex problem. We

believe that not all the attention that it deserves has been paid to the world model, since in pure AI it uses to

be of very manageable size. However, in real robotic applications like those that arise in large-scale

environments (i.e., a mobile robot delivering objects in an office building), the world model can become

large enough to make task planning intractable or very inefficient.

Our approach to improve efficiency of planning, called Hierarchical task Planning through World

Abstraction (HPWA), is particularly oriented towards this kind of large-scale robotic scenarios. The

approach consists of breaking down the combinatorial expansion of the search space through reduction on

the size of the description of the world (the model), leaving unchanged the operators. Our method can also

yield benefits in other non-robotics areas where planning is carried out on worlds with a large number of

elements, such as in Intelligent Transportation Systems.

For our purpose, we use abstraction. Abstraction is understood here as eliminating unnecessary details

from the information managed in some operation [21]. Abstraction has already been used as a mechanism

for improving efficiency of planning. It has been demonstrated that planning with abstraction reduces the

search space and it is usually more efficient than non-hierarchical planning ([22], [29]). In literature,

1 Operators in planning terminology are the possible primitive actions that can be set for execution in a given state of the world in order to reach another
state. The planner needs a formal definition of each operator, which in STRIPS-style domains includes its preconditions (world situations where it is
applicable) and its effects (changes in the world description after its execution).

4

planners that use abstraction in some way to reduce computational cost are commonly called hierarchical

planners. A hierarchical planner first solves a problem in a simpler abstract domain2 and then refines the

abstract solution, inserting details that were ignored in the more abstract domain. This is repeated until the

solution is reached. We have found that previous hierarchical planners exploit any of the following three

kinds of abstractions [52]: precondition-elimination abstraction, effect abstraction, and task abstraction.

Some remarkable implementations are: ABSTRIPS [44], Pablo [9], Prodigy [29] (that uses the hierarchy

automatically produced by Alpine ([30], [38])), HTN planners [12] (that use task abstraction), etc. In this

paper, we explore a new kind of hierarchical planning consisting of abstracting only the description of the

world, which has produced promising results, and also can provide other planning methods with an easy

way of including abstraction capabilities.

Our HPWA methods are basically procedures that use an existing planner (the so-called embedded

planner) at different levels of world abstraction, without changing the internal structure or the behaviour of

such embedded planner. Although our experiments have only been run with Graphplan [7] and Metric-FF

 [25] (they have become very popular planners during the last years), we don’t find any limitation in using

any other STRIPS-style one. It should be noticed that the embedded planner may already include some

other techniques for improving computational efficiency of planning; hence, the overall improvement of the

HPWA framework can be high.

Two implementations of HPWA are presented in this paper. Both of them use a hierarchical

representation of the world called AH-graph [15]. An AH-graph is a graph-based hierarchical structure that

can model symbolically the robot environment at different levels of detail.

The paper is organized as follows: section 2 introduces briefly the hierarchical, symbolic model of the

environment called AH-graph and its automatic construction by an intelligent mobile robot. Section 3

2 Generally, the term domain refers to both the description of the world and the definition of operators (which includes their preconditions and effects).

5

presents two HPWA implementations. Section 4 shows some results and compares the new technique to

conventional (both hierarchical and non-hierarchical) planning. Finally, section 5 outlines some conclusions

of this work and future lines of research.

II. MODELING THE ROBOT ENVIRONMENT WITH ABSTRACTION USING AH-GRAPHS

Our approach takes advantage of abstraction in world modeling by using the AH-graph model, a symbolic

representation successfully used in robotics applications ([12], [17]) which is capable of representing a

hierarchy of abstraction upon ground information. For completeness, in section A we give a brief

description of this model; a complete formalization can be found elsewhere [15]. Section B deals with the

automatic construction of these hierarchies.

A. The AH-Graph Model

An AH-graph is a relational, graph representation of the environment which includes hierarchical

information, that is, the possibility of abstracting groups of elements to “super-elements”. This kind of

abstraction produces different layers isolated from one another, called hierarchical levels, that represent the

same environment at different amounts of detail. Hierarchical levels are denoted Li, where i is the position

of the level in the hierarchy. The lowest hierarchical level of the AH-graph, L0, is called the ground level,

which represents the world with the maximum available amount of detail. The highest hierarchical level,

say Lr-1, is called the universal level, and it typically represents the robot environment with a single node.

Each hierarchical level in an AH-graph is a flat multigraph3. For the sake of simplicity, this work will use

equivalently the term “graph”.

3 A multigraph is a conventional graph in which there can be more than one arc connecting two nodes [49].

6

The nodes of each hierarchical level represent elements (or super-elements) of the world while the arcs

represent relations between them with the possibility of holding weights representing the strength of those

relations. For example, in mobile robotics, nodes can represent distinctive places [36], while the arcs can

represent the navigability relation between them, with the geometric distance as the arc weight. Fig. 1

shows another example of an AH-graph with a single type of relation representing “rigidly joined”.

LEVEL 0

LEVEL 1

LEVEL 2

ROOM

Walls

Wall
1

Wall
2

Door

Blocks

Block
1

Block
2

Block
3

Block
4 Block

5

Floor

Table

Surface

LegLegLeg Leg

Fig 1. An example of a simple AH-graph model representing a possible abstraction of the spatial elements within a room.

From left to right, a room, the hierarchical levels that model the room (represented by different gray shades), and the resulting
hierarchy, are shown.

A group of nodes of a hierarchical level can be abstracted to a single node at the next higher hierarchical

level, which becomes their supernode (the original nodes are called subnodes of that supernode).

Analogously, a group of arcs of a hierarchical level can be represented by a single arc (their superarc) at the

next higher level (see fig. 2).

Besides the structural information captured by the AH-graph through nodes, arcs, and hierarchical levels,

both nodes and arcs can also hold non-structural information in the form of annotations. This information

may include, but is not limited to, geometrical data gathered from the environment (i.e.: maps of obstacles),

costs incurred by the robot when executing an action (i.e.: an arc that represents “navigability” from one

location to another can store the expected cost energy of that navigation), etc. Non-structural information

can be useful for planning and other algorithms. In particular, it is extensively used when the AH-graph

model is employed for mobile robot navigation ([14], [18]).

7

L0

L1

L2

L3

Fig 2. Two examples of AH-graphs of four and three hierarchical levels, respectively. The AH-graph on the left side

illustrates the abstraction of nodes from the lowest to the highest hierarchical levels. The AH-graph on the right illustrates the
abstraction of arcs.

B. Automatic Construction of Good Hierarchies of Abstraction for HPWA

Concerning the reduction of the computational cost of task planning, the power of the HPWA methods

presented in this paper greatly depends on the hierarchy of abstraction (AH-graph) that is used. It must be

pointed out that any abstraction-based computational approach (not only task planning ([15]), and not only

through AH-graphs ([26], [33])) can encounter “degenerated” situations where it becomes even more time

consuming than non-hierarchical methods. These situations are due either to the overhead involved in

repeating operations at each hierarchical level, or to backtracking if no partial solution is met at some point,

or to both.

Some interesting approaches for automatically constructing good hierarchies of abstraction for task

planning have been proposed ([29], [27], [20]). In these works a polynomial time method for such

construction is presented, although they do not guarantee to obtain the optimal hierarchy with respect to

computational cost of task planning.

In general, the problem of finding the optimal hierarchy of abstraction is a combinatorial optimization

not solvable in polynomial time when the following circumstances occur:

8

a) The space of all possible hierarchies of abstraction is exponentially large with respect

to the elements involved in the definition of these abstractions (in our case, these

elements are the nodes and arcs in the ground hierarchical level of the AH-graph; in

other cases, such as the STRIPS-style domain, they are the symbols involved in the

description of operators, the world, etc.).

b) Suitable (low-cost) approaches to calculate the goodness of a given hierarchy of

abstraction are not available, that is, the goodness of a given hierarchy of abstraction

can only be calculated directly when using it to solve the problem.

In the particular domain of mobile robotics, finding a good hierarchy of abstraction imposes additional

limitations. First, consistency must be maintained across the hierarchical levels of the model. This problem

is closely related to that of aggregation-disaggregation addressed in the community of Multi-Resolution

Modeling ([43], [10]). In our AH-graph model, such consistency is guaranteed by the automatic

construction of abstract levels from the ground level (as explained below in this section).

Secondly, the symbolic model of the world (the ground level) is not static, that is, it must be kept

consistent with the real world, which is subjected to changes. In our approach, at each instant the task

planner is executed, that is, under the task planning perspective, the ground level is taken as a symbolic

“snapshot” of the world that must be reflect changes over time. Thus, for mobile robot applications, a

procedure that finds a good hierarchy for task planning should be iterated along the robot life for adapting

to new symbolic data and structures. Under that constraint, an algorithm that performs a complete

optimization in the space of possible hierarchies each time the model of the world varies (each snapshot),

even if it is an approximation based on heuristics, can lead to a high computational cost.

Therefore, we believe that in our case it is desirable an optimization algorithm that starts from an initial

hierarchy of abstraction (probably not the optimal, even a bad hierarchy) and improves it in a continuous

and gradual manner as the robot acquires experience from its operations, also adapting to world changes.

9

That approach fits well to mobile robotics, since it distributes the complexity of constructing the best

hierarchy of abstraction along the active life of the robot, it assures that the model of the world is

monotonically improved over time, and in addition, it allows the robot to adjust the hierarchy of abstraction

for its particular necessities: the area of the world where it operates, the tasks at hand, etc. (It has been

shown that a hierarchy that is good for solving a given problem may not be so good for solving a different

one4 ([29] [27])).

We have previously presented ([15]) a software called C.L.AU.D.I.A. (Concept Learning, AUtonomous

Device, which Improves Abstraction) that follows the previously commented guidelines and uses a multi-

hierarchical extension of AH-graphs as the model for abstraction. It has been applied to solving hierarchical

path search problems for mobile robot route planning in large-scale spaces, which has yielded important

improvements in the performance of the robot. Modifying it to solve any other operation, such as task

planning problems, consists just of varying the goodness evaluation function.

C.L.AU.D.I.A. is a software that samples the space of candidate hierarchies (AH-graphs in this case) that

are coherent with a given ground information acquired from the environment. The ground information can

be, for example, a flat topological map of space5. The system starts by constructing randomly an initial

hierarchy of abstraction. Then, it carries out a hill-climbing algorithm for optimization that comprises the

following steps: first it finds a set of new AH-graphs that are variants of the original one –its “neighbors” in

the neighborhood of the space of AH-graphs-, second, it assigns appropriate goodness values to them (i.e.:

the computational cost of task planning with each of these AH-graphs), and finally it selects the one with

4 This has also been stated in the hierarchical path search domain ([16]), not only in the task planning domain. In fact, an extension of AH-graphs that
includes more than one hierarchy of abstraction has been demonstrated to perform better than single-hierarchical approaches ([16] and [15]). For the sake of
simplicity, this paper only deals with a single-hierarchy that adapts to all the task planning problems of the robot.

5 Several approaches for constructing automatically topological maps for mobile robots can be found in ([3] [40]).

10

the best goodness value and repeats the cycle. This optimization process is iterated while the robot is

operating in its environment.

This outlined scheme contains two relevant procedures that need some further explanation:

a) Automatic abstraction of hierarchical levels for producing AH-graphs. A hierarchical

level is abstracted to another higher level by clustering its nodes: each cluster will

correspond to a supernode at the higher level, while superarcs can be generated in such a

way that the same connectivity relations existing in the original graph are kept. There

exist many graph clustering algorithms in literature ([23], [41]). Usually, they intend to

optimize some characteristic of the resulting clustering, for example, minimizing the cost

of the arcs that connect different clusters. In our approach, a STAR-like method [39] has

been employed, due to its high efficiency (it is O(a), where a is the number of arcs of the

graph) as well as the wide range of diverse clusterings it can generate. Its input

parameters include a number of “seed” nodes and a maximum size for the clusters, both

lying into a finite range of discrete values.

b) Constructing the neighborhood of an AH-graph. Given an AH-graph, a number of

neighbors can be automatically generated by a simple procedure. Firstly, a hierarchical

level of the AH-graph is selected, called the pivot level. Then, an alternate clustering of

that level is proposed by varying the input parameters employed in the clustering

algorithm6. From that new hierarchical level, others can be constructed simply by

repeatedly calling the clustering algorithm, obtaining a complete AH-graph. The portion

of this new AH-graph that is kept unchanged from the original AH-graph can be

6 Since these input parameters lie into a finite range of discrete values, they are enumerable. Therefore the number of possible clusterings that are
generated can be easily controlled. Some graph isomorphism mechanism can be used to detect the case that different input parameters lead to equal
clusterings, as discussed in depth in ([15]).

11

regulated by shifting upwards or downwards the pivot level. Figure 3 illustrates this

procedure.

L 4

(universal)

L 3

L 2

L 1

L 0

(ground)

[L 2]'

[L 3]'
(universal)

[L3]''
(universal)

Fig. 3. Example of neighborhood of two elements for a given AH-graph (white-filled). The first neighbor (lightgray-filled)

has been constructed using pivot level L1 of the original AH-graph. The second one (darkgray-filled) has used pivot level L2.

III. HIERARCHICAL PLANNING USING WORLD ABSTRACTION

Our HPWA framework is inspired from human beings. It seems that we humans organize knowledge of

the environment hierarchically, since this representation is used for planning tasks more efficiently

([35], [34], [51]). Let us give an example to best elucidate this fact: if we want to go shopping the first plan

we may make is “Leave the house, take the car and drive to the supermarket”. Although this sequence of

actions does not give us details about how to solve the “go shopping” task, it is a first approximation to it.

Each action of this first approximation can be refined further in order to achieve a plan which physically

solves the task. Thus, the “Leave the house” action may be refined into “dress yourself, take the car keys,

take some money and cross the door”. In fact, these actions may be refined over and over until achieving

primitive actions, which can no longer be refined (the operators). Examples like this are common in the AI

literature in order to justify the inspiration of other hierarchical task planning approaches in the human

12

experience, although an important point must be highlighted: as we can notice, these abstractions do not

only involve abstractions of operators, but also abstraction of world elements, i.e. house → rooms → door

→ lock.

This last idea is what we call world abstraction, and may be applied to task planning to perform in the

same way human beings do. For that purpose, different strategies can be constructed upon that basic idea. In

the following sections, we develop two of them, but first, in section A, some preliminary terminology is

introduced. In sections B and C, two implementations of HPWA are presented. Although in this paper we

assume that the robot environment is modelled by an AH-graph, other hierarchical representations could be

possible under the same philosophy. Finally, section D analyses the influence of some planning anomalies

in our hierarchical method.

A. Hierarchical Planning Definitions

In this section we introduce some concepts required for the subsequent formalization of HPWA.

Definition 1 (Logical Predicate and State). A logical predicate or atomic sentence of a first-order

language L, with k parameters is defined as:

<predicate symbol> param0...paramk-1

where parami is a language constant. We assume that each parami represents an element of the world,

that is, a node of the AH-graph. There exists, therefore, a one-to-one correspondence between nodes of the

AH-graph and the parameters of the logical predicates. It should be pointed out that all parameters of a

logical predicate must represent nodes of a same hierarchical level.

A state is a finite and consistent set of predicates that represent the world. Within a state, all the

parameters of the predicates must correspond to nodes of the same AH-graph hierarchical level.

Definition 2 (Problem Space and Operator). A problem space is composed of L, a first-order language,

and O, a set of operators.

13

An operator o∈ O is a quadruple {Param,Pre,Del,Add}, where Param is a list of variables that

parameterize the operator and can be substituted by world elements, Pre is the set of predicates representing

the preconditions of the operator, and Del, and Add are the operator effects on state s on which o is applied

(Del is the set of predicates that will be eliminated from s, and Add is the set of predicates that will be

added to s).

Definition 3 (Abstraction Function for Predicates). The abstraction function for predicates sp
i is

formally defined at any hierarchical level Li, except at the universal level, Lr-1, as:

sp
i: PREDSi → PREDSi+1 , i< r-1

where PREDSi is the set of all the possible logical predicates whose parameters correspond to nodes at

hierarchical level Li. The superscript i in sp
i stands for level Li.

 sp
i(p) works by abstracting nodes (that is, parameters) of the predicate p, in order to obtain another

predicate p’ defined at level Li+1. Thus, the abstraction function for predicates sp
i reduces the amount of

detail from p to p’.

The hierarchy may be incomplete [15], that is, there may be nodes that are not abstracted into any

supernode. If p contains a node that can not be abstracted to a supernode, then p can not be abstracted to the

next hierarchical level. For simplicity, we will consider in the rest of the paper that the AH-graph is

complete (the proposed algorithms work with incomplete hierarchies too, although that might lead to

smaller improvements in computational efficiency due to the limited power of abstraction in that case).

 The inverse of the sp
i function is called the refining function for predicates and it is defined ∀ Li : i>0,

as:

[sp
i -1]-1 : PREDSi power(PREDSi-1)

[sp
i -1]-1 (pj) = {ph ∈ PREDSi-1 : sp

i -1 (ph)=pj}

where power(PREDSi-1) is the power set of PREDSi-1. This function increases the amount of detail of

predicates.

14

Notice that predicates of level L0 can not be refined, since neither sp
-1 nor its inverse exist.

Definition 4 (Abstraction Chains of Predicates). A predicate can be abstracted more than once

obtaining a chain of abstraction. This is accomplished by using the abstraction function for predicates

recursively (assuming that it is defined at all steps). The length of a chain of abstraction is the number of

times the predicate has been abstracted. An example of a chain of abstraction of length 4 for predicate p (p

∈ PREDSi) is:

sp
i +3

 (sp
i +2(sp

i +1(sp
i (p))))

Definition 5 (Abstraction Function for States). The abstraction function for states ss
i is defined at any

hierarchical level Li, except at the universal level, Lr-1, as:

ss
i: Si → Si+1 , i< r-1

where Si is the set of all states that can be defined at level Li.

 The abstraction function for states ss
i(s) works by applying the abstraction function for predicates sp

i to

each predicate of s in order to obtain another state s’ defined at level Li+1.

 The inverse of this function is called the refining function for states and is defined ∀ Li : i>0, as:

[ss
i -1]-1 : Si power(Si-1)

[ss
i -1]-1 (sj) = {sh ∈ Si-1 : ss

i -1 (sh)=sj}

where power(Si-1) is the power set of Si-1. Notice that states of level L0 can not be refined since neither

ss
-1 nor its inverse exist.

The ss
i function, as well as the abstraction function for predicates, can be applied recursively to obtain a

chain of abstraction. The length of this abstraction chain is limited by the possibility of abstraction of all

predicates that make up the state. An abstraction chain for states may not reach to the highest hierarchical

level (universal) if the hierarchy is not complete.

15

B. First HPWA Method: Planning Without Plan Guidance

This section presents a first implementation of the HPWA approach that, for short, we will call HPWA-1.

Without loss of generality, we have chosen to enhance with HPWA two popular and efficient graphplan-

like planners: Graphplan [7] and Metric-FF7 [25]. Graphplan-like planners are well-known general-purpose

planners for STRIPS-style domains that have been improved over time in a variety of directions ([2], [6],

and [31]). The main reasons for choosing these planners include the availability of their C implementations

as well as their efficiency [7].

An important feature of HPWA-1 is that it sets the best bound on the optimality of the plans that can be

obtained with a refinement of the world, using the embedded planner included in the method (as happens in

hierarchical path search by refinement [15]).

The general idea of HPWA-1 is to solve the plan at a high level of world abstraction by running the

embedded planner at this level, and then use the resulting abstract plan at the next lower level ignoring the

irrelevant world elements that do not take part in the abstract plan. This process is repeated recursively.

Fig. 5 illustrates the steps taken by the algorithm.

More precisely, HPWA-1 works as follows (see fig. 4): first, it selects the highest hierarchical level where

the plan can be solved. To do this, the abstraction chains for both the initial and goal states are generated as

long as possible8. The highest common hierarchical level reached by both abstraction chains will be the

initial level for the planning process. Let Lw be that initial hierarchical level for planning (w is the minimum

length of both abstraction chains). The embedded planner (Graphplan or Metric-FF in our case) is run to

provide an abstract plan at this level, say Π. For that purpose, the input provided to the embedded planner

7 The main reason to choose Metric-FF is its capability to produce plans while minimizing a cost function. Such feature is useful when developing real
robotic applications.

8 Remember that this is limited by the possibility of abstracting the parameters of the predicates that constitute the states.

16

consists of the abstracted initial (ss
w[s0]) and goal (ss

w[sg]) states and the set of operators O, defined in the

problem space.

The resulting abstract plan will be used to discard irrelevant information at the next lower level Lw-1 by

simply ignoring the subnodes of those world elements that do not appear in Π . Let µ be the set of nodes of

level Lw corresponding to the parameters9 of all operators that form the abstract plan Π. Then, the subnodes

of nodes that do not appear in µ will not longer be considered in the planning process. To refine the plan to

hierarchical level Lw-1, our method considers only ss
w-1[sg] and ss

w-1[s0] as the desired goal and initial states,

as well as the subnodes of the elements of µ.

This process is repeated until the lowest level of the model is reached (see fig. 4). In general, the lowest

level to be reached will be the one where the initial and goal states are given. If at some step of refinement,

no plan can be obtained, backtracking occurs and a new abstract plan must be retrieved (notice that

backtracking is reduced by the automatic construction of good AH-graphs mentioned in section II.B, since

it involves computational cost increments that C.L.AU.D.I.A. tends to avoid).

The algorithm for HPWA-1 is completed with a procedure to translate the AH-graph world information

(nodes and arcs) into logical predicates.

In order to illustrate the HPWA-1 method, let us consider a relatively simple environment where a mobile

robot with a manipulator on board has to perform different tasks involving a given object of the world

named “box”. Figure 6a shows a hierarchical model of the environment with three zones (a laboratory, a

room, and a corridor), the mobile robot itself, and the box to be handled. In this model, three hierarchical

levels have been considered: the ground level, L0, with the maximum amount of detail (nodes represent

distinctive locations for navigation and manipulation), the first level, L1, for grouping nodes of L0 in three

9 As stated earlier in definition 1, the parameters of the operators correspond to world elements (nodes of the AH-graph).

17

different areas that allow the robot to reset odometric error, and finally, level L2, which exhibits the

minimum amount of detail.

Initial State
s

0

GoalState
s

g

A
b

st
ra

c
tio

n
 C

h
a

in
 o

f
st

a
te

s

A
b

st
ra

c
tio

n
 C

h
a

in
 o

f
st

a
te

s

Abstraction of the
Initial State at level Lw

ss
w[s0]

Abstraction of the
Goal State at level Lw

ss
w[sg]

Plan

Level
Lw

Level
Lw-1

Level
L0

Fig. 4. Procedure to ignore irrelevant elements. In the figure, only the filled nodes (belonging to µ; as explained in

the text) take part in the abstract plan Π at level Lw, so at lower levels, the subnodes of no-filled nodes are ignored.
This process is repeated until reaching the ground level, where all no-filled nodes are discarded to obtain the plan that
solves the proposed task.

The logical predicates that set up the states of the world are easily obtained from the arcs of each

hierarchical level (see fig. 6) as follows:

If there is an arc between two locations l1 and l2, a new logical predicate (nav l1,l2) is added to the

description of the state.

If there is an arc between an object o and a location l, the predicate (at o l) is also added.

Finally, if there is an arc between the node that represents the mobile robot and a location l, the predicate

(at-robot l) is added.

18

Fig. 5. Pseudocode of the HPWA-1 implementation. Based on an abstract plan, this algorithm ignores irrelevant world
elements at the lower hierarchical level. NodesFromLevel(x) procedure returns all nodes of hierarchical level x.
TransformWorldToPredicates(x,y,z) produces those logical predicates in which a certain group of nodes z (from a hierarchical
level y of an AH-graph x) are involved. GroundLevel(x) returns the ground level of the AH-graph x. StateAbstraction(x,y,z)
returns the z-th abstraction for a given state y of an AH-graph x. PlanParameters(x) returns the list of parameters that appear
within a plan x. Finally, the Subnodes(x,y) procedure returns the subnodes of a node y in the AH-graph x.

According to HPWA-1, the “take box” task is planned as follows:

i) Planning at the universal level L2

At the ground level the predicate that represents the goal state is (holding Box) (operator definitions are as

shown in figure 7). This state is abstracted up to the universal level L2 as (holding Box’’).

At the universal level, the predicates that model the initial state of the world are:

(at Box’’ Floor)
(at Robot’’ Floor)

The embedded planner is run using ss
2 and it finds the following solution (see the operator definition

shown in figure 7):

(PICKUP Box’’ Floor)

PROCEDURE HPWA-1 (State sg, AH-graph ah):Plan
n=NodesFromLevel(Lw)
pred= TransformWorldToPredicates(ah,Lw ,n)
FOR i = Lw DOWNTO GroundLevel(ah)
post= StateAbstraction(ah,sg,i)
plan=EmbeddedPlanner(pred,post,operations)
param=PlanParameters(plan)
pred=NULL
IF (i != GroundLevel(ah)
FOR p=1 TO Length(param)
n= Subnodes(ah,param[p])
pred=pred + TransformWorldToPredicates(ah, i-1,n)
END
END
END
RETURN (plan)
END

19

Box

L2 L3

L1

C3C2C1

R2

R3 Robot

R1

a
t

NavNavNavNav
Nav

at

N
av

Na
v

Nav

Box’

Laboratory
L1+L2+L3+
L4+L5+L6

Corridor
C1+C2+C3

Room
R1+R2+R3

Robot’

at

Nav

at

Na
v

Box’’

Floor
Lab+Corridor+Room

Robot’’

at
at

L0

L1

L2

L5 L4

L6

Nav

Nav
Nav

Box

L2 L3

L1

C3C2C1

R2

R3 Robot

R1
a

t

NavNavNavNav
Nav

at

N
a v

Na
v

Nav

Box’

Laboratory
L1+L2+L3

Corridor
C1+C2+C3

Room
R1+R2+R3

Robot’

at

Nav

at

Nav

Box’’

Floor
Lab+Corridor+Room

Robot’’

at
at

L0

L1

L2

a) b)
Fig. 6. Example of two different hierarchical models of a robot environment. For clarity, from the hierarchical level L0

upwards, each node label includes its subnodes. For example, in a), the Laboratory node is the supernode of L1, L2, and L3.

Fig. 7. Definition of the operators used in this example. Observe that they involve several preconditions and effects.

ii) Planning at level L1

Now, the abstract plan is moved down (refined) to level L1, where only the subnodes of nodes of L2 that

take part in the plan are considered. In this particular case no node is ignored. At level L1, the predicates

that model the state of the world are:

(operator
 GO
 (params (<x> LOCATION) (<y> LOCATION))
 (preconds (at-robot <x>) (nav <x> <y>))
 (effects (del at-robot <x>) (at-robot <y>)))

(operator
 PICKUP
 (params (<x> OBJECT) <y> LOCATION))
 (preconds (at-robot <y>)(at-object <x> <y>))
 (effects (holding <x>)(del at-object <x> <y>)))

20

(at Box’ Laboratory)
(at Robot’ Corridor)

(nav Corridor Laboratory)
(nav Corridor Room)

while the goal state is (holding Box’)

A solution for this task provided by the embedded planner is:

(GO Corridor Laboratory)
(PICKUP Box’ Laboratory)

Observe that the world element “Room” does not appear in the plan (it is irrelevant for the task10) and

therefore, at the next lower level (ground level), its subnodes will be discarded.

iii) Planning at the ground level L0

 Finally, at the ground level, the predicates that model the initial state of the world are:

(at Box L1)
(at Robot C3)
(nav C3 C2)
(nav C2 C1)
(nav C1 L3)
(nav L3 L2)
(nav L2 L1)

Observe that no node within the Room is included in this world state, hence reducing the computational

cost of planning. (This is only an illustrative example: more extensive results on the reduction in

computational cost are presented in section IV).

The goal state is (holding Box) and the plan at this level results:

(GO C3 C2)
(GO C2 C1)
(GO C1 L3)
(GO L3 L2)
(GO L2 L1)

(PICKUP Box L1)

10 Notice that although the Robot element does not appear in plans, it is an implicit world element that cannot be removed.

21

These actions are primitive actions that the mobile robot can execute, so this is the final plan for the

initial task at hand.

C. Second HPWA Method: Planning With Plan Guidance

In this section we go a step further in the HPWA framework by providing a more sophisticated

implementation called HPWA-2. The main difference to HPWA-1 is that HPWA-2 uses the abstract plans

not only to ignore irrelevant elements at lower hierarchical levels of the world representation, but also to

guide refinement into those levels. This can lead, in normal situations, to a higher reduction in

computational cost; however, due to the poor look-ahead of this refining process, HPWA-2 is more

sensitive to backtracking than HPWA-111. Figure 8 sketches the HPWA-2 algorithm.

HPWA-2 starts from an abstracted plan, taking each action individually in order to refine it at the next

lower level. This action refinement is in fact a refinement of its post-conditions, which consists of

substituting each parameter involved in that post-condition (corresponding to a node of the AH-graph) by

one of its subnodes. In our implementation, the subnode is selected randomly, although different heuristics

could be used, like selecting a border subnode (one that is connected directly by arcs to a subnode of a

different supernode), or the subnode with the highest order (that is, one which is connected the most to

other ones). Other techniques based on constraint propagation are also applicable to guide the subnode

selection process [4].

11 Notice that, as in HPWA-1, our automatic construction method for obtaining AH-graphs will tend to avoid backtracking since it leads to increase the

computational cost.

22

The advantage of refining the abstract plan in this way is that the amount of information necessary to

refine a unique action is generally much smaller than the information required to plan with all relevant

subelements. However, backtracking in HPWA-2 is more likely to occur.

We illustrate the operation of this method with the world of figure 6b, where the ground level is a slight

variation of example 6a. Since the plan at L2 coincides with the one of section III.B, we start from the

abstract plan at level L1:

(GO Corridor Laboratory)
(PICKUP Box’ Laboratory)

The action (GO Corridor Laboratory) has the post-condition (at-robot Laboratory). To refine this action

its post-condition must be refined, so a subnode of Laboratory must be chosen. The procedure to choose a

subnode can be implemented heuristically, randomly, or in another way (as commented earlier), but all of

these possibilities may produce wrong elections that make the plan to fail and then, the algorithm must

backtrack to select another subnode. For example, if subnode L6 is chosen, the refined post-condition is (at-

robot L6). Obviously, with this election, a plan for (holding Box) will not be found. In this case, HPWA-2

must choose another subnode until it finds a feasible plan. If another node is selected, for this action, i.e.

L2 (at-robot L2), the action (GO Corridor Laboratory) can be performed as:

(GO C3 C2)
(GO C2 C1)
(GO C1 L3)
(GO L3 L2)

In this world state, the next action can be planned successfully: the post-condition of the pickup action,

(holding Box’) is refined using its unique node to (holding Box’’), which produces the next plan:

(GO L2 L1)

(PICKUP Box L1)

23

Fig. 8. Pseudocode of HPWA-2. Functions and procedures used in this pseudocode are: TransformWorldToPredicates(x,y,z)

produces the logical predicates related to a group of nodes z, from a hierarchical level y of an AH-graph x. GroundLevel(x)
returns the ground level of the AH-graph x. StateAbstraction(x,y,z) returns the z-th abstraction for a given state y of an AH-
graph x. FirstAction(x), NextAction(x) and PreviousAction(x) return the first, next and previous action, respectively, from the
plan x. ActionRefinement(x,y) chooses a possible refinement for the action y at the hierarchical level x; if no refinement is
available, return NULL. ActionPredicates(x,y) returns the pre-conditions set of the action y at the hierarchical level x.
EliminateLast(x) deletes the last added plan from the plan x. Finally, PostCondition(x,y) function returns the post-conditions of
the action y at the hierarchical level x.

D. Planning Anomalies

In any task planner there exist some anomalies that must be studied. In this section, two of them are

analyzed in the context of the HPWA methods presented.

PROCEDURE HPWA-2 (State sg, AH-graph ah):Plan
n=NodesFromLevel(Lw)
pred= TransformWorldToPredicates(ah,Lw ,n)
post=StateAbstraction(ah,sg,w)
plan=EmbeddedPlanner(pred,post,operations)
newplan=NULL

FOR i = Lw –1 DOWNTO GroundLevel(ah)
 action=FirstActionPlan(plan)

 WHILE (action!=NULL)
 r_action=ActionRefinement(i,action)
 IF (r_action==NULL)
 action=PreviousActionPlan(plan)
 ELSE
 pred=ActionPredicates(i,r_action)
 post= ActionPostcondition(i, r_action)
 planaux=EmbeddedPlanner(pred,post,operations)
 IF (planaux!=NULL)
 newplan=Concatenate(newplan, planaux)
 action=NextActionPlan(plan)
 ELSE
 newplan=EliminateLast(newplan)
 action=PreviousActionPlan(plan)
 END
 END
 END
 plan=newplan
END
RETURN (plan)

24

The Sussman’s Anomaly consists of losing part of the achievements (goals) previously stated by the

planner when it intends to achieve new ones [47]. This problem is not directly related to abstraction,

although it could appear in any abstraction-based planner. The essential condition under which a given

planner is sensitive to this anomaly is that the goals of a plan are achieved separately and considered

independently [47]. Since the HPWA methods use an embedded planner that solves a given plan in only

one, atomic operation, no separation of goals is carried out. Thus, as long as the embedded planner does not

suffer from the Sussman’s Anomaly, HPWA does not either.

A slightly different anomaly that can be present in any abstraction planner appears when an abstract plan

loses its truth at refinement, that is, the refinement of an abstract plan makes false some achieved abstract

goal. A way to prevent this, as proposed in [30], is to impose a strong requirement on the hierarchy of

abstraction. The method presented in this paper for constructing AH-graphs does not take into account this

anomaly, but the only effect of it in HPWA is not to find a refinement for the abstract plan, since no “false”

or incorrect plan can be produced. In these cases, backtracking will take care of redoing the abstract plan

(finding a different one) and trying again.

In addition, C.L.AU.D.I.A. will tend to avoid hierarchies that produce this type of problem, since they

will be discarded during optimization due to their high computational costs for task planning.

IV. IMPLEMENTATION AND RESULTS

This section describes some software details and numerical results of experiments with the above

planning methods, when applied to larger and more realistic worlds than that of figure 6.

A. Implementation Details of HPWA

Since we intend to use HPWA for real applications, HPWA-1 and HPWA-2 have been implemented on a

distributed software architecture built upon a system for integrating robotic software modules. These

modules communicate through a real-time implementation of the CORBA specification for distributed

25

applications [24] called ACE+TAO [45] which provides portability and extendibility to our mobile robot

software [18].

The software modules implemented for our experiments consists of the following:

• AH-graph Manager. It creates, modifies, and maintains the AH-graph model that represents the

world.

• AH-graph / Predicates Translator. This module takes information from the AH-graph manager

module and generates all predicates that represent the world state corresponding to a given

hierarchical level.

• Embedded Planner. It is a wrapper for the task planner being used (Graphplan or Metric-FF), that

communicates it to other modules of the architecture.

• Hierarchical Task Planning Module. This module implements the world abstraction planning

methods presented in section III (HPWA-1 and HPWA-2).

B. Experiments and results

Planning complex tasks in a real office environment, as the one depicted in figure 9, is a challenge for any

intelligent robot. This type of scenario may be composed of a large number of rooms and corridors where a

mobile robot (perhaps equipped with a robotic arm) can perform a certain number of operations. Notice that

we are dealing daily with even much more complex environments, with much more rooms, floors, and

buildings, etc.

Within this environment, a person can ask the robot to pick up her/his mail (i.e., an envelope) from

her/his office. The requested mail can be stacked, so the robot may need to unstack other envelopes on top

of it before taking it. Once the mail is delivered, the robot must go to a specific place to recharge energy

(the supply room). For the sake of simplicity we assume that all doors are opened. The definitions of the

operators used in the tests presented in this section are more complex than the ones shown in figure 6, since

they include unstack object and recharge energy operators.

26

The robot world hierarchy used by our hierarchical planning methods is shown in figure 10. This world

representation resembles the human cognitive map [34]. The ground level contains the maximum amount of

detail: every distinctive place, environment objects and their relations. The first level groups places and

objects to form the human concept of rooms and corridors. Upper hierarchical levels represent groups of

rooms or areas, and finally, the universal level contains a single node that represents the whole

environment. As commented earlier in section II, the world hierarchy can be automatically constructed and

maintained by C.L.A.U.D.I.A.

 Within this scenario, we compare the Graphplan and Metric-FF conventional planners to the

implementation of HPWA that uses them as embedded planners. Also, an implementation of Graphplan

that uses the hierarchies produced by the ABSTRIPS algorithm [44] has also been developed, in order to

compare our planning results to other hierarchical approach.

The first experiment consists of planning a single fixed task while varying the complexity of the scenario.

The planned robot task is to pick up a given envelope from the mail room (see fig. 9). This task requires the

robot to navigate to this room, unstack other envelopes (if needed), and then pick up the requested

envelope. The complexity of the scenario ranges from 6 to 48 rooms. Figure 11 shows a comparison of the

computational costs of planning using HPWA-1 and HPWA-2 with Graphplan as embedded planner against

the Metric-FF and GraphPlan conventional planners alone, and against the hierarchical version of

Graphplan with ABSTRIPS. Observe that, without using abstraction, the computational cost grows

exponentially with the number of rooms; however, HPWA-1 and HPWA-2 spend a constant time since the

new rooms added to the environment, which are irrelevant for the task, are promptly discarded by the

abstract planning process.

27

Fig 9. A large-scale office environment composed of many rooms. On the left, a detailed portion of the whole environment is

zoomed. Part of the hierarchical ground level has been overprinted in order to clarify this partial view.

28

BUILDING
FLOOR

Mail Stack 4

Mai l Stack 3

South Zone 3 South Zone 4

South Zone 2

Mail Stack 2

Mail Stack 1

South Zone 1

Corrido r

South
Area 1

South
Area 4South

Area 2

South
Area 3

North
Area 1

North
Area 4

North
Area 2

North
Area 3

Stack2Stack1 Stack6
Stacks4-

5Stack3

Stack9Stacks7 -
8

Stacks10-
11

ROBOT

BUILDING FLOOR

Corridor

South Zone 1
Sou th Zone 2

North Zone 1 North Zone 2

Mail Stack
1

Mail Stack
2

Ma il Stack
4

Mail Stack
3

ROB OT

Room1 Room2
Room3

Room4
Room5

Room6

Room7 R oom8
Room9 Room10

R oom11

Room12

South-Corridor

North-Corridor

Room14
Room15

Room16 Room17
Room18

Room19 Room20 Room21 Room22 Room23 Room24Room13

ROBOT

Stack1 Stack2

Stack
3

Stack4
Stack

5

Stack6

Stack7
Stack8

Stack9 Stack10 Stack 11

L3

L2

L1

E1
E2

E1

Corridor

Stacks7-8

South-Rooms 2 South-Rooms 3 S outh-Rooms 4

S tacks4-5

S outh-Rooms 1

S outh-
Corridor

Room1 Room11Room10
Room9Room8Room7

Room6Room5Room4Room2 Room3 Room12

Stack2Stack1 Stack6S tack5Stack4Stack3

South-Rooms 6 South-Rooms 7 South-Rooms 8

S tacks10-11

South-Rooms 5

North-
Corridor

Room13
Room23Room22Room21Room20Room19

Room18Room17Room16Room14 Room15
Room24

Stack8Stack7 S tack11Stack10Stack9

ROBOT

Ground Level

Level 1

Level 2

Level 3

Universal Level

Fig 10. The robot world hierarchy for the examples of section IV. Nodes into a given shaded region are abstracted to the

same supernode at the next higher hierarchical level. This AH-graph comprises four levels. At the ground level the elements are
grouped to make up room nodes at the next hierarchical level. These rooms are grouped into areas and finally, a single node
represents the whole environment at the universal level. Elements of the ground level have been labelled “E” for envelopes and
“L” for destination locations.

29

Planning Time

0,1

1

10

100

1000

10000

6 12 24 48

Environment complexity (Num ber of Rooms)

T
im

e
 (

s)

Metric-FF GraphPlan Abstrips
HPWA1+ GraphPlan HPWA2 + GraphPlan

Fig. 11. Planning a single fixed task in an increasing complexity environment (ranging from 6 to 48 rooms). While the CPU

planning time grows exponentially using the conventional planners considered here (hierarchical and non-hierarchical), both
HPWA methods exhibit a constant CPU time, since irrelevant information for the task is discarded. This plot only shows the
time spent by planners: neither pre- or post-processing, nor communication burdens have been added. No result is shown for
Metric-FF for 48 rooms due to the large computational resources demanded.

A second experiment is aimed to test the method in a medium-complexity environment (with 24 rooms)

where six arbitrary tasks are planned. The first three tasks are “take envelope E” and the others “carry

envelope E to location L” (see fig. 12). The elements involved in the tasks (E and L) have been selected

arbitrarily from the robot world. All tasks involve navigation and manipulation operations, and some of the

goals are reached in more than 40 actions. The whole robot world is composed of more than 250 distinctive

places, 30 different objects that the robot can manipulate, and all the navigation and manipulation relations

existing between these elements.

Task #1 Take Envelope E1
Task #2 Take Envelope E2
Task #3 Take Envelope E3
Task #4 Carry Envelope E1 to L1
Task #5 Carry Envelope E2 to L2
Task #6 Carry Envelope E3 to L3

Fig. 12. The six tasks planned for the second experiment. Three different objects (envelopes) and three locations of the
environment have been chosen to test the hierarchical planning methods versus conventional planning. Please, see figure 10 to
find these objects and locations in the ground level of the AH-graph.

30

Fig. 13 shows the results of this experiment using HPWA-1 and HPWA-2 with Graphplan as embedded

planner, HPWA-1 with Metric-FF12, a hierarchical version of Graphplan using the hierarchies produced by

ABSTRIPS, and the conventional planners alone (GraphPlan and Metric-FF). Each chart shows the results

of planning a task from the ones shown in fig. 12. It is clear the computational benefit of hierarchical

planning through world abstraction against both non-hierarchical planning and ABSTRIPS. Also, notice

that planning time is not shown for the last three tasks (Task 4, Task 5 and Task 6) for Graphplan planner

and ABSTRIPS, because Graphplan was not able to find a plan due to the large computational resources

demanded and ABSTRIPS fails in finding a correct plan that solves the tasks due to violation of previously

achieved preconditions when refining a plan (the same problem is reported in [28]). In all these plots we

only consider the time spent by the embedded planner, without taken into account the pre-processing time

taken by the AH-Graph manager and AH-Graph/Predicates Translator, and the time spent in CORBA

communications. Notice how HPWA-2 performs better than HPWA-1 in all tasks, except for the first two

ones because of backtracking burden. Figure 14 compares the total time (which accounts also for pre-

processing and communications) of HPWA-1 versus HPWA-2 when using Graphplan as embedded

planner. In this case, HPWA-2 performs more inefficiently since backtracking does not only increase the

number of plans to solve, but it also multiplies that increment by the CORBA communication and the

predicate translation times. Also, observe how the total time of HPWA-1 is quite similar to its planning

time (figure 13), since the additional cost of this method is negligible.

12 HPWA-2 is not yet adapted for Metric-FF. Metric-FF planner requires a more sophisticated management of the world information that has not been
considered for this work, remaining as one of the future goals in our research.

31

T1

0,1

1

10

100

1000

10000

Metr ic-FF Gr aphPlan Abstr ips HPWA-1 +

Gr aphPlan

HPWA-2 +

Gr aphPlan

HPWA-1 +

Metr icFF

T1

T2

0,1

1

10

100

1000

10000

Metr ic-FF Gr aphPlan Abstr ips HPWA-1 +

Gr aphPlan

HPWA-2 +

Gr aphPlan

HPWA-1 +

Metr icFF

T2

T3

0,1

1

10

100

1000

10000

Metr ic-FF Gr aphPlan Abstr ips HPWA-1 +

Gr aphPlan

HPWA-2 +

Gr aphPlan

HPWA-1 +

Metr icFF

T3

T4

0,1

1

10

100

1000

10000

Metr ic-FF HPWA-1 +

Gr aphPlan

HPWA-2 +

Gr aphPlan

HPWA-1 + Metr icFF

T4

T5

0,1

1

10

100

1000

10000

Metr ic-FF HPWA-1 +

Gr aphPlan

HPWA-2 +

Gr aphPlan

HPWA-1 + Metr icFF

T5

T6

0,1

1

10

100

1000

10000

Metr ic-FF HPWA-1 +

Gr aphPlan

HPWA-2 +

Gr aphPlan

HPWA-1 + Metr icFF

T6

Fig. 13. Planning time for the proposed tasks (in seconds) in a Pentium IV at 1.7 MHz with 512 Mbytes of RAM. Both non-

hierarchical and hierarchical planners exhibit worse CPU time than HPWA methods. Moreover, HPWA-2 exhibits the best
planning time for all tasks except for the first two ones due to backtracking situations. Notice that the planning time is not
shown for Graphplan and ABSTRIPS in the last three tasks, because they were not able to end up with a solution. In all these
plots we consider only the time spent by the embedded planner, without taken into account the pre-processing time, CORBA
communications, etc.

Total Algorithm Time

0

5

10

15

20

25

30

T1 T2 T3 T4 T5 T6

T
im

e
 (

s
)

HPWA-1 + GraphPlan
HPWA-2 + GraphPlan

Fig. 14. Total time spent by our HPWA-1 and HPWA-2 implementations with Graphplan as embedded planner. Time of

HPWA-2 is higher than HPWA-1 due to the extra pre-processing and CORBA communication costs involved in backtracking.
In spite of this apparently bad result, HPWA-2 performs better than other approaches in fig. 13, even when they do not include
the pre-processing and communication burden considered in this plot.

32

V. CONCLUSIONS AND FUTURE WORK

In AI literature, task planning has not dealt with large-scale spaces, which is a common situation in

mobile robotics. In these cases, task planning, even with the most modern improvements, can exhibit a high

computational cost, even be intractable (as shown in fig. 13). This paper has introduced a new scheme for

task planning that takes advantage of a hierarchical arrangement of the robot model of the environment.

This approach, called Task Planning through World Abstraction, performs planning at a high level of

abstraction of the world and then, recursively, refines the resulting abstract plan at lower levels, ignoring

irrelevant world elements that do not take part in the abstract plan. HPWA has been stated and formalized

upon a graph-based hierarchical structure called AH-graph, although other hierarchical models could also

take advantage of the general approach.

In particular, we have described two implementations of HPWA that embed other existing planners

(Graphplan and Metric-FF) to solve planning at each level of abstraction of the world. Thus, we can benefit

from any other kind of improvements on the embedded task planner, even abstraction (of operators, tasks,

etc.). We have shown how our two implementations of HPWA have performed better than the embedded

planners alone and other hierarchical approaches as ABSTRIPS. This good performance is tightly coupled

with the use of adequate hierarchies of abstraction. Adequate hierarchies can be obtained by using the task-

driven paradigm for automatic construction of abstractions outlined in section II and presented with more

detail in [15].

Since world abstraction is intuitive and applicable to most real robotic environments, we believe this

work may be of a great value in those task planning problems where the number of world elements makes

conventional planning strategies impractical. In addition, other areas different from robotics can benefit

from our framework provided that the world can be represented in a graph-like manner and the problem

supports the progressive optimization carried out by C.L.A.U.D.I.A.

Our short term research aims to use the HPWA framework with other kinds of embedded planners, like

33

decision-theoretic ones and others. Also, we are working on obtaining predicates not only from nodes and

arcs, but also from non-structural information held by the AH-graph.

Our ultimate goal is the complete integration of the HPWA methods into a mobile robotic architecture,

addressing the problem of interleaving planning and execution.

 REFERENCES

[1] Alami R., Chatila R. (1998). An Architecture for Autonomy. International Journal of Robotics Research, Vol. 17, No. 4.

[2] Anderson C.R., Smith D. E., and Weld D.S. (1998). Conditional Effects in Graphplan. 4th Int. Conf. AI Planning Systems, Pittsburgh Pennsylvania, USA.

[3] Asada M., Fukui, Y., and Tsuji, S. (1990). Representing Global World of a Mobile Robot with Relational Local Maps. In IEEE Transactions on Systems,

Man and Cybernetics, Vol. 20, No.6.

[4] Baioletti M., Marcugini S., and Milani A. (2000). DPPlan: an Algorithm for Fast Solutions Extraction from a Planning Graph. Artificial Intelligence

Planning Systems, Breckenridge, USA.

[5] Baker K. Introduction to Sequencing and Scheduling. (1974). Wiley, New York.

[6] Barish G. (1998). Approaches to Integrating Abstractions In Graphplan-based Planning System. Universtity of Southern California. CS541: Artificial

Intelligence Planning. Final Project, December 11.

[7] Blum A.L. and Furst M.L. (1997). Fast Planning Through Planning Graph Analysis. Artificial Intelligence Vol. 90.

[8] Brooks, R.A. (1986). A robust layered control system for a mobile robot. IEEE J. Rob. Automation Vol. 2.

[9] Christensen J. (1990). A Hierarchical Planner that Generates its Own Hierarchies. 8th National Conf. On Artificial Intelligence, Boston, USA.

[10] Davis P.K., and Hillestad R.J. (1993). Families of Models that Cross Levels of Resolution: Issues for Design, Calibration, and Management. Winter

Simulation Conference of the ACM. Los Angeles, USA.

[11] Delchambre A. and Gaspart P. (1992). KBAP: An industrial prototype of knowledge-based assembly planner. IEEE Intl. Conf. On Robotics and

Automation, Nice (France).

[12] Erol K, Hendler J, and Nau D. (1994). Semantics for Hierarchical Task network Planning. Technical Report CS-TR-3239, Dept. of Computer Science, U.

Maryland.

[13] Fernández J.A. and González J. (1998). Hierarchical Path Search for Mobile Robot Path Planning. IEEE International Conference on Robotics and

Automations (ICRA), Leuven (Belgium).

[14] Fernández J.A. and González J. (1998). Mobile Robot Path Planning and Navigation Using Hierarchical Graphs. ICSC Symposium on Engineering of

Intelligent Systems (EIS), Tenerife (Spain).

[15] Fernández J.A. and González J. (2001). Multi-Hierarchical Representation of Large-Scale Space. International Series on Microprocessor-based and

Intelligent Systems Engineering. Vol. 24. Kluwer Academic Publishers, Netherlands .

[16] Fernández J.A. and González J. (2002). Multihierarchical Graph Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, nº 1.

[17] Fernández J.A. and González J. (2002). Task-driven, Multiple Abstraction for Modeling Mobile Robot Large-scale Space. 15th IFAC World Congress on

Automatic Control, Barcelona (Spain).

34

[18] Fernández J.A., González J., Galindo C., Reina A., and Muñoz A. (2002). Assistive Navigation using a Hierarchical Model of the Environment. 3rd

International Congress on Engineering Intelligent Systems (EIS), Málaga (Spain).

[19] Fikes, R., and Nilson, N.J. (1971). STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artificial Intelligence, Vol. 2.

[20] Fink E., Yang Q. (1993). A Spectrum of Plan Justifications. AAAI Spring Symposium, Standford, California.

[21] Giunchiglia E. and Walsh T. (1992). A Theory of Abstraction. In Artificial Intelligence, Vol 56 nº 2-3.

[22] Giunchiglia F., Walsh T. (1991). Using Abstraction. 8th Conference of the Society for the Study of Artificial Intelligence and Simulation of Behaviour,

Leeds, UK.

[23] Hendrickson B. and Leland R. (1993). Multidimensional Spectral Load Balancing. 6th SIAM Conference on Parallel Processing and Scientific

Computation. Norfolk, Virginia, USA.

[24] Henning M., Vinoski S. (1999). Advanced CORBA Programming with C++. Addison Wesley Longman, Inc.

[25] Hoffmann Jörg and Nebel Bernhard. (2001). The FF Planning System: Fast Plan Generation through Heuristic Search. Journal of Artificial Intelligence

Research, Vol. 14.

[26] Knoblock C.A. (1991). Search Reduction in Hierarchical Problem Solving. 9th National Conference on Artificial Intelligence, California, USA.

[27] Knoblock C.A. (1990). Learning Abstraction Hierarchies for Problem Solving. 8th National Conference on Artificial Intelligence, Boston, USA.

[28] Knoblock C.A. (1992). An Analysis of ABSTRIPS. Artificial Intelligence Planning Systems: Proceedings of the First International Conference, AIPS,

Morgan Kaufmann.

[29] Knoblock C.A. (1993). Generating Abstraction Hierarchies: An Automated Approach to Reducing Search in Planning. Kluwer Academic Publishers,

Norwell, MA.

[30] Knoblock C.A. (1994). Automatically Generating Abstractions for Planning. Artificial Intelligence, Vol. 68, nº2.

[31] Koehler J., Nebel B., Hoffmann J., and Dimopoulos Y. (1997). Extending Planning Graphs to an ADL Subset. Institute for Computer Science Albert

Ludwigs University. Technical Report No. 88.

[32] Koening S., Goodwing R., and Simmons R.. (1996). Robot navigation with Markov models: A framework for path planning and learning with limited

computational resources.. In Dorst, L. van Lambarlge, M., and Voorbraak, R., eds., Reasoning with Uncertainty in Robotics, volume 1903 of Lecture Notes

in Artificial Intelligence. Springer.

[33] Korf, Richard E. (1987). Planning as search: A quantitative approach. Artificial Intelligence, Vol. 33, nº1.

[34] Kuipers B.J. (1983). The Cognitive Map: Could it Have Been Any Other Way?. In Spatial Orientation: Theory, Research, and Application. Picks H.L. and

Acredolo L.P. (eds.), New York, Plenum Press.

[35] Kuipers B.J. (2000). The Spatial Semantic Hierarchy. In Artificial Intelligence Vol. 119.

[36] Kuipers B.J. and Byun Y.T. (1987). A Qualitative Approach to Robot Exploration and Map-Learning. IEEE Workshop on Spatial Reasoning and Multi-

Sensor Fusion. Los Altos, California.

[37] Latombe J.C. (1991). Robot Motion Planning. Kluwer Academic Publishers, Boston.

[38] Minto S., Carbonell J.G., Knoblock C.A., Kuokka D.R., Etzioni O., and Gil Y. (1989). Explanation-based learning: A problem solving perspective.

Artificial Intelligence, 40 (1-3).

[39] Mkadmi T. (1993). Speeding Up State-Space Search by Automatic Abstraction. Master’s thesis, University of Ottawa.

[40] Park I-P, and Kender J.R. (1995). Topological Direction-Giving and Visual Navigation in Large Environments. In Artificial Intelligence, Vol. 78.

[41] Perona P. and Freeman W. (1998). A Factorization Approach to Grouping. Lecture Notes in Computer Science, Vol. 1406.

35

[42] Peterson G.L, and Cook, D.J. (2003). Incorporating decision-theoretic planning in a robot architecture. Robotics and Autonomous Systems 42.

[43] Reynolds P.F.J., Natrajan A., and Srinivasan S. (1997). Consistency Maintenance in Multi-Resolution Simulations. In ACM Transactions on Computer

Modeling and Simulation, vol. 7, no. 3.

[44] Sacerdoti E.D. (1974). Planning in a Hierarchy of Abstraction Spaces. Artificial Intelligence, Vol. 5, nº2.

[45] Schmidt D., ACE+TAO Corba Homepage. http://www.cs.wustl.edu/~schmidt/TAO.html.

[46] Smith D.E., Frank J., and Jónsson A.K. (2000). Bridging the Gap Between Planning and Scheduling. Knowledge Engineering Review, 15 (1).

[47] Sussman G.J. (1975). A computer model of skill acquisition. American Elsevier Publishing Company.

[48] Tamaki H., Murac H., Kitamura S. (2002). Decision-making strategies for decentralized production planning and scheduling. IEEE International

Symposium on Industrial Electronics, L’Aquila (Italy).

[49] Trudeau R. J. (1993). Introduction to Graph Theory. Dover Publications, New York.

[50] Veloso M, Carbonell J. (1995). Integrating planning and learning: the prodigy architecture. Journal of Experimental and Theoretical AI. Vol. 7, nº 1.

[51] Walker A., Hallam J., and Willshaw D. (1993). Bee-havior in a Mobile Robot: The Construction of a Self-Organized Cognitive Map and its Use in Robot

Navigation within a Complex, Natural Environment. IEEE International Conference on Neural Networks, San Francisco, California.

[52] Yang Q. (1997). Intelligent Planning: A Decomposition and Abstraction Based Approach. Springer Verlag, Berlin, Germany.

[53] Zweben M. and Fox M. (1994). Intelligent Scheduling. Morgan Kaufmann.

