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Abstract One of the cornerstones of ambient intelligence technology is the need of
sensory systems to reliably notice the presence of people. Several approaches for
detecting humans within a non-controlled scenario can be found in the literature
but they exhibit, not enough effectiveness, i.e. a high rate of false positive or true
negative detections. This becomes a drawback for the development of a variety of
ambient intelligence applications which depend on such sensory capability.

In this paper we propose the use of a TOF camera for noticing human presence by
detecting their faces. Apart from a typical intensity image, this camera also provides
a range image of the scene. The proposed methodology first detects faces from the
intensity image (by using the Viola-Jones algorithm) and then analyzes those detec-
tions in the range image to discard false positives. Experimental evaluations of the
proposed process have yielded excellent results in non-controlled scenarios, elimi-
nating most of false positive detections.

1 Introduction

Ambient Intelligence (AmI) has recently come out to increase the comfort of people
within their daily life. AmI refers to the enhancement of the environment through
a set of devices that intelligently controls certain functionalities, pursuing a variety
of aims. For instance, an intelligent fridge can take account on the aliments that it
contains, automatically ordering those which have been already consumed. Such an
intelligent fridge, equipped with gas sensors, could also alert the user when a partic-
ular meal is rotten [7]. Thus, the inhabitants of the home can be easygoing with their
food supply, simplifying this chore. Other practical cases where AmI may help is in
the adjustment of resources consumption at the same time that all the comforts of
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the environment are kept. A sensory system can detect the presence/absence of peo-
ple in a given area to control, for example a heating device. Even more interesting
is the possibility to estimate the number of people and to be able to recognize them
in order to accordingly adjust the temperature of a room following pre-specified
preferences. These are some examples that reveal the human-centric characteristic
of Ambient Intelligence technology. Given that humans are the main actors, it be-
comes clear the interest of Ami in reliably noticing the presence of people in order
to act adequately.

Computer vision contributes to this issue by providing algorithms to detect hu-
man faces in images [3, 10, 11], through their reliability are still not high enough
for many real AmI applications. Very recently, a new type of sensor, called TOF
camera (Time-Of-Flight camera), has appeared in the market providing both inten-
sity and range data. These cameras permit us to improve the detection of the truly
presence of human faces not only through visual information, e.g. skin-like colour,
2D shape, etc., but also by exploiting 3D characteristic information of human faces,
for example, the area of the nose is prominent with respect to the area of the cheeks.

In the recent literature some works can be found exploring the capabilities of
TOF cameras. Many of them address the physical characterization of TOF cameras
[2, 12], and others focus on their application in a variety of fields [13, 14]. Some
related works to ours are [4, 6], which propose simple and direct approaches for face
detection using TOF cameras. In this paper we improve their achievements through
a battery of 3D-shape tests that leads to a reliable and robust face detector. Our
experiments have been successfully conducted on real and non-modified scenarios,
yielding results with a high rate of true positives and reducing very significantly
the number of false positives, which are a serious problem for known intensity-
based face detectors. Some of our experiments have been conducted with the TOF
camera mounted on a mobile robot, to prove the suitability of our approach for AmI
applications that may incorporate a service robot.

Next we describe the proposed method and the evaluation results of the experi-
ences conducted on real, non-controlled scenarios.

2 The Proposed Method

Our aim is to develop a robust face detection process using a TOF camera that
produces the minimum number of false positives as possible, while maintaining
high detection rates. Our approach is divided into two steps (see figure 1): the first
one applies the well-known Viola-Jones classifier [10] over the intensity image to
determine a set of candidates regions that presumably contain a human face. In
the second step, the resulting candidates are checked against a battery of 3D-shape
tests that operates over the range image. This second phase aims at discarding false
positives of the first stage.
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Fig. 1 Scheme of the proposed two-step process for face detection.

2.1 TOF cameras

Broadly speaking, a time-of-flight camera is a device that provides both intensity
and range data, i.e. distance information to the sensed objects. In particular, the TOF
camera considered in this work, manufactured by Mesa Imaging [8], performs by
emitting a continuous wave modulation through an infrared led array (see figure 2).
It calculates the phase difference between the sent and received signal, obtaining
range information with respect to the camera reference system up to a distance of 5
m. with an accuracy of ±10 mm.
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Fig. 2 a) The leds of the camera emit a continuous wave modulated signal. When the signal is
reflected to the camera, their CCD/CMOS cells are excited with a signal with a certain phase
shift, which permits the device to calculate the distance and reflectivity of the target through cross
correlation. b) Reference system established by the used TOF camera.
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In spite of the interesting possibilities provided by TOF cameras, they have still
some limitations (see [12] for more details):

• Low resolution. The used camera has a resolution of 176 x 144 pixels.
• Unsuitable for highly dynamic scenes. When a scene presents fast moving ob-

jects, measured distances are prone to large errors.
• Low accuracy of the measured distance. Distance measurements are influenced

by the colour and the type of material of objects.

2.2 Viola-Jones classifier

The Viola-Jones classifier applies a cascade of tests of increasing complexity, over
the intensity image (see figure 3). First stages of the cascade are simple and quickly
discard regions that do not match general human faces’ features, e.g. the eyes’ area is
darker than the nose one. The subsequent stages are increasingly more selective and
complex, minimizing the false positive rate, at the expense of a higher computational
burden.
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Fig. 3 Structure of a face detector cascade. Computationally less demanding stages are applied
first.

Tests considered in each stage are trained using AdaBoost[1]. AdaBoost is a
learning algorithm that chooses weak classifiers between a family of simple (Haar)
features. These classifiers are combined into strong classifiers, which become con-
stituents of the stages of the Viola-Jones cascade (refer to [10] for further detail).

Once trained, the classifier is applied to a video sequence. Within each frame,
a 20x20 pixels window is slid, checking if it passes all the stages of the cascade.
This window is moved and scaled to cover the whole frame in order to detect a face
at different locations and scales. The considered window size for the Viola-Jones
classifier and the low resolution of our TOF camera limit the distance for detecting
faces to 2.5 meters.

Although this face detector provides good results, the number of false positives
it produces is a serious drawback for many AmI applications.
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2.3 3D-shape tests

To overcome the problem of such a high number of false positives, we propose a
second step where three 3D-shape tests are applied over the range image to con-
firm or not every candidate. Each test checks out if a particular 3D-shape feature is
present in the candidate region or not, identifying and eliminating different types of
false positives. Figure 4 shows some examples of false positives detected by the two
of the proposed tests which are described in the following sections.

Intensity Range

a)

Intensity Range

b)

Fig. 4 a) A false positive detected because it is a flat region. b) A false positive because of an
abnormal face size for that distance.

2.3.1 Test #1: Flat region

The first test is based on the fact that human faces are not flat, so they present certain
relief on the range image. An example of this type of false positives is shown in
figure 4a. This test is implemented by computing the covariance matrix, C, of the
spatial position (x,y,z) of the pixels that conform the candidate region. Eigenvalues
of the C matrix give information about the spatial distribution of the pixels that
form the region. Concretely, the lower the smallest eigenvalue, the flatter the region.
Notice that a similar reasoning could be stated for the standard deviation of the z
coordinates (distances to the camera) which is cheaper to compute, however, we
have verified that it presents some problems for slightly oblique faces.

2.3.2 Test #2: Size-distance ratio

This test discards candidates that do not match the expected size of a human face
at a given distance. Figure 4b is an example of a false positive detected by this test.
In our implementation we have considered that the normal size of human faces, on
average, is 290 cm2 with a typical deviation of 60 cm2 approximately. These figures
have been obtained by analyzing around 10000 face images.
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2.3.3 Test #3: Facial structures

This test exploits the fact that human faces have a general common morphology.
It segments the candidates using a growing regions method over the range data to
extract the candidate face from the background, and then it divides it into nine sub-
regions as shown in figure 5a. The depths of these subregions to the camera must
verify certain constrains characteristic of human faces. For instance, the region that
presumably contains the nose (numbered as 5 in figure 5a) should stand out with
respect to the lateral subregions, that correspond to the cheeks, i.e. 4 and 6. An
example of a false positive declared by this test is shown in figure 5b.

In the implementation of this test, the position of each region is set as the centroid
of the pixels in it. Five comparisons are performed to check whether the central
regions of the three rows and of the two diagonals are closer to the camera than
the side regions. More concretely, we make the comparison on the x-y plane in the
following manner:

Let x = a ·y+b be the straight line that links the centroids of the side regions, and
let Pc = (yc,xc) be the centroid of the central region we check if the central region
is closer to the camera than the side regions, that is, the distance d = yc ·a+b− xc

must be positive. This checking is done for the five cases (3 rows + 2 diagonals).

3 Evaluation

In order to prove the effectiveness of our approach we have conducted 16 experi-
ments in two scenarios: fixed-camera, where the TOF camera was fixed while people
were moving around, and moving-camera, where the camera was mounted on a mo-
bile robot, and thus, it was affected by important changes in illumination (a video
can be watched at http://www.youtube.com/watch?v=GJE4A7R6LNs).

We apply the Viola-Jones cascade classifiers from the OpenCV library, con-
cretely the one labeled as haarcascade frontalface alt2, for detecting candidate re-
gions. Although it provides good results [9], a considerable rate of false positives
are produced. In our experiments from a total of 11.184 candidates, 685(5.77%)
was the number of false positives. These false positives as well as others reported
here were identified by visual inspection.

The proposed 3D-shape tests have been implemented in a multi-thread C++ pro-
gram, using a Intel R©CoreTM2 Quad CPU Q6600 2.4GHz, with 4Gb RAM, which
permits us to process up to 14 fps. We take advantage of the multi-core capability to
run simultaneously all the tests, albeit a sequential execution solution could be also
adopted.

When the 3D-shape tests are considered the number of false positives is drasti-
cally reduced, as shown in table 1. Notice that each test by itself has a modest ratio of
false positive declaration, but when combined they yield excellent results, eliminat-
ing all the false positives in the fixed-camera scenario and around the 97% of cases
with the camera onboard the robot. Regarding the false negative rate, i.e. faces which
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Fig. 5 a) Left: A candidate region. Middle: The centroids are represented with spheres while lines
represent the constrain to be checked. Right: projection into the y-x plane. Notice that subregion 2
is closer to the camera (less x coordinate) than the two side ones on the row (1 and 3), and thus the
constrain is met. b) Left: A false positive (behind the person). Middle: Subdivision of the region
and the restrictions to be fulfilled. Right: projection of three subregions into the y-x plane. Note
that the test is not passed in this case.

are erroneously neglected, the battery of the three tests discards 3.84% and 2.83%
of actual faces in fixed- and moving-camera scenarios respectively, which does not
represent a serious inconvenience since we are dealing with a video sequence.

Scenarios Frames Viola Jones false positives Test #1 Test #2 Test #3 All
Fixed-camera 11230 122 60,66% 68,85% 53,27% 100%

Moving-camera 27649 563 22,74% 53,46% 93,25% 96,98%

Table 1 False positives detected by each test separately, and by the combination of all of them
with respect to the total of false positives within static and dynamic configurations.
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4 Conclusions

In this work we have presented a robust human face detector for TOF cameras that
highly reduces the number of false detections, while keeping a very low level of
false negative cases. The obtained results demonstrate the interest in using not just
intensity images, but also range data to achieve the robustness level demanded by
AmI applications. Though nowadays these TOF cameras are still very expensive,
we believe that the emergence of these sensors to interface to next generation of
interactive games (as Kinect) will put them in the market at a very cheap price. In
the future we plan to investigate the use of the proposed method in a service robot
aimed to provide AmI capabilities.
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