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Dr. Juan Antonio Fernández Madrigal





To

Ana Belén





Table of Contents

Table of Contents vii

1 A Robotic Future 1

1.1 Why is it not real? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Making it possible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 A Multi-Hierarchical, Symbolic Model of the Environment 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Informal Description of a Multi-Hierarchical

Model Based on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 What is an AH-graph? . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 What is a Multi-AH-graph? . . . . . . . . . . . . . . . . . . . . 23

2.3 Formalization of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Formalization of Graph Abstraction . . . . . . . . . . . . . . . . . . . . 28

2.5 Category Theory for Abstraction and Refinement of Graphs . . . . . . 30

2.5.1 The Category of Graphs with Abstraction . . . . . . . . . . . . 31

2.5.2 The Category of Graphs with Refinements . . . . . . . . . . . . 37

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Application of the Hierarchical Model to Mobile Robot Task Plan-

ning 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Formalization of Classical Planning in Category Theory . . . . . . . . . 49

3.2.1 Planning Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 The Category of Planning States with Abstraction . . . . . . . . 52

3.2.3 Functors between the AGraph and the AState Categories . . . . 55

3.2.4 Hierarchical Planning with CV AGraph∗ and AState . . . . . . 62

vii



3.3 Hierarchical Planning through Plan Guidance . . . . . . . . . . . . . . 68

3.4 Hierarchical Planning through Action Guidance . . . . . . . . . . . . . 79

3.5 Anomalies in Hierarchical Planning . . . . . . . . . . . . . . . . . . . . 82

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Multiple Hierarchies for Mobile Robot Operation 93

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 A Multi-Hierarchical World Model for a Mobile Robot . . . . . . . . . 97

4.2.1 Task-Planning Hierarchies . . . . . . . . . . . . . . . . . . . . . 98

4.2.2 Localization Hierarchy . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.3 Cognitive Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 The Utility of the Multi-Hierarchical Model for

Human-Robot Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.1 The Inter-Hierarchy Translation Process . . . . . . . . . . . . . 107

4.3.2 Interactive Task-Planning . . . . . . . . . . . . . . . . . . . . . 111

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Automatic Learning of Hierarchies of Abstraction 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2 The ELVIRA Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Model Creation/Maintenance . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.1 Human-assisted Symbolic Modeling . . . . . . . . . . . . . . . . 127

5.3.2 Perceptual Anchoring . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Model Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.1 Evolutionary Hierarchy Optimizer . . . . . . . . . . . . . . . . . 136

5.4.2 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4.3 Individual Recombination . . . . . . . . . . . . . . . . . . . . . 140

5.4.4 Individual Mutation . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4.5 Individual Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 147

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5.1 Real Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5.2 Simulated Experiments . . . . . . . . . . . . . . . . . . . . . . . 154

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6 Implementation and Experiences on a Real Robot 161

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Related Works on Human-Robot Interaction . . . . . . . . . . . . . . . 167

6.3 Overview of the ACRHIN Architecture . . . . . . . . . . . . . . . . . . 169

viii



6.4 The Deliberative Level . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4.1 Symbolic Management . . . . . . . . . . . . . . . . . . . . . . . 174

6.4.2 Task Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.5 The Executive Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5.1 Alert System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.5.2 Plan Executor and Alert Manager (PLEXAM) . . . . . . . . . . 181

6.6 The Functional Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.7 Experiences on the SENA Robotic Wheelchair . . . . . . . . . . . . . . 185

6.7.1 The SENA Robotic Wheelchair . . . . . . . . . . . . . . . . . . 185

6.7.2 Software Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.7.3 Experiences on SENA . . . . . . . . . . . . . . . . . . . . . . . 190

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7 Conclusions and Future Work 199

Appendices 203

A Mathematical Demonstrations for the Formalization of the Graph

Category 203

A.1 Composition of Abstractions in AGraph is an Abstraction . . . . . . . 203

A.2 Composition of Abstractions in AGraph is Associative . . . . . . . . . . 207

A.3 Composition and Identity of Abstractions in AGraph . . . . . . . . . . 208

A.4 Composition of Refinements in RGraph is a Refinement . . . . . . . . . 209

A.5 Composition of Refinements in RGraph is Associative . . . . . . . . . . 213

A.6 Composition and Identity of Refinements in RGraph . . . . . . . . . . 214

B Demonstration that Ψ is a Functor from CAVGraph∗ to AState 217

B.1 Ψ Preserves Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.2 Ψ Preserves Composition of Arrows . . . . . . . . . . . . . . . . . . . . 218

C Planning Domain 221

References 227

ix



Chapter 1

A Robotic Future

You see things; and you say ’Why?’

But I dream things that never were; and I say ’Why not?

George Bernard Shaw, Irish writer (1856-1950)

Malaga city

Year 2006

9:00 am

Mark takes a taxi to head for his work place. The robotic driver unit asks him the

destination: the high-tech laboratory, he answers. During his daily journey, that usu-

ally takes a couple of minutes, he can not help being astonished at what his eyes can

see: robots sweeping the street, cleaning up windows, controlling the traffic... Suddenly,

RX-342A, the taxi driver, turns left taking an unusual way to the destination. Before

Mark could say anything, RX-342A tells him that he has been informed about a traffic

problem in the next junction, and thus, he has decided to change the usual route. Mark

agrees. Finally, they arrive at the high-tech laboratory on time.

1



2 Why is it not real?

This vignette represents how we could imagine the future in our childhood, when

fiction movies made us believe that the 21st century would be full of robots working and

living with us (see figure 1.1). Today, looking around us, we can discover that great

scientific advances have improved our lives, but they are still beyond the described

scenario. Thus, I wonder: Will such an idealized future be, some day, the present?

Could engineers reproduce, or at least imitate, human intelligence?

Figure 1.1: Stills from the science fiction movie ”Total Recall”.

1.1 Why is it not real?

What prevents machines from working and interacting intelligently with humans? This

is the first question we have to consider in order to approach a new future. From

some philosophical points of view, it is well stated that the main ingredient that turns

humans into intelligent beings is our ability to construct and use symbolic internal

representations of our environment [30]. Such representations enable us to carry out

intelligent abilities like, for example, to imagine what would be the results of our

actions before we perform them. That is, we can simulate and test different strategies

to figure out what is the best one according to the current environmental conditions.

Moreover, a mental representation of the physical environment simplifies to a great
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SENSE ACT

ENVIRONMENT

Figure 1.2: Reactive framework.

extent the vast amount of information gathered by our senses: our brain is capable of

abstracting sensorial information, i.e. the image of a tree, into a general concept, a

symbol that represents all trees, regardless of their particular shapes, colors, sizes, etc.

This ability allows us to approach efficiently high complex problems without considering

the immense amount of information arising from our physical environment. Also, we

communicate to each other by sharing symbols.

It seems that in nature there are beings, like insects, that do not account for a

symbolic model of their environments: insect behaviour is merely reactive and instinct-

based [101] (but sufficient for their successful performance). They can automatically

perform complex tasks without planning: for example, a spider can spin a spiderweb

without using geometric reasoning.

Some years ago, the robotics community noticed this simple but effective behaviour

of insects and tried to imitate it by devising the reactive framework [20] (see figure 1.2).

This framework appeared in the late 1980s as a promising step aimed to endow a robot

with a certain degree of intelligence, or at least, with a certain degree of autonomous

performance. Reactive systems can respond quickly and effectively to external stimuli

through wired behaviours that imitate animal instincts.

Reactive systems, as a sum of a number of behaviours, exhibit features that make
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them suitable to cope with highly dynamic, complex and unpredictable environments.

On the one hand, its quick response to external stimuli is remarkable. Wired behaviours

can be seen as a pair ”perceptual condition-motor action”: once the sensory system

yields a perceptual condition, the respective motor action is immediately triggered.

Such a quick response is possible due to the processing of only local information. On the

other hand, a reactive system treats behaviors as independent entities, which cooperate

to produce the overall robot response to its environment. This feature makes reactive

systems modular, thus facilitating the combination of a number of robotic behaviours

ranging from simple and critical ones like collision avoidance to more complex ones like

navigation, improving the robot’s adaptation to its environment. Examples of reactive

robotic systems are largely referred to in the literature, such as [5, 70, 100].

Under the reactive framework, in which there is a tight connection between per-

ception and action, the robot does not need a symbolic model of its environment. The

main reasons to support avoiding any symbolic knowledge is that no model can ac-

curately represent real and dynamic environments, mainly due to their complex and

uncertain nature. Moreover, the construction and maintenance of any approximation

is a high time-consuming process. These drawbacks can be categorically summarized

through the famous Brook’s quote:

The world is the best representation of itself [21]

At a first glance, reactive systems may seem the solution to produce a moderately

intelligent robot, but can a pure reactive machine perform in the way like our robotic

taxi driver? Certainly not.

Analyzing the initial vignette we realize that our robotic driver exhibits certain

capabilities that can not be produced under the reactive framework:
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• RX-342A has knowledge about streets and junctions, that is, it manages global

information to plan the best path to arrive at the destination.

• He can foresee future situations and weigh up its decisions in order to accomplish

correctly and efficiently its tasks.

• He communicates his decisions to a human using understandable terms by her/him.

What we can infer from this analysis is that RX-342A must acquire and manipulate

symbols from physical objects and places in its environment. He recognizes the high-

tech laboratory as a valid destination and plans a path to head for it from the starting

point by using other intermediate symbols, like streets and junctions. This is only

possible if he accounts for a symbolic internal representation of the whole environment.

Systems that rely on a world model are commonly called deliberative systems [108]

(see figure 1.3). In fact, the Deliberative Paradigm was the first attempt to design

intelligent robots (even before reactive systems) in the 70’s and 80’s. Based on the

idea that humans, unlike instinct-based animals, plan all our actions, the deliberative

paradigm proposes a robotic framework entailing an internal representation (model)

of the robot environment that is used for planning. The robot intelligent behaviour is

achieved by a planner algorithm, for example STRIPS [47], that considers the robot’s

goal and a global vision of the current state of the environment (through an abstract

representation of it) to produce a sequence of actions.

But, is a pure deliberative system just enough? Certainly not again.

The deliberative paradigm is based on the idea that humans plan all our actions,

although nowadays it is widely known that we do not plan all what we do, but instead

we rely on certain schemes or behaviours to perform some actions. Moreover, pure

deliberative systems can only be used when serious assumptions are considered:
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SENSE PLAN ACT

ENVIRONMENT

Figure 1.3: Deliberative framework.

• The environment can be accurately modelled.

• Uncertainty is restricted.

• The world remains unchanged during the planning and execution cycle.

It is to be noted that these three assumptions can not be ensured in a real and

uncontrolled environment, as the one described in the taxi example.

A possible and well accepted solution within the robotic community is to follow a

famous quote from Aristotle:

In medio stat virtus1

That is, the best of each system can be adopted to solve our problem. The re-

sultant framework, called the Hybrid paradigm (see figure 1.4) has now been widely

accepted within the robotic community [6], [133]. Hybrid systems combine aspects from

traditional AI, such as symbolic planning and abstract representations, with reactive

capabilities to perform robustly under uncertainty. The use of a symbolic model of the

robot environment enables it to consider global information to predict the best solution

when performing tasks, as well as to adapt its overall behavior to perceived changes.

1All virtue is summed up in dealing justly.
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SENSE ACT

ENVIRONMENT

PLAN

Figure 1.4: Hybrid paradigm.

The use of reactive techniques, for its part, provides robustness and quick operation to

the robot, permitting it to react against abnormal and unforeseeable situations, i.e., a

child crossing the street, running after her/his ball.

We can conclude that hybrid frameworks provide a feasible solution to the problem

of imitating human intelligence. But, in spite of such a conviction, our initial vignette

is still fiction, why? The answer to this question involves a variety of scientific open

issues, many of them out of the scope of this thesis. However, in our opinion, one of the

main reasons for why the robotic future is not the present yet is that there is not enough

knowledge about the way humans construct and use symbolic models, and thus, we

can not reproduce this ability in machines. In general, it is clear that the modeling

ability is learnt by our brain in the first years of our childhood, and that this ability

is improved through our life [32], [33], but neither the internal biological mechanism

to acquire new symbols, nor the way in which they are endowed with a particular

meaning, are well understood yet. Then, will the robotic future be postponed up to

the moment in which the scientific community figures out our most intimate mental

processes?
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1.2 Making it possible

The work presented in this thesis aims to contribute to the design of autonomous and

intelligent robots able to work closely with humans. Probably, many years will pass (in

the case that it happens someday) before researchers can discover the mental processes

involved in our intelligent behavior. Moreover, if this spectacular discovery one day

becomes true, it is not really clear the possibility of implementing such a mental process

to construct intelligent machines [11, 19, 136].

In the meantime, we can approach the problem by taking short but steady steps.

Obviously, the reader will not find, at the end of this manuscript, the design of RX-

342A, neither thousands of lines of code implementing its intelligent performance, but

indeed, she/he could find new ideas, algorithms, mathematical formalizations and code

implementation to enable mobile robots to face complex tasks within large environ-

ments. Considering this, we will outstandingly simplify the initial vignette turning

it into a robotic application in which a mobile robot efficiently plans and carries out

tasks, possibly managing volumes of information stemmed from a large indoor sce-

nario, whereas it interacts intelligently with humans. The main elements involved in

this approach are:

• A Mobile robot. We focus on a mobile robot capable of performing with a cer-

tain degree of autonomy within human (and limited) environments, like office

buildings, hospitals, etc. The robot has to account for a perceptual system that

enables it to extract symbolic information from sensorial data, as well as to detect

external stimuli, like obstacles.

• Hybrid architecture. The hybrid paradigm is identified as the most convenient
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framework to design mobile robots meant to perform autonomously and intelli-

gently.

• Large indoor environments. The robotic taxi driver (as well as any of us) has

to deal with a vast amount of information. All this information comes from

experience and should be stored and treated efficiently. In this work we consider

large indoor environments, like office buildings or relatively small scenarios in

which the robot manages large amounts of information.

• Planning Efficiency. Efficiency in planning may turn into one of the bottleneck

of hybrid architectures when the robot is supposed to perform in large-scale (or

complex) environments. Thus, part of the effort of this work strives to reduce as

much as possible the computational cost of the planning process.

• Human Interaction. As in the taxi vignette, an intelligent robot needs to interact

with humans. Such an interaction can be achieved by means of several mecha-

nisms, for example via voice, through tactile or visual information, etc. In any

case, the robot should be able to communicate to people using humans concepts,

i.e. ”please take me to the High Tech Laboratory”

The cornerstone of a deliberative agent, like the robotic taxi driver, is the way in

which it models the environment. The performance of our robot, and therefore its level

of autonomy and intelligence, will largely depend on how it learns, organizes, and uses

the symbolic information stemmed from the environment.

But, in spite of the marked benefits that the use of a symbolic representation may

provide, it brings some problems among which the following stand out: (i) how the large

amount of information arising from a real environment can be managed efficiently, and

(ii) how the symbolic representation can be created and maintained along the robot’s
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operational life.

Problem (i) appears in complex scenarios, i.e. large environments like an office

building, whose spatial model can contain thousands of concepts and relations be-

tween them. In this situation, the robot should account for appropriate mechanisms

to efficiently cope with such amount of information. The solution adopted in this work

is to endow the robot with the ability of hierarchically arranging the environmental

information, classifying it at different levels of detail.

Problem (ii), the creation and maintenance of the internal model, has not a complete

solution yet, since the human mechanism for the creation of symbols that represent

physical objects is unknown. This problem is derived from the widely known symbol

grounding problem [66]. The main concern here is how to idealize a symbolic repre-

sentation from a physical entity, and how to maintain such a model coherent with

the world along the robot operation. This issue has been recently approached in the

robotic field through anchoring [26], which is the solution adopted in this work.

1.3 Contributions of this Thesis

The contributions of this thesis are the following:

• The mathematical formulation of a multi-hierarchical symbolic model of the en-

vironment based on graphs. Such a model, formalized under Category Theory

[123], copes well with the amount of information arisen from large scenarios.

• The design and implementation of a computational framework that creates, main-

tains and reorganizes that symbolic world model over the operational life of the

robot. This framework, called ELVIRA, implements an evolutionary algorithm

to optimize over time the symbolic and hierarchical model of the robot world
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with respect to its tasks and changes in the environment.

• The implementation of a hierarchical planning approach, called HPWA, that

boosts the robot task planning process by exploiting the hierarchical arrangement

of its symbolic model.

• A natural human-robot communication through the use of a particular hierarchy

of the model, the so-called cognitive hierarchy. This hierarchy, typically con-

structed by a human, arranges space information in a way understandable by

humans. Symbolic information from other hierarchies (devoted, for example, to

task planning) can be translated to the cognitive one facilitating robot-human

communication.

• The design and implementation of a hybrid robotic architecture, called ACHRIN,

that accounts for the previously mentioned features. ACHRIN has been tested

on real mobile robots, like a robotic wheelchair for elderly people.

1.4 Outline

The outline of this manuscript is as follows.

Chapter 2 describes the mathematical model (based on hierarchies of abstractions)

used in this work to symbolically represent the robot environment. This model, called

Multi-AH-graph, has been previously presented in [45], and applied to the robotic field

as partial results of this thesis in [43, 53, 54, 55]. In this chapter, a more elegant

formulation of the Multi-AH-graph model based on Category Theory [123] is given.

Chapter 3 details two general-purpose task planning approaches that improve out-

standingly the robot task planning efficiency when using a hierarchical symbolic model.
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The proposed planning techniques are compared to other non-hierarchical planning ap-

proaches as well as to a well-known hierarchical planner in the robotic field (ABSTRIPS

[124]).

Chapter 4 studies the benefits of using multiple hierarchies to arrange symbolic

information in different manners, each of them aimed to improve a particular robot

operation, i.e. task-planning, self-localization, or human-robot communication [43].

That chapter also explains a symbol translation process, that is, a process that trans-

forms symbols from a certain hierarchy into a symbol (or a set of them) of another

hierarchy. This is especially significant when translating symbols from/to the hierarchy

used for human-robot communication (the cognitive hierarchy).

Chapter 5 describes a software framework, called ELVIRA, which provides a solu-

tion to the problem of creating and arranging symbolic information. We describe how

a symbolic model can be created automatically or with human assistance, from spatial

entities, like rooms, corridors, and simple objects. We also discuss how a possible large

amount of symbols can be automatically arranged in order to enhance robot opera-

tions, i.e. robot task-planning. Finally, we also consider how the symbolic model can

be adapted to reflect changes in the environmental information as well as changes in

the robot operational needs, while preserving efficiency in the information processing.

Chapter 6 deals with the design of a hybrid robotic architecture, called ACHRIN,

that entails our hierarchical and symbolic world model (a Multi-AH-graph) as the

principal part of its deliberative tier. ACHRIN, presented in [56], has been specifically

designed for assistant robots in which there is a clear necessity for providing proper

human-robot communication mechanisms. This is achieved by exploiting the high-level

communication characteristic that the symbolic model offers. This chapter also shows

some experiences carried out on a real mobile robot: a robotic wheelchair called SENA

[62, 61].
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Chapter 7 summarizes the work presented in this thesis, pointing out our achieve-

ments as well as its main limitations. It also suggests some possible future lines of

research based on this work.

This document is completed by three appendices:

Appendix A deals with mathematical demonstrations regarding the formalization

of the categories presented in chapter 2.

Appendix B presents mathematical demonstrations related to the formalization of

our hierarchical task-planning under Category Theory.

Finally, appendix C lists the planning domain considered in our experiences.





Chapter 2

A Multi-Hierarchical, Symbolic
Model of the Environment

Do not worry about your problems with mathematics,

I assure you mine are far greater.

Albert Einstein

How much information is stored in our brain? If we could measure it in a certain

magnitude, let’s say megabytes, how many Mb should be necessary to represent all our

knowledge? We do not only store a vast amount of data, but we also retrieve and use

part of it, for instance, when thinking, remembering or solving problems.

It is well stated in the psychologist literature that the key of such intellectual

abilities relies on the way in which the human brain arranges the information [65],

[68]. If our aim is to develop autonomous robots capable of managing the information

arising from a human environment (like an office building), firstly, we have to devise

an efficient arrangement of that information.

In our work, we identify as ”efficient arrangement” a hierarchical organization of

information based on abstraction. The term abstraction can be interpreted in different

ways, but here, abstraction is understood as a process that reduces (abstracts) infor-

mation in different levels of detail; for instance in a company, an employee can take

15
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part into a work-group that belongs to a certain department, which in its turn reports

to a company division, that joined to the rest divisions make up the whole company.

That is, in this example we consider the following sequence of abstractions: employee→

work-group → department → company division → company.

In this chapter we describe a mathematical model, calledMulti-AH-graph that relies

on abstraction in the commented sense for modeling knowledge that is represented

as annotated graphs [45]. The Multi-AH-graph model, which has been previously

presented using classical set theory in [45], is formalized here through Category Theory.
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2.1 Introduction

Mental processes such as to imagine, to predict, to plan, etc., require a symbolic

representation of the involved physical domain. Such a mental view should entail the

whole knowledge that the agent, for example a person, has about the physical world.

Clearly, the larger the amount of considered information is, the higher the complexity

of these processes.

Focusing on robotics and considering, for example, the task-planning capability

of the robot as a ”mental process”, the question is: how could we extend the robot

physical domain, that is, its workspace, while keeping a reduced planning complexity?

We can look at our own nature again to devise a solution. Our mental processes,

i.e. planning for a trip, manage an immense amount of information, but we usually find

quickly a solution, even a variety of possibilities to achieve our goal. It is clear that we,

humans, possess some mechanism (an unknown mental process up to now) to store,

catalog, treat, and recover all this knowledge. It is stated that such a mental process

can be (or at least can be imitated through) the so-called abstraction [65, 68, 86, 87].

Abstraction is meant here as a mechanism that reduces the amount of information

considered for coping with a complex, high-detailed, symbolic representation: symbols

that represent a physical entity can be grouped into more general ones and these can

be considered as new symbols that can be abstracted again. The result is a hierarchy

of abstraction or a hierarchy of symbols that ends when all information is modelled by

a single universal symbol.

Considering an office building scenario (see figure 2.1), it is clear that the amount of

information contained in (c) is higher than the information in (b), which in its turn is

higher than the information in (a). Information can be organized into this hierarchical

fashion, and thus we can symbolically represent the entire building with a single symbol
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a)

b)

c)

Figure 2.1: An office environment at different levels of detail a) The office building.
b) A particular floor of the building entailing departments. Each department contains
a number of rooms connected through corridors. c) A view of the building with the
highest amount of information including rooms and furniture.
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building which comes from the abstraction of a number of symbols that represent each

floor (like (b)), which in their turn come from the abstraction of a group of symbols

representing corridors, rooms, doors, chairs, cabinets, . . . (like (a)). That is, we can

group information at different levels of detail, and thus, we could be able to select the

most suitable one for a particular operation.

Let us consider another example to best elucidate how we use abstractions in our

daily life. We are planning a trip to visit to our kin at a nearby city (called A).

Focusing on our spatial knowledge we can think of an abstract concept called city A

which embraces everything about that place. At this point we do not need to consider

further information. Next, we take the car and start driving. Now the abstract symbol

”city A” is not enough for us and we need extra information. Thus, we consider

more detailed information included into the concept city A, for example roads and

city districts. When we approach the area where our kin live we focus on streets

and directions to arrive at a particular address: our destination. Finally, when we

are at the entrance of our kin’s house, we can forget everything about cities, roads,

districts, streets, etc. to only focus on spatial information about rooms and corridors.

This example shows how we abstract (or refine) symbolic information, that is, how

we arrange information at different levels of detail using it when needed. Through a

hierarchical symbolic model (like the one used in this work), which simulates the human

way to arrange information at different levels of detail, we can efficiently manipulate

an immense amount of information considering at each moment only that which is

relevant for our task.

The hierarchical and symbolic model used in this work has been reified through

a mathematical model, called Multi-AH-graph, which copes with abstractions in the

sense of the previous example. This model is an evolution of simpler relational models:

(i) graphs, (ii) annotated or conceptual graphs, and (iii) hierarchical graphs.
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(i) A flat1 graph model represents relational information efficiently [1]. When flat

graphs are used to model physical environments, their vertexes usually represent ob-

jects or areas of free space, while their edges represent relations among them. Some

representative works on modelling space for robots through graph-based representa-

tions are [85, 111, 157].

(ii) Apart from relational information, flat graphs can also store quantitative infor-

mation. In general, edges can hold weights or costs, typically a numerical value that

is useful to measure the strength of the relation between the pair of vertexes. For

instance, an edge can hold the navigational cost (in time or in energy consumption)

between two vertexes that represent two locations. But through the use of edge costs

there is no way to model other procedural or non-structural data that may be useful:

for example, information about the best navigation algorithm to be used by the robot.

Such a lack of expressiveness can be overcome by annotated graphs (A-graphs) that

permit the attachment of any piece of information (annotations) to both edges and

vertexes [45]. Annotated graphs are analogous to conceptual graphs [27].

(iii) A hierarchical graph (H-graph) improves the simple relational information that

flat graphs can model by arranging them at different levels of abstraction. Each

level of abstraction (or detail) is isolated from one another except for the abstrac-

tion/refinement links that permit us to move to a more abstracted (and less detailed)

point of view of the information (abstraction) or to a more refined and detailed level

of information (refinement) [59]. In case the flat graphs that constitute the H-graph

are annotated graphs, that is, their vertexes and/or edges hold annotations, the hier-

archical graph becomes an AH-graph, that is, a hierarchical and annotated graph.

The AH-graph model is the fundamental pilar to construct a more powerful spatial

model called Multi-AH-graph. A Multi-AH-graph [45] deals with multiple hierarchies

1The term ”flat” denotes that it is not a hierarchical graph.
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(or AH-graphs), that is, different ways of arranging the same information to improve the

management of spatial information in different situations. For example, from spatial

information about the streets of a city, it is clear that we can maintain (at least) two

different views depending on our particular role: if we are driving we consider street

directions and speed limitations, while when we are pedestrians we take into account

other information like the state of the pavement2.

In this chapter, the Multi-AH-graph model is formalized through Category Theory

[123]. Firstly, a general and informal description of the Multi-AH-graph model is given.

Next a mathematical formalization of: a) the flat graph model, b) the category of

hierarchical graphs with the abstraction operation (AGraph), and c) its dual category of

hierarchical graphs with the refinement operation (RGraph), are proposed. Particular

instances of these categories are the AH-graph and the Multi-AH-graph models. A

previous more dense formalization of them can be found in [45], using classical set

theory.

2.2 Informal Description of a Multi-Hierarchical

Model Based on Graphs

In this section the Multi-Hierarchical model is informally described. The mathematical

formalization given in sections 2.3, 2.4, and 2.5 is useful for a deeply understanding

of the rest of this thesis, however the informal description provided here is enough to

get a general flavour. First, the single-hierarchy model, called AH-graph, is described,

and then the multi-hierarchical model (Multi-AH-graph), which is made of a number

of interconnected AH-graphs.

2Information about pavement state, as well as speed limits, could be modelled as edge annotations.
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2.2.1 What is an AH-graph?

An AH-graph is a relational, graph representation of the environment which includes

hierarchical information, that is, the possibility of abstracting groups of elements to

super-elements. This kind of abstraction produces different layers isolated from one

another, called hierarchical levels, that represent the same environment at different

amounts of detail.

Hierarchical levels in an AH-graph are multigraphs3. The lowest hierarchical level

of the AH-graph is called the ground level, and represents the world with the maximum

amount of detail available. The highest hierarchical level is called the universal level,

and it typically represents the robot environment with a single vertex. Figure 2.2 shows

an example of an AH-graph with a single type of relation representing ”rigidly joined”.

Figure 2.2: An example of a single-hierarchical model (AH-graph) representing a pos-
sible abstraction of some spatial elements within a room. a) A 3D view of a room. b)
Hierarchical levels that model the room (each of them is a flat graph), represented by
different grey shades. c) Resulting hierarchy (each level contains a flat graph).

Vertexes of each hierarchical level represent elements (or super-elements) of the

3In this document we also use the term ”graph” to refer to multigraphs [147].
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world while edges represent relations between them with the possibility of holding

weights representing the strength of those relations. For example, in mobile robotics,

vertexes can represent distinctive places [88], while edges can indicate the navigability

relation between them, with the geometric distance as the edge weight.

A group of vertexes of a hierarchical level can be abstracted to a single vertex

at the next higher hierarchical level, which becomes their supervertex (the original

vertexes are called subvertexes of that supervertex ). Analogously, a group of edges of

a hierarchical level can be represented by a single edge (their superedge) at the next

higher level (see figure 2.3).

Besides the structural information captured by the AH-graph through vertexes,

edges, and hierarchical levels, both vertexes and edges can also hold non-structural

information in the form of annotations (see figure 2.4). This information may include,

but is not limited to: geometrical data gathered from the environment (i.e.: maps of

obstacles), costs incurred by the robot when executing an action (i.e.: an edge that

represents ”navigability” from one location to another can store the expected cost

energy of that navigation), etc. Non-structural information can be useful for planning

and other algorithms. In particular, it is extensively used when the AH-graph model

is employed for mobile robot navigation [43].

2.2.2 What is a Multi-AH-graph?

A single hierarchy (AH-graph) is the basis for constructing a multiple hierarchical

model upon a common ground level. Broadly speaking, a Multi-AH-graph is a set of

hierarchies interwoven in a directed acyclic graph structure, where each hierarchy is an

AH-graph whose levels can be shared by other hierarchies (see figure 2.5). The number

of shared hierarchical levels depends upon the power of detecting equivalence between
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Figure 2.3: An AH-graph example. Vertex abstraction is shown with gray-shadow
regions, i.e. vertexes {v1,v2,v3} are abstracted into the vertex v7. Notice how inner
edges (inside each cluster) disappear in the abstraction process, while outer edges (thick
lines) are abstracted to edges from the higher levels, i.e., edges {e2,e3} are abstracted
to the superedge e6.

hierarchical levels of the multi-hierarchy [45].

Using a symbolic, multi-hierarchical representation of the environment yields three

important benefits: first, a multiple hierarchy permits us to choose the best hierarchy

to solve each problem (i.e.: to adapt better to diverse problems, improving the overall

efficiency, please refer to [46] for more detail); second, when several problems have

to be solved, a multiple hierarchy provides the possibility of solving part of them

simultaneously; and thirdly, solutions to the problems can be expressed in terms of the
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Figure 2.4: Example of an AH-graph holding annotations. This AH-graph models part
of a typical office environment (a) through two hierarchical levels. Vertexes at ground
level (b) hold point local maps while their supervertexes (c) hold the fusion of a number
of them into a global map representing certain areas (rooms).
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Figure 2.5: An example of multi-hierarchy (with three hierarchies). In this directed
acyclic graph, hierarchical levels are represented by dotted rectangular boxes, while
arrows represent graph abstractions. Level A is the only ground hierarchical level of
this multi-hierarchy, and level H the only universal level.

concepts of any of the hierarchies, thus the information is given in the most suitable

way for each specific purpose, as commented further on. In general, multiple hierarchies

have proven to be a more adaptable model than single-hierarchy or non-hierarchical

models [45]. This has been recently demonstrated in the particular case of graph search,

which has a direct influence on mobile robot route planning [46].

2.3 Formalization of Graphs

This section gives a formalization of the classical flat multigraph model that will serve

as the base of our multi-hierarchical model.

A finite, directed, loopless multigraph G is a tuple:

G = (V,E, γ, ini, ter)
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where V is the finite, non-empty set of vertexes, E the finite set of edges, γ the incidence

function, ini the initial function, and ter the terminal function of the graph. The tuple

satisfies the following requirements:

V ∩ E = ϕ, V ̸= ϕ (2.3.1)

γ : E → (V × V − {(a, a) : a ∈ V }) (2.3.2)

ini : E → V, ter : E → V, such that γ(z) = (ini(z), ter(z)) (2.3.3)

If the incidence function is on-to4, the graph is called complete. If it is one-to-

one5, the graph is not a multigraph, but a conventional directed graph, or digraph (no

parallel edges or loops exists).

The incidence function γ(z) yields the vertexes connected by the edge z, for in-

stance, γ(z) = (a, b). The initial vertex of z is the first element of the pair (a), also

given by ini(z). The terminal vertex of z is the second element of the pair (b), also

given by ter(z). Both a and b are said to be incident to z, and z is said to be directed

from a to b, and to connect a and b (or indifferently, to connect b and a). Any pair of

edges that are directed from a to b are called parallel.

By constraint 2.3.2, there may be more than one edge connecting the same pair of

vertexes in any direction (parallel edges), but no edge can exist connecting a vertex

with itself (loop6).

By constraint 2.3.3, functions ini and ter are directly derived from the definition

of the incidence function. Therefore, sometimes they may be omitted for the sake of

simplicity. In this work, V will be referred to as V (G), E as E(G), and γ, ini, ter, as

4A function is said to be on-to when every element of the range has a defined correspondence with
an element in the domain.

5A function is said to be one-to-one when every element of the range that is an image of some
element in the domain, is only image of one element.

6Those graphs that can contain both parallel edges and loops are called pseudographs.
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γ(G), ini(G), and ter(G) respectively, as long as the graph to which they belong must be

specified explicitly.

Vertexes are usually denoted by letters from the beginning of the alphabet: a, b, c, . . .,

and edges by single letters from the end: z, y, z, . . .

Two graphs G and H are called equal, written G = H, iff V (G) = V (H) ∧ E(G) =

E(H) ∧γ(G) = γ(H) (needless to say: ini(G) = ini(H) ∧ ter(G) = ter(H)). Otherwise, they

are called unequal, written G ̸= H. Obviously, G = H ⇔ H = G,G ̸= H ⇔ H ̸= G.

The set of all the finite, directed multigraphs without loops will be denoted by Θ.

Finite, directed, loopless multigraphs will be referred from now on symply as graphs.

Usually, this type of graphs will be used for representing some portion of knowledge

through concepts (vertexes) related by some relationships (edges), thus they are called

by some authors conceptual graphs [27].

2.4 Formalization of Graph Abstraction

An abstraction from graph G to graph H is a partial7 function between both graphs,

defined as a tuple:

A = (G,H, ν, ε)

where G is the graph that is abstracted, H is the resulting graph, ν is the abstrac-

tion function for vertexes, and ε is the abstraction function for edges. The following

restrictions must hold:

ν : V (G) → V (H) is a partial function. (2.4.1)

ε : E(G) → E(H) is a partial function. (2.4.2)

7A function is said to be partial when it is not defined for all elements of its domain.



2. A Multi-Hierarchical, Symbolic Model of the Environment 29

∀z ∈ E(G), def 8(ε(z)) ⇒ [def(ν(ini(G)(z))) ∧ def(ν(ter(G)(z)))] (2.4.3)

∀z ∈ E(G), def(ε(z)) ⇒ [ν(ini(G)(z)) ̸= ν(ter(G)(z))] (2.4.4)

∀z ∈ E(G), def(ε(z)) ⇒

[
ν(ini(G)(z)) = ini(H)(ε(z))∧
ν(ter(G)(z)) = ter(H)(ε(z))

]
(2.4.5)

Notice that this seems like a conventional graph homomorphism except for the

partiality of ε and ν, and for 2.4.4.

The vertex ν(a) for a given vertex a ∈ V (G) is called the supervertex of a, or the

abstraction of a. Analogously, the edge ε(z) for a given edge z ∈ E(G) is called the

superedge of z, or the abstraction of z.

In the case that ν is total9, it will be also called complete. In the case that ε is

defined for every edge of G except for those whose incident vertexes are abstracted to

a same supervertex, it will be called complete. If both, ν and ε are complete, the whole

abstraction is also said to be complete. In the case that both ν and ε are on-to, the

whole abstraction is said to be covered. Functions ν and ε have inverses defined as:

ν−1 : V (H) → power(V (G))

∀b ∈ V (H), ν−1(b) = {a ∈ V (G) : def(ν(a)) ∧ ν(a) = b}
(2.4.6)

ε−1 : E(H) → power(E(G))

∀y ∈ E(H), ε−1(y) = {z ∈ E(G) : def(ε(z)) ∧ ε(z) = y}
(2.4.7)

where we write power(C) to denote the set of all the subsets of C. These functions are

called refining functions for vertexes and edges, respectively.

For any vertex a ∈ V (H), the vertexes belonging to v−1(a), if any, are called the

subvertexes of a in G. Analogously, for any edge z ∈ E(H), the edges belonging to

8def(g(x)) indicates that g(x) is defined, i.e., that element x belongs to the domain of function g
9A function is said to be total when every element of its domain has an image.
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ε−1(z), if any, are called the subedges of z in G.

Constraints (2.4.1) and (2.4.2) define an abstraction as a special kind of morphism

between graphs, composed of two partial functions. Notice that it is possible that an

abstraction of a graph yields an isomorphic graph or the same graph (for that, both

abstraction functions must be total).

Also notice that, by constraints (2.4.3), an edge can not be abstracted if its incident

vertexes are not, and by (2.4.4) an edge can not either if its vertexes have been ab-

stracted to the same supervertex (in that case, the edge ”disappears” inH). Constraint

(2.4.5) is the typical definition for graph homomorphism: when an edge is abstracted,

the incident vertexes of its superedge are the supervertexes of the incident vertexes of

the edge (that is, connectivity is preserved).

The collection of all the possible abstractions between any pair of graphs is denoted

by ▽. Sometimes we will need to refer to a component of an abstraction specifying

explicitly the abstraction to which it belongs. For that purpose, a superindex will be

used. For instance, G(A), H(A), ν(A), ε(A), [ν−1](A), [ε−1](A) refer to the components of a

particular abstraction A.

2.5 Category Theory for Abstraction and Refine-

ment of Graphs

Category Theory has itself grown to a branch in mathematics, like algebra and analysis,

to facilitate an elegant style of expression and mathematical proofs. A Category [35]

consists of a collection of objects with a certain structure plus a collection of arrows

(functions, also called morphisms) that preserve that structure):

f : a → b
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Here a and b are objects and f is an arrow (a function) whose source is object a

and target is object b. Such directional structures occur widely in set theory, algebra,

topology, and logic. For example, a and b may be sets and f a total function from a to

b or, indeed, f may be a partial function from set a to set b; or as we have formalized

in this section, objects a and b can be multigraphs, and f the abstraction of graphs

defined in section 2.4.

Among the benefits provided by Category Theory we remark:

• A single result proved in Category Theory generates many results in different

areas of mathematics.

• Duality: for every categorical construct, there is a dual, formed by reversing all

the morphisms.

• Difficult problems in some areas of mathematics can be translated into (easier)

problems in other areas (e.g. by using functors, which map from one category to

another)

Next, the category of graphs with abstractions, AGraph, as well as its subcategories

are formalized. For completeness, the dual of AGraph, the category of graphs with

refinements (RGraph), is also stated.

2.5.1 The Category of Graphs with Abstraction

The category of graphs with abstractions, that we will call AGraph, is similar to the

well-known category Graph of digraphs with homomorphisms (very commonly used in

graph rewriting and graph grammar literature [27]), except that it is defined under

abstractions that are partial morphisms, and it does not allow empty graphs. Some

other formulations of the category of graphs under partial morphism exists [76, 105],
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but they are proposed as a restriction of the existing Graph category. Here, we rather

propose a direct definition of the new category from scratch.

The AGraph category is defined by:

AGraph = (Θ,▽, ℓ−, ℓ+, I,3)

where Θ is the collection of all possible non-empty, finite, directed multigraphs without

loops, ▽ is the collection of all possible abstractions on this kind of graphs, ℓ− is the

lower hierarchical level function, l+ is the higher hierarchical level function, I is the

identity function, and 3 is the composition of abstractions function, such that:

ℓ− : ▽ → Θ

is a function that yields the graph that has been abstracted by a given abstraction.

That is, ℓ−((G,H, ν, ε)) = G. Analogously,

ℓ+ : ▽ → Θ

is a function that yields the graph resulting of a given abstraction. That is,

ℓ+((G,H, ν, ε)) = H.

I : Θ → ▽ (2.5.1)

is a function that for any graph G yields an abstraction that leaves it unalterated:

I(G) = (G,G, νG, εG), where
10:

νG : V (G) → V (G) εG : E(G) → E(G)

∀a ∈ V (G), νG(a) = a ∀z ∈ E(G), εG(z) = z

10Notice that νG and εG are unique functions for graph G.



2. A Multi-Hierarchical, Symbolic Model of the Environment 33

Finally,

3 : ▽× ▽ → ▽ (2.5.2)

is a partial function that yields the composition of two given abstractions A1, A2 as

long as H(A1) and G(A2) are equal (otherwise it is undefined). It is constructed as

follows:

A23A1 = (G(A1), H(A2), ν◦, ε◦)

The two abstraction functions are defined by mathematical composition of func-

tions: ν◦ = ν(A2) ◦ ν(A1) and ε◦ = ε(A2) ◦ ε(A1), that is,

ν◦ : V
(G(A1)) → V (H(A2)) (partial)

∀a ∈ V (G(A1)), def(ν◦(a)) ⇔ def(ν(A1)(a)) ∧ def(ν(A2)(ν(A1)(a)))

∀a ∈ V (G(A1)), def(ν◦(a)) ⇒ ν◦(a) = ν(A2)(ν(A1)(a))

ε◦ : E
(G(A1)) → E(H(A2)) (partial)

∀z ∈ E(G(A1)), def(ε◦(z)) ⇔ def(ε(A1)(z)) ∧ def(ε(A2)(ε(A1)(z)))

∀z ∈ E(G(A1)), def(ε◦(z)) ⇒ ε◦(z) = ε(A2)(ε(A1)(z))

It can be demonstrated that A23A1 satisfies constraints for abstractions of graphs

(see appendix A.1).

The composition of abstractions is associative:

∀G,H, J,K ∈ Θ,

∀A1 = (G,H, ν1, ε1), A2 = (H, J, ν2, ε2), A3 = (J,K, ν3, ε3) ∈ ▽,
(A33A2)3A1 = A33(A23A1)

(2.5.3)

This can be demonstrated based on the definition of 3 (see appendix A.2).

And finally,
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∀G,H ∈ Θ, ∀A = (G,H, ν, ε) ∈ ▽
A3I(G) = A = I(G)3A

(2.5.4)

Which can also be demonstrated based on the definitions of 3 and I (see appendix

A.3).

Since constraints (2.5.2), (2.5.3), and (2.5.4) are satisfied under this definition of

AGraph, then AGraph is a category.

Subcategories of AGraph

Depending on certain properties of the abstraction arrow defined on the category

AGraph, three different subcategories can be considered (see figure 2.6):

Figure 2.6: Subcategories of the AGraph category. The three subcategories considered
here are the subcategory of Complete Abstractions on Graphs (CAGraph), of Covered
Abstractions on Graphs (VAGraph), and the subcategory of Complete and Covered
Abstractions on Graphs (CVAGraph).

The Subcategory of Complete, Covered Abstractions on Graphs (CVAGraph) An inter-

esting subcategory of AGraph is CVAGraph, also called the Category of Complete and

Covered Abstractions on Graphs, where every abstraction is complete and covered (fig-

ure 2.3 in section 2.2 depicts an example of a CVAGraph). The CVAGraph is similar to



2. A Multi-Hierarchical, Symbolic Model of the Environment 35

Figure 2.7: A portion of CAGraph. Note that all vertexes and edges of a certain
level are abstracted into higher ones. However, neither edge e7, nor vertex v9 have
sub-elements, and thus, they are not covered abstractions.

the category Graph widely found in literature (except for on-to abstraction functions,

partiality of the abstraction function for edges, and absence of the empty graph).

The first thing to check for considering CVAGraph a category is whether it fulfills

(2.5.2), (2.5.3), and (2.5.4), or put in a more informal way, to assure that composition of

complete and covered abstractions yields a complete and covered abstraction, that such

a composition is associative, and that identity is the neutral element in composition.

The latter two issues are satisfied since they hold for any type of abstraction (not only

for covered and complete ones) as demonstrated in appendix A.4.

The first point is easy to see: if A1 and A2 are complete, then so is A23A1 (if it has

sense to define composition), since its domain is the same as A1. On the other hand,

if A1 and A2 are covered, then so is A23A1, since its range is the one of A2.
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Figure 2.8: A portion of VAGraph. Note that in this case all abstractions are covered,
but there are elements (at the ground level) that have not been abstracted, and thus,
it is not a complete abstraction.

The Subcategory of Complete Abstractions on Graphs (CAGraph)

The CAGraph subcategory (see an example in figure 2.7) is the same as the CVA-

Graph subcategory except that the abstractions may be covered or not (they must be

still complete, as in CVAGraph). Under that circumstance, CAGraph is a category,

since composition of complete abstractions is also a complete abstraction.

The Subcategory of Covered Abstractions of Graphs (VAGraph). The VAGraph sub-

category (see figure 2.8) is the same as the CVAgraph subcategory except that the

abstractions may be complete or not (they must be still covered, as in CVAGraph).

Under that circumstance, VAGraph is a category, since composition of covered abstrac-

tions is also a covered abstraction.
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AH-Graphs and Multi-AH-Graphs as Portions of AGraph

Any Multi-H-Graph or H-Graph is a finite portion of AGraph. A partial order

relation (total for H-Graphs) can be defined using the abstraction function, that is,

G < H iff ∃A(G,H, ν, ε). Multi-AH-Graphs and AH-Graphs are special cases of the

previous ones that include annotations in edges and vertexes.

Next, in section 2.5.2, we formalize the category of graphs with refinements (RGraph).

It can be skipped by the reader due to its resemblance to the AGraph category.

2.5.2 The Category of Graphs with Refinements

The dual of a category is constructed by reversing every arrow and keeping the same

objects and connectivity. The dual of AGraph is called the category of graphs with

refinements, or RGraph. Its definition is based on a new relation between graphs, the

refinement. A refinement R between two graphs G and H is a tuple:

R = (G,H, µ, α)

where G is the graph that is refined, H the resulting graph, µ is the refinement function

for vertexes, and α the refinement function for edges. The following restrictions must

hold:

µ : V (G) → power(V (H)) is a total function. (2.5.5)

α : E(G) → power(E(H)) is a total function. (2.5.6)

∀a ̸= b ∈ V (G), µ(a) ∩ µ(b) = ϕ

∀y ̸= z ∈ E(G), α(y) ∩ α(z) = ϕ
(2.5.7)
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∀z ∈ E(G),∀y ∈ α(z),

[
ini(H)(y) ∈ µ(ini(G)(z))∧
ter(H)(y) ∈ µ(ter(G)(z))

]
(2.5.8)

The collection of every possible refinement between graphs is denoted by ∆. For

every abstraction A = (G,H, ν, ε) in AGraph between two objects G and H, there

exists one and only one refinement given by RA = (H,G, µ = [ν−1](A), α = [ε−1](A)).

Since the definitions for ν−1 and ε−1 given in (2.4.6) and (2.4.7) satisfy (2.5.5-2.5.8),

the category RGraph of graphs with refinements is the dual of AGraph.

If the abstraction A is covered, its refinement RA is called complete, and it satisfies:

∀a ∈ V (H(A)), µ(Ra)(a) ̸= ϕ

∀z ∈ E(H(A)), α(Ra)(z) ̸= ϕ
(2.5.9)

And if A is complete, its refinement is called covered, and it satisfies:

∀a∈V (H(A))∪
µ(Ra)(a) = V (G(A))

∀z∈E(H(A))∪
α(Ra)(z) = E(G(A))

(2.5.10)

If A is both covered and complete, then, considering (2.5.7), (2.5.9), and (2.5.10)

together, a partition in graph G(A) is induced by µ(Ra) and α(Ra).

The category RGraph can be now defined as a tuple:

RGraph = (Θ,∆, ρ−, ρ+, I, •)

where Θ is the collection of all possible non-empty, finite, directed multigraphs without

loops, ∆ is the collection of all possible refinements on this kind of graphs, ρ− is the

abstracted hierarchical level function, ρ+ is the refined hierarchical level function, I is

the identity function, and • is the composition of refinements functions, such that:
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ρ− : ∆ → Θ (2.5.11)

is a function that yields the graph that is being refined by a given refinement. That

is, ρ−((G,H, µ, α)) = G. Also,

ρ+ : ∆ → Θ

is a function that yields the graph resulting of a given refinement. That is,

ρ+((G,H, µ, α)) = H.

I : Θ → ∆ (2.5.12)

is a function that for any graph G yields a refinement that leaves it unalterated (or

isomorphic):

I(G) = (G,G, µG, αG), where
11:

µG : V (G) → power(V (G)) αG : E(G) → power(E(G))

∀a ∈ V (G), µG(a) = a ∀z ∈ E(G), αG(z) = z

And finally,

• : ∆×∆ → ∆ (2.5.13)

is a partial function that yields the composition of two given refinements R1, R2 as long

as H(R1) and G(R2) are equal (otherwise it is undefined). It is constructed as follows:

R2 •R1 = (G(R1), H(R2), µ(R2) ∗ µ(R1), α(R2) ∗ α(R1))

where operations ∗ (for edge and vertexes refinement functions) are defined as12:

11Notice that µG and αG are unique functions for graph G.
12Notice that this special composition of functions can be done only when H(R1) and G(R2) are

equal.
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∀a ∈ V (G(R1)), µ(R2) ∗ µ(R1)(a) =

∀b∈µ(R1)(a)∪
µ(R2)(b)

∀z ∈ E(G(R1)), α(R2) ∗ α(R1)(z) =

∀y∈α(R1)(z)∪
α(R2)(y)

It can be demonstrated that R2 •R1 satisfies constraints for refinements of graphs

(see appendix A.5).

Composition of refinements is associative:

∀G,H, J,K ∈ Θ,


∀R1 = (G,H, µ1, α1), R2 = (H, J, µ2, α2),

R3 = (J,K, µ3, α3) ∈ ∆,

(R3 •R2) •R1 = R3 • (R2 •R1)

 (2.5.14)

This can be demonstrated based on the definition of • (see appendix A.6).

And finally,

∀G,H ∈ Θ, ∀R = (G,H, µ, α),

R • I(G) = R = I(G) •R
(2.5.15)

which can also be demonstrated based on the definitions of • and I (see appendix A.6.)

Since constraints 2.5.13, 2.5.14, and 2.5.15 are satisfied under this definition of

RGraph, then RGraph is a category. Notice that RGraph can also be decomposed in

different subcategories (see figure 2.9).

These subcategories are the dual of their AGraph counterparts: CVRGraph is the

subcategory of graphs with complete, covered refinements, CRGraph is the subcategory

of graphs with complete refinements (that is, covered abstractions), and VRGraph is

the subcategory of graphs with covered refinements (that is, complete abstractions).
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Figure 2.9: Subcategories of the RGraph category.

2.6 Conclusions

This chapter has noticed the relevance of using a certain arrangement of the symbolic

information held by an agent for an efficient access and manipulation. This becomes

clearly important when the amount of symbolic data is very high, which is the case

when modeling complex and/or large-scale environments, like an office building.

In our work we have relied on a multi-hierarchical and symbolic world model based

on abstractions to arrange spatial information. Such a model, called Multi-AH-graph,

will serve as the basis of the rest of this dissertation to improve the robot operation

within large and human-populated environments.

In this chapter, the Multi-AH-graph has been informally described as well as math-

ematically formalized under Category Theory. In the next chapter we use a single

hierarchy from the multi-hierarchy to improve efficiency in robot task planning. Our

hierarchical planning approach will be also formalized using Category Theory.





Chapter 3

Application of the Hierarchical
Model to Mobile Robot Task
Planning

Nothing is particularly hard if you divide it into small jobs.

Henry Ford

Planning tries to imitate the human decision-making process. In planning, a solu-

tion to a problem is given in the form of a sequence of basic actions that transforms a

given initial situation of the environment into a desired or goal state.

In scientific literature, special attention has been paid to issues such as robustness

or soundness in planning, but efficiency has usually been pushed to the background

(especially in robotics). However, apart from the correctness of solutions, efficiency

should also be considered, especially in those applications in which the agent that plans

is intended to work with large amounts of information. Let’s consider for a moment

a variation of the taxi-driver vignette in which the driver must pick up a number of

passengers at different places to head for a common destination1, i.e. an airport. The

driver should decide the most convenient path with respect to time, gas consumption,

1Note that this is the salesman trip problem which is, like most of task-planning problems, NP-
complete.
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and fares within the city. Under this non-trivial situation, would it be admissible if the

driver takes a couple of minutes for deciding the path to the destination? However,

although planning is quite simple for human beings, the computational process to plan

a task is normally complex, taking large amounts of time and resources (memory).

This issue becomes even worse when the planner operates with large environments,

making the process very inefficient, even intractable.

In this chapter, we focus on improving the efficiency of the robot task planning

process by using our abstraction mechanisms. A general task planning approach which

uses abstraction, called Hierarchical Task Planning through World Abstraction (HPWA

for short) is described. HPWA boosts a general-purpose planner like Graphplan [15]

or Metric-FF [73] by reducing information from the world model that is irrelevant for

the tasks to be planned.
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3.1 Introduction

Robotic task planning has its origins in the more general problem of planning, which

historically constitutes an important issue in Artificial Intelligence, being widely stud-

ied since the 1960’s. Besides robotics, AI planning has been particularized to a variety

of problems such as path and motion planning [81, 89], assembly sequence planning

[10, 31], scheduling [134], [158], production planning [138], etc.

In general, the purpose of planning is to synthesize an abstract trajectory in some

search space (also named state space, since it consists of possible states of the world),

predicting outcomes, choosing and organizing actions of different types for reaching

goals or for optimizing some utility functions. Maybe surprisingly, there are not many

AI classical planners integrated into robotic architectures, mainly due to difficulties

in connecting symbolic treatment of information (planning) to non-symbolic sources

of data acquired from the real-world. In addition, the uncertainty and partial ob-

servability present in this type of applications make classical planning less promising

than other approaches [74, 114]. Rather, most of planning in robotics uses specific

algorithms intended to guide the execution of very particular robotic tasks (and not

others) [3, 113, 137], as is the case of route planning for navigation. Among the few

generic (in the AI sense) planners implemented for robotic architectures, some remark-

able approaches are STRIPS [47], that was the first planner used for deliberation in a

robot (the Shakey robot [20]), and PRODIGY [149], the planner of the Xavier mobile

robot.

Few of the works where classical task planners are employed for mobile robots have

addressed the problem of computational efficiency, perhaps because they do not deal

with a complex and large domains. However, this situation is easily encountered by

a real mobile robot that moves within many different places, or when the robot may
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interact with a lot of world objects, for example, when it is equipped with an on-board

manipulator.

Let’s think, for instance, of a mobile robot intended to deliver envelopes within an

office building (which is the scenario used in our experimental results at the end of this

chapter). In this scenario, employees can request the robot from their places to receive

their daily post (see figure 3.1). Each time a request is commanded to the robot it has

to plan a path to arrive to the mail room (maybe opening doors) under time and energy

consumption restrictions, search a particular envelope (possibly removing others placed

on top of the desired one) from a rack that may contain hundreds of them, and finally

carry the post to a particular office. Moreover, in a real situation, the robot should

also foresee moving to a energy recharger point with a certain frequency in order to

keep itself operative.

It seems a simple task that can be easily solved by humans, but it means a tricky goal

to be achieved by the planning procedures of a mobile robot. The human advantage to

face this type of tasks is our ability (i) to discard irrelevant information with respect

to the task, i.e. rooms and envelopes not involved in the path between the office and

the mail room, and (ii) to obtain high level plans which are successively refined, like

”go to the mail room”, ”take the post”, or ”go to the requested office”. A mobile robot

lacking from these abilities should explore within a combinatorial space and consider

all possible actions up to finding the optimal solution.

In classical planning, the high computational cost of planning arising from this

combinatorial search in state space2. This cost depends both on the complexity of the

description of the states, and on the number of operators that can be applied to each

state to obtain another. In the case of robotic task planning, the former corresponds

2Probability approaches to planning, which constitutes a more modern tendency to task planning
under uncertainty, also suffer from efficiency issues, which can also be addressed through abstraction.
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Figure 3.1: A typical scenario in which a mobile robot must face tasks that involve a
large number of different possibilities within a large-scale environment.
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to the symbolic model of the world managed by the robot, while the latter refers to

the simple actions that the robot can carry out without planning (for example, move

forward, turn, grasp an object, etc.). The lack of efficiency in planning may even lead

to the intractability of the problem because of one of these two reasons.

Although in robotics task planning efficiency has rarely been addressed, there has

been great effort in AI literature devoted to that issue, where the focus has been mostly

on managing the possibly large number of operators involved in a complex problem.

We believe that the world model deserves more attention in robotics (in pure AI it

is usually of a very manageable size), since in real applications like a mobile robot

delivering objects in an office building, or a robotic taxi driver working in a large city,

the world model can become large enough to make task planning very inefficient.

In this work, an approach to improve planning efficiency is presented. It is called

Hierarchical task Planning through World Abstraction (HPWA for short) and it is

particularly oriented towards this kind of large robotic scenarios. The approach consists

of breaking down the combinatorial expansion of the search space through the reduction

of the size of the description of the world (the model), leaving unchanged the operators.

Our method can also yield benefits in other non-robotics areas where planning is carried

out on worlds with a large number of elements, such as in Intelligent Transportation

Systems. HPWA has been previously presented in [53].

HPWA takes advantage of the hierarchical arrangement of the world model pre-

sented in chapter 2. In AI literature, abstraction has already been used as a mechanism

for improving efficiency of planning. It has been demonstrated that planning with ab-

straction reduces the search space and it is usually more efficient than non-hierarchical

planning [47],[80]. Planners that use abstraction in some way to reduce computational

cost are commonly called hierarchical planners. A hierarchical planner first solves a

problem in a simpler abstract domain and then refines the abstract solution, inserting
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details that were ignored in the more abstract domain. This is repeated until a final

solution is reached. We have found that previous hierarchical planners exploit any

of the following three kinds of abstractions [156]: precondition-elimination abstrac-

tion, effect abstraction, and task abstraction. Some remarkable implementations are:

ABSTRIPS [124], Pablo [25], Prodigy [149] (that uses the hierarchy automatically pro-

duced by Alpine [80, 104]), and HTN planners [37] (that use task abstraction)3. In this

work, a new kind of hierarchical planning is explored, consisting of abstracting only

the description of the world (neither operators nor tasks), which is a different kind of

abstraction not used by typical hierarchical planners.

The HPWA approach is basically a procedure that uses an existing planner (the

so-called embedded planner) at different levels of abstraction of the representation of

the world, without changing the internal structure or behavior of such an embedded

planner. Although experiments have been run with Graphplan [15] and Metric-FF [73]

(they have become very popular planners during the last years), we do not find any

limitation in using any other STRIPS-style one. It should be noticed that the embed-

ded planner may already include some other techniques for improving computational

efficiency.

3.2 Formalization of Classical Planning in Category

Theory

This section states some definitions needed to formalize our hierarchical planning al-

gorithms for the hierarchical graph model of chapter 2. For our planning purposes,

we use a particular subcategory of the Complete and Covered Abstractions of Graphs

3Notice that we are concerned here exclusively with non-probabilistic planning.
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(CVAGraph) that only considers elements4 of Θ∗ ⊂ Θ whose vertexes are connected at

less through an edge. That subset of the CVAGraph category is called in the following

CV AGraph∗.

In order to formalize our planning approach, firstly we define some basic concepts

related to traditional AI planning, like logical predicate and planning state, which are

the base of classical logical planners. Next, we define the operation of abstraction of

planning states. Based on such definitions, we construct the Category of Planning

States with abstractions, that we will call AState.

Finally, we relate both categories, CV Agraph∗ and AState through the Graph-State

Functor 5. CV Agraph∗ is used to hierarchically model the robot environment, while

AState allows us to plan with that information.

3.2.1 Planning Basics

Definition 3.2.1 (Logical Predicate). A logical predicate is an atomic sentence of a

first-order finite language L, with k parameters, that can be defined as a tuple:

p = (Υ, Param)

where Υ is a language string (the predicate symbol) that represents a k-ary function,

and Param is an ordered list of k language constants which are the parameters of

Υ. In general, we will also denote as Υ the set of all possible strings that represents

predicate symbols in the language, and as Param the set of all possible parameters for

such predicates. Thus, for referring to the components of a given predicate p, we will

rather write Υ(p) and Param(p).

4Remember that Θ is the collection of all flat graphs, as stated in section 2.3.
5A functor between two categories is composed of two functions that map objects and arrows from

one category to another.
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The number of parameters of a predicate p is denoted as length(Param(p)), while

the i-th parameter of the ordered list Param(p) will be referred as Param
(p)
i , being

i ∈ [1 . . . length(Param(p))].

Definition 3.2.2 (Planning State). A planning state (a state for short) is a finite and

consistent6 set of logical predicates joined through two logical connectives: and (∧),

or (∨), that represents some world information. We denote as 0 the set of all possible

planning states over our language L. Informally, planning is the process that transforms

an initial state, that represents the current information available from the world, into

a goal state, that represents the desired final situation.

Remark 3.2.1. Given a planning state S ∈ 0, we can define the State Parameters

function, SP (S), as a function that yields a set containing the distinct parameters

from all logical predicates of S. More formally:

SP : 0 → Power(Param)

SP (S) =
∪
p∈S

Param(p)

Similarly, we define the State Predicate Symbols function, SN(S), that yields a set

containing all distinct predicate symbols of S:

SN : 0 → Power(Υ)

SN(S) =
∪
p∈S

Υ(p)

Definition 3.2.3 (Operator). An operator is a pair < Precond, Postcond >, where

Precond is a set of logical predicates representing the conditions under which the

operator is applicable, while Postcond = (Add,Del) contains two sets of logical pred-

icates Add and Del that will be added and removed respectively from the planning

6That is, a set of predicates with a consistent interpretation under a certain domain. Formally, a
state S composed of n predicates (or formulas) is consistent if there is no formula p such that S ⊢ p
(that is, p is inferred from S) and S ⊢qp (notp is inferred from S). In other words, a state is consistent
if it does not entail a pair of contradictory opposite predicates [128].
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state in which the operator is applied for obtaining a resulting state. Thus, given a

planning state S, an operator o can be applied if and only if the set of the logical

predicates of its preconditions are true under S through a given instantiation of the

parameters of Precond(o). After the application of the operator, state S is transformed

into S ′, using the set of postconditions Postcond(o) instantiated in the same manner:

S ′ = S ∪ Add(o) −Del(o).

Definition 3.2.4 (Problem Space, Planning, Plan). A problem space is composed of a

first-order language (L), a initial state (Si), a goal state (Sg), and a set of finite oper-

ators (O). Within a certain problem space, the planning process consists of searching

a chained sequence of operators, o1, o2, . . . , on, that transforms the initial state Si into

the goal state Sg. Such a sequence of operators is commonly called a plan.

3.2.2 The Category of Planning States with Abstraction

This section formalizes the category of planning states with abstraction in a similar

way to the one presented in section 2.5. A reader not interested in this formalization

can skip it and go directly to section 3.3.

Definition 3.2.5 (Abstraction of Planning States). An abstraction from a planning

state S to a planning state T is a morphism between both states, defined as a tuple:

As = (S, T, ξ, π), where

ξ : SN(S) → SN(T ) is a partial function (3.2.1)

π : SP (S) → SP (T ) is a partial function (3.2.2)
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∀p ∈ S, def(ξ(Υ(p))) ⇒ ∀m ∈ Param(p), def(π(m)) (3.2.3)

∀s ∈ T, ∃p ∈ S :: def(ξ(Υ(p))) ∧Υ(s) = ξ(Υ(p)) ∧

length(Param(p)) = length(Param(s)) ∧

∀i ∈ [1..length(Param(p))]π(Param
(p)
i ) = Param

(s)
i

(3.2.4)

Definition 3.2.6 (The Category of Planning States with Abstractions). Similarly to

the definition of the category of graphs with abstractions presented in chapter 2, we

formulate here the category of planning states with abstractions, AState.

Given a first-order language7 L:

AState(L) = (0,N, ϖ−, ϖ+, I,3)

where 0 is the collection of all possible states defined in L, N is the collection of

all possible abstractions on those states, ϖ− is the refined state function, ϖ+ is the

abstracted state function, I is the identity function, and 3 is the composition of state

abstractions function, such that:

ϖ− : N → 0

is a function that yields the planning state that has been abstracted by a given ab-

straction. That is, ϖ−((S, T, ξ, π)) = S. Analogously,

ϖ+ : N → 0

7In the rest, we assume that AState is defined on a certain first-order language L which will not
be explicitly specified any more.
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is a function that yields the planning state resulting of a given abstraction. That is,

ϖ+((S, T, ξ, π)) = T . Besides,

I : 0 → N (3.2.5)

is a function that for any state S yields an abstraction that leaves it unalterated:

I(S) = (S, S, ξS, πS), where:

ξS : SN(S) → SN(S) πS : SP (S) → SP (S)

∀p ∈ SN(S), ξS(p) = p ∀a ∈ SP (S), πS(a) = a

And finally,

3 : N× N → N (3.2.6)

is a partial function that yields the composition of two given abstractions As1, As2 as

long as T (As1) = S(As2). It is constructed as follows:

As23As1 = (S(As1), T (As2), ξ◦, π◦)

The two abstraction functions, ξ◦ and π◦, are defined by mathematical composition,

ξ◦ = ξ(As2) ◦ ξ(As1) and π◦ = π(As2) ◦ π(As1 ), such that:

ξ◦ : SN(S(As1)) → SN(T (As2)) (partial)

∀p ∈ SN(S(As1)), def(ξ◦(p)) ⇔ def(ξ(As1)(p)) ∧ def(ξ(As2)(ξ(As1)(p)))

∀p ∈ SN(S(As1)), def(ξ◦(p)) ⇒ ξ◦(p) = ξ(As2)(ξ(As1)(p))

(3.2.7)

π◦ : SP (S(As1)) → SP (T (As2)) (partial)

∀m ∈ SP (S(As1)), def(π◦(m)) ⇒ π◦(m) ⇔ def(π(As2)(π(As1)(m)))

∀m ∈ SP (S(As1)), def(π◦(m)) ⇒ π◦(m) = π(As2)(π(As1)(m))

(3.2.8)

The composition of abstractions is associative:

∀P,Q,R, S ∈ 0,

∀As1 = (P,Q, ξ1, π1), As2 = (Q,R, ξ2, π2), As3 = (R,S, ξ3, π3) ∈ N,
(As33As2)3As1 = As33(As23As1)

(3.2.9)
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It also must be that:

∀S ∈ 0,∀As = (S, T, ξ, π) ∈ N
As3I(S) = As = I(S)3As

(3.2.10)

Since constraints (3.2.6), (3.2.9), and (3.2.10) are satisfied under this definition of

AState, then AState is a category. Demonstrations of these constraints are similar to

those given in appendix A.1 (please refer to it).

A dual category, the Category of Planning States with Refinements (RState) can

be also formulated by reversing every arrow of AState. Its formalization is analogous

to the one presented here.

3.2.3 Functors between the AGraph and the AState Cate-

gories

Informally, functors are functions that relate objects and arrows between two cate-

gories, preserving their structures. In this section we state a relation between objects

and abstractions from AGraph (more precisely from CV AGraph∗) and AState in such

a way that a graph will correspond to a state. This relation will serve to formalize our

hierarchical planning approaches.

But, previous to the formalization of the functor that relates CV AGraph∗ to AS-

tate, we have to provide some auxiliary definitions. Definitions (3.2.7) and (3.2.8)

provide the CV AGraph∗ category with a system of types for both edges and vertexes.

Definition (3.2.9) takes these types as a medium of linking graphs to states. Finally,

definition (3.2.10) constructs the complete functor from CV AGraph∗ to AState.

Definition 3.2.7 (Edge-Predicate Translator). The Edge-Predicate Translator func-

tion, Γe, enriches the CV AGraph∗ category, being the first step to transform graph
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edges into predicates. It is a partial function from the set of all possible set of edges of

graphs8 in CV Agraph∗, power(E(Θ∗)), to triples of all the possible predicate symbols

Υ involved in AState. That is:

Γe : power(E
(Θ∗)) → Υ×Υ×Υ

∀Z ∈ power(E(Θ∗)), def(Γe(Z)) ⇒ Γe(Z) = (g, h, i) : g, h, i ∈ Υ

We impose that triples yielded by Γe must cover separatively the range of the

function, that is:  ∪
{Zi∈power(E(Θ∗)):def(Γe(Zi)),Γe(Zi)=(g,h,i)}

g

 = Υ

 ∪
{Zi∈power(E(Θ∗)):def(Γe(Zi)),Γe(Zi)=(g,h,i)}

h

 = Υ

 ∪
{Zi∈power(E(Θ∗)):def(Γe(Zi)),Γe(Zi)=(g,h,i)}

i

 = Υ

(3.2.11)

Notice that through Γe we can define a triple of predicate symbols for a set of edges

taken from different graphs. A set of edges will correspond to three predicate symbols,

the first and second one representing a type for their initial and terminal vertexes,

respectively, while the third one represents a type for any edge of the set. In order to

cover all the edges of E(Θ∗) with Γe, we impose it to define a partition over E(Θ∗), and

thus, the following restrictions must hold: ∪
{Zi∈power(E(Θ∗)):def(Γe(Zi))}

Zi

 = E(Θ∗)

8For the sake of simplicity, we denote with E(Θ∗) the set of all those edges. More formally:

E(Θ∗) =
∪

G∈Θ∗

E(G).
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 ∩
{Zi∈power(E(Θ∗)):def(Γe(Zi))}

Zi

 = ∅

∀Z ∈ power(E(Θ∗)), def(Γe(Z)) ⇒ Z ̸= ∅

We also define the following three total functions for retrieving separately each of

the three predicates yielded by Γe (they are total since Γe induces a partition in E(Θ∗),

and also onto by 3.2.11):

Γe1 : E
(Θ∗) → Υ

∀z ∈ E(Θ∗),Γe1(z) = g : ∃Z ∈ power(E(Θ∗)) ∧ z ∈ Z∧

def(Γe(Z)) ∧ Γe(Z) = (g, h, i)

Γe2 : E
(Θ∗) → Υ

∀z ∈ E(Θ∗),Γe2(z) = h : ∃Z ∈ power(E(Θ∗)) ∧ z ∈ Z∧

def(Γe(Z)) ∧ Γe(Z) = (g, h, i)

Γe3 : E
(Θ∗) → Υ

∀z ∈ E(Θ∗),Γe3(z) = i : ∃Z ∈ power(E(Θ∗)) ∧ z ∈ Z∧

def(Γe(Z)) ∧ Γe(Z) = (g, h, i)

As commented before, Γe yields a type for edges and for their initial and terminal

vertexes. However, sometimes it can be necessary to obtain a predicate from a set of

connected edges of different types. For that, we will also need a partial function Γ∗
e

that yields a language string given any set of edges:

Γ∗
e : power(E

(Θ∗)) → Υ

Remark 3.2.2. Functions Γe and Γ∗
e are functions that convert sets of edges of graphs

into predicate symbols that represent the same graph-based relational information but

in terms of a predicate-based language.
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Remark 3.2.3. Since Γe1, Γe2, Γe3, and Γ∗
e are onto, their inverses are always defined.

Definition 3.2.8 (Vertex-Param Translator). The Vertex-Param Translator function

Γv also enriches the CV AGraph∗ category, being a partial, one-to-one, and onto func-

tion from the set of vertexes of graphs9, V (Θ∗), to the set of all possible parameters

Param of predicates of our first order language:

Γv : V
(Θ∗) → Param

∀a ∈ V (Θ∗),Γv(a) = r : r ∈ Param

Remark 3.2.4. We will consider in the rest of this chapter that Γv is defined for all the

vertexes of the graphs we will deal with.

Remark 3.2.5. Since Γv is defined as a onto there trivially exists its inverse, denoted

Γ−1
v , and since it is one-to-one, the inverse always yields one vertex.

Definition 3.2.9 (Edge-State Translator). The Edge-State translator βG is a total

function based on the definition of Γe, Γ
∗
e, and Γv, that yields a set of logical predicates

that represent the state of the world corresponding to the subgraphs of a given graph

G. It is defined based on other four auxiliary total functions, β1
G, β

2
G, β

3
G, and β4

G:

βG : power(E(G)) → 0

∀Z ∈ power(E(G)), βG(Z) =

[∪
z∈Z

[
β1
G(z) ∪ β2

G(z) ∪ β3
G(z)

]]
∪ β4

G(Z), where

β1
G : E(G) → 0

∀z ∈ E(G), β1
G(z) = {(Γe1(z) Γv(ini(z)))}

β2
G : E(G) → 0

∀z ∈ E(G), β2
G(z) = {(Γe2(z) Γv(ter(z)))}

9As before, V (Θ∗) =
∪

G∈Θ∗

V (G).
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β3
G : E(G) → 0

∀z ∈ E(G), β3
G(z) = {(Γe3(z) Γv(ini(z)) Γv(ter(z)))}

β4
G : power(E(G)) → 0

∀Z ∈ power(E(G)), def(Γ∗
e(Z)) ⇒ β4

G(Z) = {Γ∗
e(Z) a1, a2, . . . , an) : ai ∈ {Γv(ini(z)) :

z ∈ Z)} ∪ {Γv(ter(z)) : z ∈ Z)} ∧ ∀i ̸= j, ai ̸= aj, }

∀Z ∈ power(E(G)), qdef(Γ∗
e(Z)) ⇒ β4

G(Z) = ∅

Informally, βG relates the types of edges and vertexes of the graph G to predicates:

β1
G transforms an edge into a predicate with one parameter (the initial vertex of the

edge), β2
G transforms and edge into another unary predicate (the parameter is the

terminal vertex), and β3
G transforms an edge into a predicate with two parameters

(both vertexes). In its turn, β4
G transforms the subgraph induced by a set of edges into

a single predicate with as many parameters as distinct vertexes are in that subgraph, if

Γ∗
e is defined for that set of edges. This covers most of the possibilities of transforming

a graph that represents a portion of the world into a state with equivalent information.

Table 3.2 and equation 3.2.12 below show the application of the Edge-State trans-

lator to some subgraphs of three sample graphs.

Graph G Graph H Graph I

Figure 3.2: Examples for the application of the Edge-State translator for three graphs,
that is, βG, βH , and βI .
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βG({z}) = {β1
G(z) ∪ β2

G(z) ∪ β3
G(z) ∪ β4

G({z})} =
{(Γe1(z) a), (Γe2(z) b), (Γe3(z) a b), (Γ

∗
e(z) a b)}

βH({x, y}) = {β1
H(x) ∪ β2

H(x) ∪ β3
H(x) ∪ β1

H(y) ∪ β2
H(y) ∪ β3

H(y) ∪ β4
H({x, y})} =

{(Γe1(x) c), (Γe2(x) e), (Γe3(x) c e), (Γ
∗
e(x) c e),

(Γe1(y) e), (Γe2(y) d), (Γe3(y) e d), (Γ
∗
e({x, y}) c d e)}

βI({z}) = {β1
I (z) ∪ β2

I (z) ∪ β3
I (z) ∪ β4

I ({z})} =
{(Γe1(z) d), (Γe2(z) a), (Γe3(z) d a), (Γ

∗
e(z) d a)}

βI({v, w}) = {β1
I (v) ∪ β2

I (v) ∪ β3
I (v) ∪ β1

I (w) ∪ β2
I (w) ∪ β3

I (w) ∪ β4
I ({v, w})} =

{(Γe1(v) h), (Γe2(v) g), (Γe3(v) h g), (Γe1(w) h), (Γe2(w) i), (Γe3(w) h i),
(Γ∗

e({v, w}) g h i)}
(3.2.12)

In our planning domains (that is, under our definitions of Γe), the planning state

yielded by βG(z) (the first case in figure 3.2) might be: {(is-an-object a), (is-a-place

b), (at a b)}, where is-an-object, is-a-place, at ∈ Υ : Γe1(z) =is-an-object, Γe2(z) =is-

a-place, Γe3(z) = at, and Γ∗
e({z}) = at. That is, in this example, edge z indicates the

position of an object in the robot workspace.

Now, with the previous defined functions we can formalize the Graph-State Functor

for the categories CV AGraph∗ and AState.

Definition 3.2.10 (Graph-State Functor). Functors are maps between categories that

preserve their structures. A functor F between two categories, i.e. A and B, consists

of two functions, one from the objects of category A to those of B, and one from the

arrows of A to those of B. It is usual to denote both of these functions by the functor

name. A functor F from category A to B must satisfy the following restrictions:

∀x ∈ Obj(A), F (I(x)) = I(F (x)), and

∀g, f ∈ Arrow(A), F (f ◦ g) = F (f) ◦ F (g)
(3.2.13)
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where Obj(A) and Arrow(A) denote the set of all objects and the set of all arrows

respectively from category A.

Therefore, we define the Graph-State Functor, Ψ = (Ψo,Ψa), between the categories

CVAGraph∗ and AState, as follows:

Ψo : Θ
∗ → 0

Ψa : ▽ → N

being both of them total functions.

Informally, Ψ permits us to transform a graph into a state (a set of logical pred-

icates) and an abstraction of graphs into an abstraction of states that preserves the

former transformation.

Using the Edge-State translator βG, we can formalize the Graph-State Functor for

objects from CV AGraph∗ and AState (noted as Ψo) as follows:

Ψo : Θ
∗ → 0

∀G ∈ Θ∗,Ψo(G) = βG(E
(G))

The Graph-State Functor for arrows, Ψa, permit us to transform a covered and

complete abstraction of graphs into an abstraction of states that preserves the previ-

ous definition for Ψo:

Ψa : ▽ → N
∀A ∈ ▽,Ψa(A) = (Ψo(G

(A)),Ψo(H
(A)), τ, κ)

(3.2.14)

where functions τ and κ are defined as10:

10Γv is considered to be defined for our purposes for all the vertexes of the graphs that are translated
into states through Ψo.
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τ (Ψa(A)) : Υ → Υ

∀z ∈ E(G(A)), (def(τ (Ψa(A))(Γe1(z))) ∧ def(τ (Ψa(A))(Γe2(z))) ∧ def(τ (Ψa(A))(Γe3(z)))) ⇔
def(ε(A)(z))∧

∀Z ⊆ E(G(A)),∀z ∈ Z, def(ε(A)(z)) ⇔ def(τ (Ψa(A))(Γ∗
e(Z)))

∀z ∈ E(G(A)) : def(ε(A)(z)),
τ (Ψa(A))(Γe1(z)) = Γe1(ε(z))

τ (Ψa(A))(Γe2(z)) = Γe2(ε(z))

τ (Ψa(A))(Γe3(z)) = Γe3(ε(z))

∧

∀Z ⊆ E(G(A)),∀z ∈ Z, def(ε(A)(z))

τ (Ψa(A))(Γ∗
e(Z)) = Γ∗

e

(∪
zi∈Z

ε(A)(zi)

)

κ(Ψa(A)) : Υ → Υ

∀a ∈ V (G(A)), def(κ(Ψa(A))(Γv(a))) ⇔ def(ν(A)(a))

∀a ∈ V (G(A)) : def(ν(A)(a)), κ(Ψa(A))(Γv(a)) = Γv(ν(a))

Figure 3.3 sketches all the possible relations established between the CV AGraph∗

and AState categories through Ψ. Restrictions given by equation (3.2.13) are demon-

strated for the Graph-State Functor Ψ in appendix B, therefore Ψ is a functor.

3.2.4 Hierarchical Planning with CV AGraph∗ and AState

We impose a particular restriction to the possible complete, covered H-graphs we deal

with. For our purposes, any abstraction Ai = (G,H, ν, ε) of CV Agraph∗ must satisfy:

∀z ∈ E(G), def(ε(z)) ⇒


Γe1(z) = Γe1(ε(z))∧
Γe2(z) = Γe2(ε(z))∧
Γe3(z) = Γe3(ε(z))

 (3.2.15)

∀Z ⊆ E(G), def(Γ∗
e(Z)) ∧ ∀z ∈ Z, def(ε(z)) ⇒

def

(
Γ∗
e

(∪
zi∈Z

ε(zi)

))
∧ Γ∗

e

(∪
zi∈Z

ε(zi)

)
= Γ∗

e(Z)



3. Application of the Hierarchical Model to Mobile Robot Task Planning 63

That is, the predicate types associated to the edges of a graph remain unaltered

when those edges are abstracted.

In order to formalize our Hierarchical Planning approach HPWA on the categories

previously defined, we need a few more auxiliary definitions.

Figure 3.3: The Graph-State Functor. Functor Ψ maps objects and arrows between
the CV AGraph∗ and AState categories. Its inverse is not always defined.

Definition 3.2.11 (Parameter-Vertexes Function). The Parameter-Vertexes Function

η is a total based on Γv that transforms a set of parameters from Param into a set of

vertexes from V (Θ∗) as follows:

η : power(Param) → power(V (Θ∗))

∀P ∈ power(Param), η(P ) =
∪
pi∈P

Γ−1
v (pi)

That is, function η produces a set of vertexes from a certain graph that represent a set

of given parameters.
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Remark 3.2.6. Note that given a set of vertexes η(P ), if all are taken from the same

graph G ∈ Θ∗, we can construct the subgraph G′ ⊆ G, such that:

[
V (G′) = η(P )

]
∧

E(G′) =
∪

zi∈E(G):ini(zi)∈η(P )∧ter(zi)∈η(P )

zi

 (3.2.16)

Thus, from a graph G that represents world information at a certain abstraction level,

we can produce a subgraph that only models information related to a given set of

parameters P .

Definition 3.2.12 (Composition Chain of Abstractions). A Composition Chain of

Abstractions (arrows from either AGraph or AState) is a finite sequence of arrows

connected by the corresponding composition function. In AGraph, a composition chain

of abstractions is:

Ξg = {A13A23 . . .3Aw}, where

A1 = (G0, G1, µ1, ε1),

A2 = (G1, G2, µ2, ε2), . . . ,

Aw = (G(w−1), Gw, µw, εw)

which involves w arrows (w is said to be the length of the composition). A composition

chain of abstractions in AGraph is also called a H-Graph (recall chapter 2). On the

other hand,

Ξs = {As13As23 . . .3Asw}, where

As1 = (S0, S1, ξ1, π1),

As2 = (S1, S2, ξ2, π2), . . . ,

Asw = (S(w−1), Sw, ξw, πw)

is a composition chain of abstractions of AState involving w arrows.
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Remark 3.2.7. Given a composition chain of w abstractions of CV Agraph∗, that is,

given a covered, complete H-graph, there exists a composition chain of w abstractions

of AState, Ξs, that satisfies:

∀Ai ∈ Ξg, [Ψa(Ai) = Asi ]

That is, given a composition chain of abstractions of CV Agraph∗, a corresponding

composition of abstractions of AState can be constructed by using the functor Ψ.

As commented before, Ψ establishes a correspondence between CV Agraph∗ and

AState. As described further on, our HPWA approach is aimed to detect and discard

world elements (at any abstract level) which are irrelevant with respect to the task

at hand. Such an elimination process requires to compute the part (subgraph) of the

world information at a given abstraction level of CV AGraph∗ which is relevant for

a plan, and thus, a mechanism to induce that subgraph from a set of relevant world

elements is needed.

Definition 3.2.13 (Extended Abstraction of Planning States). The extended abstrac-

tion of planning states relaxes the restrictions imposed in definition 3.2.5 in order to

construct more general abstractions. This function serves to abstract planning states

that can not be directly constructed through the functor Ψ, although their parameters

stem from a set of vertexes of a graph of CV AGraph∗.

For clarity sake, we firstly define the extended abstraction of logical predicates, EAP .

Formally, given an abstraction in CV AGraph∗, A = (G,H, ν, ε) and its corresponding

abstraction in AState As = (Q,S, ξ, π) (constructed by the Ψa functor), let ΣQ (ΣS)

be the set of all logical predicates involving parameters only from the planning state

Q (S). The extended abstraction function for logical predicates, EAPAs , applied to a

predicate p yields another predicate p′ such that:
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EAPAs : ΣQ → ΣS

∀p ∈ ΣQ, EAPAs(p) = p′ ∈ ΣS :
length(Param(p)) = length(Param(p′))

SN(p) = SN(p′)∧

∀j ∈ 1..length(Param(p)), Param
(p)
j = π(Param

(p′)
j )


(3.2.17)

Based on the function EAP , the extended abstraction of planning states, EAbs, is

formalized as follows. Given an abstraction in CV AGraph∗, A = (G,H, ν, ε), and its

corresponding abstraction in AState As = (Q,S, ξ, π) (constructed by the Ψa functor),

let 0Q (0S) be the set of all possible states whose logical predicates are in ΣQ (ΣS).

The extended abstraction function for planning states, EAbs, is defined as:

EAbsAs : 0Q → 0S

∀s = (p
(s)
1 , p

(s)
2 , . . . , p

(s)
n ) ∈ 0Q,

EAbsAs(s) = s′ = (p
(s′)
1 , p

(s′)
2 , . . . , p

(s′)
n ) ∈ 0S :

∀p(s
′)

i ∈ s′, p
(s′)
i = EAPAs(p

(s)
i )

(3.2.18)

Definition 3.2.14 (Extended Refinement of Planning States). Now we define the

inverse of the previous definition. The extended refinement of planning states yields a

refined version of a given state s based on refinement of graphs.

For clarity, we first define the extended refinement of logical predicates and then

the equivalent definition for states.

Given an abstraction in CV AGraph∗, A = (G,H, ν, ε) and its corresponding ab-

straction in AState As = (Q,S, ξ, π) (constructed by the Ψa functor), let ΣQ (ΣS)

be the set of all logical predicates only involving parameters from state Q (S). The

extended refinement function for logical predicates, ERPAs , applied to a predicate p
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yields a set of predicates {p′} such that:

ERPAs : ΣS → power(ΣQ)

∀p ∈ ΣS,
(3.2.19)



∀p′ ∈ ERPAs(p),[
length(Param(p′)) = length(Param(p))

]
∧

[∀p′ ∈ ERPAs(p), SN(p′) = SN(p)]∧[
∀j ∈ 1..length(Param(p)), Param

(p′)
j ∈ [π−1]

(As) (Paramp
j)
]
∧

(
∃x1, x2,∈ 1..length(Param(p)) : Param

(p)
x1 = Param

(p)
x2

)
⇒

Param
(p′)
x1 = Param

(p′)
x2





∧ (3.2.20)

 ∪
p′∈ERPAs (p)

SP (p′) =
∪[

π−1
](As)

(SP (p))

∧ (3.2.21)

 ∀j ∈ 1..length(Param(p)), ∀b ∈ [π−1]
(As) (Param

(p)
j ),

∃p′ ∈ ERPAs(p) : b ∈ Param(p′)

 (3.2.22)

Informally, through the definitions given in (3.2.19) we establish that given a predicate

p, its refined predicates must have the same length and predicate name than p. Also

we impose that all possible combinations of refined predicates are considered and that

several instances of a parameter in p must be refined to the same parameter in each

refined predicate.

Using the function ERP , the extended refinement of planning states, ERef , is

formalized as follows. Given an abstraction in CV AGraph∗, A = (G,H, ν, ε) and its

corresponding abstraction in AState As = (Q,S, ξ, π) (constructed by the Ψa functor),
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let 0Q (0S) be the set of all possible states whose logical predicates are in ΣQ (ΣS).

The extended refinement function for planning states, ERef , is defined as:

ERefAs : 0S → power(0Q)

∀s, (p(s)1 , p
(s)
2 , . . . , p

(s)
n ) ∈ 0S, ERefAs(s) = {s′}

with s′ = (p
(s′)
1 , p

(s′)
2 , . . . , p

(s′)
n ) ∈ 0Q :

(3.2.23)

[
∀p(s)i ∈ p, ∀p∗ ∈ ERPAs(p

(s)
i ), ∃s′ ∈ ERefAs(p) : p

(s′)
i = p∗

]
∧ (3.2.24)

∀s′ ∈ ERefAs(p), ∀p
(s′)
u , p

(s′)
w ∈ s′, ∃x1 ∈ 1..length(Param(p

(s′)
u )) ∧ ∃x2 ∈ 1..length(Param(p

(s′)
w )) :

π(As)(Param
(p

(s′)
u )

x1 ) = π(As)(Param
(p

(s′)
w )

x2 )

⇒

Param
(p

(s′)
u )

x1 = Param
(p

(s′)
w )

x2


(3.2.25)

3.3 Hierarchical Planning through Plan Guidance

Using the definitions stated in the previous section, the first implementation of our

HPWA approach that, for short, will be called HPWA-1, is described here. Neverthe-

less, a reader who has skipped the previous mathematical definitions can follow the

description of our hierarchical planning approaches.

The gist of HPWA-1 is to solve a task at a high level of world abstraction by

running an embedded planner (an off-the-shelf classical planner), and then using the

resulting abstract plan at the next lower level to ignore the irrelevant elements that

did not take part in the abstract plan. This process is repeated recursively until a plan

involving primitive actions is constructed that only uses information from the ground

level of the hierarchy. HPWA-1 can be also called Planning through Plan Guidance
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since it considers whole plans produced at high levels to discard world elements at

lower levels, in contrast to the second method presented in this work (see section 3.4),

that individually considers each plan action.

Figure 3.4: Planning scheme upon a hierarchical world model. Given the Graph-State
Functor (Ψ), we can adopt a parallelism from AH-graphs (sequence of graphs and
graph abstractions) and planning states, and thus, we can perform abstract planning
(using information from abstract levels of the world model), which usually involves less
computational effort than planning at the ground level.

A relevant feature of HPWA-1 is that it sets the best bound on the optimality of the

plans that can be obtained with any HPWA approach that uses the embedded planner

included in the method (similarly as in hierarchical path search by refinement [45]).

Figure 3.5 shows the pseudocode of the HPWA-1 algorithm. Given a complete,

covered H-graph that satisfy requirements of section 3.2.4, that is, given a composition
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PROCEDURE HPWA-1 (State Goal, AHGraph G):Plan

w=LongestCompositionChain(G)

A=AbstractionCompositionChain(G,w)

Initial= Ψo(Gw)
FOR i = w DOWNTO 0

Goali= ExtendedStateAbstraction(Goal,A,i)

problem-space={Initial,Goali,domain-operations}
plan=EmbeddedPlanner(problem-space)

RelevantGraph=Induced-Graph(η(SP(plan)))
IF (i ̸= GroundLevel(G))

ReducedGraph=ℓ−((H,RelevantGraph, ν, ε))
Initial=Ψo(H)

END

END

RETURN (plan)

END

Figure 3.5: Pseudocode of the HPWA-1 implementation. A plan constructed from a
certain level of an AH-graph serves to reduce the amount of information at lower levels.
In the pseudocode, the ExtendedStateAbstraction procedure yields the goal state at the
i-th level of the hierarchy, and η(SP (plan)) yields the set of vertexes that represent
the parameters involved in a plan.

chain of abstractions of CV Agraph∗:

Ξg = {A13A23 . . .3Aw}

that represents the initial state of the world viewed at different levels of abstraction,

and given a Goal state expressed with information taken11 from the ground level of that

H-graph12, noted as G0, the first step of HPWA-1 (and also of HPWA-2) is to compute

a composition chain of w AState abstractions, Ξs, through the functor Ψ, obtaining a

sequence of planning states that represent the initial state at different levels of detail.

Then, HPWA-1 constructs a sequence of goal states (Goal,Goal1, . . . , Goalw) rep-

resenting each of them the goal to be achieved in terms of the information taken at the

corresponding levels of the H-graph. For instance, if Gw represents the most abstracted

11That is, µ(SP (Goal)) ∈ V (G(A1)).
12Without generality lose, we assume here that the goal state is given at the ground level of the

H-graph (the first graph of the composition chain, that is, G(A1)). Otherwise, the formalization of
HPWA is similar, but only considering composition chains of length w−k, being k the position of the
graph within the H-graph in which the goal is given.
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hierarchical level of the H-graph and Sw the initial planning state obtained via Ψo(Gw),

Goalw is the goal to be achieved by the embedded planner. The sequence of goal states

is computed by applying the extended abstraction of planning states EAbs to every

arrow of the composition chain Ξs. Thus, Goali is obtained by definition 3.2.18:

∀Ai ∈ Ξs, i > 0, Goali = EAbsAi
(Goali−1)

Once the sequence of goal states is computed, HPWA-1 starts by running an em-

bedded planner (Graphplan or Metric-FF in our case) with Initial = Ψo(Gw) as the

initial state, and Goalw as the goal to be achieved. With this pair of abstract initial

and goal states, and a set of operators O (see figure 3.7 for an example), the embedded

planner produces an abstract plan at level w, that we denote planw.

Such an abstract plan at level w, composed of a sequence of instantiated actions

that transforms the initial state into the goal state, will be used to discard irrelevant

information at the next lower hierarchical level (w-1). It is important to remark that

for our HPWA approach, the graph Gw from which the initial abstract state is pro-

duced remains unalterable during the whole planning process (that is, neither edges

nor vertexes are added/removed). Only a sequence of intermediate planning states are

produced by the embedded planner to achieve the corresponding goal state13.

Given planw that solves the goal Goalw at level w, HPWA-1 discards irrelevant

information with respect to the task at hand by obtaining the parameters of planw,

that is14, the set of symbols (world elements) involved in all instantiated actions of

planw, through the function η(SP (planw)) (see figure 3.5). Therefore, η(SP (planw))

yields all vertexes from the abstract level Gw needed to solve Goalw through planw.

13Also notice that those intermediate states might not be directly transformable into graphs since
Ψ is not a bijection.

14A plan, as a sequence of logical predicates, can be also considered as a planning state, and thus,
its set of parameters can be computed.
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Through such a set of vertexes, we can induce a subgraph on Gw, the so-called

RelevantGraphw, that only models the (abstract) information that have been used by

the task planning process: that is, it does not consider information which is irrelevant

for planning the abstract task. In figure 3.4 vertexes of the successive RelevantGraphs

obtained in that way are marked, while irrelevant vertexes are unfilled.

After obtaining each RelevantGraphi, the next step is to plan the task at the lower

hierarchical level (i-1), but only using those symbols which are relevant for the task.

That is, we only consider information stemmed from the refinement of RelevantGraphi

onto Gi−1. For that, and knowing the abstraction Ai = (Gi−1, Gi, νi−1, εi−1) ∈ Ξg, an

arrow A in CV AGraph∗ is constructed, satisfying that:

A = (H,RelevantGraphi, ν
′, ε′) :

[H ⊆ Gi−1 ∧RelevantGraphi ⊆ Gi]
15 ∧



∀z ∈ E(H) : def(ε′(z)) ⇔ def(εi−1(z)) ∧ def(ε′(z)) ⇒[
(ε′(z) = εi−1(z)) ∧ εi−1(z) ∈ E(RelevantGraphi)

]
∀a ∈ V (H) : def(ν ′(a)) ⇔ def(νi−1(a)) ∧ def(ν ′(a)) ⇒[

(ν ′(a) = νi−1(a)) ∧ νi−1(a) ∈ V (RelevantGraphi)
]


The dual of this abstraction A, that is, the refinement RA, is:

RA = (RelevantGraphi, H, µ′
i, α

′
i)

RA is always defined, since we are considering complete and covered abstractions,

and it yields a graph H, such that H ⊆ Gi−1. Informally, H is the refinement of

RelevantGraphi and only contains the minimal set of symbols required to obtain a

15We indicate with H ⊆ Gi−1 that H is a subgraph Gi−1. A subgraph of a graph G is a graph
whose vertex and edge sets are subsets of those of G.
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plan at level i. Therefore, symbols not involved in the generation of a plan at a certain

level are no longer considered in the planning process at lower levels.

Once the RelevantGraph i is refined (into the graph H), the planning process contin-

ues (until the lowest level of the model is reached16), taking Goal(i−1) as the goal state

to be achieved now and Ψo(H) as the initial state, which is a reduced portion of the

original state IS(i−1) (refer to figure 3.4 again). If at some step of refinement, no plan

can be obtained, backtracking occurs and a new abstract plan must be constructed.

a) b)

Figure 3.6: Example of two different hierarchical models of a robot environment. For
clarity, from the hierarchical level G0 upwards, each vertex label includes its subver-
texes’ labels. For example, in a), the Laboratory node is the supervertex of L1, L2,
and L3. Also in a), it is gray-shaded the subgraph of each level that represents the
relevant information for the example explained in the text.

In order to illustrate the described HPWA-1 method, let us consider a relatively

simple environment where a mobile robot with a manipulator on board has to perform

different tasks involving a given object of the world named ”Box”. Figure 3.6 shows

16In the case that the original goal state uses information from a certain level of the H-Graph, say
Gk, different from the ground one, HPWA-1 will stop at that level.
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this hierarchical model of the environment with three zones (a laboratory, a room,

and a corridor), the mobile robot itself, and the box to be handled. In this model, a

complete, covered H-graph with three hierarchical levels has been considered, and thus

a composition chain of two abstractions of graphs is defined:

A1 = (G0, G1, ν1, ε1)

A2 = (G1, G2, ν2, ε2)

Ξg = {A13A2}

The ground level of the H-graph, G0, has the maximum amount of detail (vertexes

represent distinctive locations for navigation and manipulation), the first level, G1, is

used for grouping vertexes of G0 into three different areas (which allows the robot to

reset odometric error through some sensor matching method [94, 95]), and finally, level

G2, represents the world with the minimum amount of detail.

In this example, given a graph G ∈ {G0, G1, G2}, we define the following three sets

of edges:

Z = {e1, e2, e3, e5, e6, e7, e8, e9, e11, e13, e15},
X = {e0, e10, e14, e16},
Y = {e4, e12, e17}

such that:

• Γe(Z) = (location, location, nav) : location, nav ∈ Υ

• Γe(X) = (object, location, at) : object, location, at ∈ Υ

• Γe(Y ) = (robot, location, at-robot) : robot, location, at-robot ∈ Υ

That is, Γe defines, in this example, three different types of arcs: (1) those arcs that

indicate the robot possibility of navigating (nav), and thus, the type of their initial

and terminal vertexes as locations ; (2) arcs that represent the position of objects (at),

being the object represented by the initial vertex, and the location where it is, by the
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terminal vertex. And finally, (3) the arc (in our example there is only one since there is

only one robot) that represents the position of the robot (at-robot) for which its initial

vertex is typed as robot, while the terminal one is as location.

Γv, which is the function that transforms vertexes into parameters, simply takes

the vertex label (shown in figure 3.6 inside the vertexes) as a constant string. This is

a simple translator function that imposes that vertex labels must be unique across all

levels of the H-graph.

In this scenario, planning a task like for example ”pickup Box” implies to search a

plan to achieve a ground goal state {(held Box)} (as the postcondition of the ”pickup”

operator defined in figure 3.7). According to HPWA-1, this task is planned as follows.

First, the composition chain of AState as well as the sequence of initial states for

planning are computed through the functor Ψ. Thus:

IS0 = Ψo(G0), IS1 = Ψo(G1), IS2 = Ψo(G2)

As1 = Ψa(A1), As2 = Ψa(A2)

Through the abstractions of the composition chain Ξs = {As13As2}, the goal state,

{(held Box)}, can be expressed at every level of the hierarchy by applying the EAbs

function. For this example it is:

Goal0 = {(held Box)}, Goal1 = {(held Box′)}, Goal2 = {(held Box′′)

With these goals to be achieved at each level, HPWA-1 starts by planning at level

G2 the abstract goal Goal2 = {(held Box′′)}:

• Planning at the universal level G2

The initial state IS2 for level G2 is Ψo(G2), which, in this example, according to

the type of edges, contains the following predicates:



76 Hierarchical Planning through Plan Guidance

Ψo(G2)={(at Box’’ Floor1), (at-robot Robot’’ Floor1),

(object Box’’), (location Floor1), (robot Robot’’),

(location Floor2), (nav Floor1 Floor2)}

Since e15 ∈ Z, e16 ∈ X, and e17 ∈ Y , that is, e15 is a navigational arc, e16

indicates the location of an object, and e17 indicates the location of the robot

(see fig. 3.6).

The embedded planner is run with this initial state to solve the abstract goal

Goal2 = {(held Box′′)}, finding the following solution:

Plan2=(PICKUP Box” Floor1 Robot”)

Notice that in CV AGraph∗, due to the manner in which graphs are translated

into states, some abstractions may lead to a losing of relevant information for

the planning process. For instance, in this example note that if the vertex Robot

from level G0 would have been abstracted to the vertex Corridor (see figure 3.6),

information about the location of the vehicle would be lost at upper levels, and

thus, the planning process would have been impossible. In our work we assume

that the world information (provided by edges) relevant for the goal to be solved

is maintained along the abstractions.

(operator

GO (params (< x > LOCATION) (< y > LOCATION) < z > ROBOT)

(preconds (at-robot < z > < x >) (nav < x > < y >) )

(effects (del at-robot < z > < x >) (at-robot < z > < y >)))

(operator

PICKUP (params (< x > OBJECT) < y > LOCATION < z > ROBOT))

(preconds (at-robot << z > < y >)(at-object < x > < y >))

(effects (held < x >)(del at-object < x > < y >)))

Figure 3.7: Definition of the operators used in the example of HPWA-1. Operator
effects can add or remove logical predicates from the planning state.
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• Planning at level G1

Now, the symbolic information involved in Plan2 is computed through function

η. In this case,

η(SP (Plan2)) ={Box’’, Floor1, Robot’’}

Then, we compute the subgraph of G2 induced by η(SP (Plan2)), resulting a

graph called RelevantGraph2 (shown as a gray-shaded area at level G2 in figure

3.6a). For this example, RelevantGraph2 does not include the symbol Floor2,

since it is irrelevant to solve the task (it does not belong to η(SP (Plan2)).

RelevantGraph2 is then refined down to level G1, where only subvertexes of its

vertexes are considered, and thus, only world elements which are relevant when

solving the task are refined. In this particular case no information is ignored at

level G1, since the unique discarded vertex Floor2 has no subvertexes. Thus, at

level G1, the initial state is:

Ψo(G1)={(object Box’), (robot Robot’), (location Laboratory)

(location Corridor), (location Room),

(at Box’ Laboratory), (at Robot’ Corridor),

(nav Corridor Laboratory), (nav Corridor Room)}

provided that {e11, e13} ∈ Z, e14 ∈ X, and e12 ∈ Y .

The goal state at this level is Goal1 = {(held Box’)}. A solution for this goal

provided by the embedded planner is:

Plan1= (GO Corridor Laboratory), (PICKUP Box’ Laboratory)
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Observe that the world element ”Room” does not appear in the plan (it is irrele-

vant for the task ) and therefore, the RelevantGraph1 (shown shaded at level G1

in figure 3.6a) becomes a subgraph of G1. At the next lower level (ground level),

all its subvertexes will be discarded.

• Planning at the ground level G0

Finally, at the ground level, the predicates that model the initial state come from

the refinement of RelevantGraph1, that does not contain the Room vertex. Thus,

the initial state is obtained through the refinement graph H of RelevantGraph1:

Ψo(H)={(object Box), (object Table), (robot Robot),

(location L1), (location L2), (location L3), (location C1),

(location C2), (location C3), (at Box L1), (at Robot C3),

(nav C3 C2), (nav C2 C1), (nav C1 L3), (nav L3 L2), (nav L2 L1)}

Given that {e5, e6, e7, e8, e9} ∈ Z, {e0, e10} ∈ X, and e4 ∈ Y . Observe that no

vertex within the Room is included in this state, hence reducing the computa-

tional cost of planning17.

The goal state at the ground level is {(held Box)}, which is finally solved as:

Plan0= (GO C3 C2),(GO C2 C1),(GO C1 L3),(GO L3 L2),(GO L2 L1),

(PICKUP Box L1)

These actions are primitive actions that the mobile robot can execute, so this is

the final plan for the original task at hand.

17This is only an illustrative example: more extensive results on the reduction in computational
cost are presented in section 3.6.
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3.4 Hierarchical Planning through Action Guidance

Planning through Action Guidance (HPWA-2 for short) differs from the previously

commented HPWA-1 in that HPWA-2 uses the abstract plans not only to ignore irrel-

evant elements, but also to guide refinement into lower levels. This can lead, in normal

situations, to a higher reduction in computational cost than HPWA-1; however, due

to the poorer look-ahead capability of this refining process, HPWA-2 is more sensitive

to backtracking than HPWA-1 .

Broadly speaking, HPWA-2 tries to solve individually each action of an abstract

plan (that is, an instantiated planning operator). To do that, postconditions of every

action of a plan are considered as goal states to be sequentially planned at the lower

level of the hierarchy. Thus, a particular refinement of the parameters involved in each

action postcondition must be selected. That is, a subvertex of those vertexes from the

H-graph that represent the parameters of a postcondition pi (given by η(SP (pi))) must

be selected.

Figure 3.8 sketches the HPWA-2 algorithm. HPWA-2 starts from an abstracted

plan, taking each action individually in order to refine it (to obtain a subplan for

every of them) at the next lower level. The refinement of an action ai, that is, the

process of refining its parameters, is carried out randomly18 in our current HPWA-2

implementation, and thus, the postcondition of a refined action ai, is computed by

choosing a random subvertex of each vertex in η(postconditions(SP(ai))).

The advantage of refining the abstract plan in this way is that the amount of

information necessary to plan a unique abstract action is generally much smaller than

18Heuristics could be used, like selecting a border subvertex, that is a vertex a directly connected
to a vertex b such that their supervertexes are different, or the subvertex with the highest order, that
is, the one which is connected the most to other ones, etc. Other techniques based on constraint
propagation are also applicable to guide the subvertex selection process [9].
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PROCEDURE HPWA-2 (State Goal, AHGraph G):Plan

w=LongestCompositionChain(G)

A=AbstractionCompositionChain(G,w)

Initial= Ψ(Gw)
FOR i = w DOWNTO 0

Goali= ExtendedStateAbstraction(Goal,A,i)

problem-space={Initial,Goali,domain-operations}
plan=EmbeddedPlanner(problem-space)

action=FirstActionPlan(plan)

WHILE (action!=NULL)

r-action=ActionRefinement(action)

IF (r-action==NULL) action=PreviousActionPlan(plan)

ELSE

Goalaux=postcondition(r-action)

actionGraph=Induced-Graph(η(SP(Goalaux)))
ReducedGraph=ℓ−((H, actionGraph, ν, ε))
Initial=Ψ(H)
problem-space-aux={Initaux,Goalaux,domain-operations}
planaux=EmbeddedPlanner(problem-space-aux)

IF (planaux!=NULL)

newplan=Concatenate(newplan, planaux)

Do(action)

action=NextActionPlan(plan)

ELSE

newplan=EliminateLast(newplan)

action=PreviousActionPlan(plan)

Undo(action)

END

END

END

plan=newplan

END RETURN (plan)

Figure 3.8: Pseudocode of HPWA-2. HPWA-2 successively plans abstract actions in
lower abstract graphs. The refinement of actions will determine the success of planning,
since a wrong selection produces backtracking (Undo(action)).

the information required to plan with all relevant subelements. However, backtracking

in HPWA-2 is more likely to occur. We illustrate the operation of this method with

the world of figure 3.6b, where the ground level is a slight variation of example 3.6a.

Since the work of HPWA-2 is similar to HPWA-1 in some aspects, in the following only

the relevant differences of HPWA-2 are described.

We start from the abstract plan Plan1 (the first steps of HPWA-2 are identical to

HPWA-1) that we repeat here for convenience:

Plan1=(GO Corridor Laboratory), (PICKUP Box’ Laboratory Robot’)
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HPWA-2 refines individually every action that makes up the abstract plan. In this

example, the first action, (GO Corridor Laboratory), has the postcondition (at-robot

Laboratory), and thus, a refinement of its parameters is chosen for becoming the goal

to be solved at the next lower level (G0). Such a refinement is calculated by choosing

a subvertex of those vertexes from the H-graph that correspond to the parameters of

the postcondition. That is,

A = (G0, G1, ν, ε)

η(SP ({(at-robot Laboratoy)}))=Laboratory

ν−1(Laboratory) = B ∈ V (G0)

The set B contains all subvertexes of vertex Laboratory. Thus, we have to choose a

parameter x such as:

x ∈
∪
a∈B

Γv(a)

That is, to obtain a refined version of the postcondition of the action, we have

to choose a subvertex of the vertex that represents the symbol Laboratory in the H-

graph. The procedure to choose such a subvertex x can be implemented heuristically,

randomly, or in another way, but all of these possibilities may produce wrong elections

that make the plan to fail and then, the algorithm must backtrack to select another

subvertex. For example, if x = L6 (the refined post-condition will be (at-robot L6))

it will be impossible to plan the next action, whose unique refinement is (held Box),

since there not exists a navigational arc to go back to L1 where the box is. In this

case, HPWA-2 must choose another subvertex until it finds a feasible plan.

If another vertex is selected for the first action, i.e. x = L2 (the goal state becomes

(at-robot L2)), a solution for the action (GO Corridor Laboratory) would be:

Planaction1=(GO C3 C2), (GO C2 C1), (GO C1 L3), (GO L3 L2)
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After applying the instantiated postcondition of this partial solution (Do(action)

in the pseudocode of figure 3.8), the initial state for planning the next action is:

Initial={(at Box L1), (at-robot Robot L2),

(object Box), (robot Robot), (location L1),

(location L2), (location L3), (nav L3 L2), (nav L2 L1)}

while the goal to be planned is held Box. In this planning state, the next action can

be solved successfully as:

Planaction2= (GO L2 L1), (PICKUP Box L1 Robot)

The final result of HPWA-2 is the concatenation of both subplans (Planaction1 +

Planaction2), hence solving the original given goal.

3.5 Anomalies in Hierarchical Planning

In any classical task planner there exist some anomalies that must be studied. In this

section, two of them are briefly mentioned in the context of the HPWA approach.

The Sussman’s Anomaly consists of losing part of the achievements (goals) previ-

ously stated by the planner when it intends to achieve new ones [138]. This problem

is not directly related to abstraction, although it could appear in any abstraction-

based planner. The essential condition under which a given planner is sensitive to this

anomaly is that the goals of a plan are achieved separately and considered indepen-

dently [138]. Since the HPWA methods use an embedded planner that solves a given

goal in only one, atomic operation, no separation of goals is carried out.

The reader may think that HPWA-2 suffers from this anomaly since it individually

plans refined actions (subgoals) of a plan. But given that HPWA-2 starts from a previ-

ously computed (abstract) plan generated by an embedded planner insensitive to this
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anomaly, HPWA-2 will neither be affected from the Sussman’s anomaly. The unique

consequence of refining actions independently is the need of backtracking when a wrong

refinement makes that planning the next action is impossible. Thus, summarizing, as

long as the embedded planner does not suffer from the Sussman’s Anomaly, HPWA

does not either.

A slightly different anomaly that can be present in any abstraction planner appears

when an abstract plan loses its truth at refinement, that is, the refinement of an abstract

plan makes false some achieved abstract goal [80]. Assuming the restrictions followed

in this chapter, that is, considering complete, covered H-graphs and the defined functor

Ψ, the HPWA methods are not affected from this anomaly. When such restrictions

are not considered, some hierarchies may lead to the impossibility of planning certain

goals. For instance, following the planning example of section 3.3 we can transform

the complete, covered H-graph depicted in figure 3.6 into a non-complete hierarchy by

eliminating the edge e7 at G0. In this case, the action (Go Corridor Laboratory) of

Plan1 can not be solvable at the ground level, while it is at level G1.

In the next section we experimentally compare both hierarchical planning ap-

proaches with respect to other hierarchical and non-hierarchical planners, like AB-

STRIPS, Graphplan, and Metric-FF.

3.6 Experimental Results

This section describes experimental results of the HPWA hierarchical methods de-

scribed in this chapter, when applied to larger and more realistic worlds than that of

figure 3.6.

Planning complex tasks in an office environment, as the one depicted in figure 3.9,

is a challenge for any intelligent robot. This type of scenario may be composed of a
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large number of rooms and corridors where a mobile robot (perhaps equipped with a

robotic arm) can perform a certain number of operations.

We have tested our hierarchical planning approaches within this environment where

a mobile robot is intended to find a plan to deliver envelopes to different offices. The

requested envelope can be stacked, so the robot may need to unstack other envelopes

on top of it before taking it. Once the mail is delivered, the robot must go to a specific

place to recharge energy (the supply room). For the sake of simplicity we assume

that all doors are opened. The definitions of the operators used in the tests presented

in this section (shown in appendix C) are more complex than those shown in figure

3.7, since they include unstack objects and recharge energy operators. The robot

world hierarchy used by our hierarchical planning methods is shown in figure 3.10,

and resembles the human cognitive map [87]. The ground level contains the maximum

amount of detail: every distinctive place, environment objects, and their relations. The

first level groups places and objects to form the human concept of rooms and corridors.

Upper hierarchical levels represent groups of rooms or areas, and finally, the universal

graph contains a single vertex that represents the whole environment. As commented

further on (in chapter 5), this world hierarchy might be automatically constructed with

respect to some criteria.

Within this scenario, we compare the Graphplan and Metric-FF conventional plan-

ners to our implementations of HPWA that uses them as embedded planners. Also, an

implementation of Graphplan that uses the hierarchies produced by the ABSTRIPS

algorithm [124] has also been evaluated, in order to compare our planning results to

other hierarchical approaches.

The first experiment consists of planning a single fixed task while varying the com-

plexity of the scenario. The planned robot task is to pick up a given envelope from

the mail room (see figure 3.9). This task requires the robot to navigate to this room,
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Figure 3.9: A large-scale office environment composed of many rooms. On the left, a
detailed portion of the whole environment is zoomed. Part of the hierarchical ground
level has been overprinted to clarify this partial view.

unstack other envelopes (if needed), and then pick up the requested envelope. The

complexity of the scenario ranges from 6 to 48 rooms. Figure 3.11 shows a comparison

of the computational costs of planning using HPWA-1 and HPWA-2 with Graphplan as

embedded planner against the Metric-FF and Graphplan conventional planners alone,

and against the hierarchical version of Graphplan with ABSTRIPS. Observe that,

without using abstraction, the computational cost grows exponentially with the num-

ber of rooms; however both HPWA-1 and HPWA-2 spend a constant time since the

new rooms added to the environment, which are irrelevant for the task, are promptly

discarded by the abstract planning process.

A second experiment is aimed to test the method in a medium-complexity envi-

ronment (with 24 rooms, 7 of them are ”mail rooms”, that is, they contain stacks of

envelopes) where six arbitrary tasks are planned. The first three tasks are ”take enve-

lope E” and the others ”carry envelope E to location L” (see fig. 3.10). The elements
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Figure 3.10: Robot world hierarchy. Vertexes into a given shaded region are abstracted
to the same supervertex at the next higher level. At the ground level symbols (labelled
with ”E” for envelopes and ”L” for destinations) are grouped into vertexes that repre-
sent rooms, these ones into areas and finally, a vertex represents the whole environment
at the universal level.
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involved in the tasks (E and L) have been selected arbitrarily from the robot world.

All tasks involve navigation and manipulation operations, and some of the goals are

reached in more than 40 actions. The whole robot world is composed of more than

250 distinctive places, 30 different objects that the robot can manipulate, and all the

navigation and manipulation relations existing between these elements.
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Figure 3.11: Planning a single fixed task in an increasing complexity environment
(ranging from 6 to 48 rooms). While the CPU planning time grows exponentially
using the conventional planners considered here (hierarchical and non-hierarchical),
both HPWA methods exhibit a constant CPU time, since irrelevant information for
the task is discarded. This plot only shows the time spent by planners: neither pre- or
post-processing, nor communication burdens have been added. No result is shown for
Metric-FF for 48 rooms due to the large computational resources demanded.

Figure 3.13 shows the results of this experiment using HPWA-1 and HPWA-2 with

Graphplan as embedded planner, HPWA-1 with Metric-FF , a hierarchical version of

Graphplan using the hierarchies produced by ABSTRIPS, and the conventional plan-

ners alone (Graphplan and Metric-FF). Each chart shows the results of planning one

task out from the ones shown in figure 3.12. It is clear the computational benefit of
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Tasks #1, #2, #3 Take Envelopes E1, E2, or E3

Tasks #4, #5, #6 Carry Envelopes E1, E2, or E3 to locations L1, L2, or L3

Figure 3.12: The six tasks planned for the second experiment. Three different objects
(envelopes) and three locations of the environment have been chosen at random to test
the hierarchical planning methods versus conventional planning. Please, see figure 3.10
to find these objects and locations in the ground level of the AH-graph.

hierarchical planning through world abstraction against both non-hierarchical planning

and ABSTRIPS. Also, notice that planning time is not shown for the last three tasks

(Task 4, Task 5 and Task 6) for Graphplan planner and ABSTRIPS, because Graph-

plan was not able to find a plan due to the large computational resources demanded

and ABSTRIPS fails in finding a correct plan that solves the tasks due to violation of

previously achieved preconditions when refining a plan (the same problem is reported

in [79]). In all these plots we only consider the time spent by the embedded planner,

without taken into account the pre-processing time taken by the hierarchical manipu-

lation. Notice how HPWA-2 performs better than HPWA-1 in all tasks, except for the

first two, because of the backtracking burden.

Figure 3.14 compares the total time (which accounts also for pre-processing and

communications) of HPWA-1 versus HPWA-2 when using Graphplan as embedded

planner. In this case, HPWA-2 performs more inefficiently since backtracking increases

the number of plans to solve. Also, observe how the total time of HPWA-1 is quite

similar to its planning time (figure 3.13), since the additional cost of this method is

negligible.
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Figure 3.13: Planning time for the proposed tasks (in seconds) on a Pentium IV at
1.7 MHz with 512 Mbytes of RAM. Both non-hierarchical and hierarchical planners
exhibit worse CPU time than HPWA methods. Moreover, HPWA-2 exhibits the best
planning time for all tasks except for the first two ones due to backtracking situations.
Notice that the planning time is not shown for Graphplan and ABSTRIPS in the last
three tasks, because they were not able to end up with a solution. In all these plots
we consider only the time spent by the embedded planner, without taken into account
other pre-processing times.
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Figure 3.14: Total time spent by our HPWA-1 and HPWA-2 implementations with
Graphplan as embedded planner. Time of HPWA-2 is higher than HPWA-1 due to the
extra pre-processing involved in backtracking. In spite of this apparently bad result,
HPWA-2 performs better than other approaches in figure 3.13, even when they do not
include the pre-processing and communication burden considered in this plot.

3.7 Conclusions

In AI literature, task planning has not dealt with large domains, which is a common

situation in mobile robotics. In these cases, task planning, even with the most modern

improvements, can exhibit a high computational cost, even can become intractable (as

shown in figure 3.13). This chapter has introduced a new scheme for task planning that

takes advantage of a hierarchical arrangement of the robot model of the environment.

This approach performs planning at a high level of abstraction of the world and then,

recursively, refines the resulting abstract plan at lower levels, ignoring irrelevant world

elements that do not take part in the abstract plan.
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HPWA has been stated and formalized through Category Theory upon the cate-

gories of abstractions of graphs described in chapter 2. In particular, we have described

two implementations of HPWA that embed other existing planners (Graphplan and

Metric-FF) to solve planning at each level of abstraction of the world. Thus, we can

benefit from any other kind of improvements on the embedded task planner. We have

shown how our two implementations of HPWA have performed better than the em-

bedded planners alone and other hierarchical approaches such as ABSTRIPS.

This good performance is tightly coupled with the use of adequate hierarchies of

abstraction. Adequate hierarchies can be obtained by using algorithms for the auto-

matic construction of abstractions based on the task-driven paradigm [45] or the one

described in 5, which is based on evolutionary algorithms.





Chapter 4

Multiple Hierarchies for Mobile
Robot Operation

Science is organized knowledge. Wisdom is organized life.

Immanuel Kant (1724-1804)

Minds are like parachutes. They only function when they are open.

Sir James Dewar, scientist (1877-1925)

In this chapter we study the benefits of using a multi-hierarchical symbolic model

of the environment in robotic applications. As presented in chapter 3, a hierarchy, that

is, a sequence of graphs and abstractions of graphs, can improve efficiency in certain

robot operations like task planning. In a previous work [46] it has been stated how

these benefits are also present in other tasks, like routing. Now we follow the same

inspiration and endow a mobile robot with different hierarchies upon a common ground

level (obtaining a multi-hierarchical model) in order to improve not only task-planning,

but also other operations, such as localization and user communication, simultaneously.

Such a model may imply the necessity of translating symbols from one hierarchy to an-

other, especially to the one used for human communication. This chapter also proposes

a mechanism that copes with that translation.

93
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4.1 Introduction

The human use of hierarchical symbolic structures for dealing with our daily life is

well accepted ([65, 68, 86, 87]). As commented in previous chapters, humans use

abstraction to reduce the huge amount of information gathered by our senses, hence

constructing a hierarchy of concepts. Psychological evidences of that can be found in

[69, 102]. Also, we have empirically demonstrated in chapter 3 the benefits of using a

hierarchical arrangement of spatial information to reduce the computational effort of

task planning.

Moreover, it seems that humans also use multiple abstraction [112] (multiple hi-

erarchies of abstraction built upon the same ground information) for improving our

adaptation to different environments and different tasks. That is, having multiple hi-

erarchies allows us to select the most convenient one to perform each operation. Some

interesting ideas arise when exploring this multi-hierarchical paradigm [45]:

• Hierarchies of concepts allow humans to perform operations more efficiently than

using non-hierarchical, flat data.

• The hierarchy of concepts that is good for a given operation depends on the

sensorimotor apparatus of the agent and on the particular environment where it

operates.

• The hierarchy of concepts that is good for executing efficiently a given operation

may be not so good to execute a different one.

• Thus, it is desirable to construct more than one hierarchy upon the same set of

ground elements if, for example, more than one task is to be performed, or when

the agent has to operate in very complex or different environments.
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How do we use multiple abstraction in our lives? Let’s consider our different points

of view when performing different tasks. For instance, when we drive our car we

consider junctions and streets with their directions, traffic signals (like speed limits and

wrong way signals), etc. For this car driving activity, we plan paths considering such

information; we group streets following urban districts and we usually take into account

our previous experience to avoid traffic jams. In contrast, when we are pedestrians, our

hierarchical space model changes substantially. Although it contains the same ground

space elements, we neither need to take care of traffic signals (only traffic lights for

pedestrians), nor to worry about traffic jams. We, as pedestrian, may group (abstract)

spatial concepts, like streets, with respect to different criteria, in order to plan routes,

for example, by choosing pedestrian streets as often as possible.

In general, the same physical objects can be classified under different categories

when employed in different tasks. Let’s consider how a toddler groups ground elements

when playing with a brick set. She/he arranges elemental objects (bricks) to construct

for instance a house, and thus, some bricks become the walls, others the roof, while

other bricks make up the door of the house. However, she/he can physically (and also

mentally) group the same objects in a different way (assigning them other, different

concepts) to devise, for example, a dinosaur, in which now, some of the bricks that

constituted the house walls may turn into a threatening head.

Based on these ideas, in this chapter we propose a particular multi-hierarchical

symbolic model (Multi-AH-Graph), which corresponds to a subset of the AGraph cat-

egory presented in chapter 3, devoted to cope with different robot operations. Notice

that each robot operation may require different arrangements of the symbolic data.

Thus, we utilize a different hierarchy of our multi-hierarchical model to solve each par-

ticular robot task. Here, we focus on three specific robot tasks: (1) task-planning, (2)

self-localization, and (3) human-communication. Note that any robotic agent intended
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Figure 4.1: Different arrangements from a same set of ground pieces.

to attend users within human environments, like our taxi-driver, should be able to effi-

ciently accomplish, at least, these three operations. However, the symbolic model can

be easily extended to consider others (i.e., manipulation, surveillance, etc.) by adding

extra hierarchies to the model. Moreover, we also describe a translation mechanism to

relate abstract symbols from one hierarchy to another. This translation is especially

useful to shift concepts used to solve a certain robot operation, i.e. planning, to con-

cepts understandable by a human, and thus, improving robot-human communication.
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4.2 A Multi-Hierarchical World Model for a Mobile

Robot

In a nutshell, a Multi-AH-graph can be considered as a finite portion of the AGraph

category, in which arrows represent graph abstractions, while vertexes are graphs. We

consider only those portions of AGraph in which there exists a unique initial vertex

(there are no edges that end on it) that becomes the ground level of the multi-hierarchy

and represents world information with the greatest amount of detail. On the other

hand, we assume that there is only one terminal vertex (there are no edges that start

from it), called the universal level of the multi-hierarchy that represents the most

abstracted information of the world. All different paths (sequences of arrows) between

the ground level and the universal level are single hierarchies, that is, AH-graphs1.

As commented in the introduction of this chapter, we propose that each hierarchy

of our model is especially suitable for solving a particular robot task. In general, the

larger the number of robot tasks, the larger the number of hierarchies. However, when

dealing with complex or large environments we can solve different instantiations of the

same task through several hierarchies. For instance, we can improve path-planning in

large-scale environments by using different hierarchies which are selected depending on

the origin and the destination of the path to be found [46]. Therefore, the relation

number-of-hierarchies ↔ number-of-tasks is just a broad guideline.

Next, we describe the Multi-AH-graph of our mobile robot through the description

of its different hierarchies. We focus on a robot that is intended to carry out efficiently

three operations: task-planning, self-localization, and human-robot communication.

1Formally, the abstraction relation forms a partial order in the set of graphs of a Multi-AH-graph,
with one minimal and one maximal element.
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4.2.1 Task-Planning Hierarchies

The goal of the task-planning hierarchies of the multi-hierarchical model is to improve

efficiency in the planning process, which is required for deliberative agents.

In the previous chapter, only one hierarchy was considered to improve task-planning.

Such a hierarchy grouped spatial information using human concepts like rooms, areas,

buildings, etc., for a clearer description of our hierarchical planning approach. How-

ever, in practice, such an arrangement of spatial information may not lead to the best

planning results in terms of efficiency and/or optimality. Thus, we can consider not

only a single hierarchy, but to use multiple of them to better adapt the model with re-

spect to different planning problems. When more than one problem is to be solved, the

use of more than one hierarchy may allow the system to solve part of them simultane-

ously [46]. The availability of more than one task-planning hierarchy is also convenient

for planning under different criteria of optimality (length of plans or computational

efficiency, for example). That is, a hierarchy may adapt better to solve tasks with

low computational cost, while other may be oriented to obtain optimal plans (both

criteria are often incompatible and therefore rarely are met together with only one hi-

erarchy). These and other results on the advantages of using multi-hierarchical graphs

for planning (in particular for route-planning) have been stated elsewhere [45].

Task-planning hierarchies can be automatically constructed as will be explained

in chapter 5 (elsewhere [45], a simpler algorithm based on hill-climbing has been pre-

sented). Such an automatic construction is guided to optimize over time the tasks

to be performed by the robot, and thus, certain abstract concepts constructed in this

way may not correspond to understandable concepts by humans, being necessary a

translation to those concepts that the user understands. Notice that in chapter 3, the

hierarchy used in the experiences was constructed imitating the human cognitive map
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[86], and thus, no translation was required since planning results already involved hu-

man spatial concepts. We will delve into a translation process between concepts from

different hierarchies in section 4.3.

4.2.2 Localization Hierarchy

Self-localization and mapping are unavoidable robot abilities when it is intended to

operate within unknown or dynamic environments. Both of them should be carried

simultaneously (known as SLAM, for Simultaneous Localization And Mapping) by

registrating new sensor observations (local maps) against a cumulative global map of

the environment. From this process, the position and orientation (pose) of the robot

relative to a global reference frame is estimated, and a global map is updated with the

new data (see [143] for a comprehensive SLAM survey).

Estimating the robot pose through SLAM approaches in large-scale environments

has been largely treated in the robotic literature [17, 23, 38, 83, 92]. Most of them

considers two views of the robot environment: one involving geometric information

(local maps) and the other one considering topological information, including global

maps as the result of fusing a number of local maps [92]. The main points in dividing

the environment into areas is to reduce computation cost on large amount of data

and also to reset the odometric error accumulated during navigation [36]: if only one

big map had been used it would produce unacceptable localization errors for large

environments and an unaffordable computational cost [82].

Following this trend, we employ a 2-level hierarchy, called the Localization Hierar-

chy, devoted both to estimate the robot pose in an accurate manner and to update

geometrical information (mapping) during navigation and exploration. In our work

we use an automatic procedure to detect set of observations whose local maps exhibit
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certain resemblance, and thus, that can be fused to produce consistent global maps

[13]. More precisely, we rely on 2D laser scans to construct a topology in which each

vertex, that corresponds to a robot pose, holds a point-based (local) map taken from

such a location. Subsequently, the created topology is grouped taken into account a

consistent measure (i.e., the overlapped area) for merging a set of local maps into a

global map that represents a certain region. Figure 4.2 shows an example of how this

technique works. Similar approaches to detect consistent regions in space can be found

in [18] [22].

Figure 4.2: Maps used in robot localization. a) Global map automatically constructed
during a robot navigation. b) Automatic partition of the global map into submaps.
c)-d) The three resultant local maps. Notice how the map partition process tends to
divide the global map into open areas such as rooms and corridors, although this is
not necessary.

Thus, the localization hierarchy consists of only one hierarchical level (graph) built

upon the ground level of the multi-hierarchy. Vertexes from the ground level represent

local observations and hold geometric information (point-based local maps in our case)



4. Multiple Hierarchies for Mobile Robot Operation 101

while vertexes from the first level, that represent regions of space, hold global maps

resulting from fusing a set of local maps2. The first level is in turn abstracted to the

universal level (which only contains one vertex representing the whole environment).

The abstraction function for vertexes we use in this work is defined upon a graph

spectral partitioning algorithm as explained in [13].

Regions represented by vertexes from the first level of the localization hierarchy

should facilitate the localization of the robot, i.e., by means of a coherent set of obser-

vations. Thus, each region corresponds to a group of nearby observations that share a

sufficient amount of information. For example, the observations acquired inside a room

are usually abstracted to a different region than the ones acquired from an adjacent

corridor, since localization within the room uses a different point-based map than lo-

calization within the corridor. This kind of regions bears a strong resemblance to that

used by humans when navigating: we pay attention to different landmarks in different

spatial areas. This provides the localization hierarchy with certain degree of similarity

to the human cognitive map, although such requirement is not mandatory3.

4.2.3 Cognitive Hierarchy

The following paragraphs describe how a hierarchy can be included within the multi-

hierarchical symbolic model for interfacing with the human cognitive map. This type of

hierarchy is necessary if the robot has some type of intelligent interaction with persons

(like in the robotic taxi vignette). Although the previous two types of hierarchies can

be automatically constructed (chapter 5 details an evolutionary algorithm to construct

planning hierarchies), due to its nature, the cognitive hierarchy should be generated

2This creates, in the ground level, a topology of space similar to the causal level of the Spatial
Semantic Hierarchy [87].

3For localization purposes, a large room can be split into two different regions, while the user may
only identify a symbol for that room.
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Figure 4.3: Representation of an environment with different levels of abstraction. (a)
The environment where a mobile robot may perform different operations. (b) Ground
level: topology of distinctive places identified by exploring the environment. This will
be the lowest hierarchical level of the Multi-AH-Graph. (c) Descriptive hierarchy for
communications from/to human. This hierarchy represents the cognitive interface with
the human driver.
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with the human aid, so its length and shape may vary largely (see figure 4.3)4.

For the case of spatial regions, vertexes of the hierarchical levels of our cognitive

hierarchy will represent different groupings of distinctive places, defined by the human

to directly match her/his cognitive map. Typically, local groups of distinctive places

within a room are grouped into a supervertex that represents the room, groups of rooms

and corridors are grouped into floors, floors are grouped into buildings, and so on. The

main goal is to reproduce in the multi-hierarchical model the cognitive arrangement

of the space made by the human who is going to communicate with the robot. The

purpose of such a cognitive hierarchy is the improvement of the communication and

understandability between the human and the vehicle. In this way, the person can

request robot tasks using her/his own concepts (i.e., go to the copier room), at the same

time that she/he can obtain robot information, for example results of task planning,

by means of understandable terms (see section 4.3). It is also possible to construct

in this way more than one cognitive hierarchy, for communicating to more than one

human.

We have used a quite simple construction process for the cognitive hierarchy (sim-

ilar to the one presented in [84]). The user must select a number of vertexes from

the common ground level (that represent observations) or from a certain level of the

cognitive hierarchy (areas, regions, etc.) which will be abstracted to a vertex at the

next higher level.

Here it gains relevance the way in which the ground symbols are acquired. As we

will expose in detail in chapter 5, acquiring symbolic information from sensorial raw

data is an arduous problem not completely solved yet. A way of addressing it is the

4This is because the cognitive hierarchy provides the particular viewpoint of each user, which may
largely vary from others’. For example, an employee can group a set of distinctive places from the
coffee room into a spatial concept labelled as ”my rest room”, while the person responsible for its
cleanliness could group them, plus places from the near lavatories, under the label ”the nightmare
area”.
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topology construction based on observations described before. Another approximation

can be a process that automatically detect distinctive places, like entrances to rooms

[22]. The result of such a process (vertexes representing those distinctive places) will

be the starting point in the human-guided construction. The user could name ground

symbols, for instance ”entrance door to my office”, and group a number of them to

create a supervertex with a special meaning for her/him, i.e. all these doors connect

to the ”main corridor”.

But as the reader may realize, the mechanism to automatically acquire symbolic

information is not available yet (sometimes this is called the anchoring [26] prob-

lem). Thus, apart from the existence of an anchoring process to automatically acquire

symbolic information, the user should also be enabled to provide ground symbolic in-

formation manually. For example, the user can guide the robot to a distinctive place

that is of interest to him/her, though it could not be considered by the anchoring pro-

cess, i.e. ”in front of my desk”. In this way a person can create a number of ground

spatial symbols to represent the location of, for example, a cabinet, a window, or a

pile of books, which may be jointly grouped with automatically acquired symbols, i.e.

an observation, to make a supervertex that represents an entire room which could be

labelled by the user as ”my office”.

In any case, when vertexes at the ground level are (manually or automatically)

created, geometrical information required for posterior robot operation, like maps,

images, etc, can be automatically annotated. Edges can also be added to the model to

indicate navigability (from the previous robot location to the current one) or position

relations (a book is on the desk) [43].

In our experiences detailed in chapter 6, the user of a robotic wheelchair can use

voice commands to create a distinctive place for navigation (”I am interested in this

place, its name is <place-name>) or an abstraction of them (”The visited places up
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to now are grouped into a room called <room-name>”). A representative example of

a human-guided constructed cognitive hierarchy is depicted in figure 4.3.

4.3 The Utility of the Multi-Hierarchical Model for

Human-Robot Interaction

As commented, a multi-hierarchical model like the one depicted in figure 4.4 can be used

by an intelligent agent to efficiently perform different tasks in a hierarchical fashion.

In that case, hierarchical approaches to solve certain operations, like task or route

planning [57] [46], may provide abstract solutions before a concrete ground solution is

achieved. This feature becomes very interesting when the robot is intended to operate

with humans. Recall the taxi driver vignette: when the user asks the robotic driver

to go to a particular place, it can start driving immediately (after it plans a route) or,

on the other hand, it can report the user with relevant information about the planned

route before it is executed. Although the first case is common when we catch a cab, the

second option should also be desirable. Nevertheless, in this latter case, the user could

be overwhelmed if the driver gives her/him highly specified information, enumerating

streets and junctions, while it would be more useful to provide only abstract information

at different levels of detail (about areas or districts to be traversed).

When the user is informed about the driver intentions, she/he can agree with the

selected route to arrive to the destination, or in contrast she/he can advise an alter-

native one. In any case, abstract results from the planning process carried out by the

driver should be communicated to the user in a proper way.

In this example, the taxi-driver planning process uses a particular hierarchy (pos-

sibly automatically constructed) which may largely differ from the cognitive one, and
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Figure 4.4: An example of multihierarchy in which the cognitive hierarchy is high-
lighted. In this example we consider three different hierarchies for task-planning. No-
tice how hierarchical levels can be shared between different hierarchies.
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thus, abstract symbols from the former could not be understandable by a human. In

order to report properly abstract information from one hierarchy, i.e. a task-planning

hierarchy, to the user, a symbol translation to the cognitive hierarchy is required. Such

a translation, that can be used to shift concepts between any pair of hierarchies, is

used in our work to enable humans to interact with the robot task-planning process

[54, 55]. The main advantages of interacting with a task planning process are:

1. A user can command the robot a task that involves abstract concepts from the

cognitive hierarchy while the robot can carry out the task on a different, more

efficient one.

2. The user can reject or accept the proposed abstract plan that solves a certain

goal. Also, particular parts of the abstract plan can be accepted or rejected.

3. The user can ask the robot for more details about a given abstract solution.

Next, a general inter-hierarchy translation process that shifts concepts between

hierarchies is detailed. Then, we describe an example of interactive task planning which

involves symbol translations between the task-planning and the cognitive hierarchy

described in previous sections.

4.3.1 The Inter-Hierarchy Translation Process

The Inter-Hierarchy translation process is aimed to translate symbols between any

pair of hierarchies of the multi-hierarchical model. Broadly speaking, our translation

mechanism consists of refining5 a certain symbol from a hierarchy down to the common

5The proposed translation process can be successfully applied to Multi-AH-graphs that are subsets
of the CVAGraph category, that is, those multi-hierarchies for which the refinement and abstraction
functions are defined for any graph and are complete and covered.
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ground level of the model6 and then, abstracting the resultant ground symbols along the

destination hierarchy. However, while the abstraction of a given vertex (supervertex)

of a graph in AGraph is unique, its refinement yields a set of subvertexes. Notice that

the translation process may not produce an unique symbol at the target hierarchy,

since when refining a vertex, a variety of subvertexes are obtained which are possibly

abstracted to different concepts in the target hierarchy.

Let’s consider an example in which two hierarchies represent different spatial ar-

rangement of the streets of a city to illustrate the translation process. One hierarchy,

the ”Zip Codes Hierarchy” (H1), groups streets following the administrative division

for the post service, and the other one, the ”Police Station Hierarchy” (H2), groups

streets covered by a given police station. The formalization of both hierarchies (see

figure 4.5) is as follows (for simplicity we have not considered edges since they are not

involved in this translation process).

Let the graphs (hierarchical levels) G0, G1, G2, and G3 be defined as:

V (G0)={s1,s2,s3,s4,s5,s6}

V (G1)={Z1,Z2}

V (G2)={PS1,PS2,PS3,PS4}

V (G3)={South-PS,North-PS}

and let abstractions on these graphs defined as:

A0=(G0,G1,ν0,∅)

A1=(G0,G2,ν1,∅)

A2=(G2,G3,ν2,∅)

6Although it is not a restriction of the CVAGraph category, we assume that all hierarchies of the
Multi-AH-graph share a common ground level.
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where

ν0(s1) = Z1; ν0(s2) = Z1; ν0(s3) = Z1; ν0(s4) = Z1; ν0(s5) = Z2; ν0(s6) = Z2

ν1(s1) = PS1; ν1(s2) = PS1; ν1(s3) = PS2; ν1(s4) = PS3; ν1(s5) = PS4;

ν1(s6) = PS4

ν2(PS1) = SouthPS; ν2(PS2) = SouthPS; ν2(PS3) = SouthPS;

ν2(PS4) = North

Hierarchy H1 is a two-level hierarchy defined by abstraction A0, while hierarchy H2

is a three-level hierarchy defined by the composition chain A1 ⋄ A2.

Figure 4.5: Symbol translation between two hierarchies. A simple model with two
hierarchies that groups symbols from the ground level (streets) with respect to its zip
code (left) and the nearest police station (right). Dotted regions remark clusters of the
zip code hierarchy while solid areas show clusters of the other hierarchy. For clarity
sake, edges have been obviated in this example.



110
The Utility of the Multi-Hierarchical Model for

Human-Robot Interaction

In this example the translation of a certain concept, let say Z1, from the ”Zip

Codes Hierarchy” into the other hierarchy will provide us information about the police

station(s) that cover all streets grouped under the Z1 zip code. Such a translation starts

with the refinement of Z1, yielding the set of ground symbols (streets and junctions)

belonging to the same administrative area:

ν−1
0 (Z1) = {s1, s2, , s3, s4}

Since the ground level is common to both hierarchies7, subvertexes of Z1 can be

abstracted now through the target hierarchy, yielding the set of police stations that

offer service to all streets with zip code Z1:

ν1(s1) = PS1, ν1(s2) = PS1, ν1(s3) = PS2, and ν1(s4) = PS3

That is, the translation of the symbol Z1 from the ”Zip Codes Hierarchy” to the

first level of the ”Police Station Hierarchy” is the set {PS1, PS2, PS3}, which in its

turn can be abstracted again to the symbol SouthPS.

Observe that in this example the translation of the symbol Z1 produces three differ-

ent symbols at the first level of the target hierarchy, but a unique symbol at the second

level. Thus, the ambiguity caused by the translation process can be solved by moving

up at the target hierarchy, at the cost of loosing information. Next section details

a human interactive task-planning approach that uses this inter-hierarchy translation

process.

7In fact, it is not necessary to refine symbols down to the ground level, but only to the first level
that is common to both hierarchies.
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4.3.2 Interactive Task-Planning

Apart from the benefits for user communication, the user participation into the plan-

ning process may also improve its efficiency. In the hierarchical planning scheme ex-

plained in chapter 3, task planning efficiency was achieved by detecting and removing

unnecessary details of the robot environment. Now, an additional mechanism to dis-

card useless information when planning can be provided by user interaction: when the

user rejects or accepts an abstract plan (or part of it), she/he may discard world infor-

mation, probably implying a further simplification in task planning. The benefits of

this appear clearer if the robot deals with a very large environment like a real building

composed of several floors, elevators, and hundred of rooms and corridors. In this case

the reduction of the amount of data may become extremely important in order to plan

efficiently robot’s tasks.

We propose here an interactive, hierarchical task-planning approach based on the

scheme described in the previous section, that can be split into two phases (see figure

4.6).

1. The first stage consists of translating the user task request, which can be specified

at any level of the cognitive hierarchy, to the task-planning hierarchy. It is done

by refining the human concepts involved in the task until the shared ground level

(see figure 4.5). To do this, a particular refinement of the concepts involved

in the task is chosen8. For example, if the user request is ”go to Laboratory”,

the human symbol (Laboratory) involved in this task can be moved down to the

ground level, choosing as refined symbol L1, that represents the Lab entrance.

Thus, the user task turns into ”go to Laboratory entrance”. Once the user task

is specified at the ground common level, it can be solved through the planning

8This is similar to the action refinement procedure carried out in HPWA-2, described in section
3.4.
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hierarchy, choosing the appropriate hierarchy among the ones that are available.

2. The second stage is carried out in the opposite direction. A plan (or abstract plan)

produced by the hierarchical planning process (HPWA-1 for example) should be

reported to the user involving only concepts of the cognitive hierarchy. Moreover,

the human decision about the produced plan (i.e. to reject or accept it) may

involve a backwards translation to the planning hierarchy as shown further on.

The translation process for our interactive task-planning approach uses two mech-

anisms for refining/abstracting plans through the hierarchies of the model. Informally,

refining and abstracting plans within a hierarchy consists of refining/abstracting the

sequence of operators involved in the plan. Thus, abstracting a plan produces an-

other plan with a lower level of detail, since it contains more general (abstracted)

concepts. In contrast, refining a plan yields a set of more detailed plans covering all

possible combination of the refinements for the parameters of the given plan. These

functions, RefP lan and AbsP lan, can be formalized through the extended refine-

ment/abstraction function for planning states given in chapter 3 (definitions 3.2.13

and 3.2.14) since a plan can be considered as a planning state9.

Figure 4.3 depicts a scheme of part of the environment used in our experiments.

Upon the ground level (that represents the robot environment with the maximum

amount of detail) the cognitive hierarchy establishes a cognitive interface with the hu-

man [43]. Such a hierarchy enables the robot to manage human concepts for enhancing

human-robot communication and interaction. The other one, the task-planning hierar-

chy, arranges properly the world elements with the goal of improving the hierarchical

9More precisely, a plan is an ordered sequence of logical predicates, that is, it can be considered
as a planning state in which its predicates are sorted. Therefore, when applying functions EAbs and
ERef to abstract/refine plans, the order of the resultant plans must be kept.
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First Stage of the
Translation Process

Second Stage of the
Translation Process

User Task Input

task=Task Translation

i=Universal Level
discarded_info =NULL

p=HierarchicalPlanning (i,task,discarded_info )

Plan Translation ( p)
Refinement of  p to the common ground

level and abstracting it along the cognitive
hierarchy

ud=User Decision
(plan ok, refuse the plan, or discard world

elements)

discarded_info =UserDecision
Translation( ud)

i=i-1

i=Ground Level

YES p is the plan to
be executed by

the robot

NO

 User

Figure 4.6: The Translation Process for interactive task-planning. In the interactive
planning process the user is well-informed about the sequence of abstract plans obtained
by the hierarchical planner, allowing her/him to accept or reject plans as well as to
discard non-desirable elements of the environment.

task-planning process. Figure 4.7 shows the multi-hierarchical model for that environ-

ment, comprising one cognitive hierarchy and one planning hierarchy. The former is

manually constructed (refer to a previous work in [43]), while the latter is automatically

constructed as described in chapter 5.

In this scenario, let us consider the following robot application. An employee, at

the entrance of the office building, is in charge of receiving and distributing mails to

the rest of employees. To facilitate his work, a servant robot can carry objects within

the office building, so he has only to give the proper envelope to the robot and select

the destination, i.e. ”go to the laboratory”. Notice that the user specifies the task
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using the cognitive hierarchy and that she/he can choose the most convenient level of

detail, in this example level 1 (see figure 4.7).

As previously commented, the first stage of the translation process consists of shift-

ing the human concepts involved in the requested task into concepts of the ground

level. Since the task go to the laboratory is not completely detailed (it is an abstract

task) the robot has not enough knowledge about the particular distinctive place within

the laboratory where it must go. This first translation phase is then solved by simply

choosing a concept (vertex), for example the laboratory entrance, represented by the L1

vertex at the ground level, embraced by the more abstract laboratory concept. Such a

selection can be carried out following a certain criteria, i.e., the most connected one, a

border vertex, randomly, etc. Refining the abstract task in this manner may cause that

a feasible plan could not be found during the task planning process. In this case two

possibilities are available: choose another subvertex or ask the user for a more detailed

specification for the task, i.e.: go to the Peters’ table in the laboratory.

Once an adequate specification of the requested task is obtained at the ground

level, the hierarchical planner (HPWA-1 for instance) solves the task using the planning

hierarchy. Hierarchical planning produces successively abstract plans at different levels

of the task-planning hierarchy, which may involve symbols not directly understandable

by the user. Such symbols should be reported to the human using concepts from the

cognitive hierarchy. This is the second stage of the translation process, which will make

possible the user interaction with the task planning process.

More precisely, following our example, the planner produces the first abstract plan

at level L3 from the planning hierarchy10 which is {(GO C1 C2)}. This abstract plan

must be translated into human concepts before reporting it to the user, since it entails

two abstract concepts C1 and C2, produced by an automatic labeller process, which

10The resultant plan at the universal level is trivial.
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Figure 4.7: A multi-hierarchical model of an office scenario. For simplicity, this Multi-
AH-graph only consists of two hierarchies (planning -left branch- and cognitive -right
branch-) which share the ground and universal levels. Notice that both hierarchies can
contain different number of hierarchical levels. Labels of vertexes (in brackets) indicate
the subvertexes that they embrace. Also note that the vertex that represents the robot
is present at all levels to make planning possible (recall chapter 3).
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Level 1
(GO {Hall, East-Corridor, West-Corridor, Room3} {Laboratory,

East and West Corridors, and Rooms 1,2, and 4})

Level 2 (GO {West, Middle, East} {West, Middle, East})

Level 3 N/A

Figure 4.8: Possible translations of the parameters of the abstract plan from level L3
of the planning hierarchy to the cognitive hierarchy. Notice how the plan ambiguity
increases when it is translated to higher levels of the cognitive hierarchy.

do not belong to the cognitive hierarchy.

Such a translation of the obtained plan at level L3 is achieved by refining and ab-

stracting successively the parameters of the abstract plans through functions RefPlanAs

and AbsPlanAs . Thus, the refinement of the parameters of the plan {(GO C1 C2)},

down to the level L2 of the planning hierarchy, yields the list of plans (see figure 4.7):

{(GO B1 B3)}, {(GO B1 B4)}, {(GO B1 B5)}, {(GO B2 B3)}, {(GO B2 B4)}, and

{(GO B2 B5)}

that can be rewritten as a plan schema:

{(GO {B1,B2} {B3,B4,B5})}

By successively refining the abstract plans down to the ground level of the multihier-

archy, a set of plans that only involve parameters which represent distinctive places are

generated. Such plans are then abstracted up through the cognitive hierarchy through

the RefP lanAs function. In our example, this plan abstraction yields the set of plans

shown in table 4.8.

Once the plans are translated into the cognitive hierarchy, the user can proceed in

the following ways:
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1. Inquiring a more detailed plan. As shown before, the translation of an abstract

plan may not provide enough information to the user. In these cases the user

can request more information in two different ways. On the one hand she/he can

ask the robot for a translation of the same plan using more detailed concepts

of the cognitive hierarchy. Thus, the user obtains a more detailed information

about the plan, but increases the plan ambiguity (please, see table 4.8). On the

other hand, the user can ask the planning process for planning a new solution

at a lower level of the planning hierarchy. The obtained plan will involve more

detailed concepts which can be translated into the cognitive hierarchy again, thus

reducing ambiguity.

2. Rejecting part of a plan. Observe that even when the provided plan does not

reveal enough information, the user can interact productively with the planning

process, i.e. by rejecting certain spatial symbols. In our example when the robot

provides the user with the translated plan using the level L1 from the cognitive

hierarchy, she/he may require the robot to avoid the West-Corridor and Room2

regions, since they are, for example, usually crowded. Such discarded symbols

are translated again into the planning hierarchy (through refinement/abstraction

functions), reporting to the hierarchical planner that symbols B4 at level L2 must

be discarded. Thus, HPWA plans now at level L2 of the planning hierarchy with-

out considering such a symbol, producing the plan {(GO B1 B2), (GO B2 B3)},

which is reported to the user as {(GO {Hall, East-Corridor} {East-Corridor,

Room3}, (GO {East-Corridor, Room3} {East-Corridor, Laboratory})}.

Notice that all references to the ”forbidden” symbols (those discarded by the

user) and their subvertexes, have been eliminated.

3. Suggesting an abstract plan. Due to the ambiguity involved in the translation
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process, the user may be informed about a set of different possibilities to solve

a plan. She/he can select one out of the offered solutions based on her/his

knowledge of the environment. For instance, following the previous example,

the user can suggest the abstract plan: {(GO Hall East-Corridor), (GO East-

Corridor Laboratory)} since she/he knows that it is not necessary to consider

Room3 to arrive to the Laboratory. Thus, through the solution pointed out by

the human, the planner can solve the task at the ground level considering only

those symbols embraced by the ones suggested by her/him. In this example, the

final plan at the ground level is (see figure 4.7):

{(GO H1 H2), (GO H2 EC1), (GO EC1 EC4), (GO EC4 EC5),

(GO EC5 L1)}

4.4 Conclusions

This chapter has studied the use of different hierarchies upon a common ground level,

that is, a multi-hierarchical model, to improve several robot tasks at a time, including

human-robot interaction. In particular, we have focussed here on a translation process

that enables the robot to communicate its intentions (the result of its planning process)

to the user under such a multi-hierarchical fashion.

With this, we have assumed that the robot possesses a hierarchical arrangement of

information to efficiently plan its tasks, whose results are communicated in a human-

like manner to the user. What remains to ”close the loop”, that is, to permit the

robot to autonomously and efficiently perform within a large environment, is to devise

a mechanism to create and tune over time its multi-hierarchical and symbolic model.

This can be carried out by methods like the one presented in the next chapter.



Chapter 5

Automatic Learning of Hierarchies
of Abstraction

Intelligence is the totality of mental processes involved in adapting to the environment.

Alfred Binet, psychologist (1857-1911)

One thousand days to learn; ten thousand days to refine.

Japanese proverb

An agent intended to operate intelligently within complex environments (as the

robotic taxi-driver of the initial vignette) should adapt its internal world representation

to face new problems and to react to new situations in an efficient manner.

The above two quotes summarize the key ideas of this chapter. On the one hand, it

is common to relate the intelligence of an agent to its ability for adaptation. Informally,

we usually consider as intelligent beings those that can face new problems or situations,

that is, those that can adapt themselves to changes.

On the other hand, it is clear that efficiency is largely tighted to the usual meaning

of intelligence: it is common to consider more intelligent those beings that are able to

solve problems (tasks) with less consumption of resources (time, energy, etc.). In this

sense, an agent adapting to its environment should not only learn new information,
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but it should also arrange it (refine in the japanese proverb) properly for an efficient

use in the future.

In previous chapters, we have exposed mechanisms that permit agents to perform

efficiently its tasks through a (hand-made) multi-hierarchical model. In this chapter

we go into the automatic creation and optimization (adaptation) of planning hierar-

chies within that multi-hierarchical model of the environment1. A framework, called

ELVIRA, has been developed to acquire and to arrange hierarchically symbols that

represent physical entities like distinctive places or open spaces. Such an arragement

is tuned over time with respect to both changes in the environment and changes in

the operational needs of the robot (tasks to be performed). This way, the work car-

ried out by ELVIRA is aimed not only to represent correctly symbolic information

stemmed from the environment, but also to improve over time the robot efficiency in

task-planning.

1We only focus on the adaptation of planning hierarchies since task-planning in large environments
is highly affected by environmental changes, as well as it is one of the most complex tasks that a robot
may carry out. However, our approach can be extended to create/optimize other hierarchies of the
model.
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5.1 Introduction

The use of a symbolic representation of the environment becomes crucial in robotic

applications where a situated robot is intended to operate deliberatively. In the litera-

ture there have been many types of environmental representations for robot operation

(geometric [7, 63], probabilistic [143, 145], topological [24, 88], hybrids [116, 144], etc.).

As commented in previous chapters, we are concerned with symbolic ones, in the sense

that for deliberation, the information stored by the robot must represent the world

through qualitative symbols (concepts) rather than by quantitative data acquired by

sensors.

Such a symbolic representation permits the robot to intelligently deal with the envi-

ronment, for example for planning tasks as explained in chapter 3. However, maintain-

ing a symbolic representation of the environment involves several important problems,

some of then not completely solved or well understood yet. In this work we deal with

three of them: (i) maintaining the coherence between the real world and the internal

symbols, (ii) processing efficiently large amounts of information, which is an impor-

tant problem in robots that work in real environments, and (iii) optimizing the model,

that is, selecting among all the possible coherent set of symbols that one could use

for modeling a given environment, the most appropriate for operating as efficiently as

possible.

Problem (i) is tightly related to the psychological symbol grounding problem [66]. In

the mobile robotic arena, this issue has been simplified recently through the so-called

anchoring [16, 26], although in other communities it is seen from different perspectives

and denominations such as SLAM [64, 143] or visual tracking [4, 72, 130]. Anchoring

means to connect symbols of the internal world model of an agent to the sensory

information acquired from physical objects. These connections can be reified in data
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structures called anchors, which contain estimations of some attributes of the objects.

In that sense, an anchor is in fact a model of the corresponding physical object, and

thus it can be used by the agent as a substitute for it, for instance in planning or when

the real object is not visible. Notice that anchoring is not a static process, but it must

update continuously the symbolic information (deleting old symbols, changing current

ones’ attributes, adding new symbols) by updating the anchors.

The problem of processing efficiently large amounts of information (problem (ii))

arises when real environments with a potentially huge amount of perceptual, quan-

titative information, are considered. In that case, the symbolic representation may

also be large, and therefore it must possess a suitable structuring mechanism for en-

abling future accesses in the most efficient way. A common approach to that problem

is the use of abstraction, which establishes different, hierarchically-arranged views of

the world as we have seen in this thesis. This mechanism, which is used by humans

to arrange knowledge [69], can be exploited to improve efficiency in task planning, as

explained in chapter 3. Some examples of efficient processing achieved through the use

of abstraction can be found in [45, 46, 53]. It has been demonstrated that the use of

abstraction can reduce the cost of processing information significantly, and even can

make some exponential problems tractable.

Finally, optimizing the model (problem (iii)) arises since the robot does not carry

out the same tasks all the time nor in the same environment. It should adapt to different

tasks over its working life. Also, changes in the environment may lead to reduce the

suitability of the current internal representation for task planning and execution, and

thus require a better structure of symbols. Hence, there is a need for some procedure

that tunes the symbolic representation dynamically, optimizing it with respect to the

current knowledge of the tasks the robot has to plan and execute. This optimization

procedure can be appropriately addressed by heuristic optimization techniques, i.e.
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evolutionary algorithms [8], as we will show later.

In this chapter we focus on problems (ii) and (iii). For that purpose, we have

developed an evolutionary algorithm that has been adapted to be executed as an any-

time algorithm (that is, the longer the algorithm is executed, the better the constructed

symbolic representation, but there is always a correct structure available for the robot).

For dealing with efficient structuring of the model, we use our AH-graph model which

has demonstrated its suitability for improving robot operation within large environ-

ments in previous works [45, 53]. To prove the suitability of our approach within a real

robotic application, our method has been integrated into a general framework in which

the symbol grounding problem (i) also fits. For coping with automatic anchoring, we

use techniques for extracting topological maps from grid maps [22, 40], and also image

processing techniques for anchoring objects [57].

In the literature, works can be found that endow mobile robots with a symbolic

representation of the environment, most of them using topological representations [17,

141, 148, 153], and often for path-planning. They cope with the automatic construction

of a symbolic representation of the robot space (topology), and thus, they approach the

first commented problem when anchoring distinctive places from the robot environment

to symbols in the topology. Some of them also apply this topological (or in, general

hybrid) techniques to large environments by hierarchically arranging symbolic (and

also some geometric) information [87, 92, 148]. However, not much attention has been

paid to the optimization of that internal symbolic structure during the robot operating

life. As Wah stated in 1989: ”despite a great deal of effort devoted to research in

knowledge representation, very little scientific theory is available to either guide the

selection of an appropriate representation scheme for a given application or transform

one representation into a more efficient one” [152]. Nowadays, such an affirmation is

still applicable and only a few works aim to organize symbolic information [140, 142],
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but without pursuing the optimality of robot operation within dynamic environments.

Our work focuses on this less explored direction.

The framework presented here, that we call ELVIRA, has been fully implemented

and tested through real and simulated experiments, demonstrating its feasibility for

the automatic creation and optimization of large symbolic representations of the robot

environment that are used for efficient task planning and execution.

Next section gives a general view of our framework. Following sections are devoted

to go into the two main functions of ELVIRA: section 5.3 focuses on the creation

of ground symbols that make up the model, and section 5.4 delves into the automatic

arrangement of such symbols into an efficient structure (hierarchy) for task planning. In

section 5.5 some discussion and experimental results are presented. Finally, conclusions

and future work are outlined.

5.2 The ELVIRA Framework

Our framework enables a mobile robot to solve correctly and efficiently its tasks within

a dynamic and large environment by automatically creating an anchored symbolic rep-

resentation, which is adapted over time with respect to changes in both environmental

information and the set of tasks that the robot must perform. The proposed frame-

work, called ELVIRA, has been fully implemented as a computational system (fig. 5.1

shows the general scheme). It has two inputs: the task to be performed by the robot

at each time, and the environmental information gathered by its sensors, and two out-

puts: a plan that solves the requested task as best as possible given the knowledge

acquired up to the moment, and a symbolic structure anchored to the environmental

information and optimized for the set of tasks that the robot has dealt with.
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We use sensorial information to create and maintain anchored symbols (rooms, dis-

tinctive places for navigation, and objects for manipulation), arranged in a planning

hierarchy of the multi-hierarchical model of the environment. At the lowest level of

the multi-hierarchy, vertexes represent distinctive places or objects from the environ-

ment while edges represent relations between them, i.e. navigability between places

or location of objects with respect to others. Upon this common ground level, which

varies over time to capture the dynamics of the environment, a planning hierarchy is

automatically constructed and maintained to improve the robot operations.

Figure 5.1: A general view of our framework ELVIRA. It is fed with both the informa-
tion gathered by the robot sensors and the requested task. It yields the best known
planning hierarchy adapted to the agent tasks and environment, and a resulting plan
for the currently requested task. ELVIRA includes three internal loops -anchoring,
planning, and optimization- (marked in the figure by dark-gray shaded regions) that
run concurrently.

As shown in figure 5.1, our framework carries out the automatic creation and adap-

tation (optimization) of the planning hierarchy through three processes, implemented
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by the Grounding Agent, the Hierarchy Optimizer, and the Hierarchical Task Planner.

The Grounding Agent is responsible for maintaining the symbols of the ground level

of the model anchored to the real world. The resulting anchored information is then

hierarchically arranged by the Hierarchy Optimizer. The Hierarchical Task Planner is

in charge of planning general tasks (not only navigation) and calculating the goodness

of the planning hierarchy for that process.

In our particular implementation, these processes are executed with periods denoted

in figure 5.1 as τgrounding, τoptimizer, and τtasks. That is, every τgrounding time-units the

ground symbolic structure is updated with the information collected by the Grounding

Agent; every τoptimizer the optimization process works to improve the planning hier-

archy; and every τtasks a task is required to be planned and executed by the robot2.

Notice that this period-based scheme, which is very useful for evaluation purposes, can

be changed into an event-based one with little effort.

In the following, the internal processes of ELVIRA regarding to the creation/maintenance

of the symbolic model (section 5.3) and the planning hierarchy optimization (section

5.4) are described in detail.

5.3 Model Creation/Maintenance

All deliberative systems that rely on a symbolic representation of the robot workspace

must face the symbol grounding problem [66] which is not completely solve yet. This

problem, largely treated in the scientific literature [26, 32, 132, 135], is related to the

genesis of symbols (concepts) stemmed from reality. From an objectivist point of view,

in the case of symbols that represent physical objects, they can only be the result of

2This periodic sampling scheme implies that the internal world representation may be temporarily
inconsistent with the environment. This case is not considered yet in our work.
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many observations plus a mental process able to extract similarities from data. But

how does such a mental process work? How could a robot imitate such a human ability?

As the reader may realize, the symbol grounding problems becomes one of those

wonderful mysteries of our brain: how does a young child make up a symbol for trees?,

and how can she/he recognize the image, captured from her eyes, of a non previously

seen tree?

These are questions that are out of our understanding now, but we are aware of their

relevance for any system that accounts for intelligence. To cope with this issue, in this

work we have largely simplified the robot acquisition of ground symbols by considering

only distinctive places, open spaces, and simple objects (like coloured boxes), and

providing two acquisition mechanisms that implements the Grounding Agent: a human-

assisted mechanism, and an automatic process called perceptual anchoring proposed in

[26, 93].

5.3.1 Human-assisted Symbolic Modeling

A naive solution to the symbol grounding problem is to include a human into the

system to inform the robot when a new symbol must be created (or modified). Thus,

we permit a human to become the Grounding Agent of ELVIRA (though she/he will

not be the only one). The robot, on its turns, links available sensory information, like

odometry, maps, camera images, etc., to the symbols when they are created. That

information can be used by the robot, for instance, for localization, navigation or for

human-robot interaction as was explained in chapter 4.

This solution exhibits great advantages in certain robotic applications. For instance,

in assistant robotics, in which both human and robot work closely, it becomes useful

that the symbolic world model of the robot mimics as much as possible the human
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one, and that is only possible if the human participates on the creation of part of the

symbolic model (i.e., the cognitive hierarchy, explained in chapter 4).

Let think, for example, of a robotic wheelchair that provides mobility to an elderly

person, like the one presented in [61] and in chapter 6. In this application symbols

represent physical locations of the human/robot workspace that are of interest to the

wheelchair user. But, how could a software algorithm decide what places are of interest

to a particular user? As commented in chapter 4, the human can indicate whether

the current location of the vehicle (wheelchair), let’s say P1, is a distinctive place,

and therefore should be represented by a symbol. Symbols representing distinctive

places are reified as vertexes at the ground level of a hierarchy (AH-graph). Sensory

information (percepts) is stored as annotations on vertexes as geometrical information.

During vehicle navigation (autonomously or manually guided) the user can inform

about a new distinctive place, let’s say P2, creating both a new vertex (for P2 ) and

an edge (from P1 to P2 ). This process can be repeated as many times as distinctive

places the user selects in a certain area.

Following this procedure, we also enable the robot to manage more complex sym-

bols. For example, when the user decides that the vehicle is leaving to a new area

of the environment (for example, a new room), a symbol for that area is created at

the first level of the hierarchy, as a supervertex that groups all the distinctive places

sampled up to the moment.

This human-guided model creation is a versatile process that permits the creation of

cyclic topological maps when the vehicle returns to a distinctive place already visited3.

3It should be also indicated by the user when odometric errors prevent the robot to recognize a
previously visited place.
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5.3.2 Perceptual Anchoring

The perceptual anchoring problem is a topic explored explicitly in the recent robotics

literature [16, 26, 52], although implicitly, it has been present since the beginnings of

robotics. Perceptual anchoring, or simply anchoring, can be thought of as a special

case of the symbol grounding problem [66], in which emphasis is put on: (i) symbols,

that denote physical entities, and (ii) maintenance of the connection between symbols

and physical entities while properties change. Broadly speaking, anchoring consists

of connecting internal symbols that denote physical objects to the flow of sensor data

that refer to the same objects in the external world. Such a connection is achieved

by using the so-called predicate grounding relation, that embodies the correspondence

between predicates in the world model and measurable values from sensor informa-

tion. For instance, the symbol room-22 that fits the predicates ‘room’ and ‘large’

could be anchored to a geometric map of a room with certain parameters (shape and

dimensions).

The anchoring process, as defined in [26], relies on the notion of an anchor, an

internal representation of a physical object which collects all the properties of that

object which are relevant for perceiving it and for acting on it. The notion of an anchor

provides a single place in which to fuse all the information that pertains to one physical

object: information from different sensors, information arriving at different times, and

high-level (symbolic) knowledge. In this sense, anchoring provides an answer to the

so-called binding problem for autonomous robots [93].

Thus, the task of the anchoring process is to create and maintain anchors for the

objects which are relevant to the robot’s activities. It does so using three main proce-

dures:

• Find. This is the first step of the anchoring process, in which an anchor is created
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for a given object in the environment the first time that this object is perceived

by the robot.

• Track. During this phase a previously created anchor is continuously updated

while its connected object in the environment is under observation.

• Reacquire. This phase occurs when an anchored object is not directly observed by

the robot sensors. This may happen because the object is occluded, or because

is out of the current range and field of view of the sensors. The properties stored

in the anchor are used to predict the object parameters (i.e., its position), that

will be used by the track procedure to focus it in the future.

The main characteristics of our implementation of perceptual anchoring used in our

work are:

The anchors

In this chapter, we only consider three classes of objects: rooms, distinctive places inside

them, e.g., the center and the entrance of each room, and boxes. Correspondingly, the

task of the Grounding Agent is to create and maintain internal anchors that correspond

to these types of objects. These anchors are grounded in the sensor data collected by

sonar sensors and a colour camera, and are linked to the symbols that denote places

and objects in the AH-graph world model. Besides symbolic information, this model

also stores geometric information of the anchors, e.g., rooms parameters and distances,

and objects location, also extracted from the sensor data by the Grounding Agent.

It should be noted that our framework can be directly applied to a larger variety

of objects than the ones considered here. For instance, in [57] we have used this

framework to also anchor doors and pieces of furniture, and to perform high-level

semantic reasoning about them.
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Anchor creation

According to the nature of the world entity to be anchored to the symbolic structure,

we distinguish two different mechanisms: (i) anchoring of objects and (ii) anchoring of

topological entities.

For (i) we use the well known CamShift algorithm [4] to detect areas in the camera

images with a given distinctive colour, i.e., red. When a portion of image meets

such a restriction, that is, it is considered as a box, a new anchor is created for it,

storing the current position of the robot as a relevant parameter for the anchor. This

information will serve to relate the created symbol of the internal model that represents

the anchored box with respect to the symbol anchored to the distinctive place where

the robot is [57]. In the robotic literature there are a large number of algorithms to

accurately estimate robot position, such as [143] and [51].

Distinctive places as well as open spaces (mechanism (ii)) can be anchored using

the technique for topology-based mapping presented in [40], although other methods

for topological map building can also be used ([87, 92, 144]). This technique uses the

data gathered from the robot sensors, i.e., ultrasonic sensors, to build an occupancy

grid map of the surroundings of the robot (see fig. 5.2a). This grid map can be seen

as a gray-scale image where values of emptiness (and occupancy) correspond to gray-

scale values. We then apply image processing techniques to segment the grid map

into large open spaces, that can be anchored as rooms. The image is filtered using

fuzzy mathematical morphology [14], which yields a new grid map where values of cells

represent a membership degree to circular open spaces (figure 5.2b). An open space

is defined here as a space without obstacles which embraces cells from the occupancy

grid map whose emptiness values are high.

In order to extract the topology of the environment from the resultant filtered map,
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(a) (b)
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Figure 5.2: (a) Original grid-map; (b) Fuzzy morphological opening; (c) Watershed
segmentation; (d) Spatial hierarchy involved in this example. Distinctive places are
marked with Ci (the center of room i) and Eij (the connection from room i to room
j).

we use a technique called watershed [151]. The filtered map can be seen as a landscape

where cell values represent altitudes. In this scenery, open spaces are valleys which

are connected through ravines, while walls and other obstacles are peaks. Figuratively

speaking, the watershed technique fills the landscape with water, creating catchment

basins and watersheds. In our application, the presence of water is interpreted as a

room while watersheds corresponds to connections between them. Using the regions

and connections (valleys and ravines) yielded by the watershed process, the Grounding

Agent can also compute some room information like the dimension and shape of regions,

as well as distinctive places of the topology such as the center and connection points

between rooms. That is, we can select to anchor rooms or distinctive places with this

procedure, depending on the most appropriate ground symbols for our purposes.

It should be noted that the above technique relies on the assumption that the robot

operates in environments which have a room-corridor structure. Under this assumption,
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this technique has been shown to produce reliable maps [22], which are robust with

respect to moderate rearrangements of the furniture in the rooms.4

Anchor maintenance

Maintenance of anchors, in general, is made through the Track and Reacquire prim-

itives by: (1) predicting how the properties in the anchor will change over time; (2)

matching new perceptual information with these predictions; and (3) updating the

properties accordingly. Since in this chapter we focus on the optimization of symbolic

representation rather than on anchoring, we perform a simple maintenance for anchors:

the only time-varying property that we consider is the relative location of objects with

respect to the robot. Thus, prediction coincides with self-localization of the robot.

The maintenance of anchors stemmed from objects (boxes) implies searching in the

model for previously anchored objects with similar parameters, that is, in the same

location5. If there exists an anchored symbol in the model which is recognized as the

one currently detected, its relative position is updated. Otherwise, it is considered

as a new object, and thus, a new anchor is created. Please refer to [26] for further

explanation.

For topological anchors, new perceptual information is fused with the current map

[39]. If the fusion is good, the robot updates its self-localization (or, from a dual point

of view, it updates the relative position property of the anchors). If not, the robot

may create new anchors corresponding to the newly observed objects (rooms or open

spaces).

Although the maintenance part of the Grounding Agent used here is very simple,

4By “moderate” we mean here rearrangements that do not change the intuitive topological structure
of the room. For instance, placing a bookshelf in the middle of the room effectively splits the room
into two open spaces, and will cause our algorithm to produce two vertexes.

5Due to errors in estimating the robot pose, and the relative position of objects with respect to
the robot, we consider that two objects are the same when their relative distance is less than 20 cm.
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the framework is intended to cover more interesting cases. For instance, we could use

higher-level reasoning to predict changes in the configuration of furniture depending

on the time of day. Also, we could use semantic knowledge to make predictions about

objects which should or should not be present, e.g., a kitchen should usually contain

a stove but not a bed. Failure of these expectations, like observing a stove while we

expect to be in the bedroom, can be used to engage in a recovery process. Some

preliminary work in this direction was reported in [57].

5.4 Model Optimization

As commented at the beginning of this chapter, efficiency in task planning and exe-

cution is a relevant ingredient to define intelligence. Although the creation and main-

tenance of a coherent internal model with respect to the real world is an unavoidable

issue for the correct planning/execution of tasks, the proper arrangement of such a

model is also significant for the robot success. A vast collection of symbols arising

from a real scenario arranged in an inappropriate manner may turn the execution of

robot tasks into an impossible mission. What is the purpose of a highly coherent and

updated model when it is not useful, for instance, for planning or reasoning? One

can compare this situation to a library which entails a wide and valuable collection of

books stored out of any order (see fig. 5.3). Is that amount of valuable information

useful when you have to spend days, weeks or even years to find what you are looking

for?

As books in libraries are ordered following some criteria to facilitate the search,

symbols managed by autonomous agents should also be arranged for the ease of their

manipulation. The question is: what is the most convenient way to organize symbolic

information? In the case of a library, books are indexed by genre, title, or author,
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Figure 5.3: ”Order is never observed; it is disorder that attracts attention because it is
awkward and intrusive” (Eliphas Levi).

since most of searches are based on these keys. Following this idea, symbols from the

internal model of a mobile robot should be arranged in a certain way to improve over

time the most frequent tasks performed by the robot.

This is the key point of the model optimization part of the ELVIRA framework.

As commented, ELVIRA considers symbols to represent distinctive places and simple

objects, which must be arranged properly in order to improve the robot tasks. We

focus on hierarchical structures since they are helpful in coping efficiently with the

huge amount of information that a mobile robot may manage [53]. But the number

of different hierarchies that can be constructed upon a set of symbols (as well as

the different permutations of a set of books on a shelf) turns the model optimization

problem into a hard problem for which no polynomial-time algorithm is known to exist.

A feasible solution to hard problems is the use of evolutionary algorithms. In

particular if they can be used as any-time processes, that is, the more they work, the

better is the solution [58, 147], we find a good approach to our problem since in our case,

finding the best hierarchy to solve the robot tasks (the most frequent ones) involves

testing all possible candidates in the combinatorial space of hierarchies. The reader

can find a vast literature about the use of evolutionary algorithms, also called genetic
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algorithms. Some examples are [48, 99, 109, 117], that use evolutionary processes for

adapting the behavior of mobile robots, pose estimation, etc. Evolutionary approaches

for graph clustering, similar to the model optimization process described in this work,

can be found in [98, 121]. An analysis and in-depth classification of evolutionary

computation can be found in [8].

Next section gives a general description of evolutionary algorithms, detailing the

particular implementation adopted in our work.

5.4.1 Evolutionary Hierarchy Optimizer

Evolutionary computation is a biological inspired technique that simulates the natural

evolution of species in which only those individuals best adapted to the environmental

conditions survive. In nature, individuals of a population are affected not only by the

environment conditions (climate, food abundance), but also by the rest of individuals.

Individuals that perform better than others have a higher chance to survive, and thus, a

larger opportunity to perpetuate their genetic material. This evolutive process ensures

the improvement of individuals over generations.

Evolutionary computation, mimicking the natural evolution process, considers a

set of individuals (population) that represent particular solutions to a problem to be

solved, while the environmental conditions correspond to the evaluation of each solution

(individual) with respect to a certain objective function. Such an objective function

measures the individual adaptation to the particular problem we want to solve.

Broadly speaking, evolutionary algorithms are iterative processes aimed to find a

good solution to a certain problem (see figure 5.4 for a general scheme). Typically, the

process starts from an initial population generated at random, in which each individual

provides a solution to the problem at hand. The evolution of individuals (solutions) is
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carried out through genetic-based operators: recombination, that simulates the cross

between two individuals in which genetic information is interchanged, and mutation,

that simulates a sporadic change in individuals’ genotype.

At each iteration (also called generation), individuals are evaluated with respect to

the objective function. The result yields the degree of adaptation of each individual

to the environment, that is, to the problem. Those individuals with the best results

pass to the next generation with a high probability of recombination and/or mutation,

while individuals with the worst results will not participate in the next evolution stage

(they are eliminated).

When applying evolutionary techniques to solve a problem some considerations

must be set. First of all, it must be defined the vector of parameters that encodes a

solution to the problem at hand, that is, we have to define the genetic material of each

individual, which is normally divided in parts called chromosomes. Next, depending

on the particular encoding of the genetic material, recombination and mutation oper-

ators must be properly defined to permit the evolution over generations. And finally,

the ”evolution rules” must be set, that is, the process to select individuals that will

undergo mutation and/or recombination and the process to select individuals that will

be eliminated/maintained after each generation. In our work we have chosen typical

evolutionary techniques, such as the roulette wheel for selecting individuals and elitism

for keeping the best individuals over generations. We recommend [8, 119] for a further

description of these and other techniques used in the implementation of evolutionary

algorithms.

In the model optimization carried out by the Hierarchy Optimizer within the

ELVIRA framework, the search space is the set of all possible hierarchies that can

be constructed upon a set of grounded vertexes (symbols). Thus, each individual of

the genetic population represents a hierarchy of symbols. Therefore, we have to firstly



138 Model Optimization

generation=0;
P=Initialize();
Evaluate(P)
repeat

P’=Variation (P)
Evaluate(P’)
P=Select(P’)
generation=generation+1

until end condition

Figure 5.4: Pseudocode of a general scheme for evolutionary algorithms. There are
three relevant processes: (i) V ariation which produces changes in a given population
based on recombination and mutation operators. (ii) Evaluate which yields the adap-
tation of each individual to the problem to solve, and finally (iii) Select that decides
which individuals deserve to pass to the next generation.

give the set of parameters that univocally defines a hierarchy (a solution), the re-

combination/mutation operators that make possible the evolution of individuals over

generations, and the objective function that guides the evolution process.

5.4.2 Population

In our implementation, the Hierarchy Optimizer starts from a random population made

up of individuals that encode the minimum set of parameters, called strategy param-

eters, to generate potential hierarchies (i.e., AH-graphs) upon the ground level main-

tained by the Grounding Agent.

A hierarchy (an AH-graph) can be constructed by a clustering algorithm that groups

vertexes and edges of a certain hierarchical level to produce the next higher level [45].

In our work we have implemented an algorithm that generates clusters given a set of

seed vertexes (see its pseudocode in fig. 5.5). Applying it to a flat graph (given a set

of seed vertexes), we create a set of clusters, each of them initially containing only one
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of the input seed vertexes. The rest of non-seed vertexes are iteratively added to the

clusters following a deterministic order and the connectivity in the graph.

Since a hierarchy is a sequence of clusterizations from a ground graph, we have

defined an individual for the evolutionary algorithm as a set of chromosomes, in which

each chromosome encodes a set of seed vertexes. Thus, and individual ia represents a

hierarchy with k levels, and is encoded as a vector of k-1 chromosomes, that is, as a

vector of k-1 sets of seed vertexes:

ia = {c1, c2, . . . , ck−1} =

{{
n1
1, . . . , n

1
p

}
,
{
n2
1, . . . , n

2
m

}
, . . . ,

{
nk−1
1 , . . . , nk−1

r

}}
(5.4.1)

where nq
i denotes the i−th seed vertex at level q. Seed vertexes of the first chromosome

refer to vertexes of the ground level (that is, symbols acquired directly by the Grounding

Agent) while seeds from the other chromosomes refer by their index position to a cluster

previously generated at a lower level. For instance, n2
i = j indicates that the cluster

generated by the seed n1
j is considered as a seed for clustering the next hierarchical

level.

Figure 5.6 shows an example of the resultant hierarchy encoded by the 3-chromosomic

individual (i={(2,8,10), (1,3), (2)}), which produces a 4-level hierarchy (including the

given ground level).

Once we have defined the individual representation, the next step is the definition of

the genetic operators to make possible the evolution of a initial population up to a set

of individuals that provide a good solution to the problem of hierarchy optimization.
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PROCEDURE Clustering (Graph g, Seeds s):Clusterization cl
cl=0
FOR i = 1 to size(s)

cluster = new cluster( s(i) )
cl=cl + cluster

END
WHILE (UnclusteredVertexes==TRUE)

FOR j= 1 to size(cl)
ConnectedVertex(cl(j),out)
FOR k=1 to size(out)

IF (Unclustered(out(k))
cl(j)=cl(j) + out(k)

END
END

END
END
RETURN cl

Figure 5.5: Pseudocode of the implemented clustering algorithm. Initially it creates
a set of clusters containing an unique seed (a vertex from the given graph). Clusters
grow up progressively including connected vertexes in a deterministic order that do
not belong to other clusters. The process finishes when all vertexes are clusterized.
Notice that when the graph is not totally connected the algorithm can consider isolated
vertexes as unitary clusters, in order to always end.

5.4.3 Individual Recombination

The recombination operation aims to imitate the natural process of genetic crossing. In

general, given two parents, new offsprings are generated combining parts of their genetic

material. As commented before, the definition of genetic operators, like recombination,

largely depends on the individual encoding, but there are a wide rage of general recipes

such as selecting a cross-point in both parents to determine the portion of parents’

genetic information to be donated to the offspring, selecting multiple cross-points, or

allowing multiple parent recombination. The study of the different possibilities of

recombination is out of the scope of our work. Please refer to [8] for an exhaustive

study.

In our particular hierarchical optimization approach, we recombine two individuals

(hierarchies) by interchanging part of their genetic information (clustering informa-

tion), that is, individuals involved in recombination interchange a set of seed vertexes.
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Figure 5.6: Example of graph clustering. This is the resultant hierarchy encoded
by the individual i={(2,8,10), (1,3), (2)} upon a given ground level after executing
successively the clustering algorithm of figure 5.5. Seed vertexes are indicated by double
circles.

The result is that the original individuals are turned into two new individuals contain-

ing a mix of the original genetic material.

Formally, our process to recombine two individuals is as follows. Given two individ-

uals ind1 and ind2 made up of k and l chromosomes respectively, an index chromosome

i is selected at random, where i < k, i < l :

ind1 = {c11, . . . , c1k} =

{{
n1
1, . . . , n

1
a

}
, . . . ,

{
ni
1, . . . , n

i
w

}
, . . . ,

{
nk
1, . . . , n

k
c

}}
ind2 = {c21, . . . , c2l } =

{{
n1
1, . . . , n

1
d

}
, . . . ,

{
ni
1, . . . , n

i
q

}
, . . . ,

{
nl
1, . . . , n

l
f

}}
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Let c1i and c2i be the i-th chromosomes of individuals ind1 and ind2 respectively:

c1i = {ni
1, . . . , n

i
w}

c2i = {ni
1, . . . , n

i
q}

We select now a cross point s (s < w, s < q) that determines the portion of seed

vertexes to be interchanged and mixed from both chromosomes, as follows:

c1i∗ = {n1
1, . . . , n

1
s, n

2
s+1, . . . , n

2
q}

c2i∗ = {n2
1, . . . , n

2
s, n

1
s+1, . . . , n

1
w}

The resultant individuals entail a different version of their original i-th chromosomes:

ind1 =

{{
n1
1, . . . , n

1
a

}
,
{
n
(i∗)
1 , . . . , n

(i∗)
q

}
, . . . ,

{
nk
1, . . . , n

k
c

}}
ind2 =

{{
n1
1, . . . , n

1
d

}
,
{
n
(i∗)
1 , . . . , n

(i∗)
w

}
, . . . ,

{
nl
1, . . . , n

l
f

}} (5.4.2)

It is important to remark that our recombination process should not end after

simply interchanging seed vertexes among certain chromosomes, since seed vertexes

of chromosomes that encode a hierarchical level higher than the ground level do not

represent ground vertexes, but clusters previously created from the information of

lower chromosomes. In the same manner, a seed vertex from a certain chromosome can

participate in the clusterization of higher levels. That is, a seed vertex of a chromosome

represents in fact a hierarchy (that is, it extends its influence to both lower and higher

chromosomes), which should be considered when combining individuals. Let’s see an

example.

In the individual i={c1,c2,c3}={(2,8,10),(1,3),(2)} represented in figure 5.6, the

seed vertex 3 of c2, both refers to the cluster generated by the seed 10 of c1, and is

referred by the unique seed of chromosome c3 (2). Thus, for instance, changing the
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seed vertex 10 of c1 during recombination should require moving the whole structure

generated by such a seed to the receptor individual. The result of recombining the

individual i with another one h, in which their first chromosomes are combined at

cross point 1 (using the ground level depicted in fig. 5.6), is then performed as follows

(this is also depicted in fig. 5.8):

h = {ch1 , ch2} = {(3|13)}, (1)}
i = {ci1, ci2, ci3} = {(2|8,10), (1, 3), (2)} (5.4.3)

By equation (5.4.2), the recombination of the selected chromosomes is:

c
(h∗)
1 = {3, 8, 10}
c
(i∗)
2 = {2, 13}

and the resultant crossed individuals are:

h∗ = {ch∗1 , ch∗2 , ch∗3 } = {(3, 8, 10), (1, 3), (2)}
i∗ = {ci∗1 , ci∗2 } = {(2, 13), (1)}

Notice that after the recombination process, an extra chromosome has been added to

the individual h, at the same time that the individual i has lost one. This is because the

interchanged seed generates a fourth level in the hierarchy represented by the individual

i. Thus, in our recombination process not only particular seeds are interchanged,

but also particular individual characteristics like the number of chromosomes. The

pseudocode of the individual recombination we have implemented is shown in figure

5.7.
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PROCEDURE Recombination (Individual i, Individual h):Individuals
c=SelectChromosomeIndex(i,h)
p=SelectCrossPoint(i(c),h(c))
Seed1=SeedstobeInterchanged(i(c),p)
Seed2=SeedstobeInterchanged(h(c),p)
i(c)=i(c)-Seed1
h(c)=h(c)-Seed2
i(c)=i(c)+Seed2
h(c)=h(c)+Seed1
FOR j= 1 to size(Seed1)

FOR k=1 to NumberofChromosomes(i)
IF (c!=k && ContainReference(i(k),Seed1(j)))

AddReference(h(k),Seed1(j))
RemoveReference(i(k),Seed1(j))

END
END

END
FOR j= 1 to size(Seed2)

FOR k=1 to NumberofChromosomes(h)
IF (c!=k && ContainReference(h(k),Seed2(j)))

AddReference(i(k),Seed2(j))
RemoveReference(h(k),Seed2(j))

END
END

END
RETURN i,h

Figure 5.7: Pseudocode for individual recombination. After the selection of the seed
vertexes to be interchanged between individuals, references to those vertexes within
the input individuals are detected in order to be updated.

5.4.4 Individual Mutation

Mutation is a 1-ary operation that imitates a sporadic change in individuals. Although

recombination is important to maintain a part of the best individual characteristics over

generations, mutation is also necessary in order to avoid the stagnation of solutions in

a local minimum.

As in the definition of recombination, the definition of the mutation operator also

depends on the individual codification. In our case we have followed a simple criteria

to perform individual mutation which consists of eliminating/adding randomly a seed

vertex from/to a chromosome. More formally, within an individual, the mutation of a

given chromosome c containing s seed vertexes is defined as:

c = {n1, . . . , ns}
cadd = {n1, . . . , ns, ns+1}

cdel = {n1, . . . , np, np+2, . . . , ns}

(5.4.4)
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(a) (b)

(c) (d)

Figure 5.8: Recombination of individuals. (a)(b) Hierarchies encoded by the individuals
i and h defined in the text. (c)(d) Resultant offsprings i∗ and h∗ after their crossing
as commented in text. Notice how recombination combines individual characteristics,
like the number of hierarchical levels.
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The effect of eliminating/adding seeds may cause relevant changes in the structure

encoded by the mutated individuals. The deletion of a given seed from a chromosome

may modify the whole structure, even changing the number of levels of the hierarchy

represented by the individual6. This effect can be seen in the following example, where

individual i undergoes, for example, the deletion of the seed 1 from the chromosome

c2, which leads to the elimination of c3:

i = {c1, c2, c3} = {(2, 8, 10), (1, 3), (1)}
i∗ = {c1, c2} = {(2, 8, 10), (3)}

(5.4.5)

From a structural point of view, the effect of adding randomly seeds to a chromosome

will only increase the number of clusters, but no changes will be produced in the

number of hierarchical levels. Regarding its encoding, adding new seeds to a particular

chromosome may modify the seed order of higher levels, as shown in the following

example, in which the seed 7 has been added to c1 modifying the seed order of c∗2 in

i∗add.

i = {c1, c2, c3, c4} = {(2, 5, 8, 10, 13), (1, 3, 4, 5), (1, 3, 4), (2)}
i∗add = {c∗1, c∗2, c∗3, c∗4} = {(2, 5, 7, 8, 10, 13), (1, 4, 5, 6), (1, 3, 4), (2)}

(5.4.6)

Notice that the random generation of new individuals by mutation may not yield

good individuals in the sense that they are not well adapted to the problem at hand. In

that case we rely on the evolutive process that will eliminate weak individuals detected

through their fitness.

6This is the same effect that appeared in the recombination process. Moving a seed from one
chromosome to another implies eliminating it from the first one.
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PROCEDURE Mutation (Individual i):Individual
type=RandomSelectTypeofMutation
c=ChromosometobeMutated(i)
IF (type==Add)

sn=RandomSeedVertex()
i(c)=i(c)+sn

ELSE
sn=RandomSeedVertex(i(c))
i(c)=i(c)-sn

END
FOR k=c+1 to NumberofChromosomes(i)

IF (type!=Add && ContainReference(i(k),sn)
RemoveReference(i(k),sn)
IF (IsEmpty(i(k))) RemoveChromosome(i(k))

FOR q=1 to size(SeedVertexes(i(k)))
IF (SeedVertexes(i(k))[q])>=sn SeedVertexes(i(k))[q]-=1

END
END
IF (type==Add)

FOR q=1 to size(SeedVertexes(i(k)))
IF (SeedVertexes(i(k))[q])>=sn SeedVertexes(i(k))[q]+=1

END
END

END
END
RETURN i

Figure 5.9: Pseudocode for individual mutation. When a seed vertex is deleted, all ref-
erences to it are deleted too. When adding/removing seeds from a certain chromosome,
references from higher ones must be reordered to correctly keep previous references.

5.4.5 Individual Evaluation

Evolution of the genetic population (AH-graphs) is carried out through the typical

genetic operations, recombination and mutation, previously commented, after a selec-

tion process. This selection process, which takes into account the fitness value of each

individual in the evolving process, has been implemented in our work by using the

so-called roulette wheel technique7 [155].

The evaluation of individual fitness involves the construction of the hierarchies

(AH-graphs) represented by individuals and testing their suitability with respect to

the current robot tasks. The hierarchy constructor submodule (recall fig. 5.1) uses

the information encoded in individuals to construct hierarchies based on the clustering

algorithm of figure 5.5. Each constructed model (AH-graph) is then evaluated through

task planning of the task and an estimate of past execution costs for the task. Given

7Efficiency has not been our concern here, but simplicity. Instead of this relative fitness selection,
other types of selection techniques can be used such as rank-based or tournament methods [8].
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the high number of fitness evaluations required in an evolutionary algorithm, a low-cost

computational function to calculate it is needed8. In particular, the Hierarchical Task

Planner used is the efficient task-planning approach HPWA-1, described in chapter 3.

Apart from optimizing the internal representation, the Hierarchical Task Planner

component also updates the estimate of the probability distribution (frequency of oc-

currence) of the tasks over time. With that information, the fitness of a given hierarchy

H is computed by:

Cost(H) =
n−1∑
i=0

freq(ti) ∗ (costplanning(ti) + h(ti)) (5.4.7)

This function gives the fitness (goodness) of individuals for planning and executing

the current set of robot tasks. In this expression, n is the number of tasks requested

to the robot up to the moment, freq(ti) is the frequency of occurrence of the task ti,

costplanning(ti) is the planning effort to solve task ti (planning time) and finally, h(ti) is

an estimated of the cost of executing the task, for example the distance to be travelled

in a navigation. This execution cost is retrieved from past experiences of the robot with

the same task. Notice that including an estimate based on past executions in Cost(H)

avoids the physical performance of tasks for each individual of the population, which

would lead to an unacceptable optimization time.

By considering both the cost of planning and execution, the current set of robot

tasks and their frequency of occurrence, we guide the search to find those individuals

better adapted to solve frequent tasks in detriment of other unfrequent ones. Notice

that the constructed world model can be far from the optimal at first, but our approach

guarantees to improve it over time, as demonstrated in section 5.5.

8In our case the individuals evaluation implies to solve at most n ∗m ∗ numgen plans, where n is
the number of tasks that the robot can perform, m is the number of individuals per population, and
numgen is the number of generations of the evolutionary algorithm.
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5.5 Experimental Results

We have evaluated the performance of the Hierarchy Optimizer within the ELVIRA

framework when planning/executing robot tasks. For that, we have conducted a variety

of real and simulated experiments. Real experiments are aimed to test the hierarchy

optimization process within a real scenario, and thus, the ELVIRA framework has been

integrated into a robotic platform (section 5.5.1), while the simulated experiments are

meant to facilitate the testing of the behaviour of our software system in more general,

larger environments (section 5.5.2).

5.5.1 Real Evaluation

For real experiments, ELVIRA has been integrated into a robotic system that runs an

implementation of the Thinking Cap hybrid architecture that is suitable for controlling

situated agents [125]. Our experiments have been carried out at the Örebro Univer-

sity (Sweden) on a Magellan Pro robot equipped with a ring of 16 ultrasonic sensors

and a colour camera which provide sensorial information to the Grounding Agent to

automatically anchor distinctive places for robot navigation, and boxes (see fig. 5.10).

Firstly, the improvement in the robot operation attained by the hierarchy opti-

mization over time within a dynamic environment that contains numerous objects is

commented in subsection 5.5.1. Another experiment, presented in subsection 5.5.1,

demonstrates the preservation of the knowledge acquired previously by the robot when

new information is added to the model.

Results of model optimization

The scenario is the office environment depicted in figure 5.10, made up of several rooms

and corridors. It should be noted that although this is not a representative large-scale
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Figure 5.10: Real world scenario for our robotic experiments, a part of the Mobile
Robotic Lab at the AASS Center in the University of Örebro (Sweden). Left) Mobile
robot used in our experiments. Among other sensors it is equipped with a ring of 16
sonars, and a colour camera. Right) Our test scenario. The region enclosed in solid line
represents the initial set of rooms given to the robot while the rest has been anchored
in successive explorations. Letters in the picture indicate the origin (1) and destination
(2) rooms involved in the robot tasks (A,B, and C) of the experiment commented in
the text.

environment, it is large, since robot operation may turn intractable when a significant

number of objects are considered (please refer to [53]).

In our experiments the robot is requested to roam while anchoring periodically dis-

tinctive places in these rooms and coloured boxes of a given size. In our particular im-

plementation, the symbolic model is updated every 20s with the information anchored

by the anchoring process up to that moment. Meanwhile, the Hierarchy Optimizer

works continuously to improve that model, with a cycle period of 10s approximatively,

which is an upper bound that in our implementation ensures the termination of each

optimization step. In parallel, the robot is commanded every 90s to execute a task

(out of a set of tasks chosen at random) using its current internal representation of the

world yielded by the Hierarchy Optimizer. The type of task considered here consists of

moving a certain box from a location to another (within a particular room) which may

require the manipulation of other boxes, i.e. to unstack boxes which are on top of the



5. Automatic Learning of Hierarchies of Abstraction 151

required one. Since the chosen robotic platform can not manipulate objects, the robot

physically executes only the navigation between the locations involved in tasks (see

fig. 5.10), being the manipulation carried out by a person (although the task-planning

process deals with both operations9). Both, the time required to perform planning

and navigational execution are considered to guide the model optimization through

the function cost (5.4.7).

Measures of the optimization achieved in the model are illustrated in figure 5.11c).

This experiment starts with an initial ground information consisting of a graph of 13

distinctive places, their connections, and 5 boxes distributed within the rooms, which

is considerably augmented during robot operation. The set of robot tasks (chosen at

random) includes two simple tasks (A and B), in which the robot has to transport a

box between near rooms, and a more costly one (C), in which the robot is supposed to

manipulate (unstack) other boxes in order to move a given one between different rooms.

All tasks were requested to the robot in the first six planning cycles (first 9 minutes).

Observe in figure 5.11c) that after the high raise in the cost of operation at minute

4, which corresponds to the first request of the most complex task (C), the optimizer

decreases that cost, taking into account the relative frequency of tasks. Thus, at minute

9 the internal model of the robot is better adapted to the simple and frequent tasks

rather than to the costly one. That is the reason of the next raises caused by solving the

task C using a model which is not fully adapted with respect to it. Nevertheless, notice

how the continuous work of the Hierarchy Optimizer optimizes the internal model with

respect to all tasks, decreasing the overall cost over time until a steady state is reached

after an hour from the beginning of the experiment, approximately.

Figure 5.11a) shows separately the evolution of the cost of planning/execution the

9Since our concern in this work is the optimization of the internal representation of the robot,
possible navigational failures as well as errors in anchoring are not considered in the results presented
in this section. In both cases, robot failures were manually recovered by an operator.
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Figure 5.11: Model optimization in a real experiment. a) Evolution of the cost of
solving each robot task along the whole experiment (100 minutes). Notice the overall
improvement achieved in task C. b) Frequency of occurrence of each task as the robot
perceives it. c) Evolution of the global cost for the set of robot tasks, measured
according to equation (5.4.7). Notice how the cost oscillates substantially while the
robot has not enough knowledge about its tasks (in the first 20 minutes). As long as
the robot optimizes the symbolic model, oscillation diminishes until a steady-state is
reached after minute 60.
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robot tasks over time, using the best symbolic model at each planning cycle (90s.).

According to the global cost function (5.4.7), the optimizer generates at time 60 an

AH-graph that reduces the planning cost of C at the expense of increasing slightly the

cost of solving task A.

The optimizer does not only deal with changes in robot tasks, as described, but

also with changes in the robot environment. In this experiment, the anchoring process

provides symbolic information during 180 anchoring loops, that is, during the first

hour. Modifications in the symbolic model based on the information provided by

the anchoring process cause slightly raises in the global planning/executing cost as

depicted in the first part of figure 5.11c). Once the robot knows its entire workspace

and no more environmental changes are incorporated, it has anchored around 15 new

distinctive places, more than 50 connections between them and 20 boxes (see fig. 5.12).

At that moment, the hierarchy optimizer yields a near-optimal arrangement of world

information for planning/executing tasks. In section 5.5.2, two simulated experiments

prove the behaviour of the Hierarchy Optimizer when incorporating a larger amount

of symbolic data to the model.

Preservation of the acquired knowledge

The Hierarchy Optimizer approach preserves the knowledge acquired by the robot

along its operational life to avoid starting from scratch each time world changes are

provided by the anchoring process. For illustrating that, we consider an experiment

similar to the one described before, but now the robot is commanded to solve only

one task. Results of this experiment are shown in figure 5.13. Figure 5.13a) displays

the evolution of the cost of operating within a dynamic environment in which the

number of distinctive places is progressively incremented. Notice how the increase in

the world complexity (the number of distinctive places has passed from 20 to more
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a) b)

Figure 5.12: An example of an AH-graph yielded by ELVIRA. a) First level of the
hierarchy in one of our experiments (where vertexes represent boxes or distinctive
places and edges connections between them, like navigability or relative position). b)
First level of the hierarchy yielded by the Hierarchy Optimizer. At this level, vertexes
may represent rooms or group of boxes. Notice how the clusterization yielded by the
Hierarchical Optimizer clearly reduces the cost of searching by grouping set of places
around a central vertex that represents the corridors of our environment.

than 30 at the end of the experiment) does not affect the performance of the Hierarchy

Optimizer. Figure 5.13b) refers to the same results but measuring the cost with respect

to the number of places anchored at each moment. This chart shows how the average

operation cost per place has been reduced around 75% over time, despite the growth

in the complexity of the symbolic representation.

5.5.2 Simulated Experiments

A set of simulated experiments have also been conducted in order to test our approach

in larger environments. We have used a simulator of the Grounding Agent which regu-

larly updates the ground level of the internal model of the robot with new information.

Two particular simulated experiments are described.
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a) b)

Figure 5.13: Optimization of the AH-graph model under world changes. These charts
show the evolution of the cost of operating over time when genetic individuals (AH-
graphs) are adapted to world changes. a) Observe how the cost only increases slightly
when world changes are perceived. This is because the robot does not lose completely
the experience acquired up to the moment when changes are detected. Chart b) plots
the same results that chart a) but with respect to the number of anchored symbols,

normalized by the initial cost, that is, f(t) =
(

cost(t)
places(t)

)
∗ 100

( cost(0)
places(0))

.

Simulated Experiment 1

The first experiment is meant to simulate the environment exploration carried out

by the robot while it executes new tasks. Thus, the anchoring process only provides

new world information (adding a few number of vertexes/edges) when a new task, not

considered so far, is requested to the robot.

The experiment starts with a 64-distinctive-places environment (32 rooms) and a

random set of five tasks which are commanded to the robot also at random. In this

experiment we let the optimization process to tune the internal model with respect

to the environmental and operational changes until the 200th generation, in which we

change the operational needs of the robot (its set of tasks to perform). The optimization

of the model achieved by the Hierarchy Optimizer is depicted in figure 5.14. Note that
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at generation 200th the optimizer has not fully tuned the internal model yet.
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Figure 5.14: Model optimization in a simulated scenario. Notice that the optimizer
has not reached a steady-state when new tasks are added to the set of robot tasks (at
generation 200). Nevertheless, the optimization process responds quickly reducing the
raises due to the arrival of those tasks, yielding a tuned model around generation 480,
where the symbolic model has been optimized with respect to ten random tasks and a
number of random changes that completes the model up with 300 vertexes (distinctive
places) and more than 1200 edges (connections between them).

At generation 200th we change the robot operational needs by adding five new

random tasks to the initial set of tasks. Since the symbolic model is not properly

tuned for planning such new tasks, they produce the peaks that appears in figure

5.14. Note that after each peak, the evolutionary algorithm adapts the internal world

model reducing the planning cost. Also note that once all the robot tasks have been

considered by the optimization process, and thus, there are no new environmental

changes, a steady state is achieved (beyond generation 450).



5. Automatic Learning of Hierarchies of Abstraction 157

Simulated Experiment 2

In a second simulated experiment we have considered an anchoring process that pro-

vides random changes in the environment representation following a decreasing expo-

nential function. Doing this, we simulate a robot exploring a new environment: at

the beginning it acquires a large amount of information, but eventually the rate of

new acquired information decreases. In this experiment the robot is commanded to

plan three tasks within an initial environment made up of 64 distinctive places. New

anchored information is provided by the anchoring process every 10 generations of the

optimization process, while the exponential function considered is:

F (it) = exp(150 ∗ τanchoring/it)− 1 (5.5.1)

Function (5.5.1) calculates a percentage value over the maximum number of changes

that the robot can perceive during each anchoring loop, which has been set in this

experiment to 40 new places (20 rooms).

Figure 5.15 shows the behaviour of our optimization system in this kind of situation.

Due to the high number of changes given to the optimizer by the anchoring process

in the first part of the experiment, the parameters encoded in the genetic individuals

turns no appropriate for managing such an amount of environmental changes and thus,

the internal model becomes inefficient for the robot operation. However, observe how

the optimizer quickly corrects the symbolic model, decreasing the global cost in the

long-term.
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Figure 5.15: Model optimization when dealing with an important number of environ-
ment changes at each anchoring cycle. Although the addition of information produces
sharply increments, observe the evolution of the cost, which reflects the optimization
of the internal model over time.

5.6 Conclusions

In this chapter we have described a framework to cope with a problem of great im-

portance in mobile robotics: the construction of near-optimal symbolic models of large

environments for a mobile robot. Our system has been implemented as a software we

call ELVIRA, which has been integrated into a real robot. Our approach considers

three issues: (i) the maintenance of the symbolic model anchored and updated with

respect to the environmental information, (ii) the structuring of the model for efficient

processing in the presence of large amount of information, and (iii) the optimization

of such model with respect to the tasks at hand, to improve over time the robot per-

formance.

We rely on abstraction through the mathematical model AH-graph in order to cope

with large environments. The creation of the ground level of the AH-graph is achieved

automatically by using an anchoring algorithm that detects rooms or distinctive places
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for robot navigation, and objects. Upon that ground symbolic information, an evolu-

tionary algorithm is responsible for creating a near-optimal hierarchical structure with

respect to environmental changes and variations in the robot operational needs. Al-

though evolutionary algorithms are not usually considered in dynamic scenarios, our

experiments have shown that when their work is spread over time (considering them

as any-time algorithms) they exhibit good results in optimization.





Chapter 6

Implementation and Experiences on
a Real Robot

What we plan we build.

Conte Vittorio Alfieri, dramatist (1749-1803)

It is time to put all the ingredients described along this dissertation together. That

is, it is time to coordinate the mechanisms described in previous chapters into a real

robotic application. Thus, once we have devised efficient mechanisms for robot opera-

tion and human communication, it seems that we are now on the brink of developing

a robotic system like our robotic taxi driver. Unfortunately there is still, at least, a

hard obstacle to be solved: robots can not overcome all possible situations in a real

scenario, which is one of the main reasons that delays the new future vignette depicted

in chapter 1. That is, robot skills required to perform in a complete autonomously

manner within a dynamic, unpredictable, human scenario are still beyond the capabil-

ities that the current robotic technology can offer. This fact is what actually prevents

the presence of robots around us.

How can we enable robots to overcome this situation? Considering the assumption

that robots closely work with humans, we could approach the problem by devising a

robotic system capable to require human help in order to accomplish certain goals.

161
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This human participation in the robot mission can make up for the current lack of

robot autonomy: for instance, a sweeper robot intended to clean a certain room could

require human help to open the entrance door.

Following this idea, this chapter describes a robotic architecture, called ACHRIN,

specifically designed to enable a mobile robot to closely work with people. It imple-

ments all tools described in previous chapters, and furthermore, it considers mech-

anisms to detect robot inabilities/malfunctions when performing some operation in

order to ask for human help.

ACHRIN was initially designed for assistant robotic applications like a robotic

wheelchair, due to the close tie between human and machine in that case, however,

it could be extended to other types of applications. In fact, you can consider such

a vehicle (a robotic wheelchair) plus its control system (ACHRIN) as an instance of

our taxi and its futuristic robotic driver. This chapter ends with a description of the

robotic wheelchair SENA and some real experiences carried out on it.
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6.1 Introduction

Robotic presence in our daily life is still limited. Unfortunately, there are neither

servant robots helping us in hard tasks, nor robotic taxi drivers taking us home. One

of the most important reasons of this is that full autonomous performance of mobile

robots within real scenarios is not possible yet, mainly due to difficulties in coping

with highly dynamic environments, treating with uncertainty, sensor and/or software

robustness, limited robotic abilities, etc.

Along this dissertation we have devised mechanisms to improve robot reasoning

and robot-human communication. Now we present a direct and practical approach to

reduce the evident lack of robot autonomy in certain (many) applications: considering

that the robot is supposed to work closely to people (the so-called assistant robots),

we will enable machines to ask for human help. Thus, we permit humans to comple-

ment the robot’s skills needed to accomplish its tasks. People present in the robot

environment can physically help the machine by both extending robot abilities (for

example to open a locked door) and/or improving them (for example, the human can

perform a flexible and robust navigation by manually guiding the vehicle). This scheme

makes necessary the human participation at each level of the robotic system, ranging

from a high level, i.e. advising a route to arrive a destination, to a low-level, reporting

information as an extra sensor (i.e. the human can work detecting close obstacles).

Although in our scheme people help the robot to overcome certain situations, the

assistance offered by robots is normally relevant enough to assume this human partic-

ipation into the robotic system (especially in the case of assistant robots). Thus, for

example a robotic fair host can guide people through different stands showing informa-

tion during long periods of time, though it could need human help to self-localize if it

occasionally fails. Another clear example is a robotic wheelchair (as the one described
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at the end of the chapter (section 6.7.1)) which provides mobility to elderly or impaired

people relieving her/hir of approaching tedious tasks like moving through a crowded

corridor. In that example, possible robot limitations, such as opening a closed door,

are negligible considering the benefits that the user obtains from the machine. Thus,

we can consider that both, human and robot, improve the autonomy of each other

reaching to a unique system (human+robot) which takes advantage of their separate

abilities.

What we propose in this chapter is therefore a human-robot integration that im-

proves the autonomy of the whole human+robot by human participation at all levels

of the robot operation, from deliberating a plan to executing and controlling it.

In the robotic literature, human participation in robot operation is not a new idea.

Some terms have been coined to reflect this, such as cooperation [60, 139], collaboration

[50], or supervision [50, 127]. In all these cases the human is an external actor with

respect to the robotic system, who can only order robot tasks or supervise its work.

Our work takes a further step by integrating the human into the system, considering

her/him as a constituent part of it.

To approach the proposed human-robot integration, we identify and address the

following goals:

• (a) To manage knowledge about the human physical abilities. The system must

be aware of the physical abilities that the human can carry out in order to decide

how and when they can be used. For example, in a given robotic application,

people can manipulate objects (open a door or call a lift) and perform manually

navigation through some mechanism (like a joystick), while the vehicle can per-

form navigation, maybe through different navigational algorithms. Thus, human

integration may provide new abilities, and therefore, the robotic system must be
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able to consider them when planning/executing a task. In our current scheme

we implement a simple selection process to choose abilities from the available

human-robot repertory that consists of selecting human abilities only when the

robot is not able to perform them.

• (b) To consider the human perceptual abilities. Robot sensors can not capture

reliably either the highly dynamic nature of real scenarios or some risky situations

(for instance, glass doors are not detected by some robot sensors, like lasers). The

integration of a human into the robotic system may extend the robot autonomy

by permitting her/him to work as an intelligent sensor that reports or predicts

dangerous situations.

• (c) Detection of execution failures. The robotic system must detect whether the

execution of the current action has failed. The recovery action may include the

human: for example a navigational error can be detected, inquiring human help

to guide the vehicle to a safety location. For that purpose, the human could

improve the robot’s capacity of detecting those failures.

• (d) High-level communication. Finally, active human integration within the

robotic system obviously requires a high-level communication mechanism en-

abling the user and the robot to interact in a human-like manner, i.e., using

natural language, with human concepts which involves symbols such as ”door”,

”room”, ”corridor”, etc.

For addressing these goals, we have designed and implemented a specific control

architecture, called ACHRIN -Architecture for Cognitive Human-Robot Integration-

(figure 6.1) that copes with the above mentioned issues: (a) it enables the task plan-

ning process (HPWA in our case) to consider human actions, and permits the user to
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sequence and execute them at the lower levels of the architecture; (b) it permits the

user to verbally report collision alerts at any time; (c) it both checks regularly the

performance of the vehicle and enables the user to report failures. Finally goal (d)

is approached by the use of commercial speech recognition and voice generation soft-

ware [146], [150], as well as a cognitive hierarchy within the multi-hierarchical world

model of the robot that serves as a suitable interface with the human cognitive map

(as explained in chapter 4).

Human-robot integration is materialized by designing each component of ACHRIN

through a common structure called CMS (common module structure), which is able

to encapsulate humans as software algorithms that provide certain results after being

executed. Each CMS groups and manages skills (carried out either by the human or

the robot) which are aimed to achieve a similar goal. For instance, one of the CMS

of ACHRIN is the Navigational CMS, that entails different skills to move the vehicle

between two locations: a variety of robotic skills, like reactive navigation or tracking a

computed or recorded path, and a human skill consisting of manually guiding. These

skills are invoked and managed by ACHRIN in the same manner without distinction

of the agent that performs the action, human or robot. The human integration we

have achieved with ACHRIN enables the user to perform low-level navigation tasks

like manoeuvering in complex situations, as well as high-level tasks, like modelling

symbolically the workspace, as shown further on.

In the following, section 6.2 reviews some previous works related to the interaction

between humans and robots. An overview of ACHRIN is given in section 6.3, while its

components are presented in detail in subsequent sections. A particular instantiation

of ACHRIN for a real mobile robot, in particular to a robotic wheelchair, is described

in section 6.7.
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6.2 Related Works on Human-Robot Interaction

Human Robot Interaction (HRI) has been largely treated in the robotics literature

from different perspectives. Scholtz [127] proposes five different human roles in robotic

applications (from supervisor to bystander) which cover most of the found approaches.

The most common human robot interaction is to consider the human as a robot’s

supervisor (supervisory control [75, 129]). This implies that tasks are performed by

the robot under the supervision of a human instead of the human performing direct

manual execution.

In the teleoperation area, collaborative control [50, 49] can be applied, which is a

particular instantiation of supervisory control. Through collaborative control, robots

and human dialogue to decide the actions to be carried out by the machine. This rela-

tion between human and robot improves the robot operating capacity, but it prevents

the human to physically act when the robot is not capable to continue its plan, for

example when a mobile robot must pass through a closed door.

The concept of cooperation (see for example [60, 139]) is also well spread within

the robotic community. Through human-robot cooperation, humans can perform some

coordinate tasks with machines, adopting different roles ranging from coordinator,

where the human (also typically an expert) only supervises the robot operation, to

a role of a robot partner, where human and robot work independently to achieve a

common objective. Nevertheless, these approaches only consider humans as external

agents of the robotic system, but not as a constituent part of an unique human+robot

system that can take full advantage of the sum of their abilities.

There is a variety of robotic architectures aimed at supporting human-robot rela-

tions of the type described before. The general trend, also followed in our work, is to
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consider a three-layered software architecture with the typical deliberative, intermedi-

ate, and reactive tiers. But what makes ACHRIN different from the rest is the level at

which the human interacts with the robotic system. Most of robotic architectures im-

plements human-robot interaction at the highest level, that is, they rely on the human

planning capabilities while low-level operations, i.e. navigation, are carried out by the

machine [96, 97, 91, 115]. A few works considers the human participation at the inter-

mediate level [71, 78], or at the reactive layer [2]. But up to our knowledge, no work has

approached a general framework to consider (integrate) the human participation into

the robotic system at all levels of abstraction. The closest work to ours, presented in

[118, 110], also focusses on the human-robot interaction for robotic wheelchairs. They

also propose a human interaction at all levels of the architecture, but in a restrictive

manner, without considering the wide range of abilities that the human can offer such

as perception and manipulation abilities, world modeling, task-planning, etc. One of

the novelties of our approach is the integration into the architecture of a cognitive

spatial model through a cognitive hierarchy as the one described in chapter 4.

The term ”human integration” has been previously used in [2] in the same terms

as in this chapter, but only considering human abilities at the lowest level of the

architecture. That work, as all approaches classed as shared control systems [90, 154],

combines at the same time human and robot commands to perform low-level tasks, (i.e.

control the velocity of a vehicle), however, it lacks for mechanisms to allow the human

to take full control of the robot, which becomes necessary in assistant applications.

Other works implement the so-called adjustable autonomy in which machines can

dynamically vary their own autonomy, transferring decision making control to other

entities (typically human users) in key situations [28, 34, 41, 126]. Since a human can

take decisional tasks, ACHRIN can be seemed as an adjustable autonomy system, but

in addition, it enables the human to perform physical actions.
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Finally, the Human Centered Robotics (HCR) concept has emerged to cope with

some of the specific requirements of robotic applications within human environments

[34, 77, 106]. Among the different questions considered by the HCR paradigm, two im-

portant issues are dependability and human-friendly interaction. Dependability refers

to physical safety for both people and the robot, as well as to operating robustness and

fault tolerance. Also, HCR considers human-friendly communication, which implies the

capability of easily commanding the robot as well as reporting execution information

in a proper human way. ACHRIN fits into the HCR paradigm since improving mecha-

nisms for human integration into the robotic system also strives for robot dependability

and human-friendly interaction.

6.3 Overview of the ACRHIN Architecture

The ArChitecture for Human-Robot Integration (ACHRIN) is based on a hybrid scheme

[131] made up of a number of elements1, called modules, which are grouped into three

layers (see figure 6.1):

• The Deliberative layer entails the ELVIRA framework for the automatic (and

also manual) construction of the symbolic and multi-hierarchical that represents

the robot environment, as commented in chapter 5. It also produces plans that,

within ACHRIN, may include human actions to achieve a certain goal (see section

6.4).

• The Execution and Control layer sequences and supervises the execution of plans

taking into account the information collected from the functional layer and the

robot’s sensors (refer to section 6.5). According to such information, it may tune

1A preliminary approach of a multi-agent version of ACHRIN has been recently presented in [12].
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Figure 6.1: A general view of ACHRIN. Broadly, it can be considered as a hybrid
robotic architecture. However, it does not fit strictly into that typical hierarchical
arrangement. For example, the World Model module can be accessed by modules of
all the layers.

the behaviour of certain modules, i.e. reducing the vehicle speed when dangerous

situations are detected.

• The Functional layer comprises a number of groups of skills, called functional

groups, which physically perform actions, like navigation, manipulation, etc. (see

section 6.6). Each functional group may entail different ways to accomplish

a particular type of action. For example, the robot can traverse between two

spatial points either by a reactive algorithm, by tracking a computed path, or

by the user manual guidance. In the case the robot is not capable to perform

certain types of actions (as occurs in the implementation described in section 6.7

for manipulation tasks), they must be carried out by a human.
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To support the all-level human integration we claim here, we have used the common

module structure (CMS) shown in figure 6.2 as a skeleton for all the modules in the

architecture. The CMS integrates human and robot abilities through the so-called skill

units. Each CMS may contain a variety of (human or robotic) skill units that mate-

rialize a particular type of ability, like producing a plan, checking for risky situations,

moving between two locations, manipulating objects, etc.

In a deeper description, the elements that constitute the CMS are the following:

• Skill Units. Skill units execute the action that the module is intended to carry

out. Both robotic and human skill units return to the processing core a report,

indicating whether they have executed correctly or not.

• Skill Unit Common Interface. Although units within the same module of the

architecture carry out the same action, they may exhibit differences. For example,

the plan to achieve a goal may include a navigation action to a symbolic location

given in terms of a planning hierarchy, like ”Go to R2-2”. To execute such an

action, a robotic unit may need the geometric position of the spatial concept

”R2-2”, let say (x = 3.4, y = 1.85, ϕ = 20), but a human skill unit would rather

need its linguistic label, i.e. ”Peter’s office”. The Common Interface component

of the CMS retrieves from the World Model module the information needed in

each case2, which may involve a symbol translation between hierarchies from the

multi-hierarchy as explained in chapter 4.

• Processing Core. It receives action requests, i.e. ”navigate to a place”, and

invokes the corresponding skill unit to execute them. When no extra information

is provided, the processing core firstly chooses a robot skill unit to accomplish

2This is the reason of the pervasive interconnection of almost all modules of the architecture to the
World Model module. The Alert module is the unique exception since its work is purely subsymbolic.
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Figure 6.2: The common module structure (CMS). (Center top) All architecture com-
ponents are designed using this structure. The number of skill units embraced by each
module is variable and depends on the human and robot abilities that the CMS pro-
vides. (Bottom a) A representation of a robotic skill unit. (Bottom b) A human skill
unit. Notice that the human unit requires the natural description of the destination
(”Peter office”), which can be automatically labelled in the robot task planning hier-
archy as an string like R2-2, being needed a translation between both symbols. To
perform this action, a robotic unit could only require the geometrical position of the
destination.
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the requested action (following a certain selection policy, i.e. the one with the

highest level of past success). The processing core is also in charge of receiving

and communicating the results of the skill unit execution to the rest of ACHRIN’s

modules.

• External Communications. This element encapsulates two mechanisms to com-

municate different modules of the architecture: client/server requests and events.

The client/server mechanism is a one-to-one communication mechanism that al-

lows modules to request/provide action execution, information, etc., while events

are a one-to-many communication mechanism, that is, a signal which is ideally,

simultaneously communicated to all modules. In our implementation, events are

used to broadcast system alerts, like collision risks or battery failures, to every

module of ACHRIN.

Next sections detail the human integration at every tier of the architecture, while

describing their modules.

6.4 The Deliberative Level

The deliberative layer of ACHRIN is in charge of maintaining and manipulating a

symbolic and multi-hierarchical model of the environment. The modules entailed in

this layer are: the ELVIRA framework module that entails the submodules commented

in chapter 5 (Grounding Agent, Hierarchy Optimizer and Task-Planner), the multi-

hierarchical world model that provides mechanisms to access to the internal data, and

the Task Manager, that manages goal requests to be planned and executed by the

robotic system.
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6.4.1 Symbolic Management

Apart from the use of suitable voice interfaces [146], [150], to approach a high level

communication (goal (d) in the introduction), it is needed to endow the robot with

a world representation compatible with the human internal representation of space

(cognitive map).

In our implementation we use a multi-hierarchical world model with two hierarchies3

(please refer to figure 4.7 in chapter 4), in which the cognitive hierarchy (manually

constructed) is devoted to improve the robot interaction with people in a human-like

manner, while the other one (automatically generated by ELVIRA) is engaged with

efficient task planning.

Within the Grounding Agent module (included in ELVIRA), different skill units are

devoted to create and manipulate world symbolic information. In our current imple-

mentation there is a human skill unit that permits a human to create spatial symbols

like distinctive places or rooms in the cognitive hierarchy. To do that she/he must

manually guide the vehicle to a certain location where geometrical information, like

pose information, is automatically added to the internal model. Topological informa-

tion is created by the user through the commands (0)-(3) of figure 6.3, establishing

verbally linguistic labels for topological elements, i.e. ”this is a distinctive place called

Peter’s office”. We also consider a robotic skill unit devoted to automatically acquire

symbolic information from the environment like rooms and simple objects as explained

in section 5.3.2.

These ground spatial symbols, created by both the human and the robot, become

the base elements for the automatic construction/tuning of the planning hierarchy 5.4).

3Robot self-localization is carried out through the cognitive hierarchy, due to the resemblance
between grouping places for localization and the human concept of room.
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Id Human verbal commands Robot responses
(0) This is a distinctive place called <free string> Ok, place <free string> added
(1) Group previous places into room <free string> Ok, room <free string> added
(2) Open door between <place1> and <place2> Ok
(3) Closed door between <place1> and <place2> Ok
(4) No alerts Setting normal state
(5) Low collision risk Setting low level alert state
(6) High collision risk Setting high level alert state
(7) Stop Ok, stopping
(8) Cancel Ok, cancelling action
(9) Continue Ok, continuing the navigation
(10) Take me to <distinctive place> Ok // That place does not exist
(11) I want to guide you Ok
(12) Select another method Ok // No available methods, May you help me?

Robot commands to the human Accepted human responses
(13) Please can you guide us to <distinctive place> Yes // No, I can not
(14) Can you open the door which is in front of you yes // No, I can not

Human acknowledgment information Accepted human responses
(15) I have guided you to <distinctive place> Thank you
(16) I could not reach to <distinctive place> I can not continue, please select another destination
(17) I have just opened the door Thank you
(18) I could not open the door I can not continue, please inquire external help

Figure 6.3: Human-Robot verbal communication. This table describes the verbally in-
teraction between the user and the robot which has been considered in our experiences.
To improve communication we have extended the grammar to accept small variations,
i.e. ”Let’s go to <distinctive place>” is recognized as a variant of the command (10)

Task Planner

Within ACHRIN, the task-planning process deserves especial attention. It is aimed to

consider not only robotic skills, but also human physical abilities to solve the requested

goals (reported by the Task Manager, see section 6.4.2).

In our current scheme, the Task Planner module implements HPWA to efficiently

produce plans taking into account the task planning hierarchy from the World Model

module and the available set of human and robot abilities from a previously defined

planning domain (see figure 6.4).

It is relevant to notice that the Task Planner module does not only produce a

sequence of actions, but it may also suggest the most efficient method (the skill unit

from the functional layer) to perform each one. To do that, we use Metric-FF [73]

as embedded planner of HPWA since it can produce an optimized plan with respect
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(define (domain navigation)
(:requirements :typing :fluents)
(:types location object)
(:const Robot object)
(:predicates

(at ?obj - object ?loc - location)
(link ?x ?y - location)
(open ?obj -object)
(closed ?obj -object))

(:functions
(cost-reactive ?l1 ?l2 - location)
(cost-manually-guided ?l1 ?l2 - location)
(navigation-cost))

(:action OPEN-MANUALLY-DOOR
:parameters
(loc-from - location
?door - object)

:precondition
(and (at Robot ?loc-from)
(closed ?object))
(increase navigation-cost 10)

:effect
(and (not (closed ?object)) (open ?obj)))

(:action MOVE-REACTIVE
:parameters

(loc-from - location
?loc-to - location)

:precondition
(and (at Robot ?loc-from)
(link ?loc-from ?loc-to))

:effect
(and (not (at Robot ?loc-from)) (at Robot ?loc-to)
(increase navigation-cost (cost-reactive ?loc-from ?loc-to))))

(:action MOVE-MANUALLY-GUIDED
:parameters

(loc-from - location
?loc-to - location)

:precondition
(and (at Robot ?loc-from)
(link ?loc-from ?loc-to))

:effect
(and (not (at Robot ?loc-from)) (at Robot ?loc-to)
(increase navigation-cost (cost-manually-guided ?loc-from ?loc-to)))))

Figure 6.4: Example of planning domain. It includes three human-robot abilities, two
navigation methods performed by a robotic and a human skill unit respectively, and
a manipulation method (open-door) also performed by the human. The parameter
navigation-cost yields the planning cost involved in navigation tasks.

to a given criteria. In our implementation, plans are optimized with respect to hand-

coded cost functions which yield approximations of the execution cost of skill units.

For example, function (6.4.1) yields an approximate cost of a reactive navigation.

Cost(Reactive#1, l1, l2) = k1 ∗ distance(l1, l2) (6.4.1)

where l1 and l2 are the origin and destination locations respectively, and k1 is a constant

value that measures a certain metric like the time spent by the navigational algorithm

to travel each distance unit. The cost of human actions is fixed to a high value to avoid
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the planning process to select human abilities whereas there are alternative robotic

ones.

Thus, through the planning domain described in figure 6.4 and the initial situation

depicted in figure 4.3 in chapter 4 (considering the door D3 closed and all the rest

opened), the resultant plan that solves the task ”Go to R2-2” could be: MOVE-REACTIVE

(H2,WC3), OPEN-MANUALLY-DOOR (D3), MOVE-REACTIVE (D3, R2-2), in which the

human help is only required to open the closed door.

Notice that a user could not understand a robotic utterance like ”Please open D3” in

which D3 has no special meaning for her/him. Thus, in this case, a proper translation

of the symbol D3 to the cognitive hierarchy is needed to enable the user to help the

robot, that is, to open, for example, ”the entrance door of the laboratory” (as explained

in chapter 4.

Human integration at the deliberative level also enables her/him to interactively

participate in the planning process. As commented in chapter 4, the planning process

can use the hierarchical arrangement of the internal model to produce plans at a certain

intermediate level of abstraction, consulting the user whether such scheme for a plan

(an abstract plan) meets her/his wishes. This feature permits humans to accept or

reject the proposed plan inquiring a different solution or providing a new one to attain

the goal. That is, the human can actively participate at planning stage.

6.4.2 Task Manager

The Task Manager module receives requests of tasks to be planned and carried out

by the robot. In our particular scheme, only one user can request robot tasks, but in

general it could be useful to accept requests from other agents: for example from a

remote user that supervise the robot work, or from software applications, i.e. a system
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procedure that checks the battery level of the robot could request a battery-recharge

task.

Skill units of the Task Manager module attend requests from those different ”clients”4:

robotic units should permit applications, or even other machines to request the robot for

some operation, while human skill units enable people (in our case only the wheelchair

user) to ask the robot for task execution via a voice interface.

6.5 The Executive Level

The Execution and Control layer works as an intelligent bridge between the deliberative

and the functional layer. It asks modules of the functional layer for the execution

of basic actions. During the execution of actions, it also processes the information

gathered from sensors to check and avoid risky situations, such as collisions, power

failures, etc., deciding the most convenient robot reaction, for instance, stopping the

vehicle and waiting for human help.

Human integration plays a relevant role in this layer, since she/he can provide

her/his perceptual ability (goal (b) in the introduction) to report danger situations,

i.e. ”there is a collision risk”, as well as to decide what to do when an anomalous

circumstance occurs, i.e. ”I want to take the motion control” (please, refer again to

table of figure 6.3 for all available human commands). These features provided by

ACHRIN are of special significance for improving robot dependability.

The execution and control layer is composed of two modules: the Alert System (sec-

tion 6.5.1) module which registers external stimuli and the PLEXAM module (section

6.5.2) that sequences and controls plans’ executions.

4In case of multiple clients requesting tasks to the mobile robot, the processing core of the Task
Manager CMS should implement a priority policy between its different skills units.
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6.5.1 Alert System

The Alert System module checks for unexpected dangerous situations through its skill

units. Robotic skill units can warn the robot about, for example, collisions or low-

battery situations through the reading of the robot sensors. In addition, the wheelchair

user is integrated into the Alert System through human skill units which incorporate

the capability to inform about risky situations using verbal commands like ”there is a

collision risk” or ”the battery level is low”.

The integration of the human into the alert system of ACHRIN improves the reliable

performance of the robot, since she/he can report danger situations not detected by

robot sensors. Besides, the human can also predict future risky situation based on

her/his knowledge about the environment, and thus, for example, she/he can notice

about a collision risk when the vehicle is close to enter a room which is probably

crowded.

The Alert System distinguishes different risk levels to adequate the behavior of the

vehicle operation (see figure 6.5). Thus, for the case of collision alerts5 we have defined

the following four alert levels based on both human indications and fix thresholds for

readings of the laser scanner of our robot6:

• Normal. No obstacles have been detected, and thus the system works without

any danger.

• Minimal Risk. An obstacle has been detected at a safety distance, and thus a

minimal risk is considered. This low-level risk may produce variations on the ex-

ecution parameters of the current robot action, like reducing the vehicle velocity.

5A similar alert categorization can be done for other situations like low-level battery charge.
6In our current implementation the sensor-based alerts are triggered based on fixed thresholds,

but a more flexible mechanism can be implemented to adapt the vehicle behaviour to the human
preferences, learning such a threshold from experience [12]).
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Figure 6.5: Evolution of collision alert levels over time in a real experiment. Top:
Speed of the robot during part of our experiments (1 sample cycle=0.5 sec.). Bottom:
Minimum distance measured by robot sensors to the closest obstacle. Alerts level
threshold is marked with a thick line. Notice that the user can ignore, for example, a
minimum alert by setting the alert level to a normal state (around cycle 160).

• Maximum Risk. A critical situation has been reported by a robotic or human

skill unit. In this case, the module that executes the current robot action must

modify its parameters to prevent any danger, i.e. reducing drastically the vehicle

speed.

• Reflex Act. A reflex act is the most critical level. When an obstacle is detected

too close, a reflex act is triggered, stopping the vehicle to avoid any possible

damage. The user must recover this situation by requesting a new task.

The user plays a dominant role in the Alert System module since alerts reported

by her/him are prioritized. Thus, the user can ignore, for instance, a minimal risk
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from a collision skill unit that uses the readings of a laser rangefinder sensor, setting

the alert level to normal7 (see figure 6.5). This feature permits humans to modulate

the behavior of the robot to her/his wills, i.e. when the user, intentionally, wants to

closely approach a wall.

Chart of figure 6.5 shows the evolution of the collision alert levels in part of our

experiments in which three different situations can be observed: 1) A maximum alert

is detected near cycle 80, decreasing the robot speed to a safety value (5 m/min). 2)

Minimal risk alerts (around cycle 160) are ignored by the user who establishes a normal

state (vehicle speed to 15 m/min). 3) Finally, a collision reflex (before cycle 200) is

detected causing the detention of the vehicle and waiting for a new task.

Other robot architectures also include alert mechanisms (see for example [29], [42])

but they do not incorporate the user capability for consciously ignoring certain alerts

from the environment, which is of much interest in cluttered scenarios.

6.5.2 Plan Executor and Alert Manager (PLEXAM)

This module sequences plans’ actions and controls their execution based on the in-

formation gathered by the alert system. During the execution of a particular action,

PLEXAM registers system alerts according to their severity and communicates them

(if any) to the functional layer in order to accordingly tune their performance (see

figures 6.5 and 6.7).

PLEXAM is also in charge of detecting malfunctions of skill units. For instance, a

failure in the execution of a navigation skill is considered when it has not responded

(reporting neither success nor failure) after a certain period of time. In that cases,

7When the user ignores an alert caused by a certain sensor, its readings are ignored during a certain
period of time (set to 5 secs. in our implementation), only attending human alerts. After that period
of time, the system automatically considers again any possible alert from any source.
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Figure 6.6: PLEXAM state graph. This module sequences actions while maintaining
a list of all alerts registered in the system. It notifies alerts to functional modules at
the same time that it waits for their results. Based on such results, PLEXAM selects
a new action or a new algorithm (skill unit to perform the next action).
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PLEXAM is responsible for cancelling the current execution and deciding the next

skill unit to finish the action.

The human is also integrated into this module by a human skill unit that enables

the user to report execution failures (goal (c) in the introduction) deciding the selection

of another skill unit to finish the action given the current environmental conditions. In

the case of navigation failures, for example, the user can decide to take the control of

the vehicle through the manually-guiding method. Such a participation of the human

in the robot navigation is restricted, as any other functional component of ACHRIN,

by the safety issues imposed by the Alert System. Thus, when the user guides the

vehicle, PLEXAM can stop it due to a collision alert, ignoring the user motion inputs

and choosing the next available skill unit to accomplish the action. In the case of

failure of all available skill units (including the human ones), PLEXAM cancels the

execution of the current plan, inquiring the user for a new achievable goal.

In the absence of failures, when the functional layer reports the successfully execu-

tion of the requested action, PLEXAM continues the execution of the next action (if

any) of the plan. Figure 6.6 details the PLEXAM work through a state graph.

6.6 The Functional Level

The Functional (and lowest) layer of the architecture contains a set of modules that

physically materialize the abilities of the human-robot system. This layer must contain

at least a functional module to perform navigation; however, additional modules can

be also considered to perform other kind of actions such as manipulation, inspection,

social interaction, etc. Besides, each module can entail a number of skill units to

perform an action, i.e. navigation, in different ways (reactive, tracking a computed

path, or manually guided).
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Speed parameter (meter/minute)
Navigation skill Unit Normal Minimal Risk Maximum Risk

Manually guided 12 10 5

Reactive 15 10 5

Tracked 10 (from 9:00 to 12:00am) 8 4
20 (the rest of the day)

Figure 6.7: Example of the variation of the speed parameter for navigation skill units
under alerts occurrence.

In this layer, the human is integrated into the robotic system augmenting and/or

improving the robot capabilities (goal (a) in the introduction), i.e. an user can help

the vehicle to manipulate objects (open a door) or she/he can recover the robot from

a navigation failure, manually guiding the vehicle as shown in section 6.7.3.

The processing core of functional modules takes care of alerts reported by PLEXAM

to establish the execution parameters of skill units, i.e. the maximum speed of a reactive

algorithm in a normal situation (no alerts are reported) is set to 15 metres/minutes and

to 10 when a minimal risk is reported (see figure 6.5). Such values can be either fixed

and hand-coded for every skill unit or variable depending, for instance, on a particular

period of time (see table of figure 6.7).

The execution of skill (human or robotic) units from the functional layer may finish

due to three different causes:

• The unit successfully executes its action. This is the normal ending status of the

skill units which is communicated to PLEXAM to launch the next action (if any)

of the plan.

• The execution is cancelled by PLEXAM. It can cancel the execution of a skill

because of a detected failure.

• The skill unit execution finishes without achieving its goal due to an unforeseen
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circumstance or a failure.

6.7 Experiences on the SENA Robotic Wheelchair

ACHRIN has been largely tested within human, large scenarios on the robotic wheelchair

SENA. More precisely, experiences were carried out at the Computer Engineering

Building in the University of Málaga. This section firstly describes the hardware details

of SENA. Section 6.7.2 presents some implementation details of the software developed

for SENA. Finally, section 6.7.3 describes some reals experiences carried out on SENA.

6.7.1 The SENA Robotic Wheelchair

SENA is a robotic wheelchair (see figure 6.8) based on a commercial powered wheelchair

(Sunrise Powertec F40 [103]) that has been equipped with several sensors to reliably

perform high-level tasks in office-like environments. This mobile robot is the result of

years of research at the System Engineering and Automation Department at the Uni-

versity of Málaga, in which a large number of researchers and undergraduate students

have participated.

When designing SENA, two main aspects were considered: on the one hand, to keep

unalterable the original elements of the electric wheelchair as much as possible, while,

on the other hand, strategically place additional elements, like sensors, to reliably

perform their tasks without being a nuisance to the user. Following these design

guidelines, SENA uses the original controller and motors, as well as the joystick which

can be used by the user to move the vehicle.

SENA is endowed with a complete set of sensors to capture environmental data as

well as proprioceptive information:
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Figure 6.8: The robotic wheelchair SENA. It is based on a commercial electric
wheelchair which has been endowed with several sensors (infrared, laser, and a CCD
camera). Wheelchair motors as well as sensors are managed by a microcontroller com-
municated to a laptop computer via USB.
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• A 180 radial laser scanner (PLS) placed in front of the wheelchair, mounted on a

retractile mechanism between the user legs for avoiding any nuisance to her/him.

It is used to check for mobile obstacles, for environment map construction [63],

and for robot localization [120].

• Two ultrasonic rotating sensors also located in front of SENA. Each one is

mounted on a servo which enables it to scan a range of 180 detecting transparent

or narrow objects which may not be properly captured by laser sensors.

• A ring of twelve infrared sensors placed around SENA to detect close obstacles

(see figure 6.9). Two of them are located underside of SENA to check for port-

holes, kerbs, stairwells, etc. Other two infrared sensors are located in the backside

of SENA to avoid possible obstacles when it moves backwards.

• A CCD camera situated on a high position and mounted on a pan-tilt unit is

used to localize SENA [107].

• Two encoders connected to the motors’ axis to estimate the odometric position

of the vehicle.

Sensorial (and also motor) management is performed by a microcontroller con-

nected to a laptop computer via USB (see figure 6.10). This microcontroller serves

as an interface between the laptop and different devices and sensors. Apart from the

sensorial system described above, SENA also accounts for a voice system consisting of

a bluetooth headset that permits the user to command the wheelchair as well as a pair

of small speakers
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a) b)

Figure 6.9: The robotic wheelchair SENA. It is based on a commercial electric
wheelchair which has been endowed with several sensors (infrared, laser, and a CCD
camera). Wheelchair motors as well as sensors are managed by a microcontroller com-
municated to a laptop computer via USB.

6.7.2 Software Details

In this work we have used a general framework for the implementation of robotic soft-

ware called the BABEL development system[44]. Robotic applications, like the one

described in this chapter, are usually framed into a long-term project that involves

many researchers in different areas of expertise. Moreover, heterogeneous hardware

components like computers, microcontrollers, sensor and actuator devices, and soft-

ware platforms, i.e. operating systems, communication middlewares, programming

languages, etc., are required in this kind of applications.

The Babel development system copes with the main phases of the application lifecy-

cle (design, implementation, testing, and maintenance) when unavoidable heterogeneity

conditions are present. It entails a number of tools aimed to facilitate the work of pro-

grammers in order to speed up the development of robotic applications. For instance,
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Figure 6.10: General scheme of the hardware of SENA. High-level control algorithms
(i.e., modules of ACHRIN) are executed in the laptop, while low-level control of SENA’s
devices are managed by a microcontroller connected to the laptob via USB.

the BABEL Module Designer automatically generates the needed code to distribute

software developed in a certain programming language, i.e. C++, through a particular

communication middleware like CORBA [67]. Another relevant tools within the BA-

BEL system are the the BABEL Execution Manager (EM), the BABEL Development

Site (DS), and the BABEL Debugger (D). The EM facilitates the execution of the

different components of a distributed application; DS serves as a software repository

accessible from internet (http://babel.isa.uma.es/babel/ ), and D is a tool that recovers

information produced during execution.
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In the experiments carried out in this work (see section 6.7.3) we have intensively

used the tools entailed in the Babel development system. Our experience has largely

proved the benefits of their use.

6.7.3 Experiences on SENA

The robotic wheelchair SENA has served as a test-bed for the work presented in this

thesis. It has been used to physically demonstrate the performance of the robotic

architecture ACHRIN, which has been entirely developed under the Babel development

system.

When demonstrating the suitability of a robotic architecture to a particular appli-

cation we find that it is not easily quantifiable. In our work we have tested ACHRIN

by performing several real experiences on SENA, within a real environment (the re-

search building of the Computer Engineering Faculty of the University of Málaga) and

with different people who have confirmed their satisfaction while using the vehicle (see

figure 6.11).

Figure 6.11: Experiments with the SENA robotic wheelchair. These images are snap-
shots of videos (some of them appeared in life tv shows), which can be found at [62, 61].

In our tests we have use the SENA navigation abilities through a reactive algorithm.

Sensors available in our experiences for navigation and obstacle detection/avoidance
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are a laser rangefinder and a ring of eight infrared sensors. From the human part, we

have considered that the user is enabled to improve the navigation of the robot by

manually guiding the vehicle and to extend its abilities by opening doors. She/he can

also alert the system from collision alerts as well as detect system failures.

For a natural human-robot interaction, commercial voice recognition/generation

software [146], [150] has been used. The set of considered commands and their possible

responses have been enumerated in figure 6.3 (in the following, commands’ IDs will be

used to describe our tests).

at

nav

nav

link

link

link

link

Copier Copier Room

CR Door

a) b)

Figure 6.12: Internal World Model. a) The internal world model with linguistic labels
is shown through a graphical interface (only the first level). Edges indicate relations
between spatial symbols, like navigability. The state of doors (opened or closed) is
deduced from vertex connectivity, i.e., ”Lab door” is closed since there are not navi-
gability edges between ”Lab” and ”Corridor”. b) Spatial hierarchy considered in our
experiments. Ground and first level are created by the human-robot system, while the
others have been include for completeness.
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Plan P

MOVE-REACTIVE Lab, Lab-door
OPEN-MANUALLY-DOOR Lab-door
MOVE-REACTIVE Lab-door, Corridor
MOVE-REACTIVE Corridor, Copier-Room-door
MOVE-REACTIVE Copier-Room-door, Copier

Figure 6.13: Sequence of skills to go from Lab to the Copier.

The first part of our tests is endowing SENA with a symbolic model of the workspace

used to plan and execute tasks (see [43] for a detailed description). This model is

created by the Grounding Agent within the deliberative layer of ACHRIN through

a human skill unit that responds to commands (0)-(3), and a robotic skill unit that

automatically creates ground symbols. Geometrical information (like the robot pose)

needed for posterior navigation is automatically attached to vertexes and edges. Figure

6.12 depicts an abstract level of the internal model managed by SENA as well as the

spatial hierarchy used in our experiences.

Once a model of part of the environment is available (for example, a couple of rooms

and a corridor), the user can select a destination through a human skill unit within the

Task Manager module that attends to command (10), for instance ”Take me to the

Copier”. Using the information stored in the World Model module (figure 6.12) and

the planning domain of figure 6.4, the resultant plan, P, yielded by the Task Planner

module is shown in figure 6.13.

In the generation of plan P, human help is only considered when there is not an

available robot ability to achieve the goal, i.e., open a door. During the plan execution

(see figure 6.15 a), in absence of failures on the robotic unit that performs navigation,

PLEXAM only inquires the human help (through command (14)) after the success of

the first action (MOVE-REACTIVE Lab, Lab-door). When the user reports the success
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Figure 6.14: Execution of navigation tasks. a) The human asks the robot for the
execution of a task. b) The robotic system requires the human help to open a door.
c) The vehicle reaches the destination: the copier-room. d) The user recover the robot
after a navigation failure.

of the entrusted action (human acknowledgement (17))8, the execution of P continues

autonomously until the destination is achieved. Figure 6.14 shows some pictures taken

during the execution of plan P.

Our experiences assume that the information stored in the internal model is coher-

ent with the real environment and that there are not external agents modifying the

robot workspace. Thus, during planning no attention has been paid to model incoher-

ences like opening a door which is just opened or traversing a closed door. However,

failures produced for such inconsistencies are correctly managed by human integration.

8Note that opening a door while sitting on a wheeled chair may turn into an arduous task. In some
cases in which the user could not open the door she/he could ask surrounded people for help.
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In the latter situation, for example, the integrity of the system is ensured by the alert

system which would report a collision alert stopping the vehicle while the user should

modify the internal model of the system through command (3).

In other experiences, we have also tested human-robot integration at the interme-

diate level of ACHRIN to control the execution of plans. Thus, after the execution of

plan P, the user asked SENA to go back to the laboratory (command (10)). In this

case the resultant plan P ∗ is similar to P but in a reverse order and without the ”open

door” action, since it is supposed to be opened after the execution of plan P. Plan P ∗

only contains navigational actions, thus the Task Planner module does not consider

human participation to solve the task. The execution of P ∗ starts normally with the

PLEXAM call to the robotic skill unit that performs the action MOVE-REACTIVE

(Copier, Copier-Room-door). In the test scenario, our reactive algorithm usually fails

when performing this action due to the lack of space for manoeuvering (see figure

6.15 b). In this case, users normally reports a navigation malfunction of the robotic

unit through a human skill unit within PLEXAM, cancelling the vehicle navigation

(command (8)) and inquiring the selection of an alternative method (command (12)).

The human help is required by PLEXAM via command (13), ”Can you take me to

the Copier-Room-door?”. Once the user concludes the action and reports the success

of the manually guidance of the vehicle to the destination, the execution of the plan

is resumed. Figure 6.16 shows the flow of information between modules during the

execution of plan P ∗.

Notice that when the human help is required to accomplish an action she/he can

refuse the order or may not properly finished it, for example, she/he may not be able

to open a closed door. In that cases, since human help is only required as a last resort,

the system stops, waiting for external help (from a surrounded person) or another

achievable goal commanded by the user.
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a)

b)

Figure 6.15: Occupancy gridmaps from our test scenario. a) The route marked in the
map corresponds to the navigation of the vehicle during the execution of the plan P. b)
Path followed during the execution of P ∗. The thicker section of the path corresponds
to the manually guidance.
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Figure 6.16: Scheme of some modules’ communication during the execution of a plan.
The flow of information is from bottom to top and from left to right. Thick boxes
represents human skill units.

System collision alerts were also tested in our real experiences. During the naviga-

tion of the wheelchair, i.e. executing plans like P, the alert system continuously checks

for collision risks from two sources: the rangefinder sensors (laser scanner and infrared

ring) mounted on SENA and the alert messages reported by the user (through com-

mands (5)-(7)). Figure 6.17-top shows the distance yielded by the rangefinder sensors

to the closest obstacle during the navigation from point A to C (see figure 6.15. Based

on this information and the defined alert thresholds (0.2 m. for reflex, 0.5 m. for max-

imum alert, and 0.75 m. for minimum alert), figure 6.17-middle shows the evolution of

the system alert level during a section of an experiment along a clutter environment.

In this figure we distinguish the alert source: human or sensor-based alert. Human

alerts prevail over sensor-based ones, and thus, in this example, between points B and
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Figure 6.17: Collision alerts test. Top) Distance to the closest obstacle during part of
the wheelchair navigation measured by the laser rangefinder. Middle) System alert level
along the experience. Notice how the user can set a certain alert level more restrictive
than the sensor-based alert. Bottom) The vehicle speed during the experience. Speeds
depends on the system alert level (15, 10, and 5 m/min. for normal, minimum and
maximum levels, respectively). In the interval B -B’, in which the user triggered a reflex
act, the speed is set to 0.
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B’ (around cycles 225-300) the user sets the alert level to Reflex near the open door,

albeit the rangefinder readings report a Maximum alert. In the same manner, from

point B’ to the destination (point C ) the alert level is set to Minimum alert by the

user in spite of the rangefinder information. Finally, figure (6.17-bottom) shows the

robot speed during the navigation and its adaptation to the current alert level.

6.8 Conclusions

This chapter has proposed the integration of humans into robotic systems as the best

way to extend/augment mobile robot performance in real scenarios. This simple, but

effective, solution enables those robots that closely work with people to overcome their

lack of autonomy within human environments.

Human integration is achieved at all levels of the architecture by considering human

abilities as software algorithms which are integrated into all components of ACHRIN.

To this aim, the use of our multi-hierarchical and symbolic model has played a signifi-

cant role, providing efficiency in planning as well as a proper human-robot communi-

cation. The implementation of ACHRIN on a real robot like SENA, has permitted us

to test its suitability to this kind of assistant robotic applications.



Chapter 7

Conclusions and Future Work

Per aspera ad astra!

Latin proverb (To the stars through difficulties)

The work presented in this dissertation has addressed the problem of endowing an

agent with an efficient and coherent symbolic representation of its workspace. In spite

of the problems arising from symbolic modeling, i.e. symbol genesis, an agent that

accounts for a symbolic world representation exhibits, among others, two significant

advantages:

• Capability for planning, that is, capability to devise a sequence of actions that,

in theory, should yield the desired objective.

• Capability for communicating to other agents who share a common set of symbols.

These two characteristics are clearly present in humans, and thus, they should be

considered in the development of agents intended to operate in human environments,

like our robotic taxi driver.

In this work we have formalized and utilized a multi-hierarchical symbolic model

in order to provide a mobile robot with the commented features. Moreover, we have

taken into account the computational complexity of planning tasks in large domains
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by implementing planning algorithms that exploit the hierarchical arrangement of the

symbolic information. Such an arrangement of the model is continuously tuned (opti-

mized) in order to cope efficiently with changes.

Regarding human-robot communication, given that we permit humans to create

symbols in the internal world model of the robot, they (human and robot) can com-

municate to each another using the same terms.

All these characteristics have been tested on a assistant robotic application, a

robotic wheelchair that has played the role of ”taxi driver”.

So, are we now closer to the Robotic Future? From the deliberative point of view,

the mechanisms presented in this work provide a steady step towards intelligence and

autonomy of mobile robots. Nevertheless, we have not tackled functional issues, such

as uncertainty when executing plans, sensor reliability, fault tolerance, and robustness1

which are unavoidable in uncontrolled environments.

The possible lines of research based on this dissertation include the following:

• Improving the automatic grounding mechanisms for reliably acquiring symbolic

information from uncontrolled environments, relieving humans from this task.

• Permiting agents to automatically interchange their anchored symbols. This

could permit an agent to expand its internal world model with the information

(experience) of other agents.

• To explore the inclusion of semantic information into the model (in the line of

[57]) to provide the robot with extra information about its environment. For

example, in the case of the robotic taxi driver, it could use semantic information

to infer that a certain street is usually crowded from 12:00 to 14:00 since it is

1The desing of ACHRIN considers some of this issues through different replicas of functional
components, but this topic has not been explicityly addressed in this work.
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close to a shopping center, and thus, he could avoid cross it.

• To study the needed mechanisms to provide the robot with robustness, and fault

tolerance, for instance, to modify a plan in order to face unexpected situations,

i.e. when a door, that is initially supposed to be opened, is in fact locked when

the robot approach it.





Appendix A

Mathematical Demonstrations for

the Formalization of the Graph

Category

This appendix provides some mathematical demonstrations related to the formalization

of the category of graphs with abstraction and refinement given in chapter 2.

A.1 Composition of Abstractions in AGraph is an

Abstraction

This section demonstrates what is stated in (2.5.2), that is, that A23A1 satisfies con-

straints for abstractions of graphs. The contraints that function 3 must satisfy for

being considered an abstraction are (2.4.1-2.4.5), that we repeat here for convenience:

ν : V (G) → V (H) is a partial function. (A.1.1)
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ε : E(G) → E(H) is a partial function. (A.1.2)

∀z ∈ E(G), def(ε(z)) ⇒ [def(ν(ini(G)(z))) ∧ def(ν(ter(G)(z)))] (A.1.3)

∀z ∈ E(G), def(ε(z)) ⇒ [ν(ini(G)(z)) ̸= ν(ter(G)(z))] (A.1.4)

∀z ∈ E(G), def(ε(z)) ⇒

[
ν(ini(G)(z)) = ini(H)(ε(z))∧
ν(ter(G)(z)) = ter(H)(ε(z))

]
(A.1.5)

Demonstration of (A.1.1) and (A.1.2) Constraints (A.1.1) and (A.1.2) are satis-

fied by the definition of function 3 given in (2.5.2). Since ν is partial (by (2.4.1)), then

ν(A2)(ν(A1)(a)) must also be partial. Since ε is partial (by (2.4.2)), then ε(A2)(ε(A1)(z))

must also.

�

Demonstration of (A.1.3) For demonstrating (A.1.3), we must demonstrate that:

∀z ∈ E(G(A1)), def(ε◦(z)) ⇒ [def(ν◦(ini
(G(A1))(z))) ∧ def(ν◦(ter

(G(A1))(z)))] (A.1.6)

By (2.5.2) we can deduce that:

∀z ∈ E(G(A1)), def(ε◦(z)) ⇒ def(ε(A1)(z)) ∧ def(ε(A2)(ε(A1)(z))) (A.1.7)

And using (2.4.3) and (2.4.5) on (A.1.7), we can go on with the implication:

∀z ∈ E(G(A1)), def(ε◦(z)) ⇒
def(ε(A1)(z)) ⇒[

def(ν(A1)](ini(G
(A1))(z))∧

def(ν(A1)](ter(G
(A1))(z))

]
∧[

ν(A1)(ini(G
(A1))(z)) = ini(H

(A1))(ε(A1)(z))∧
ν(A1)(ter(G

(A1))(z)) = ter(H
(A1))(ε(A1)(z))

] (A.1.8)
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∀z ∈ E(G(A1)), def(ε◦(z)) ⇒ def(ε(A2)(ε(A1)(z))) ⇒[
def(ν(A2)(ini(G

(A2))(ε(A1)(z))))∧
def(ν(A2)(ter(G

(A2))(ε(A1)(z))))

]
(A.1.9)

But since H(A1) = G(A2), (A.1.9) can be rewritten:

∀z ∈ E(G(A1)), def(ε◦(z)) ⇒ def(ε(A2)(ε(A1)(z))) ⇒[
def(ν(A2)(ini(H

(A1))(ε(A1)(z))))∧
def(ν(A2)(ter(H

(A1))(ε(A1)(z))))

]
(A.1.10)

And using (A.1.8),

∀z ∈ E(G(A1)), def(ε◦(z)) ⇒ def(ε(A2)(ε(A1)(z))) ⇒[
def(ν(A2)(ν(A1)(ini(G

(A1))(z))))∧
def(ν(A2)(ν(A1)(ter(G

(A1))(z))))

]
(A.1.11)

Since by (2.5.2), ∀a ∈ V (G(A1)), ν◦(a) = ν(A2)(ν(A1)(a)), (A.1.11) is in fact:

∀z ∈ E(G(A1)), def(ε◦(z)) ⇒ def(ε(A2)(ε(A1)(z))) ⇒[
def(ν◦(ini

(G(A1))(z))))∧
def(ν◦(ter

(G(A1))(z))))

]
(A.1.12)

which is what we wanted to demonstrate (A.1.6).

�

Demonstration of (A.1.4) For demonstrating that (A.1.4) holds, we must show

that:

∀z ∈ E(G(A1)), def(ε◦(z)) ⇒ ν◦(ini
(G(A1))(z)) ̸= ν◦(ter

(G(A1))(z)) (A.1.13)

which, using the definition of ν◦ and ε◦ in (2.5.2), can be rewritten:

∀z ∈ E(G(A1)), def(ε(A2)(ε(A1)(z))) ⇒[
ν(A2)(ν(A1)(ini(G

(A1))(z))) ̸= ν(A2)(ν(A1)(ter(G
(A1))(z)))

] (A.1.14)
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But from (2.4.4) we can deduce that:

∀z ∈ E(G(A1)), def(ε(A2)(ε(A1)(z))) ⇒[
ν(A2)(ini(G

(A2))(ε(A1)(z))) ̸= ν(A2)(ter(G
(A2))(ε(A1)(z)))

] (A.1.15)

Since H(A1) = G(A2), this can be rewritten:

∀z ∈ E(G(A1)), def(ε(A2)(ε(A1)(z))) ⇒[
ν(A2)(ini(H

(A1))(ε(A1)(z))) ̸= ν(A2)(ter(H
(A1))(ε(A1)(z)))

] (A.1.16)

And now we can use (2.4.5) to do:

∀z ∈ E(G(A1)), def(ε(A2)(ε(A1)(z))) ⇒[
ν(A2)(ν(A1)(ini(G

(A1))(z))) ̸= ν(A2)(ν(A1)(ter(G
(A1))(z)))

] (A.1.17)

which is (A.1.14), what we wanted to demonstrate.

�

Demonstration of (A.1.5) Now we need to demonstrate (A.1.5) for the composi-

tion of abstractions, which is:

∀z ∈ E(G(A1)), def(ε◦(z)) ⇒

[
ν◦(ini

(G(A1))(z)) = ini(H
(A2))(ε◦(z))∧

ν◦(ter
(G(A1))(z)) = ter(H

(A2))(ε◦(z))

]
(A.1.18)

Substituting ε◦ and ν◦ by their definitions in (2.5.2):

∀z ∈ E(G(A1)), def(ε(A2)(ε(A1)(z))) ⇒[
ν(A2)(ν(A1)(ini(G

(A1))(z)) = ini(H
(A2))(ε(A2)(ε(A1)(z)))∧

ν(A2)(ν(A1)(ter(G
(A1))(z)) = ter(H

(A2))(ε(A2)(ε(A1)(z)))

]
(A.1.19)

But by using (2.4.5) individually in each term,

∀z ∈ E(G(A1)), def(ε(A2)(ε(A1)(z))) ⇒[
ν(A2)(ini(H

(A1))(ε(A1)(z))) = ini(H
(A2))(ε(A2)(ε(A1)(z)))∧

ν(A2)(ter(H
(A1))(ε(A1)(z))) = ter(H

(A2))(ε(A2)(ε(A1)(z)))

]
(A.1.20)
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which using the fact that H(A1) = G(A2), it can be rewritten:

∀z ∈ E(G(A1)), def(ε(A2)(ε(A1)(z))) ⇒[
ν(A2)(ini(G

(A2))(ε(A1)(z))) = ini(H
(A2))(ε(A2)(ε(A1)(z)))∧

ν(A2)(ter(G
(A2))(ε(A1)(z))) = ter(H

(A2))(ε(A2)(ε(A1)(z)))

]
(A.1.21)

and using again (2.4.5) yields the tautology:

∀z ∈ E(G(A1)), def(ε(A2)(ε(A1)(z))) ⇒[
ini(H

(A2))(ε(A2)(ε(A1)(z))) = ini(H
(A2))(ε(A2)(ε(A1)(z)))∧

ter(H
(A2))(ε(A2)(ε(A1)(z))) = ter(H

(A2))(ε(A2)(ε(A1)(z)))

]
(A.1.22)

�

A.2 Composition of Abstractions in AGraph is As-

sociative

This section demonstrates what is stated in constraint (2.5.3):

∀G,H, J,K ∈ Θ,

∀A1 = (G,H, ν1, ε1), A2(H, J, ν2, ε2), A3 = (J,K, ν3, ε3) ∈ ▽,
(A33A2)3A1 = A33(A23A1)

(A.2.1)

This equality can be decomposed into abstraction of vertexes and abstraction of

edges (since function 3 has been defined in that way) as long as the involved abstrac-

tions are defined1:

∀a ∈ V (G(A1)),

[
def(ν(A1)(a)) ∧ def(ν

(A33A2)
◦ (ν(A1)(a)))∧

def(ν
(A23A1)
◦ (a)) ∧ def(ν(A3)(ν(A23A1)(a)))

]
⇒[

ν(A33A2)(ν(A1)(a)) = ν(A3)(ν
(A23A1)
◦ (a))

] (A.2.2)

1We denote by λ
(Ai3Aj)
0 the composition of function λ (which can be either ε or ν) through two

abstractions Ai and Aj .
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∀z ∈ E(G(A1)),

[
def(ε(A1)(z)) ∧ def(ε

(A33A2)
◦ (ε(A1)(z)))∧

def(ε
(A23A1)
◦ (z)) ∧ def(ε(A3)(ε(A23A1)(z)))

]
⇒[

ε(A33A2)(ε(A1)(z)) = ν(A3)(ε
(A23A1)
◦ (z))

] (A.2.3)

Substituting ν◦ in (A.2.2) by its definition yields a tautology, as well as substituting

ε◦ in (A.2.3):

∀a ∈ V (G(A1)),

[
def(ν(A1)(a)) ∧ def(ν(A2)(ν(A1)(a)))∧

def(ν(A3)(ν(A2)(ν(A1)(a))))

]
⇒[

ν(A3)(ν(A2)(ν(A1)(a))) = ν(A3)(ν(A2)(ν(A1)(a)))
] (A.2.4)

∀z ∈ E(G(A1)),

[
def(ε(A1)(z)) ∧ def(ε(A2)(ε(A1)(a)))∧

def(ε(A3)(ε(A2)(ε(A1)(z))))

]
⇒[

ε(A3)(ε(A2)(ε(A1)(z))) = ε(A3)(ε(A2)(ε(A1)(z)))
] (A.2.5)

�

A.3 Composition and Identity of Abstractions in

AGraph

This section demonstrates what is stated in constraint (2.5.4):

∀G,H ∈ Θ, ∀A = (G,H, ν, ε)

A3I(G) = A = I(G)3A
(A.3.1)

Substituting by the definition of each function and separating abstraction of ver-

texes from abstraction of edges:

∀a ∈ V (G),
[
def(ν(A)(a)) ∧ def(ν

(A3I(G))
◦ (a)) ∧ def(ν

(I(G)3A)
◦ (a))

]
⇒[

ν
(A3I(G))
◦ (a) = ν(A)(a) = ν

(I(G)3A)
◦ (a)

] (A.3.2)
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∀z ∈ E(G),
[
def(ε(A)(z)) ∧ def(ε

(A3I(G))
◦ (z)) ∧ def(ε

(I(G)3A)
◦ (z))

]
⇒[

ε
(A3I(G))
◦ (z) = ε(A)(z) = ν

(I(G)3A)
◦ (z)

] (A.3.3)

Firstly, (A.3.2) can be deployed using the definition of ν◦:

∀a ∈ V (G),
[
def(ν(A)(a)) ∧ def(ν(A)(ν(I(G))(a))) ∧ def(ν(I(G))(ν(A)(a)))

]
⇒[

ν(A)(ν(I(G))(a)) = ν(A)(a) = ν(I(G))(ν(A)(a))
] (A.3.4)

But by definition (2.5.1), ν(I(G))(x) = νG(x) = x,∀x, so the equality is satisfied.

Deploying ε◦ in (A.3.3) and following (2.5.1) in the same manner, the equality is

also satisfied.

�

A.4 Composition of Refinements in RGraph is a

Refinement

This section demonstrates what is stated in (2.5.13), that is that R2 • R1 satisfies

constraints for refinements of graphs. The constraints that function • must satisfy for

being considered a refinement are (2.5.5-2.5.8), that we repeat here for convenience:

µ : V (G) → 2V
(H)

is a total function. (A.4.1)

α : E(G) → 2E(H) is a total function. (A.4.2)

∀a ̸= b ∈ V (G), µ(a) ∩ µ(b) = ϕ

∀y ̸= z ∈ E(G), α(y) ∩ α(z) = ϕ
(A.4.3)
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∀z ∈ E(G),∀y ∈ α(z),

[
ini(H)(y) ∈ µ(ini(G)(z))∧
ter(H)(y) ∈ µ(ter(G)(z))

]
(A.4.4)

Demonstration of (A.4.1) and (A.4.2) These two constraints are trivially satis-

fied by the composition function: since µ(R1) is total, µR2) ×µ(R1) must be too because

definition of × in (2.5.13) covers the complete dominion of µ(R1). The same is valid for

α.

�

Demonstration of (A.4.3) That constraint is, for R2 •R1:

∀a ̸= b ∈ V (G(R1)),
[
µ(R2) × µ(R1)(a)

]
∩
[
µ(R2) × µ(R1)(b)

]
= ϕ

∀y ̸= z ∈ E(G(R1)),
[
α(R2) × α(R1)(y)

]
∩
[
α(R2) × α(R1)(z)

]
= ϕ

(A.4.5)

If we substitute the operators × by their definitions in (2.5.13):

∀a ̸= b ∈ V (G(R1)),

∀c∈µ(R1)(a)∪
µ(R2)(c)

 ∩

∀d∈µ(R1)(b)∪
µ(R2)(d)

 = ϕ

∀y ̸= z ∈ E(G(R1)),

∀x∈α(R1)(y)∪
α(R2)(x)

 ∩

∀w∈α(R1)(z)∪
µ(R2)(w)

 = ϕ

(A.4.6)

But by set algebra [122], we know that the following is true for any sets Ai, Bi:

(
∪i∈1...nAi

)
∩
(
∪j∈1...mBj

)
= ∪i∈1...n,j∈1...m(Ai ∩Bj) (A.4.7)

So we can reorder (A.4.6):

∀a ̸= b ∈ V (G(R1)),

∀c∈µ(R1)(a),∀d∈µ(R1)(b)∪
(µ(R2)(c) ∩ µ(R2)(d)) = ϕ

∀y ̸= z ∈ E(G(R1)),

∀x∈α(R1)(y),∀w∈α(R1)(z)∪
(α(R2)(x) ∩ α(R2)(w)) = ϕ

(A.4.8)
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But by definition of µ and α we know that:

∀a ̸= b ∈ V (G(R1)), µ(R1)(a) ∩ µ(R1)(b) = ϕ

∀c ̸= d ∈ V (G(R2)), µ(R2)(c) ∩ µ(R2)(d) = ϕ

∀y ̸= z ∈ E(G(R1)), α(R1)(y) ∩ α(R1)(z) = ϕ

∀x ̸= w ∈ E(G(R2)), α(R2)(x) ∩ α(R2)(w) = ϕ

(A.4.9)

Therefore, (A.4.8) is trivially true.

�

Demonstration of (A.4.4) For R2 •R1, that constraint is:

∀z ∈ E(G(R1)),∀y ∈ α(R2) × α(R1)(z),

[
ini(H

(R2))(y) ∈ µ(R2) × µ(R1)(ini(G
(R1))(z))∧

ter(H
(R2))(y) ∈ µ(R2) × µ(R1)(ter(G

(R1))(z))

]
(A.4.10)

which can be rewritten using the definitions of operators ×:

∀z ∈ E(G(R1)), ∀y ∈
∀x∈α(R1)(z)∪

α(R2)(x),

 ini(H
(R2))(y) ∈

∀b∈µ(R1)(ini(G
(R1))(z))∪

µ(R2)(b)∧

ter(H
(R2))(y) ∈

∀c∈µ(R1)(ter(G
(R1))(z))∪

µ(R2)(c)


(A.4.11)

We know that (2.5.8) holds for R1 and R2 separately:

∀z ∈ E(G(R1)), ∀y ∈ α(R1)(z),

[
ini(H

(R1))(y) ∈ µ(R1)(ini(G
(R1))(z))∧

ter(H
(R1))(y) ∈ µ(R1)(ter(G

(R1))(z))

]

∀x ∈ E(G(R2)),∀w ∈ α(R2)(x),

[
ini(H

(R2))(w) ∈ µ(R2)(ini(G
(R2))(x))∧

ter(H
(R2))(w) ∈ µ(R2)(ter(G

(R2))(x))

] (A.4.12)

In particular, if the second equation of (A.4.12) holds ∀x ∈ E(G(R2)), it must hold

∀x ∈ α(R1)(z), given some z ∈ E(G(R1)):
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∀z ∈ E(G(R1)),∀x ∈ α(R1)(z), ∀w ∈ α(R2)(x),

[
ini(H

(R2))(w) ∈ µ(R2)(ini(G
(R2))(x))∧

ter(H
(R2))(w) ∈ µ(R2)(ter(G

(R2))(x))

]
(A.4.13)

Now notice that by the first equation of (A.4.12),

∀x ∈ α(R1)(z),
[
ini(G

(R2))(x) ∈ µ(R1)(z)
]
∧
[
ter(G

(R2))(x) ∈ µ(R1)(ter(G
(R1))(z))

]
(A.4.14)

Applying µ(R2) to (A.4.14):

∀x ∈ α(R1)(z),µ(R2)(ini(G
(R2))(x) ⊆

∀b∈µ(R1)(ini(G
(R1))(z))∪

µ(R2)(b)

∧
µ(R2)(ter(G

(R2))(x) ⊆
∀c∈µ(R1)(ter(G

(R1))(z))∪
µ(R2)(c)


(A.4.15)

Using (A.4.15) we can rewrite (A.4.13):

∀z ∈ E(G(R1)),∀x ∈ α(R1)(z),∀w ∈ α(R2)(x), ini(H
(R2))(w) ∈

∀b∈µ(R1)(ini(G
(R1))(z))∪

µ(R2)(b)∧

ter(H
(R2))(w) ∈

∀c∈µ(R1)(ter(G
(R1))(z))∪

µ(R2)(c)

 (A.4.16)

Since (A.4.16) does not use x anymore, it can be rewritten:

∀z ∈ E(G(R1)), ∀w ∈
∀x∈µ(R1)(z)∪

α(R2)(x),

 ini(H
(R2))(w) ∈

∀b∈µ(R1)(ini(G
(R1))(z))∪

µ(R2)(b)∧

ter(H
(R2))(w) ∈

∀c∈µ(R1)(ter(G
(R1))(z))∪

µ(R2)(c)


(A.4.17)

which is (A.4.11), what we wanted to demonstrate.
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�

A.5 Composition of Refinements in RGraph is As-

sociative

This section demonstrates what is stated in (2.5.14):

∀G,H, J,K ∈ Θ,


∀R1 = (G,H, µ1, α1), R2 = (H, J, µ2, α2),

R3 = (J,K, µ3, α3) ∈ ∆,

(R3 •R2) •R1 = R3 • (R2 •R1)


The equality can be decomposed into refinement of vertexes and refinement of edges

(since function •) has been defined in that way):

∀a ∈ V (G(R1)),
(
(µ(R3) × µ(R2))× µ(R1)

)
(a) =

(
µ(R3) × (µ(R2) × µ(R1))

)
(a)

∀z ∈ E(G(R1)),
(
(α(R3) × α(R2))× α(R1)

)
(z) =

(
α(R3) × (α(R2) × α(R1))

)
(z)

(A.5.1)

Substituting × in (A.5.1) by its definition yields the following tautologies:

∀a ∈ V (G(R1)),

∀b∈µ(R1)(a)∪
µ(R3) × µ(R2)(b) =

µ(R3) ×

∀c∈µ(R1)(a)∪
µ(R2)(c)

 =

∀c∈µ(R1)(a)∪
µ(R3) × µ(R2)(c)

∀z ∈ E(G(R1)),

∀y∈α(R1)(z)∪
α(R3) × α(R2)(y) =

α(R3) ×

∀x∈α(R1)(z)∪
α(R2)(x)

 =

∀x∈α(R1)(z)∪
α(R3) × α(R2)(x)

(A.5.2)

�
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A.6 Composition and Identity of Refinements in

RGraph

This section demonstrates what is stated in (2.5.15):

∀G,H ∈ Θ, ∀R = (G,H, µ, α),

R • I(G) = R = I(G) •R

Separating refinement of vertexes from refinement of edges:

∀a ∈ V (G), µ(R) × µ(I(G))(a) = µ(R)(a) = µ(I(G)) × µ(R)(a)

∀z ∈ E(G), α(R) × α(I(G))(z) = α(R)(z) = α(I(G)) × α(R)(z)
(A.6.1)

This can be deployed using the definition of ×:

∀a ∈ V (G),

∀b∈µ(I(G))(a)∪
µ(R)(b) = µ(R)(a) =

∀c∈µ(R)(a)∪
µ(I(G))(c)

∀z ∈ E(G),

∀y∈α(I(G))(z)∪
α(R)(y) = α(R)(z) =

∀w∈α(R)(z)∪
α(I(G))(z)

(A.6.2)

Which can be deployed again using the definition for I(G):

∀a ∈ V (G),

∀b∈µG(a)∪
µ(R)(b) = µ(R)(a) =

∀c∈µ(R)(a)∪
µG(c)

∀z ∈ E(G),

∀y∈αG(z)∪
α(R)(y) = α(R)(z) =

∀w∈α(R)(z)∪
αG(w)

(A.6.3)

And:

∀a ∈ V (G),

∀b∈{a}µ(R)(b)=µ(R)(a)=

∀c∈µ(R)∪
(a)∪

{c}

∀z ∈ E(G),

∀y∈{z}α(R)(y)=α(R)(z)=

∀w∈α(R)∪
(z)∪

{w}

(A.6.4)

Which is a tautology:
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∀a ∈ V (G), µ(R)(a) = µ(R)(a)

∀z ∈ E(G), α(R)(z) = α(R)(z)
(A.6.5)

�





Appendix B

Demonstration that Ψ is a Functor

from CAVGraph∗ to AState

B.1 Ψ Preserves Identity

In this section we demonstrate that given a graph G ∈ Θ∗:

Ψ(I(G)) = I(Ψ(G))

for the functor Ψ between CAVGraph∗ and AState.

On the one hand, by equation 2.5.1: Ψ(I(G)) = Ψa(A1), where A1 = (G,G, νG, εG):

νG : V (G) → V (G) εG : E(G) → E(G)

∀a ∈ V (G), νG(a) = a ∀z ∈ E(G), εG(z) = z

On the other hand, applying the identity function of AState (equation 3.2.5) to

Ψo(G):

I(Ψo(G)) = As1 = (Ψo(G),Ψo(G), ξ, π)

where

217
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ξ : SN(Ψo(G)) → SN(Ψo(G)) π : SP (Ψo(G)) → SP (Ψo(G))

∀p ∈ SN(Ψo(G)), ξ(p) = p ∀a ∈ SP (Ψo(G)), π(a) = a

Thus, we must demonstrate that

Ψa(A1) = As1

By definition 3.2.14:

Ψa(A1) = Ψa((G,G, νG, εG)) = (Ψo(G),Ψo(G), τ, κ), where

τ : Υ → Υ

∀z ∈ E(G)
: def(εG(z)), τ(Γe1(z)) = Γe1(εG(z)) = Γe1(z)

κ : Υ → Υ

∀a ∈ V (G)
: def(νG(a), κ(Γv(a)) = Γv(νG(a)) = Γv(a)

That is, τ = ξ(As1) and κ = π(As1), so the identity is preserved.

�

B.2 Ψ Preserves Composition of Arrows

This section demonstrates that Ψ preserves the composition of arrows, that is:

∀A1, A2 ∈ ▽ : def(A23A1),Ψ(A23A1) = Ψ(A2)3Ψ(A1)

Let be A1 = (G,H, ν1, ε1) and A2(H, J, ν2, ε2) two abstractions of CAVGraph∗. By

definition 2.5.2, A23A1 = (G, J, ν◦, ε◦), where the two abstraction functions are defined

by mathematical composition of functions: ν◦ = ν2 ◦ ν1 and ε◦ = ε2 ◦ ε1.

Applying the functor Ψa to the composition A23A1, we obtain:

Ψa(A23A1) = Ψa((G, J, ν◦, ε◦)) = (Ψo(G),Ψo(J), τ◦, κ◦)



B. Demonstration that Ψ is a Functor from CAVGraph∗ to AState 219

where functions τ◦ and κ◦ are defined in terms of ε◦ and ν◦ respectively:

τ◦ : Υ → Υ

∀z ∈ E(G) : def(ε◦(z)), τ◦(Γe1(z)) = Γe1(ε◦(z)) = Γe1(ε2(ε1(z)))

κ◦ : Υ → Υ

∀a ∈ V (G)) : def(ν◦(a), κ◦(Γv(a)) = Γv(ν◦(a)) = Γv(ν2(ν1((a))))

On the other hand, we must compute Ψa(A2)3Ψa(A1):

Ψa(A2) = (Ψo(H),Ψo(J), τ2, κ2)

∀z ∈ E(H) : def(ε2(z)), τ2(Γe1(z)) = Γe1(ε2(z))

∀a ∈ V (H) : def(ν2(a), κ2(Γv(a)) = Γv(ν2(a))

Ψa(A1) = (Ψo(G),Ψo(H), τ1, κ1)

∀z ∈ E(G) : def(ε1(z)), τ1(Γe1(z)) = Γe1(ε1(z))

∀a ∈ V (G) : def(ν1(a), κ1(Γv(a)) = Γv(ν1(a))

Ψa(A2)3Ψa(A1) = (Ψo(G),Ψo(J), ξ3, π3)

by definition 3.2.6 of composition of abstractions in AState. It remains to demonstrate

that functions ξ3 and π3 are equivalent to τ◦ and κ◦ respectively. But, by definition

3.2.6:
ξ3 = τ2 ◦ τ1 :[

∀z ∈ E(G) : def(ε1(z)), ε1(z) ∈ E(H), τ1(Γe1(z)) = Γe1(ε1(z))
]
∧[

∀z ∈ E(H) : def(ε2(z)), τ2(Γe1(z)) = Γe1(ε2(z))
]
⇒

∀z ∈ E(G) : def(ε1(z)) ∧ def(ε2(z)) ∧ def(ε2(ε1(z)))

ξ3(Γe1(z)) = τ2(τ1(Γe1(z))) = τ2(Γe1(ε1(z))) = Γe1(ε2(ε1(z)))

π3 = κ2 ◦ κ1 :[
∀a ∈ V (G) : def(ν1(a)), ν1(a) ∈ V (G), κ1(Γv(a)) = Γv(ν1(a))

]
∧[

∀a ∈ V (H) : def(ν2(a)), κ2(Γv(a)) = Γv(ν2(a))
]
⇒

∀a ∈ V (G) : def(ν1(a)) ∧ def(ν2(a)),∧def(ν2(ν1(a)))
π3(Γv(a)) = κ2(κ1(Γv(a))) = κ2(Γv(ν1(a))) = Γv(ν2(ν1(a))) �





Appendix C

Planning Domain

(define (domain experiment)

(:requirements :typing :fluents)

(:types LOCATION OBJECT)

(:constants Robot - OBJECT)

(:predicates

(at ?obj - OBJECT ?loc - LOCATION)

(free ?obj - OBJECT)

(on ?sup ?inf - OBJECT)

(in ?obj1 ?obj2 - OBJECT)

(free-robot)

(taken ?obj - OBJECT)

(closed ?obj - OBJECT)

(opened ?obj - OBJECT)

(Nav ?x ?y - LOCATION)

(charge-station ?x -LOCATION)

(separated ?x ?y - LOCATION)

(connected ?x ?y - LOCATION ?z - OBJECT)

)

(:functions

(time-to-move ?l1 ?l2 - location)

(battery-to-move ?l1 ?l2 - location)

(battery)

(time)

)

(:action GO

:parameters
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(

?loc-from - LOCATION

?loc-to - LOCATION

)

:precondition

(and (at Robot ?loc-from)

(Nav ?loc-from ?loc-to)

(and (not (separated ?loc-from ?loc-to))

(not (separated ?loc-to ?loc-from)))

(> (battery) (battery-to-move ?loc-from ?loc-to))

)

:effect

(and (not (at Robot ?loc-from)) (at Robot ?loc-to)

(increase (time) (time-to-move ?loc-from ?loc-to))

(decrease (battery) (battery-to-move ?loc-from ?loc-to))

)

)

(:action RECHARGE-LOW

:parameters

(

?loc - LOCATION

)

:precondition

(and (charge-station ?loc)

(at Robot ?loc)

)

:effect

(and

(increase (battery) 5)

(increase (time) 5)

)

)

(:action RECHARGE-MED

:parameters

(

?loc - LOCATION

)

:precondition

(and (charge-station ?loc)

(at Robot ?loc)
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)

:effect

(and

(increase (battery) 10)

(increase (time) 10)

)

)

(:action RECHARGE-HIGH

:parameters

(

?loc - LOCATION

)

:precondition

(and (charge-station ?loc)

(at Robot ?loc)

)

:effect

(and

(increase (time) 15)

(increase (battery) 15)

)

)

(:action TAKEOUT

:parameters

(

?obj - OBJECT

?obj2 - OBJECT

?loc - LOCATION

)

:precondition

( and (at Robot ?loc)

(at ?obj2 ?loc)

(in ?obj ?obj2)

(opened ?obj2)

(free-robot)

)

:effect

(and (not (free-robot)) (not (at ?obj ?loc)) (taken ?obj)

(not (in ?obj ?obj2)))

)



224

(:action TAKE

:parameters

(

?obj - OBJECT

?loc - LOCATION

)

:precondition

( and (at Robot ?loc)

(at ?obj ?loc)

(free ?obj)

(free-robot)

)

:effect

(and (not (free ?obj)) (not (free-robot)) (not (at ?obj ?loc))

(taken ?obj))

)

(:action REMOVE

:parameters

(

?obj - OBJECT

?obj2 - OBJECT

?loc - LOCATION

)

:precondition

( and (at Robot ?loc)

(at ?obj ?loc)

(on ?obj ?obj2)

(free ?obj)

(free-robot)

)

:effect

(and (not (free ?obj)) (not (free-robot)) (not (at ?obj ?loc))

(taken ?obj))

)

(:action GIVE

:parameters

(

?obj - OBJECT

?loc - LOCATION
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)

:precondition

( and (at Robot ?loc)

(taken ?obj)

)

:effect

( and (not (taken ?obj)) (at ?obj ?loc) (free-robot) )

)

(:action PUTDOWN

:parameters

(

?objsup - OBJECT

?objinf - OBJECT

?loc - LOCATION

)

:precondition

(and (at Robot ?loc) (at ?objsup ?loc) (at ?objinf ?loc)

(on ?objsup ?objinf) (free ?objsup))

:effect

(and (not (on ?objsup ?objinf)) (free ?objinf))

)

)





References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms.

Addison-Wesley Publishing Co., Massachusetts, 1983.

[2] P. Aigner and B. McCarragher. Human integration into robot control utilizing

potential fields. In IEEE Int. Conf. on Robotics and Automation, Albuquerque,

NM, pages 291–296, 1997.

[3] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture

for autonomy. International Journal of Robotics Research, 17(4):315–337, 1998.

[4] J. G. Allen, R. Xu, and J. Jin. Object tracking using camshift algorithm and

multiple quantized feature spaces. In Proc. of the Pan-Sydney area workshop on

Visual information processing, Australia, 2004.

[5] R.C. Arkin. Cooperation without communication: Multi-agent schema based

robot navigation. Journal of Robotic Systems, 9(3):351–364, 1992.

[6] R.C. Arkin, E.M. Riseman, and A. Hansen. Aura: An architecture for vision-

based robot navigation. In DARPA Image Understanding Workshop, Los Ange-

les, CA, pages 417–431, 1987.

[7] M. Asada. Map building for a mobile robot from sensory data. IEEE Trans. on

Systems, Man, and Cybernetics, 37(6):1326–1336, 1990.
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robotic wheelchair using a multihierarchical model of the environment. Integrated

Computer-Aided Eng., 11:309–322, 2004.

[44] J.A. Fernández-Madrigal, C. Galindo, J. González, E. Cruz, and A. Cruz. A
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[55] C. Galindo, J. González, and J.A. Fernández-Madrigal. Interactive task planning

in assistant robotics. 5th Symposium on Intelligent Autonomous Vehicles, Lisbon,

2004.
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[107] A.J. Mun̈oz and J. González. 2d landmark-based position estimation from a

single image. In IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium,

1998.

[108] N. Nillson. Shakey the robot. Technical report, No. 323, Artificial Intelligence

Center, SRI International, Melon Park, CA, 1984.

[109] P. Nordin, W. Bazhaf, and M. Brameier. Evolution of a world model for a

miniature robot using genetic programming. Robotics and Autonomous Systems,

25:305–116, 1998.

[110] S.P. Pari, R.S. Rao, S. Jungt, V. Kumar, J.P. Ostrowski, and C.J. Taylor. Human

robot interaction and usability studies for a smart wheelchair. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, Las Vegas, Nevada, pages 3206–3211,

2003.

[111] I-P. Park and J.R. Kender. Topological direction-giving and visual navigation in

large environments. Artificial Intelligence, 78:355–395, 1995.

[112] A.L. Patalano, E.E. Smith, J. Jonides, and R.A. Koeppe. Pet evidence for mul-

tiple strategies of categorization. Cognitive, Affective, and Behavioral Neuro-

science, 1(4):360–370, 2001.

[113] G.L. Peterson and D.J. Cook. Incorporating decision-theoretic planning in a

robot architecture. Robotics and Autonomous Systems, 42(2):89–106, 2003.

[114] J. Pineau, N. Roy, and S. Thrun. A hierarchical approach to pomdp planning and

execution. In Workshop on Hierarchy and Memory in Reinforcement Learning

(ICML), June 2001.

[115] M. Pollack, S. Engberg, J.T. Matthews, S. Thrun, L. Brown, D. Colbry, C. Orosz,

S. Ramakrishnan B. Peintner, J. Dunbar-Jacob, C. McCarthy, M. Montemerlo,

J. Pineau, and N. Roy. Pearl: A mobile robotic assistant for the elderly. In



REFERENCES 239

Workshop on Automation as Caregiver: the Role of Intelligent Technology in

Elder Care, August 2002.

[116] A. Poncela, E.J. Perez, A. Bandera, C. Urdiales, and F. Sandoval. Efficient

integration of metric and topological maps for directed exploration of unknown

environments. Robotics and Autonomous Systems, 41(1):21–39, 2002.

[117] A. Ram, R. Arkin, G. Boone, and M. Pearce. Using genetic algorithms to learn

reactive control parameters for autonomous robotic navigation. Adaptive Behav-

ior, 2(3):277–304, 1994.

[118] R.S. Rao, K. Conn, S.H. Jung, J. Katupitiya, T. Kientz, V. Kumar, J. Os-

trowski, S. Patel, and C.J. Taylor. Human robot interaction: Application to

smart wheelchairs. In IEEE Int. Conf. on Robotics and Automation, Washing-

ton, DC, pages 3583–3588, 2002.

[119] C. R. Reeves and J. E. Rowe. Genetic Algorithms: Principles and Perspectives.

A Guide to GA Theory. Kluwer Academic Publishers, 2003.
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